Discrete Mathematics

(Sets)

Pramod Ganapathi
Department of Computer Science
State University of New York at Stony Brook

January 24, 2021

What is a set?

Definition

- A set is a collection of related items

Examples

- $A=\{1,2,3,4,5\}$
- $P=\{2,3,5,7,11,13,17, \ldots\}$
- S is a set of square numbers
- $B=\{m \in \mathbb{Z} \mid m=7 n+100$ for some $n \in \mathbb{Z}\}$

Subsets

Definitions

- Subset. $A \subseteq B \Leftrightarrow \forall x$, if $x \in A$ then $x \in B$
- Not subset. $A \nsubseteq B \Leftrightarrow \exists x$ such that $x \in A$ and $x \notin B$
- Proper subset. $A \subset B \Leftrightarrow$

1. $A \subseteq B$
2. $\exists x$ such that $x \in B$ and $x \notin A$

Problems

- Let $A=\{1\}$ and $B=\{1,\{1\}\}$.
(a) Is $A \subseteq B$?
(b) Is $A \subset B$?
- Let $A=\{m \in \mathbb{Z} \mid m=6 r+12$ for some $r \in \mathbb{Z}\}$ and $B=\{n \in \mathbb{Z} \mid n=3 s$ for some $s \in \mathbb{Z}\}$.
(a) Prove that $A \subseteq B$.
(b) Disprove that $B \subseteq A$.

Set equality

Definition

- Given sets A and B, A equals B, written $A=B$, if, and only if, every element of A is in B and every element of B is in A.
- $A=B \Leftrightarrow A \subseteq B$ and $B \subseteq A$.

Problems

- $A=\{m \in \mathbb{Z} \mid m=2 a$ for some integer $a\}$ $B=\{n \in \mathbb{Z} \mid n=2 b-2$ for some integer $b\}$ Is $A=B$?

Venn diagrams

Definition

- Relationship between a small number of sets can be represented by pictures called Venn diagrams

(a)

(b)

(a)

(b)

(c)

Problems

- Write a Venn diagram representing sets of numbers: $\mathbb{N}, \mathbb{W}, \mathbb{Q}, \mathbb{R}$.

Operations on sets

Definition

Let A and B be subsets of a universal set U.

1. The union of A and B, denoted $A \cup B$, is the set of all elements that are in at least one of A or B.
$A \cup B=\{x \in U \mid x \in A$ or $x \in B\}$
2. The intersection of A and B, denoted $A \cap B$, is the set of all elements that are common to both A and B.
$A \cap B=\{x \in U \mid x \in A$ and $x \in B\}$
3. The difference of B minus A (or relative complement of A in B), denoted $B-A$, is the set of all elements that are in B and not A.
$B-A=\{x \in U \mid x \in B$ and $x \notin A\}$
4. The complement of A, denoted A^{\prime}, is the set of all elements in U that are not in A.
$A^{\prime}=\{x \in U \mid x \notin A\}$

Operations on sets

Problems

- Let the universal set $U=\{a, b, c, d, e, f, g\}$.

Let $A=\{a, c, e, g\}$ and $B=\{d, e, f, g\}$.
Find $A \cup B, A \cap B, B-A$, and A^{\prime}.

Operations on sets

Notations

Given real numbers a and b with $a \leq b$:

- $(a, b)=\{x \in \mathbb{R} \mid a<x<b\}$
$[a, b]=\{x \in \mathbb{R} \mid a \leq x \leq b\}$
$(a, b]=\{x \in \mathbb{R} \mid a<x \leq b\}$
$[a, b)=\{x \in \mathbb{R} \mid a \leq x<b\}$
- The symbols ∞ and $-\infty$ are used to indicate intervals that are unbounded either on the right or on the left:
$(a, \infty)=\{x \in \mathbb{R} \mid x>a\}$
$[a, \infty)=\{x \in \mathbb{R} \mid x \geq a\}$
$(-\infty, b)=\{x \in \mathbb{R} \mid x<b\}$
$(-\infty, b]=\{x \in \mathbb{R} \mid x \leq b\}$

Problems

- $A=(-1,0]=\{x \in \mathbb{R} \mid-1<x \leq 0\}$
$B=[0,1)=\{x \in \mathbb{R} \mid 0 \leq x<1\}$.
Find $A \cup B, A \cap B, B-A$, and A^{\prime}.

