Final Exam (May 18, 2021, 08:00-10:45 am)
CSE 215: Foundations of Computer Science
State University of New York at Stony Brook, Spring 2021
Instructor: Prof. Pramod Ganapathi
Total points $=60$. Total questions $=11$. Total pages $=2$.

Problem 1. [5 points]

Construct a truth table for the following statement form: $p \wedge(q \vee r) \leftrightarrow p \wedge(q \wedge r)$.

Problem 2. [5 points]

Construct a truth table for the following statement form: $(p \rightarrow q) \vee((q \oplus r) \rightarrow \sim p)$.

Problem 3. [5 points]

Mention whether the following statements are true or false. Reasons are not needed.
(a) [1 point] $p \vee \sim p \equiv \mathbf{c}$
(b) [1 point] $p \vee(p \wedge q) \equiv p \wedge(p \vee q)$
(c) [1 point] $\mathbf{c} \equiv p \vee \mathbf{t}$
(d) [1 point] $p \wedge p \equiv p \vee p$
(e) [1 point] $p \wedge \mathbf{c} \equiv \sim \mathbf{t}$

Problem 4. [5 points]

Prove that the sum of the squares of any two consecutive odd integers is even.

Problem 5. [5 points]

Suppose that x and y are real numbers. Prove that $x=y$ if and only if $x y=(x+y)^{2} / 4$.

Problem 6. [5 points]

Use algebra to prove that $0.3181818 \ldots \times 0.888 \ldots=28 / 99$. The first number has 18 repeated and the second number has 8 repeated for an infinite number of times.

Problem 7. [10 points]

Use mathematical induction to prove the following identities.
(a) [5 points] For all integers $n \geq 1$,

$$
\sum_{i=1}^{n} i(i!)=(n+1)!-1
$$

(b) [5 points] Consider the Fibonacci sequence: $f_{0}=0, f_{1}=1$, and $f_{n}=f_{n-1}+f_{n-2}$, for $n \geq 2$. For all integers $n \geq 2$,

$$
f_{n+2}=1+\sum_{i=0}^{n} f_{i} \text {. }
$$

Problem 8. [5 points]

Write the pseudocodes of the recursive algorithms for solving the Towers of Hanoi problem and computing the greatest common divisor of two integers.

Problem 9. [5 points]

Write and fill the table with \checkmark or X. If a function is one-to-one or onto, then use \checkmark. On the other hand, if a function is not one-to-one or not onto, then use \boldsymbol{X}.

Function	Domains	One-to-one function?	Onto function?
$f(x)=3 x$	$f: \mathbb{Z} \rightarrow \mathbb{Z}$		
$f(x)=3 x$	$f: \mathbb{R} \rightarrow \mathbb{R}$		
$f(x)=3 x^{2}$	$f: \mathbb{Z} \rightarrow \mathbb{Z}$		
$f(x)=3 x^{2}$	$f: \mathbb{R} \rightarrow \mathbb{R}$		

Problem 10. [5 points]
Consider $f: \mathbb{R}^{*} \rightarrow \mathbb{R}^{*}$, where $\mathbb{R}^{*}=\mathbb{R}^{+} \cup\{0\}$ is the set of all nonnegative real numbers, such that f is a mapping from pounds to kilograms. A kilogram of mass in the International System of Units (SI) represents 2.2046226218 pounds. Is f a one-to-one correspondence? Prove your answer.

Problem 11. [5 points]

Let A be the set of all people. Let R be the relation defined on A as follows: For persons p and q in A, we have $p R q \Leftrightarrow p$ has the same birthday as q.
Is R an equivalence relation? Prove your answer. If R is an equivalence relation, what are the distinct equivalence classes of the relation?

