Discrete Mathematics
(Set)

Pramod Ganapathi
Department of Computer Science
State University of New York at Stony Brook

January 24, 2021
What is a set?

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>• A set is a collection of related items</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>• $A = {1, 2, 3, 4, 5}$</td>
</tr>
<tr>
<td>• $P = {2, 3, 5, 7, 11, 13, 17, \ldots}$</td>
</tr>
<tr>
<td>• S is a set of square numbers</td>
</tr>
<tr>
<td>• $B = {m \in \mathbb{Z} \mid m = 7n + 100 \text{ for some } n \in \mathbb{Z}}$</td>
</tr>
</tbody>
</table>
Subsets

Definitions

- **Subset.** \(A \subseteq B \iff \forall x, \text{ if } x \in A \text{ then } x \in B \)
- **Not subset.** \(A \not\subseteq B \iff \exists x \text{ such that } x \in A \text{ and } x \notin B \)
- **Proper subset.** \(A \subset B \iff \)
 1. \(A \subseteq B \)
 2. \(\exists x \text{ such that } x \in B \text{ and } x \notin A \)

Problems

- Let \(A = \{1\} \) and \(B = \{1, \{1\}\} \).
 1. Is \(A \subseteq B \)?
 2. Is \(A \subset B \)?
- Let \(A = \{m \in \mathbb{Z} \mid m = 6r + 12 \text{ for some } r \in \mathbb{Z}\} \) and \(B = \{n \in \mathbb{Z} \mid n = 3s \text{ for some } s \in \mathbb{Z}\} \).
 1. Prove that \(A \subseteq B \).
 2. Disprove that \(B \subseteq A \).
Set equality

Definition

- Given sets A and B, A equals B, written $A = B$, if, and only if, every element of A is in B and every element of B is in A.
- $A = B \iff A \subseteq B$ and $B \subseteq A$.

Problems

- $A = \{m \in \mathbb{Z} \mid m = 2a \text{ for some integer } a\}$
- $B = \{n \in \mathbb{Z} \mid n = 2b - 2 \text{ for some integer } b\}$
- Is $A = B$?
Definition

- Relationship between a small number of sets can be represented by pictures called **Venn diagrams**

Problems

- Write a Venn diagram representing sets of numbers: $\mathbb{N}, \mathbb{W}, \mathbb{Q}, \mathbb{R}$.
Definition

Let A and B be subsets of a universal set U.

1. The **union** of A and B, denoted $A \cup B$, is the set of all elements that are in at least one of A or B.

 \[A \cup B = \{ x \in U \mid x \in A \text{ or } x \in B \} \]

2. The **intersection** of A and B, denoted $A \cap B$, is the set of all elements that are common to both A and B.

 \[A \cap B = \{ x \in U \mid x \in A \text{ and } x \in B \} \]

3. The **difference** of B minus A (or relative complement of A in B), denoted $B - A$, is the set of all elements that are in B and not A.

 \[B - A = \{ x \in U \mid x \in B \text{ and } x \notin A \} \]

4. The **complement** of A, denoted A', is the set of all elements in U that are not in A.

 \[A' = \{ x \in U \mid x \notin A \} \]
Let the universal set $U = \{a, b, c, d, e, f, g\}$.
Let $A = \{a, c, e, g\}$ and $B = \{d, e, f, g\}$.
Find $A \cup B$, $A \cap B$, $B - A$, and A'.
Operations on sets

Notations

Given real numbers a and b with $a \leq b$:

- $(a, b) = \{x \in \mathbb{R} \mid a < x < b\}$
- $[a, b] = \{x \in \mathbb{R} \mid a \leq x \leq b\}$
- $(a, b] = \{x \in \mathbb{R} \mid a < x \leq b\}$
- $[a, b) = \{x \in \mathbb{R} \mid a \leq x < b\}$