Operations on sets

Notations

Given sets $A_{0}, A_{1}, A_{2}, \ldots$ that are subsets of a universal set U and given a nonnegative integer n,

- $\cup_{i=0}^{n} A_{i}=\left\{x \in U \mid x \in A_{i}\right.$ for at least one $\left.i=0,1,2, \ldots, n\right\}$
- $\cup_{i=0}^{\infty} A_{i}=\left\{x \in U \mid x \in A_{i}\right.$ for at least one whole number $\left.i\right\}$
- $\cap_{i=0}^{n} A_{i}=\left\{x \in U \mid x \in A_{i}\right.$ for all $\left.i=0,1,2, \ldots, n\right\}$
- $\cap_{i=0}^{\infty} A_{i}=\left\{x \in U \mid x \in A_{i}\right.$ for all whole numbers $\left.i\right\}$

Problems

- For each positive integer i, let
$A_{i}=\left\{x \in \mathbb{R} \left\lvert\,-\frac{1}{i}<x<\frac{1}{i}\right.\right\}=\left(-\frac{1}{i}, \frac{1}{i}\right)$
Find $A_{1} \cup A_{2} \cup A_{3}$ and $A_{1} \cap A_{2} \cap A_{3}$
Find $\cup_{i=0}^{\infty} A_{i}$ and $\cap_{i=0}^{\infty} A_{i}$

Empty set

Definition

Empty set, denoted by ϕ, is a set with no elements.

Examples

- $\{1,3\} \cap\{2,4\}=\phi$
- $\left\{x \in \mathbb{R} \mid x^{2}=-1\right\}=\phi$
- $\{x \in \mathbb{R} \mid 3<x<2\}=\phi$

Disjoint sets

Definition

- Two sets are called disjoint if, and only if, they have no elements in common.
- A and B are disjoint $\Leftrightarrow A \cap B=\phi$

Problems

- Let $A=\{1,3,5\}$ and $B=\{2,4,6\}$. Are A and B disjoint?

Mutually disjoint sets

Definition

- Sets $A_{1}, A_{2}, A_{3}, \ldots$ are mutually disjoint (or pairwise disjoint or nonoverlapping) if, and only if, no two sets A_{i} and A_{j} with distinct subscripts have any elements in common.
- For all $i, j=1,2,3, \ldots$
$A_{i} \cap A_{j}=\phi$ whenever $i \neq j$.

Problems

Are the following sets mutually disjoint?

- $A_{1}=\{3,5\}, A_{2}=\{1,4,6\}$, and $A_{3}=\{2\}$.
- $B_{1}=\{2,4,6\}, B_{2}=\{3,7\}$, and $B_{3}=\{4,5\}$.

Partition of a set

Definition

- A finite or infinite collection of nonempty sets $\left\{A_{1}, A_{2}, A_{3}, \ldots\right\}$ is a partition of a set A if, and only if,

1. A is the union of all the A_{i}
2. The sets $A_{1}, A_{2}, A_{3}, \ldots$ are mutually disjoint.

Problems

- Let $A=\{1,2,3,4,5,6\} A_{1}=\{1,2\}, A_{2}=\{3,4\}$, and $A_{3}=$ $\{5,6\}$. Is $\left\{A_{1}, A_{2}, A_{3}\right\}$ a partition of A ?
- Let \mathbb{Z} be the set of all integers and let $T_{0}=\{n \in \mathbb{Z} \mid n=3 k$, for some integer $k\}$,
$T_{1}=\{n \in \mathbb{Z} \mid n=3 k+1$, for some integer $k\}$,
$T_{2}=\{n \in \mathbb{Z} \mid n=3 k+2$, for some integer $k\}$, Is $\left\{T_{0}, T_{1}, T_{2}\right\}$ a partition of \mathbb{Z} ?

Power set

Definition

- Given a set A, the power set of A, denoted $P(A)$, is the set of all subsets of A.

Problems

- Find the power set of the set $\{x, y\}$. That is, find $P(\{x, y\})$.

