Discrete Mathematics (Sets)

Pramod Ganapathi

Department of Computer Science State University of New York at Stony Brook

January 24, 2021

• A set is a collection of related items

Examples

•
$$A = \{1, 2, 3, 4, 5\}$$

• $P = \{2, 3, 5, 7, 11, 13, 17, \ldots\}$

 $\bullet \ S$ is a set of square numbers

•
$$B = \{m \in \mathbb{Z} \mid m = 7n + 100 \text{ for some } n \in \mathbb{Z}\}$$

Subsets

Definitions

- Subset. $A \subseteq B \Leftrightarrow \forall x$, if $x \in A$ then $x \in B$
- Not subset. $A \nsubseteq B \Leftrightarrow \exists x \text{ such that } x \in A \text{ and } x \notin B$
- Proper subset. $A \subset B \Leftrightarrow$
 - 1. $A \subseteq B$
 - 2. $\exists x \text{ such that } x \in B \text{ and } x \notin A$

Problems

• Let
$$A = \{1\}$$
 and $B = \{1, \{1\}\}$.
(a) Is $A \subseteq B$?
(b) Is $A \subset B$?
• Let $A = \{m \in \mathbb{Z} \mid m = 6r + 12 \text{ for some } r \in \mathbb{Z}\}$ and $B = \{n \in \mathbb{Z} \mid n = 3s \text{ for some } s \in \mathbb{Z}\}$.
(a) Prove that $A \subseteq B$.
(b) Disprove that $B \subseteq A$.

• Given sets A and B, A equals B, written A = B, if, and only if, every element of A is in B and every element of B is in A.

•
$$A = B \Leftrightarrow A \subseteq B$$
 and $B \subseteq A$.

Problems

•
$$A = \{m \in \mathbb{Z} \mid m = 2a \text{ for some integer } a\}$$

 $B = \{n \in \mathbb{Z} \mid n = 2b - 2 \text{ for some integer } b\}$
Is $A = B$?

• Relationship between a small number of sets can be represented by pictures called Venn diagrams

Problems

 \bullet Write a Venn diagram representing sets of numbers: $\mathbb{N},\mathbb{W},\mathbb{Q},\mathbb{R}.$

Let A and B be subsets of a universal set U.

1. The union of A and B, denoted $A \cup B$, is the set of all elements that are in at least one of A or B.

$$A \cup B = \{x \in U \mid x \in A \text{ or } x \in B\}$$

2. The intersection of A and B, denoted $A \cap B$, is the set of all elements that are common to both A and B.

 $A \cap B = \{ x \in U \mid x \in A \text{ and } x \in B \}$

3. The difference of B minus A (or relative complement of A in B), denoted B - A, is the set of all elements that are in B and not A.

 $B - A = \{ x \in U \mid x \in B \text{ and } x \notin A \}$

4. The complement of A, denoted A', is the set of all elements in U that are not in A.

 $A' = \{ x \in U \mid x \notin A \}$

Operations on sets

Operations on sets

Notations

Given real numbers a and b with $a \leq b$:

•
$$(a,b) = \{x \in \mathbb{R} \mid a < x < b\}$$

 $[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}$
 $(a,b] = \{x \in \mathbb{R} \mid a < x \le b\}$
 $[a,b) = \{x \in \mathbb{R} \mid a \le x < b\}$

• The symbols ∞ and $-\infty$ are used to indicate intervals that are unbounded either on the right or on the left:

$$\begin{aligned} (a,\infty) &= \{x \in \mathbb{R} \mid x > a\}\\ [a,\infty) &= \{x \in \mathbb{R} \mid x \ge a\}\\ (-\infty,b) &= \{x \in \mathbb{R} \mid x < b\}\\ (-\infty,b] &= \{x \in \mathbb{R} \mid x \le b\}\end{aligned}$$

Problems

•
$$A = (-1, 0] = \{x \in \mathbb{R} \mid -1 < x \le 0\}$$

 $B = [0, 1) = \{x \in \mathbb{R} \mid 0 \le x < 1\}.$
Find $A \cup B$, $A \cap B$, $B - A$, and A' .