- The symbols ∞ and $-\infty$ are used to indicate intervals that are unbounded either on the right or on the left:
 - $(a, \infty) = \{x \in \mathbb{R} \mid x > a\}$
 - $[a, \infty) = \{x \in \mathbb{R} \mid x \geq a\}$
 - $(-\infty, b) = \{x \in \mathbb{R} \mid x < b\}$
 - $(-\infty, b] = \{x \in \mathbb{R} \mid x \leq b\}$

Problems

- $A = (-1, 0] = \{x \in \mathbb{R} \mid -1 < x \leq 0\}$
- $B = [0, 1) = \{x \in \mathbb{R} \mid 0 \leq x < 1\}$

Find $A \cup B$, $A \cap B$, $B - A$, and A'.
Operations on sets

Notations

Given sets \(A_0, A_1, A_2, \ldots \) that are subsets of a universal set \(U \) and given a nonnegative integer \(n \),

- \(\bigcup_{i=0}^{n} A_i = \{ x \in U \mid x \in A_i \text{ for at least one } i = 0, 1, 2, \ldots, n \} \)
- \(\bigcup_{i=0}^{\infty} A_i = \{ x \in U \mid x \in A_i \text{ for at least one whole number } i \} \)
- \(\bigcap_{i=0}^{n} A_i = \{ x \in U \mid x \in A_i \text{ for all } i = 0, 1, 2, \ldots, n \} \)
- \(\bigcap_{i=0}^{\infty} A_i = \{ x \in U \mid x \in A_i \text{ for all whole numbers } i \} \)

Problems

- For each positive integer \(i \), let
 \[A_i = \{ x \in \mathbb{R} \mid -\frac{1}{i} < x < \frac{1}{i} \} = \left(-\frac{1}{i}, \frac{1}{i} \right) \]
 Find \(A_1 \cup A_2 \cup A_3 \) and \(A_1 \cap A_2 \cap A_3 \)
 Find \(\bigcup_{i=0}^{\infty} A_i \) and \(\bigcap_{i=0}^{\infty} A_i \)
Empty set

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empty set, denoted by ϕ, is a set with no elements.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>• ${1, 3} \cap {2, 4} = \phi$</td>
</tr>
<tr>
<td>• ${x \in \mathbb{R} \mid x^2 = -1} = \phi$</td>
</tr>
<tr>
<td>• ${x \in \mathbb{R} \mid 3 < x < 2} = \phi$</td>
</tr>
</tbody>
</table>
Disjoint sets

Definition

- Two sets are called **disjoint** if, and only if, they have no elements in common.
- A and B are disjoint $\iff A \cap B = \emptyset$

Problems

- Let $A = \{1, 3, 5\}$ and $B = \{2, 4, 6\}$. Are A and B disjoint?
Mutually disjoint sets

Definition

- Sets A_1, A_2, A_3, \ldots are **mutually disjoint** (or pairwise disjoint or nonoverlapping) if, and only if, no two sets A_i and A_j with distinct subscripts have any elements in common.
- For all $i, j = 1, 2, 3, \ldots$

 $A_i \cap A_j = \emptyset$ whenever $i \neq j$.

Problems

Are the following sets mutually disjoint?

- $A_1 = \{3, 5\}$, $A_2 = \{1, 4, 6\}$, and $A_3 = \{2\}$.
- $B_1 = \{2, 4, 6\}$, $B_2 = \{3, 7\}$, and $B_3 = \{4, 5\}$.
Partition of a set

Definition

- A finite or infinite collection of nonempty sets \(\{A_1, A_2, A_3, \ldots \} \) is a **partition** of a set \(A \) if, and only if,
 1. \(A \) is the union of all the \(A_i \)
 2. The sets \(A_1, A_2, A_3, \ldots \) are mutually disjoint.