Ordered n-tuple

Definition

- Ordered n-tuple, $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, consists of $x_{1}, x_{2}, \ldots, x_{n}$ together with the ordering.
- Ordered pair $=$ ordered 2-tuple Ordered triple $=$ ordered 3-tuple
- Two ordered n-tuples $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ are equal if, and only if, $x_{1}=y_{1}, x_{2}=y_{2}, \ldots, x_{n}=y_{n}$. $\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \Leftrightarrow x_{1}=y_{1}, \ldots, x_{n}=y_{n}$.

Problems

- Is $(1,2,3,4)=(1,2,4,3)$?
- Is $\left(3,(-2)^{2}, \frac{1}{2}\right)=\left(\sqrt{9}, 4, \frac{3}{6}\right)$?
- Is $((1,2), 3)=(1,2,3)$?

Cartesian product

Definition

- Given sets $A_{1}, A_{2}, \ldots, A_{n}$, the Cartesian product of $A_{1}, A_{2}, \ldots, A_{n}$ denoted $A_{1} \times A_{2} \times \cdots \times A_{n}$, is the set of all ordered n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ where $a_{1} \in A_{1}, a_{2} \in$ $A_{2}, \ldots, a_{n} \in A_{n}$.
- $A_{1} \times A_{2} \times \cdots \times A_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{1} \in A_{1}, a_{2} \in\right.$ $\left.A_{2}, \ldots, a_{n} \in A_{n}\right\}$.

Problems

- Let $A_{1}=\{x, y\}, A_{2}=\{1,2,3\}$, and $A_{3}=\{a, b\}$. Find:
(a) $A_{1} \times A_{2}$,
(b) $\left(A_{1} \times A_{2}\right) \times A_{3}$, and
(c) $A_{1} \times A_{2} \times A_{3}$.

Properties of sets

Definition

- Inclusion of intersection: For all sets A and B, $A \cap B \subseteq A$ and $A \cap B \subseteq B$.
- Inclusion in union: For all sets A and B, $A \subseteq A \cup B$ and $B \subseteq A \cup B$.
- Transitive property of subsets: For all sets A, B, and C, if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Procedural versions of set definitions

Definition

Let X and Y be subsets of a universal set U and suppose x and y are elements of U .

- $x \in X \cup Y \Leftrightarrow x \in X$ or $x \in Y$
- $x \in X \cap Y \Leftrightarrow x \in X$ and $x \in Y$
- $x \in X-Y \Leftrightarrow x \in X$ and $x \notin Y$
- $x \in X^{\prime} \Leftrightarrow x \notin X$
- $(x, y) \in X \times Y \Leftrightarrow x \in X$ and $y \in Y$

Set identities

Laws	Formula	Formula
Commutative laws	$A \cup B=B \cup A$	$A \cap B=B \cap A$
Associative laws	$(A \cup B) \cup C=A \cup(B \cup C)$	$(A \cap B) \cap C=A \cap(B \cap C)$
Distributive laws	$A \cup(B \cap C)=(A \cup B) \cap$	$A \cap(B \cup C)=(A \cap B) \cup$
	$(A \cup C)$	$(A \cap C)$
Identity laws	$A \cup \phi=A$	$A \cap U=A$
Complement laws	$A \cup A^{\prime}=U$	$A \cap A^{\prime}=\phi$
Double comp. law	$\left(A^{\prime}\right)^{\prime}=A$	
Idempotent laws	$A \cup A=A$	$A \cap A=A$
Uni. bound laws	$A \cup U=U$	$A \cap \phi=\phi$
De Morgan's laws	$(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$	$(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$
Absorption laws	$A \cup(A \cap B)=A$	$A \cap(A \cup B)=A$
Complements	$U^{\prime}=\phi$	$\phi^{\prime}=U$
Set diff. laws	$A-B=A \cap B^{\prime}$	

Element argument

Basic method for proving that a set is a subset of another

- Let sets X and Y be given. To prove that $X \subseteq Y$,

1. suppose that x is a particular but arbitrarily chosen element of X.
2. show that x is an element of Y.

Element argument

Basic method for proving that two sets are equal

- Let sets X and Y be given. To prove that $X=Y$, 1. Prove that $X \subseteq Y$.