Notations

Given sets A_0, A_1, A_2, \ldots that are subsets of a universal set U and given a nonnegative integer n,

- $\cup_{i=0}^{n} A_i = \{x \in U \mid x \in A_i \text{ for at least one } i = 0, 1, 2, \dots, n\}$
- $\cup_{i=0}^{\infty} A_i = \{x \in U \mid x \in A_i \text{ for at least one whole number } i\}$
- $\cap_{i=0}^{n} A_i = \{x \in U \mid x \in A_i \text{ for all } i = 0, 1, 2, \dots, n\}$
- $\cap_{i=0}^{\infty} A_i = \{x \in U \mid x \in A_i \text{ for all whole numbers } i\}$

Problems

• For each positive integer i, let $A_i = \{x \in \mathbb{R} \mid -\frac{1}{i} < x < \frac{1}{i}\} = \left(-\frac{1}{i}, \frac{1}{i}\right)$ Find $A_1 \cup A_2 \cup A_3$ and $A_1 \cap A_2 \cap A_3$ Find $\bigcup_{i=0}^{\infty} A_i$ and $\bigcap_{i=0}^{\infty} A_i$

Empty set, denoted by ϕ , is a set with no elements.

Examples

•
$$\{1,3\} \cap \{2,4\} = \phi$$

• $\{x \in \mathbb{R} \mid x^2 = -1\} = \phi$

•
$$\{x \in \mathbb{R} \mid 3 < x < 2\} = \phi$$

- Two sets are called disjoint if, and only if, they have no elements in common.
- A and B are disjoint $\Leftrightarrow A \cap B = \phi$

Problems

• Let $A = \{1, 3, 5\}$ and $B = \{2, 4, 6\}$. Are A and B disjoint?

• Sets A_1, A_2, A_3, \ldots are mutually disjoint (or pairwise disjoint or nonoverlapping) if, and only if, no two sets A_i and A_j with distinct subscripts have any elements in common.

• For all
$$i, j = 1, 2, 3, ...$$

 $A_i \cap A_j = \phi$ whenever $i \neq j$.

Problems

Are the following sets mutually disjoint?

•
$$A_1 = \{3,5\}$$
, $A_2 = \{1,4,6\}$, and $A_3 = \{2\}$.

•
$$B_1 = \{2, 4, 6\}$$
, $B_2 = \{3, 7\}$, and $B_3 = \{4, 5\}$.

Partition of a set

Definition

- A finite or infinite collection of nonempty sets {A₁, A₂, A₃,...} is a partition of a set A if, and only if,
 1. A is the union of all the A_i
 - 2. The sets A_1, A_2, A_3, \ldots are mutually disjoint.

Problems

• Let
$$A = \{1, 2, 3, 4, 5, 6\}$$
 $A_1 = \{1, 2\}$, $A_2 = \{3, 4\}$, and $A_3 = \{5, 6\}$. Is $\{A_1, A_2, A_3\}$ a partition of A ?

• Let
$$\mathbb{Z}$$
 be the set of all integers and let
 $T_0 = \{n \in \mathbb{Z} \mid n = 3k, \text{ for some integer } k\},$
 $T_1 = \{n \in \mathbb{Z} \mid n = 3k + 1, \text{ for some integer } k\},$
 $T_2 = \{n \in \mathbb{Z} \mid n = 3k + 2, \text{ for some integer } k\},$
Is $\{T_0, T_1, T_2\}$ a partition of \mathbb{Z} ?

• Given a set A, the power set of A, denoted P(A), is the set of all subsets of A.

Problems

• Find the power set of the set $\{x, y\}$. That is, find $P(\{x, y\})$.

- Ordered *n*-tuple, (x_1, x_2, \ldots, x_n) , consists of x_1, x_2, \ldots, x_n together with the ordering.
- Ordered pair = ordered 2-tuple Ordered triple = ordered 3-tuple
- Two ordered *n*-tuples (x_1, x_2, \ldots, x_n) and (y_1, y_2, \ldots, y_n) are equal if, and only if, $x_1 = y_1, x_2 = y_2, \ldots, x_n = y_n$. $(x_1, x_2, \ldots, x_n) = (y_1, y_2, \ldots, y_n) \Leftrightarrow x_1 = y_1, \ldots, x_n = y_n$.

Problems

• Is
$$(1, 2, 3, 4) = (1, 2, 4, 3)$$
?
• Is $(3, (-2)^2, \frac{1}{2}) = (\sqrt{9}, 4, \frac{3}{6})$?
• Is $((1, 2), 3) = (1, 2, 3)$?