Problems

- Let \(A = \{1, 2, 3, 4, 5, 6\} \) \(A_1 = \{1, 2\} \), \(A_2 = \{3, 4\} \), and \(A_3 = \{5, 6\} \). Is \(\{A_1, A_2, A_3\} \) a partition of \(A \)?
- Let \(\mathbb{Z} \) be the set of all integers and let

 \[
 T_0 = \{n \in \mathbb{Z} \mid n = 3k, \text{ for some integer } k\},
 T_1 = \{n \in \mathbb{Z} \mid n = 3k + 1, \text{ for some integer } k\},
 T_2 = \{n \in \mathbb{Z} \mid n = 3k + 2, \text{ for some integer } k\},
 \]

 Is \(\{T_0, T_1, T_2\} \) a partition of \(\mathbb{Z} \)?
Power set

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Given a set A, the power set of A, denoted $P(A)$, is the set of all subsets of A.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Find the power set of the set ${x, y}$. That is, find $P({x, y})$.</td>
</tr>
</tbody>
</table>
Ordered n-tuple

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Ordered n-tuple, (x_1, x_2, \ldots, x_n), consists of x_1, x_2, \ldots, x_n together with the ordering.</td>
</tr>
<tr>
<td>• Ordered pair = ordered 2-tuple</td>
</tr>
<tr>
<td>• Ordered triple = ordered 3-tuple</td>
</tr>
<tr>
<td>• Two ordered n-tuples (x_1, x_2, \ldots, x_n) and (y_1, y_2, \ldots, y_n) are equal if, and only if, $x_1 = y_1, x_2 = y_2, \ldots, x_n = y_n$.</td>
</tr>
</tbody>
</table>

\[
(x_1, x_2, \ldots, x_n) = (y_1, y_2, \ldots, y_n) \iff x_1 = y_1, \ldots, x_n = y_n.
\]

<table>
<thead>
<tr>
<th>Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Is $(1, 2, 3, 4) = (1, 2, 4, 3)$?</td>
</tr>
<tr>
<td>• Is $\left(3, (-2)^2, \frac{1}{2}\right) = \left(\sqrt{9}, 4, \frac{3}{6}\right)$?</td>
</tr>
<tr>
<td>• Is $((1, 2), 3) = (1, 2, 3)$?</td>
</tr>
</tbody>
</table>
Cartesian product

Definition

- Given sets A_1, A_2, \ldots, A_n, the **Cartesian product** of A_1, A_2, \ldots, A_n denoted $A_1 \times A_2 \times \cdots \times A_n$, is the set of all ordered n-tuples (a_1, a_2, \ldots, a_n) where $a_1 \in A_1, a_2 \in A_2, \ldots, a_n \in A_n$.

Problems

- Let $A_1 = \{x, y\}$, $A_2 = \{1, 2, 3\}$, and $A_3 = \{a, b\}$. Find:

 (a) $A_1 \times A_2$,

 (b) $(A_1 \times A_2) \times A_3$, and

 (c) $A_1 \times A_2 \times A_3$.

Table

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Properties of sets

Definition

- Inclusion of intersection: For all sets A and B, $A \cap B \subseteq A$ and $A \cap B \subseteq B$.
- Inclusion in union: For all sets A and B, $A \subseteq A \cup B$ and $B \subseteq A \cup B$.
- Transitive property of subsets: For all sets A, B, and C, if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
Procedural versions of set definitions

Definition

Let X and Y be subsets of a universal set U and suppose x and y are elements of U.