2. Prove that $Y \subseteq X$.

Element argument

Basic method for proving a set equals the empty set

- To prove that a set X is equal to the empty set ϕ, prove that X has no elements.
- To do this, suppose X has an element and derive a contradiction.

Proof by element argument: Example 1

Proposition

- Prove that for all sets A, B, and C

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Proof by element argument: Example 1

Proposition

- Prove that for all sets A, B, and C

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
$$

Proof
We need to prove:

1. $A \cup(B \cap C) \subseteq(A \cup B) \cap(A \cup C)$
2. $(A \cup B) \cap(A \cup C) \subseteq A \cup(B \cap C)$

Proof by element argument: Example 1

```
Proof (continued)
Proof that }A\cup(B\capC)\subseteq(A\cupB)\cap(A\cupC)
Suppose }x\inA\cup(B\capC)\mathrm{ .
x\inA or }x\inB\capC\quad(\because\mathrm{ defn. of union)
- Case 1. [x\inA.]
    x\inA\cupB (}\because\mathrm{ defn. of union)
    x\inA\cupC (}\because\mathrm{ defn. of union)
    x\in(A\cupB)\cap(A\cupC) (\becausedefn. of intersection)
- Case 2. [x\inB\capC.]
    x\inB and }x\inC\quad(\because\mathrm{ defn. of intersection)
    x\inA\cupB (}\because\mathrm{ defn. of union)
    x\inA\cupC (}\because\mathrm{ defn. of union)
    x\in(A\cupB)\cap(A\cupC) (\becausedefn. of intersection)
```


Proof by element argument: Example 1

```
Proof (continued)
Proof that }(A\cupB)\cap(A\cupC)\subseteqA\cup(B\capC)
Suppose }x\in(A\cupB)\cap(A\cupC)\mathrm{ .
x\inA\cupB and }x\inA\cupC\quad(\because\mathrm{ defn. of intersection)
- Case 1. [x\inA.]
    x\inA\cup(B\capC) (}\because\mathrm{ defn. of union)
- Case 2. [x\not\inA.]
    x\inA or }x\inB\quad(\because\mathrm{ defn. of union)
    x\inB (
    x\inA or }x\inC\quad(\because\mathrm{ defn. of union)
    x\inC (
    x\inB\capC (\becausedefn. of intersection)
    x}\inA\cup(B\capC)\quad(\because\mathrm{ defn. of union)
```


Proof by element argument: Example 2

Proposition

- Prove that for all sets A and $B,(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$.

Proof by element argument: Example 2

Proposition

- Prove that for all sets A and $B,(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$.

Proof

We need to prove:

1. $(A \cup B)^{\prime} \subseteq A^{\prime} \cap B^{\prime}$
2. $A^{\prime} \cap B^{\prime} \subseteq(A \cup B)^{\prime}$

Proof by element argument: Example 2

Proof (continued)

- Proof that $(A \cup B)^{\prime} \subseteq A^{\prime} \cap B^{\prime}$.

Suppose $x \in(A \cup B)^{\prime}$.
$x \notin A \cup B \quad(\because$ defn. of complement $)$
It is false that (x is in A or x is in B).
x is not in A and x is not in $B(\because$ De Morgan's law of logic $)$
$x \notin A$ and $x \notin B$
$x \in A^{\prime}$ and $x \in B^{\prime} \quad(\because$ defn. of complement $)$
$x \in\left(A^{\prime} \cap B^{\prime}\right) \quad(\because$ defn. of intersection $)$ Hence, $(A \cup B)^{\prime} \subseteq A^{\prime} \cap B^{\prime} \quad(\because$ defn. of subset $)$

Proof by element argument: Example 2

Proof (continued)

- Proof that $A^{\prime} \cap B^{\prime} \subseteq(A \cup B)^{\prime}$. Suppose $x \in A^{\prime} \cap B^{\prime}$.
$x \in A^{\prime}$ and $x \in B^{\prime} \quad(\because$ defn. of intersection $)$
$x \notin A$ and $x \notin B \quad(\because$ defn. of complement $)$
x is not in A and x is not in B
It is false that (x is in A or x is in B)
(\because De Morgan's law of logic)
$x \notin A \cup B$
$x \in(A \cup B)^{\prime} \quad(\because$ defn. of complement $)$ Hence, $A^{\prime} \cap B^{\prime} \subseteq(A \cup B)^{\prime} \quad(\because$ defn. of subset $)$

Proof by element argument: Example 3

Proposition

- For any sets A and B, if $A \subseteq B$, then (a) $A \cap B=A$ and (b) $A \cup B=B$.

