Midterm Exam I (March 10, 2021, 08:30 am - 09:55 am)

CSE 215: Foundations of Computer Science
State University of New York at Stony Brook, Spring 2021
Instructor: Prof. Pramod Ganapathi
Total points $=45$. Total questions $=8$. Total pages $=2$.
Instructions:

- Please write your full name and SBU student ID on the answer sheet.

Problem 1. [5 points]

Construct a truth table for the following statement form: $(p \wedge(q \vee r)) \rightarrow(p \wedge r)$.

Problem 2. [5 points]

Check the logical equivalence of $((p \wedge q) \rightarrow r)$ and $((p \rightarrow r) \vee(q \rightarrow r))$.
Problem 3. [10 points]
Give negations of the following statements. Reasoning is not required.
(a) [1 point] $p \wedge q$
(b) [1 point] $p \vee q$
(c) [1 point] $p \oplus q$
(d) [1 point] $p \rightarrow q$
(e) [1 point] $p \leftrightarrow q$
(f) [1 point] $\forall x, \forall y$ such that $p(x, y)$
(g) [1 point] $\forall x, \exists y$ such that $p(x, y)$
(h) [1 point] $\exists x, \forall y$ such that $p(x, y)$
(i) $[1$ point $\exists x, \exists y$ such that $p(x, y)$
(j) [1 point] $\exists x, \forall y, \exists z$ such that $p(x, y, z)$

Problem 4. [5 points]

Determine if the following deduction rule is valid:
$p \rightarrow q$
$q \rightarrow r$
-
$\therefore p \rightarrow r$

Problem 5. [5 points]

Determine if the following deduction rule is valid:
$p \rightarrow(q \vee r)$
$\sim(p \rightarrow q)$
$\therefore r$

Problem 6. [5 points]

Prove or disprove the following statement. For all integers, if a is odd, then a^{4} is odd.
Problem 7. [5 points]
Prove or disprove the following statement. The difference of two perfect squares is not a prime number. Here is the reasoning for the claim: $a^{2}-b^{2}=(a+b)(a-b)$, which is a composite number.

Problem 8. [5 points]
Prove by contradiction that there are no integers x and y such that $x^{2}=4 y+2$. (Hint: For this problem, you can assume without giving proof that if x^{2} is even, then x is even.)