- $x \in X \cup Y \iff x \in X \text{ or } x \in Y$
- $x \in X \cap Y \iff x \in X \text{ and } x \in Y$
- $x \in X - Y \iff x \in X \text{ and } x \notin Y$
- $x \in X' \iff x \notin X$
- $(x, y) \in X \times Y \iff x \in X \text{ and } y \in Y$
<table>
<thead>
<tr>
<th>Laws</th>
<th>Formula</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutative laws</td>
<td>$A \cup B = B \cup A$</td>
<td>$A \cap B = B \cap A$</td>
</tr>
<tr>
<td>Associative laws</td>
<td>$(A \cup B) \cup C = A \cup (B \cup C)$</td>
<td>$(A \cap B) \cap C = A \cap (B \cap C)$</td>
</tr>
<tr>
<td>Distributive laws</td>
<td>$A \cup (B \cap C) = (A \cup B) \cap (A \cup C')$</td>
<td>$A \cap (B \cup C) = (A \cap B) \cup (A \cap C')$</td>
</tr>
<tr>
<td>Identity laws</td>
<td>$A \cup \emptyset = A$</td>
<td>$A \cap U = A$</td>
</tr>
<tr>
<td>Complement laws</td>
<td>$A \cup A' = U$</td>
<td>$A \cap A' = \emptyset$</td>
</tr>
<tr>
<td>Double comp. law</td>
<td>$(A')' = A$</td>
<td>$(A')' = A$</td>
</tr>
<tr>
<td>Idempotent laws</td>
<td>$A \cup A = A$</td>
<td>$A \cap A = A$</td>
</tr>
<tr>
<td>Uni. bound laws</td>
<td>$A \cup U = U$</td>
<td>$A \cap \emptyset = \emptyset$</td>
</tr>
<tr>
<td>De Morgan’s laws</td>
<td>$(A \cup B)' = A' \cap B'$</td>
<td>$(A \cap B)' = A' \cup B'$</td>
</tr>
<tr>
<td>Absorption laws</td>
<td>$A \cup (A \cap B) = A$</td>
<td>$A \cap (A \cup B) = A$</td>
</tr>
<tr>
<td>Complements</td>
<td>$U' = \emptyset$</td>
<td>$\emptyset' = U$</td>
</tr>
<tr>
<td>Set diff. laws</td>
<td>$A - B = A \cap B'$</td>
<td>$A - B = A \cap B'$</td>
</tr>
</tbody>
</table>
Basic method for proving that a set is a subset of another

- Let sets X and Y be given. To prove that $X \subseteq Y$,
 1. suppose that x is a particular but arbitrarily chosen element of X.
 2. show that x is an element of Y.
Basic method for proving that two sets are equal

- Let sets X and Y be given. To prove that $X = Y$,
 1. Prove that $X \subseteq Y$.
 2. Prove that $Y \subseteq X$.
Element argument

Basic method for proving a set equals the empty set

• To prove that a set X is equal to the empty set \emptyset, prove that X has no elements.
• To do this, suppose X has an element and derive a contradiction.
Proof by element argument: Example 1

Proposition

- Prove that for all sets A, B, and C
 $$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
Proposition

- Prove that for all sets A, B, and C
 \[A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \]

Proof

We need to prove:

1. $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$
2. $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$
Proof by element argument: Example 1

Proof (continued)

Proof that \(A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C) \).

Suppose \(x \in A \cup (B \cap C) \).

\(x \in A \) or \(x \in B \cap C \) \((\because \) defn. of union \)

• Case 1. \([x \in A.]\)
 \(x \in A \cup B \) \((\because \) defn. of union \)
 \(x \in A \cup C \) \((\because \) defn. of union \)
 \(x \in (A \cup B) \cap (A \cup C) \) \((\because \) defn. of intersection \)

• Case 2. \([x \in B \cap C.]\)
 \(x \in B \) and \(x \in C \) \((\because \) defn. of intersection \)
 \(x \in A \cup B \) \((\because \) defn. of union \)
 \(x \in A \cup C \) \((\because \) defn. of union \)
 \(x \in (A \cup B) \cap (A \cup C) \) \((\because \) defn. of intersection \)
Proof by element argument: Example 1

Proof (continued)

Proof that \((A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)\).

Suppose \(x \in (A \cup B) \cap (A \cup C)\).