Cartesian product

Definition

- Given sets A_1, A_2, \ldots, A_n , the Cartesian product of A_1, A_2, \ldots, A_n denoted $A_1 \times A_2 \times \cdots \times A_n$, is the set of all ordered n-tuples (a_1, a_2, \ldots, a_n) where $a_1 \in A_1, a_2 \in A_2, \ldots, a_n \in A_n$.
- $A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) \mid a_1 \in A_1, a_2 \in A_2, \dots, a_n \in A_n\}.$

Problems

• Let $A_1 = \{x, y\}$, $A_2 = \{1, 2, 3\}$, and $A_3 = \{a, b\}$. Find: (a) $A_1 \times A_2$, (b) $(A_1 \times A_2) \times A_3$, and (c) $A_1 \times A_2 \times A_3$.

- Inclusion of intersection: For all sets A and B, $A \cap B \subseteq A$ and $A \cap B \subseteq B$.
- Inclusion in union: For all sets A and B, $A \subseteq A \cup B$ and $B \subseteq A \cup B$.
- Transitive property of subsets: For all sets A, B, and C, if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Let X and Y be subsets of a universal set U and suppose x and y are elements of U.

$$\bullet \ x \in X \cup Y \Leftrightarrow x \in X \text{ or } x \in Y$$

•
$$x \in X \cap Y \Leftrightarrow x \in X$$
 and $x \in Y$

•
$$x \in X - Y \Leftrightarrow x \in X$$
 and $x \notin Y$

•
$$x \in X' \Leftrightarrow x \notin X$$

•
$$(x,y) \in X \times Y \Leftrightarrow x \in X$$
 and $y \in Y$

Laws	Formula	Formula
Commutative laws	$A\cup B=B\cup A$	$A\cap B=B\cap A$
Associative laws	$(A \cup B) \cup C = A \cup (B \cup C)$	$(A \cap B) \cap C = A \cap (B \cap C)$
Distributive laws	$A\cup (B\cap C)=(A\cup B)\cap$	$A \cap (B \cup C) = (A \cap B) \cup$
	$(A \cup C)$	$(A \cap C)$
Identity laws	$A\cup\phi=A$	$A \cap U = A$
Complement laws	$A\cup A'=U$	$A \cap A' = \phi$
Double comp. law	(A')' = A	
Idempotent laws	$A\cup A=A$	$A \cap A = A$
Uni. bound laws	$A\cup U=U$	$A \cap \phi = \phi$
De Morgan's laws	$(A\cup B)'=A'\cap B'$	$(A\cap B)'=A'\cup B'$
Absorption laws	$A \cup (A \cap B) = A$	$A \cap (A \cup B) = A$
Complements	$U' = \phi$	$\phi' = U$
Set diff. laws	$A - B = A \cap B'$,

Basic method for proving that a set is a subset of another

- Let sets X and Y be given. To prove that $X \subseteq Y$,
 - 1. suppose that x is a particular but arbitrarily chosen element of X.

2. show that x is an element of Y.

Basic method for proving that two sets are equal

- Let sets X and Y be given. To prove that X = Y,
 - 1. Prove that $X \subseteq Y$.
 - 2. Prove that $Y \subseteq X$.

Basic method for proving a set equals the empty set

- To prove that a set X is equal to the empty set ϕ , prove that X has no elements.
- $\bullet\,$ To do this, suppose X has an element and derive a contradiction.

• Prove that for all sets A, B, and C $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

• Prove that for all sets
$$A$$
, B , and C
 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Proof

We need to prove:

1.
$$A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$$

2. $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$

```
Proof (continued)
Proof that A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C).
Suppose x \in A \cup (B \cap C).
x \in A \text{ or } x \in B \cap C (:: defn. of union)
• Case 1. [x \in A.]
  x \in A \cup B (:: defn. of union)
  x \in A \cup C (:: defn. of union)
  x \in (A \cup B) \cap (A \cup C) (: defn. of intersection)
• Case 2. [x \in B \cap C.]
  x \in B and x \in C (: defn. of intersection)
  x \in A \cup B (:: defn. of union)
  x \in A \cup C (:: defn. of union)
  x \in (A \cup B) \cap (A \cup C) (: defn. of intersection)
```

```
Proof (continued)
Proof that (A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C).
Suppose x \in (A \cup B) \cap (A \cup C).
x \in A \cup B and x \in A \cup C (:: defn. of intersection)
• Case 1. [x \in A.]
  x \in A \cup (B \cap C) (:: defn. of union)
• Case 2. [x \notin A.]
  x \in A \text{ or } x \in B (:: defn. of union)
  x \in B (\because x \notin A)
  x \in A \text{ or } x \in C (:: defn. of union)
  x \in C (\because x \notin A)
  x \in B \cap C (:: defn. of intersection)
  x \in A \cup (B \cap C) (:: defn. of union)
```

• Prove that for all sets A and B, $(A \cup B)' = A' \cap B'$.