Proof by element argument: Example 3

Proposition

- For any sets A and B, if $A \subseteq B$, then (a) $A \cap B=A$ and (b) $A \cup B=B$.

```
Proof
Part (a):We need to prove:
1. }A\capB\subseteq
2. }A\subseteqA\cap
```

Part (b): We need to prove:

1. $A \cup B \subseteq B$
2. $B \subseteq A \cup B$

Proof by element argument: Example 3

```
Proof (continued)
Part (a).
1. Proof that }A\capB\subseteqA\mathrm{ .
    A\capB\subseteqA (}\because\mathrm{ inclusion of intersection)
2. Proof that }A\subseteqA\capB\mathrm{ .
    Suppose x }\in
    x\inB ( }\becauseA\subseteqB
    x\inA and }x\in
    x\inA\capB (\because\mathrm{ defn. of intersection)}
```


Proof by element argument: Example 3

Proof (continued)
Part (b).

1. Proof that $A \cup B \subseteq B$.

Suppose $x \in A \cup B$
$x \in A$ or $x \in B \quad(\because$ defn. of union $)$
If $x \in A$, then $x \in B \quad(\because A \subseteq B)$
$x \in B \quad(\because$ Modus Ponens and division into cases)
2. Proof that $B \subseteq A \cup B$.
$B \subseteq A \cup B \quad(\because$ inclusion in union $)$

Proof by element argument: Example 4

Proposition

- If E is a set with no elements and A is any set, then $E \subseteq A$.

Proof by element argument: Example 4

Proposition

- If E is a set with no elements and A is any set, then $E \subseteq A$.

Proof

Proof by contradiction.

- Suppose there exists a set E with no elements and a set A such that $E \nsubseteq A$.
- $\exists x$ such that $x \in E$ and $x \notin A \quad(\because$ defn. of a subset $)$
- But there can be no such element since E has no elements.
- Contradiction!
- Hence, if E is a set with no elements and A is any set, then $E \subseteq A$.

Proof by element argument: Example 5

Proposition

- There is only one set with no elements.

Proof by element argument: Example 5

Proposition

- There is only one set with no elements.

Proof

- Suppose E_{1} and E_{2} are both sets with no elements.
- $E_{1} \subseteq E_{2} \quad(\because$ previous proposition)
- $E_{2} \subseteq E_{1} \quad(\because$ previous proposition)
- Thus, $E_{1}=E_{2}$

Proof by element argument: Example 6

Proposition

- Prove that for any set $A, A \cap \phi=\phi$

Proof by element argument: Example 6

Proposition

- Prove that for any set $A, A \cap \phi=\phi$

Proof

Proof by contradiction.

- Suppose there is an element x such that $x \in A \cap \phi$
- $x \in A$ and $x \in \phi \quad(\because$ defn. of intersection)
- $x \in \phi$
- Impossible because ϕ cannot have any elements
- Hence, the supposition is incorrect.
- So, $A \cap \phi=\phi$

Proof by element argument: Example 7

Proposition

- For all sets A, B, and C, if $A \subseteq B$ and $B \subseteq C^{\prime}$, then $A \cap C=\phi$.

Proof by element argument: Example 7

Proposition

- For all sets A, B, and C, if $A \subseteq B$ and $B \subseteq C^{\prime}$, then $A \cap C=\phi$.

Proof

Proof by contradiction.

- Suppose there is an element x such that $x \in A \cap C$
- $x \in A$ and $x \in C \quad$ (\because defn. of intersection)
- $x \in A$
- $x \in B \quad(\because x \in A$ and $A \subseteq B)$
- $x \in C^{\prime} \quad\left(\because x \in B\right.$ and $\left.B \subseteq C^{\prime}\right)$
- $x \notin C \quad(\because$ defn. of complement)
- $x \in C$ and $x \notin C$
- Contradiction!
- Hence, the supposition is incorrect.
- So, $A \cap C=\phi$

Proof by counterexample: Example 1

Proposition

- For all sets A, B, and $C,(A-B) \cup(B-C)=A-C$.