\(x \in A \cup B\) and \(x \in A \cup C\) \((\because \text{ defn. of intersection})\)

- **Case 1.** \([x \in A.]\)
 \(x \in A \cup (B \cap C)\) \((\because \text{ defn. of union})\)

- **Case 2.** \([x \notin A.]\)
 \(x \in A\) or \(x \in B\) \((\because \text{ defn. of union})\)
 \(x \in B\) \((\because x \notin A)\)
 \(x \in A\) or \(x \in C\) \((\because \text{ defn. of union})\)
 \(x \in C\) \((\because x \notin A)\)
 \(x \in B \cap C\) \((\because \text{ defn. of intersection})\)
 \(x \in A \cup (B \cap C)\) \((\because \text{ defn. of union})\)
Proposition

- Prove that for all sets A and B, $(A \cup B)' = A' \cap B'$.
Proof by element argument: Example 2

Proposition

- Prove that for all sets A and B, $(A \cup B)' = A' \cap B'$.

Proof

We need to prove:
1. $(A \cup B)' \subseteq A' \cap B'$
2. $A' \cap B' \subseteq (A \cup B)'$
Proof (continued)

- **Proof that** \((A \cup B)' \subseteq A' \cap B'\).

 Suppose \(x \in (A \cup B)'\).

 \(x \notin A \cup B\) \((:: \text{defn. of complement})\)

 It is false that \((x \text{ is in } A \text{ or } x \text{ is in } B)\).

 \(x \text{ is not in } A \text{ and } x \text{ is not in } B\) \((:: \text{De Morgan’s law of logic})\)

 \(x \notin A \text{ and } x \notin B\)

 \(x \in A' \text{ and } x \in B'\) \((:: \text{defn. of complement})\)

 \(x \in (A' \cap B')\) \((:: \text{defn. of intersection})\)

 Hence, \((A \cup B)' \subseteq A' \cap B'\) \((:: \text{defn. of subset})\)
Proof by element argument: Example 2

Proof (continued)

- **Proof that** \(A' \cap B' \subseteq (A \cup B)' \).

 Suppose \(x \in A' \cap B' \).

 \(x \in A' \) and \(x \in B' \) \((\because \text{defn. of intersection}) \)

 \(x \notin A \) and \(x \notin B \) \((\because \text{defn. of complement}) \)

 \(x \) is not in \(A \) and \(x \) is not in \(B \)

 It is false that \((x \text{ is in } A \text{ or } x \text{ is in } B) \)
 \((\because \text{De Morgan’s law of logic}) \)

 \(x \notin A \cup B \)

 \(x \in (A \cup B)' \) \((\because \text{defn. of complement}) \)

 Hence, \(A' \cap B' \subseteq (A \cup B)' \) \((\because \text{defn. of subset}) \)
Proposition

- For any sets A and B, if $A \subseteq B$, then

 (a) $A \cap B = A$ and (b) $A \cup B = B$.
Proof by element argument: Example 3

Proposition

- For any sets A and B, if $A \subseteq B$, then

 (a) $A \cap B = A$ and (b) $A \cup B = B$.

Proof

Part (a): We need to prove:
1. $A \cap B \subseteq A$
2. $A \subseteq A \cap B$

Part (b): We need to prove:
1. $A \cup B \subseteq B$
2. $B \subseteq A \cup B$
Proof (continued)

Part \((a)\).

1. **Proof that** \(A \cap B \subseteq A\).

 \(A \cap B \subseteq A\) \(\because\) inclusion of intersection

2. **Proof that** \(A \subseteq A \cap B\).

 Suppose \(x \in A\)

 \(x \in B\) \(\because\) \(A \subseteq B\)

 \(x \in A\) and \(x \in B\)

 \(x \in A \cap B\) \(\because\) defn. of intersection
Proof (continued)

Part (b).

1. **Proof that** $A \cup B \subseteq B$.

 Suppose $x \in A \cup B$

 $x \in A$ or $x \in B$ \((\because \text{defn. of union})\)

 If $x \in A$, then $x \in B$ \((\because A \subseteq B)\)

 $x \in B$ \((\because \text{Modus Ponens and division into cases})\)

2. **Proof that** $B \subseteq A \cup B$.

 $B \subseteq A \cup B$ \((\because \text{inclusion in union})\)
Proposition

- If E is a set with no elements and A is any set, then $E \subseteq A$.