• Prove that for all sets A and B, $(A \cup B)' = A' \cap B'$.

Proof

We need to prove: 1. $(A \cup B)' \subseteq A' \cap B'$ 2. $A' \cap B' \subseteq (A \cup B)'$

Proof (continued)

• Proof that $(A \cup B)' \subseteq A' \cap B'$. Suppose $x \in (A \cup B)'$. $x \notin A \cup B$ (:: defn. of complement) It is false that (x is in A or x is in B). x is not in A and x is not in B (:: De Morgan's law of logic) $x \notin A \text{ and } x \notin B$ $x \in A' \text{ and } x \notin B$ $x \in (A' \cap B')$ (:: defn. of complement) $x \in (A \cup B)' \subseteq A' \cap B'$ (:: defn. of subset)

Proof (continued)

```
• Proof that A' \cap B' \subseteq (A \cup B)'.

Suppose x \in A' \cap B'.

x \in A' and x \in B' (:: defn. of intersection)

x \notin A and x \notin B (:: defn. of complement)

x is not in A and x is not in B

It is false that (x \text{ is in } A \text{ or } x \text{ is in } B)

(:: De Morgan's law of logic)

x \notin A \cup B

x \in (A \cup B)' (:: defn. of complement)

Hence, A' \cap B' \subseteq (A \cup B)' (:: defn. of subset)
```

Proof by element argument: Example 3

Proposition

• For any sets A and B, if $A \subseteq B$, then (a) $A \cap B = A$ and (b) $A \cup B = B$.

```
• For any sets A and B, if A \subseteq B, then
(a) A \cap B = A and (b) A \cup B = B.
```

Proof

Part (a): We need to prove: 1. $A \cap B \subseteq A$ 2. $A \subseteq A \cap B$

Part (b): We need to prove: 1. $A \cup B \subseteq B$ 2. $B \subseteq A \cup B$

```
Proof (continued)
```

Part (a). 1. Proof that $A \cap B \subseteq A$. $A \cap B \subseteq A$ (:: inclusion of intersection) 2. Proof that $A \subseteq A \cap B$. Suppose $x \in A$ $x \in B$ (:: $A \subseteq B$) $x \in A$ and $x \in B$ $x \in A \cap B$ (:: defn. of intersection)

```
Proof (continued)
```

```
Part (b).

1. Proof that A \cup B \subseteq B.

Suppose x \in A \cup B

x \in A or x \in B (:: defn. of union)

If x \in A, then x \in B (:: A \subseteq B)

x \in B (:: Modus Ponens and division into cases)

2. Proof that B \subseteq A \cup B.

B \subseteq A \cup B (:: inclusion in union)
```

Proof by element argument: Example 4

Proposition

• If E is a set with no elements and A is any set, then $E \subseteq A$.

• If E is a set with no elements and A is any set, then $E \subseteq A$.

Proof

Proof by contradiction.

- Suppose there exists a set E with no elements and a set A such that $E \not\subseteq A$.
- $\exists x \text{ such that } x \in E \text{ and } x \notin A$ (:: defn. of a subset)
- But there can be no such element since E has no elements.
- Contradiction!
- Hence, if E is a set with no elements and A is any set, then $E \subseteq A$.

• There is only one set with no elements.

• There is only one set with no elements.

Proof

- Suppose E_1 and E_2 are both sets with no elements.
- $E_1 \subseteq E_2$ (: previous proposition)
- $E_2 \subseteq E_1$ (:: previous proposition)
- Thus, $E_1 = E_2$

Proof by element argument: Example 6

Proposition

• Prove that for any set A, $A \cap \phi = \phi$

• Prove that for any set A, $A \cap \phi = \phi$

Proof

Proof by contradiction.