Proof by counterexample: Example 1

Proposition

- For all sets A, B, and $C,(A-B) \cup(B-C)=A-C$.

Proof by counterexample: Example 1

Proposition

- For all sets A, B, and $C,(A-B) \cup(B-C)=A-C$.

Disproof
$(A-B) \cup(B-C) \neq A-C$

- Draw Venn diagrams
- Counterexample 1: $A=\{1\}, B=\phi, C=\{1\}$
- Counterexample 2: $A=\phi, B=\{1\}, C=\phi$

Proof by mathematical induction: Example 1

Proposition

- For all integers $n \geq 0$, if a set X has n elements, then $P(X)$ has 2^{n} elements.

Proof by mathematical induction: Example 1

Proposition

- For all integers $n \geq 0$, if a set X has n elements, then $P(X)$ has 2^{n} elements.

Proof

Let $P(n)$ denote "Any set with n elements has 2^{n} subsets."

- Basis step. $P(0)$ is true.

The only set with zero elements is the empty set. The only subset of the empty set is itself. Hence, $2^{0}=1$.

- Induction step. Suppose that $P(k)$ is true for any $k \geq 0$.
i.e., "Any set with k elements has 2^{k} subsets."

Now, we want to show that $P(k+1)$ is true.
i.e., "Any set with $k+1$ elements has 2^{k+1} subsets."

Proof by mathematical induction: Example 1

Proof (continued)

Suppose set X has $k+1$ elements including element a. \#subsets of X
$=\#$ subsets of X without $a+\#$ subsets of X with a
$=\#$ subsets of $(X-\{a\})+\#$ subsets of X with a
$=\#$ subsets of $(X-\{a\})+\#$ subsets of $(X-\{a\})$
$(\because 1: 1$ correspondence)
$=2 \cdot \#$ subsets of $(X-\{a\})$
$=2 \cdot 2^{k}$
$=2^{k+1}$
Hence, $P(k+1)$ is true.

- 1:1 correspondence.

Any subset A of $X-\{a\}$ can be matched up with a subset B, equal to $A \cup\{a\}$, of X that contains a.

Algebraic proof: Example 1

Proposition

- Construct an algebraic proof that for all sets A, B, and C, $(A \cup B)-C=(A-C) \cup(B-C)$

Algebraic proof: Example 1

Proposition

- Construct an algebraic proof that for all sets A, B, and C, $(A \cup B)-C=(A-C) \cup(B-C)$

Proof

- $(A \cup B)-C$
$=(A \cup B) \cap C^{\prime} \quad(\because$ set difference law $)$
$=C^{\prime} \cap(A \cup B) \quad(\because$ commutative law $)$
$=\left(C^{\prime} \cap A\right) \cup\left(C^{\prime} \cap B\right) \quad(\because$ distributive law $)$
$=\left(A \cap C^{\prime}\right) \cup\left(B \cap C^{\prime}\right) \quad(\because$ commutative law $)$
$=(A-C) \cup(B-C) \quad(\because$ set difference law $)$

Algebraic proof: Example 2

Proposition

- Construct an algebraic proof that for all sets A and B, A $(A \cap B)=A-B$

Algebraic proof: Example 2

Proposition

- Construct an algebraic proof that for all sets A and $B, A-$ $(A \cap B)=A-B$

Proof

- $A-(A \cap B)$
$=A \cap(A \cap B)^{\prime} \quad(\because$ set difference law $)$
$=A \cap\left(A^{\prime} \cup B^{\prime}\right) \quad(\because$ De Morgan's law $)$
$=\left(A \cap A^{\prime}\right) \cup\left(A \cap B^{\prime}\right) \quad(\because$ distributive law $)$
$=\phi \cup\left(A \cap B^{\prime}\right) \quad(\because$ complement law $)$
$=\left(A \cap B^{\prime}\right) \cup \phi \quad(\because$ commutative law $)$
$=A \cap B^{\prime} \quad(\because$ identity law $)$
$=A-B \quad(\because$ set difference law $)$