Proof by element argument:

Suppose there exists a set E with no elements and a set A such that $E \not\subseteq A$. ∃x such that $x \in E$ and $x \not\in A$ (∵ defn. of a subset). But there can be no such element since E has no elements. Contradiction! Hence, if E is a set with no elements and A is any set, then $E \subseteq A$.

Proposition

- If E is a set with no elements and A is any set, then $E \subseteq A$.

Proof

Proof by contradiction.

- Suppose there exists a set E with no elements and a set A such that $E \not\subseteq A$.
- $\exists x$ such that $x \in E$ and $x \notin A$ (∵ defn. of a subset)
- But there can be no such element since E has no elements.
- Contradiction!
- Hence, if E is a set with no elements and A is any set, then $E \subseteq A$.
Proof by element argument: Example 5

<table>
<thead>
<tr>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>• There is only one set with no elements.</td>
</tr>
</tbody>
</table>
Proposition
- There is only one set with no elements.

Proof
- Suppose \(E_1 \) and \(E_2 \) are both sets with no elements.
- \(E_1 \subseteq E_2 \) (\(\because \) previous proposition)
- \(E_2 \subseteq E_1 \) (\(\because \) previous proposition)
- Thus, \(E_1 = E_2 \)
Proposition

- Prove that for any set A, $A \cap \emptyset = \emptyset$
Proof by element argument: Example 6

<table>
<thead>
<tr>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Prove that for any set A, $A \cap \emptyset = \emptyset$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proof by contradiction.</td>
</tr>
<tr>
<td>- Suppose there is an element x such that $x \in A \cap \emptyset$</td>
</tr>
<tr>
<td>- $x \in A$ and $x \in \emptyset$ (∵ defn. of intersection)</td>
</tr>
<tr>
<td>- $x \in \emptyset$</td>
</tr>
<tr>
<td>- Impossible because \emptyset cannot have any elements</td>
</tr>
<tr>
<td>- Hence, the supposition is incorrect.</td>
</tr>
<tr>
<td>- So, $A \cap \emptyset = \emptyset$</td>
</tr>
</tbody>
</table>
Proof by element argument: Example 7

Proposition

- For all sets A, B, and C, if $A \subseteq B$ and $B \subseteq C'$, then $A \cap C = \emptyset$.

Proof by contradiction.

Suppose there is an element x such that $x \in A \cap C$.

$x \in A$ and $x \in C$ (∵ defn. of intersection)

$x \in A$ and $x \in B$ (∵ $x \in A$ and $A \subseteq B$)

$x \in C'$ (∵ $x \in B$ and $B \subseteq C'$)

$x \notin C$ (∵ defn. of complement)

Contradiction!

Hence, the supposition is incorrect.

So, $A \cap C = \emptyset$.

Proof by element argument: Example 7

Proposition

For all sets A, B, and C, if $A \subseteq B$ and $B \subseteq C'$, then $A \cap C = \phi$.

Proof

Proof by contradiction.

- Suppose there is an element x such that $x \in A \cap C$
- $x \in A$ and $x \in C$ (∵ defn. of intersection)
- $x \in A$
- $x \in B$ (∵ $x \in A$ and $A \subseteq B$)
- $x \in C'$ (∵ $x \in B$ and $B \subseteq C'$)
- $x \not\in C$ (∵ defn. of complement)
- $x \in C$ and $x \not\in C$
- Contradiction!
- Hence, the supposition is incorrect.
- So, $A \cap C = \phi$
Proof by counterexample: Example 1

<table>
<thead>
<tr>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>• For all sets A, B, and C, $(A - B) \cup (B - C) = A - C$.</td>
</tr>
</tbody>
</table>
Proof by counterexample: Example 1

Proposition

- For all sets A, B, and C, $(A - B) \cup (B - C) = A - C$.

