Final Exam (December 17, 2020, 11:15 am - 01:50 pm)
CSE 215: Foundations of Computer Science
State University of New York at Stony Brook, Fall 2020
Instructor: Prof. Pramod Ganapathi
Total points $=60$. Total questions $=11$. Total pages $=2$.

- Please write your full name and SBU student ID on the answer sheet.
- Please include the following integrity statement on your answer sheet:
"Academic integrity is expected of all students at all times, whether in the presence or absence of members of the faculty. Understanding this, I declare that I shall not give, use, or receive unauthorized aid in this examination. I have been warned that any suspected instance of academic dishonesty will be reported to the appropriate office and that I will be subjected to the maximum possible penalty permitted under University guidelines."

Problem 1. [5 points]

Determine if the following deduction rule is valid.
$(p \wedge q) \rightarrow r$
$\sim p \vee \sim q$
$\therefore \quad \sim r$

Problem 2. [5 points]

Is conditional operator \rightarrow an associative operator? That is, is $(p \rightarrow q) \rightarrow r$ logically equivalent to $p \rightarrow(q \rightarrow r)$? Prove your answer.

Problem 3. [5 points]

Verify using truth tables if the following two logical expressions are equivalent.
$\sim p \leftrightarrow \sim q$ and $\sim(p \oplus q)$

Problem 4. [5 points]

Prove that $n^{2}+9 n+27$ is odd for all natural numbers n. You can use any proof technique.

Problem 5. [5 points]

Prove using contradiction that the cube root of an irrational number is irrational.

Problem 6. [5 points]

Prove that if $n^{2}+8 n+20$ is odd, then n is odd for natural numbers n.

Problem 7. [10 points]

Use mathematical induction to prove the following identities.
(a) [5 points] For all natural numbers n,

$$
1^{2} \times 2+2^{2} \times 3+3^{2} \times 4+\cdots+n^{2} \times(n+1)=\frac{n(n+1)(n+2)(3 n+1)}{12}
$$

(b) [5 points] For all natural numbers n,

$$
\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\cdots+\frac{1}{n \times(n+1)}=\frac{n}{n+1}
$$

Problem 8. [5 points]

Write Euclid's recursive algorithm to compute the greatest common divisor (GCD) of two whole numbers. Show the step-by-step process to compute the GCD of 46 and 14 using the algorithm.

Problem 9. [5 points]
Functions F and G are defined by formulas. Find $G \circ F$ and $F \circ G$ and determine whether $G \circ F$ equals $F \circ G$.
$F(x)=x^{5}$ and $G(x)=x^{1 / 5}$ for all real numbers x.

Problem 10. [5 points]

Prove that the following set is countable using a diagram and a formula for the one-toone correspondence function. $\left\{ \pm 1^{1}, \pm 2^{2}, \pm 3^{3}, \pm 4^{4}, \pm 5^{5}, \ldots\right\}$

Problem 11. [5 points]

Show how to find the units digit of 2468^{8642}.