- $\bullet\,$ Suppose there is an element x such that $x\in A\cap \phi$
- $x \in A$ and $x \in \phi$ (: defn. of intersection)
- $x \in \phi$
- \bullet Impossible because ϕ cannot have any elements
- Hence, the supposition is incorrect.

• So,
$$A \cap \phi = \phi$$

Proof by element argument: Example 7

Proposition

• For all sets A, B, and C, if $A \subseteq B$ and $B \subseteq C'$, then $A \cap C = \phi$.

Proof by element argument: Example 7

Proposition

• For all sets A, B, and C, if $A \subseteq B$ and $B \subseteq C'$, then $A \cap C = \phi$.

Proof

Proof by contradiction.

- Suppose there is an element x such that $x \in A \cap C$
- $x \in A$ and $x \in C$ (:: defn. of intersection)
- $x \in A$
- $x \in B$ (:: $x \in A$ and $A \subseteq B$)
- $\bullet \ x \in C' \qquad (\because x \in B \text{ and } B \subseteq C')$
- $x \notin C$ (:: defn. of complement)
- $x \in C$ and $x \notin C$
- Contradiction!
- Hence, the supposition is incorrect.

$$\bullet \ \, {\rm So}, \ \, A\cap C=\phi$$

Proof by counterexample: Example 1

Proposition

• For all sets A, B, and C, $(A - B) \cup (B - C) = A - C$.

Proof by counterexample: Example 1

Proposition

• For all sets A, B, and C, $(A - B) \cup (B - C) = A - C$.

Proof by counterexample: Example 1

Proposition

• For all sets A, B, and C, $(A - B) \cup (B - C) = A - C$.

Disproof

$$(A-B) \cup (B-C) \neq A-C$$

- Draw Venn diagrams
- Counterexample 1: $A = \{1\}$, $B = \phi$, $C = \{1\}$
- Counterexample 2: $A = \phi$, $B = \{1\}$, $C = \phi$

Proof by mathematical induction: Example 1

Proposition

• For all integers $n \ge 0$, if a set X has n elements, then P(X) has 2^n elements.

Proof by mathematical induction: Example 1

Proposition

• For all integers $n \ge 0$, if a set X has n elements, then P(X) has 2^n elements.

Proof

Let P(n) denote "Any set with n elements has 2^n subsets."

- Basis step. P(0) is true. The only set with zero elements is the empty set. The only subset of the empty set is itself. Hence, 2⁰ = 1.
 Induction step. Suppose that P(k) is true for any k ≥ 0.
 - i.e., "Any set with k elements has 2^k subsets."

Now, we want to show that P(k+1) is true.

i.e., "Any set with k+1 elements has 2^{k+1} subsets."

Proof by mathematical induction: Example 1

Proof (continued)

Suppose set X has k+1 elements including element a. #subsets of X

- = #subsets of X without a + #subsets of X with a
- = #subsets of $(X \{a\}) + \#$ subsets of X with a
- = #subsets of $(X \{a\}) +$ #subsets of $(X \{a\})$
- (:: 1:1 correspondence)
- $= 2 \cdot \# \text{subsets of } (X \{a\})$
- $= 2 \cdot 2^k$
- $= 2^{k+1}$

Hence, P(k+1) is true.

• 1:1 correspondence.

Any subset A of $X - \{a\}$ can be matched up with a subset B, equal to $A \cup \{a\}$, of X that contains a.

• Construct an algebraic proof that for all sets $A,\ B,$ and $C,\ (A\cup B)-C=(A-C)\cup(B-C)$

• Construct an algebraic proof that for all sets $A,\ B,$ and $C,\ (A\cup B)-C=(A-C)\cup(B-C)$

Proof

$$\begin{array}{l} \bullet \ (A \cup B) - C \\ = (A \cup B) \cap C' \quad (\because \text{ set difference law}) \\ = C' \cap (A \cup B) \quad (\because \text{ commutative law}) \\ = (C' \cap A) \cup (C' \cap B) \quad (\because \text{ distributive law}) \\ = (A \cap C') \cup (B \cap C') \quad (\because \text{ commutative law}) \\ = (A - C) \cup (B - C) \quad (\because \text{ set difference law}) \end{array}$$

 \bullet Construct an algebraic proof that for all sets A and $B,\;A-(A\cap B)=A-B$