Draw Venn diagrams

Counterexample 1: $A = \{1\}$, $B = \emptyset$, $C = \{1\}$

Counterexample 2: $A = \emptyset$, $B = \{1\}$, $C = \emptyset$
Proof by counterexample: Example 1

Proposition

- For all sets A, B, and C, $(A - B) \cup (B - C) = A - C$.

Disproof

- $(A - B) \cup (B - C) \neq A - C$
- Draw Venn diagrams
- Counterexample 1: $A = \{1\}$, $B = \emptyset$, $C = \{1\}$
- Counterexample 2: $A = \emptyset$, $B = \{1\}$, $C = \emptyset$
Proof by mathematical induction: Example 1

Proposition

- For all integers $n \geq 0$, if a set X has n elements, then $P(X)$ has 2^n elements.
Proof by mathematical induction: Example 1

Proposition

- For all integers \(n \geq 0 \), if a set \(X \) has \(n \) elements, then \(P(X) \) has \(2^n \) elements.

Proof

Let \(P(n) \) denote “Any set with \(n \) elements has \(2^n \) subsets.”

- **Basis step.** \(P(0) \) is true.
 - The only set with zero elements is the empty set. The only subset of the empty set is itself. Hence, \(2^0 = 1 \).

- **Induction step.** Suppose that \(P(k) \) is true for any \(k \geq 0 \).
 - i.e., “Any set with \(k \) elements has \(2^k \) subsets.”

 Now, we want to show that \(P(k + 1) \) is true.
 - i.e., “Any set with \(k + 1 \) elements has \(2^{k+1} \) subsets.”
Proof (continued)

Suppose set X has $k + 1$ elements including element a.

$\#\text{subsets of } X$

$= \#\text{subsets of } X \text{ without } a + \#\text{subsets of } X \text{ with } a$

$= \#\text{subsets of } (X - \{a\}) + \#\text{subsets of } X \text{ with } a$

$= \#\text{subsets of } (X - \{a\}) + \#\text{subsets of } (X - \{a\})$

($\because 1:1 \text{ correspondence}$)

$= 2 \cdot \#\text{subsets of } (X - \{a\})$

$= 2 \cdot 2^k$

$= 2^{k+1}$

Hence, $P(k + 1)$ is true.

- **1:1 correspondence.**
 Any subset A of $X - \{a\}$ can be matched up with a subset B, equal to $A \cup \{a\}$, of X that contains a.
Proposition

- Construct an algebraic proof that for all sets A, B, and C,
 \[(A \cup B) - C = (A - C) \cup (B - C)\]
Algebraic proof: Example 1

Proposition
- Construct an algebraic proof that for all sets A, B, and C,
 \[(A \cup B) - C = (A - C) \cup (B - C)\]

Proof
- \[(A \cup B) - C\]
 \[= (A \cup B) \cap C' \quad (\because \text{set difference law})\]
 \[= C' \cap (A \cup B) \quad (\because \text{commutative law})\]
 \[= (C' \cap A) \cup (C' \cap B) \quad (\because \text{distributive law})\]
 \[= (A \cap C') \cup (B \cap C') \quad (\because \text{commutative law})\]
 \[= (A - C') \cup (B - C') \quad (\because \text{set difference law})\]
Algebraic proof: Example 2

<table>
<thead>
<tr>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Construct an algebraic proof that for all sets A and B, $A - (A \cap B) = A - B$</td>
</tr>
</tbody>
</table>
Proposition

- Construct an algebraic proof that for all sets A and B, $A - (A \cap B) = A - B$

Proof

- $A - (A \cap B)$
 - $= A \cap (A \cap B)'$ (∵ set difference law)
 - $= A \cap (A' \cup B')$ (∵ De Morgan’s law)
 - $= (A \cap A') \cup (A \cap B')$ (∵ distributive law)
 - $= \emptyset \cup (A \cap B')$ (∵ complement law)
 - $= (A \cap B') \cup \emptyset$ (∵ commutative law)
 - $= A \cap B'$ (∵ identity law)
 - $= A - B$ (∵ set difference law)