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Basic Concepts on Sequences



What are sequences?

Types of sequences
Finite sequence: am, am+1, am+2, . . . , an

e.g.: 11, 22, 32, . . . , 1002

Infinite sequence: am, am+1, am+2, . . .
e.g.: 1

1 , 1
2 , 1

3 , . . .

Term
Closed-form formula: ak = f(k)
e.g.: ak = k

k+1
Recursive formula: ak = g(k, ak−1, . . . , ak−c)
e.g.: ak = ak−1 + (k − 1)ak−2



What are sequences?

Growth of sequences
Increasing sequence
e.g.: 2, 3, 5, 7, 11, 13, 17, . . .
Decreasing sequence
e.g.: 1

1 , 1
2 , 1

3 , . . .
Oscillating sequence
e.g.: 1,−1, 1,−1, . . .

Problem-solving
Compute ak given a1, a2, a3, . . .
e.g.: Compute ak given 1

n , 2
n+1 , 3

n+2 , . . .
Compute a1, a2, a3, . . . given ak

e.g.: Compute a1, a2, a3, . . . given ak = k
k+1



Sums and products of sequences

Sum
Summation form:

n∑
k=m

ak = am + am+1 + am+2 + · · ·+ an

where, k = index, m = lower limit, n = upper limit
e.g.:

∑n
k=m

(−1)k

k+1

Product
Product form:

n∏
k=m

ak = am · am+1 · am+2 · · · · · an

where, k = index, m = lower limit, n = upper limit
e.g.:

∏n
k=m

k
k+1



Properties of sums and products

Suppose am, am+1, am+2, . . . and bm, bm+1, bm+2, . . . are
sequences of real numbers and c is any real number
Sum∑n

k=m ak =
∑i

k=m ak +
∑n

k=i+1 ak for m ≤ i < n
where, i is between m and n− 1 (inclusive)
c ·
∑n

k=m ak =
∑n

k=m(c · ak)∑n
k=m ak +

∑n
k=m bk =

∑n
k=m(ak + bk)

Product
(
∏n

k=m ak) · (
∏n

k=m bk) =
∏n

k=m(ak · bk)



Change of variable

99∑
k=0

(−1)k

k + 1 =
99∑

j=0

(−1)j

j + 1 (Set j = k)

=
100∑
i=1

(−1)i−1

i
(Set i = j + 1)



Factorial function

Factorial function
The factorial of a whole number n, denoted by n!, is defined
as follows:
n! =

{
1 if n = 0,

n · (n− 1) · · · · · 3 · 2 · 1 if n > 0.

n! =
{

1 if n = 0,

n · (n− 1)! if n > 0.
B Recursive definition



Ordinary Mathematical Induction



Proof by mathematical induction

Mathematical induction is aesthetically beautiful and insanely
powerful proof technique
Mathematical induction is probably the greatest of all proof
techniques and probably the simplest

Core idea
A starting domino falls. From the starting domino, every suc-
cessive domino falls. Then, every domino from the starting
domino falls.

Source: https://i.stack.imgur.com/Z3l92.jpg



Proof by mathematical induction

Proposition

For all integers n ≥ a, a property P (n) is true.

Proof
Basis step.
Show that P (a) is true.
Induction step.
Assume P (k) is true for some integer k ≥ a.
(This supposition is called the inductive hypothesis.)
Now, prove that P (k + 1) is true.



Proof by mathematical induction

Proposition

For all integers n ≥ a, a property P (n) is true.

Proof
Basis step.
Show that P (a) is true.
Induction step.
Assume P (k) is true for some integer k ≥ a.
(This supposition is called the inductive hypothesis.)
Now, prove that P (k + 1) is true.



Proof by mathematical induction

Proposition

For all integers n ≥ a, a property P (n) is true.

Proof

P (a) (Base case)
∀k ≥ a, P (k)→ P (k + 1) (Induction case)

P (a + 1) (Conclusion)
∀k ≥ a, P (k)→ P (k + 1) (Induction case)

P (a + 2) (Conclusion)
∀k ≥ a, P (k)→ P (k + 1) (Induction case)

P (a + 3) (Conclusion)
Similarly, P (a + 4), P (a + 5), . . .



Proof by mathematical induction

Proposition

For all integers n ≥ a, a property P (n) is true.

Proof

P (a) (Base case)
∀k ≥ a, P (k)→ P (k + 1) (Induction case)

P (a + 1) (Conclusion)
∀k ≥ a, P (k)→ P (k + 1) (Induction case)

P (a + 2) (Conclusion)
∀k ≥ a, P (k)→ P (k + 1) (Induction case)

P (a + 3) (Conclusion)
Similarly, P (a + 4), P (a + 5), . . .



Proof by mathematical induction: Example 0

Pattern
1 = 1·2

2
1 + 2 = 2·3

2
1 + 2 + 3 = 3·4

2
1 + 2 + 3 + 4 = 4·5

2
1 + 2 + 3 + 4 + 5 = 5·6

2
1 + 2 + 3 + 4 + 5 + 6 = 6·7

2
1 + 2 + 3 + 4 + 5 + 6 + 7 = 7·8

2
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 8·9

2
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 9·10

2
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 10·11

2
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 = 11·12

2

Proposition

1 + 2 + · · ·+ n = n(n+1)
2 for all integers n ≥ 1.
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Proof by mathematical induction: Example 0

Proposition

1 + 2 + · · ·+ n = n(n+1)
2 for all integers n ≥ 1.

Proof

Let P (n) denote 1 + 2 + · · ·+ n = n(n+1)
2 .

Basis step. P (1) is true because 1 = 1(1 + 1)/2.
Induction step. Suppose that P (k) is true for some k ≥ 1.
Now, we want to show that P (k + 1) is true. That is,
Assume P (k): 1 + 2 + · · ·+ k = k(k+1)

2 for some k ≥ 1
Prove P (k + 1): 1 + 2 + · · ·+ (k + 1) = (k+1)(k+2)

2
LHS of P (k + 1)
= (1 + 2 + · · ·+ k) + (k + 1)
= k(k+1)

2 + (k + 1) (∵ P (k) is true)
= (k+1)(k+2)

2 (∵ distributive law)
= RHS of P (k + 1)
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Proof by mathematical induction: Example 1
Proposition(

1− 1
2

) (
1− 1

3

)
· · ·
(
1− 1

n

)
= 1

n for all integers n ≥ 2.

Proof

Let P (n) denote
(
1− 1

2

) (
1− 1

3

)
· · ·
(
1− 1

n

)
= 1

n .
Basis step. P (2) is true. B How?
Induction step.
Assume P (k):

(
1− 1

2
) (

1− 1
3
)
· · ·
(
1− 1

k

)
= 1

k for some k ≥ 2.
Prove P (k + 1):

(
1− 1

2
) (

1− 1
3
)
· · ·
(

1− 1
k+1

)
= 1

k+1
LHS of P (k + 1)
=
[(

1− 1
2
) (

1− 1
3
)
· · ·
(
1− 1

k

)] (
1− 1

k+1

)
= 1

k

(
1− 1

k+1

)
(∵ P (k) is true)

= 1
k ·

k
k+1 (∵ common denominator)

= 1
k+1 (∵ remove common factor)

= RHS of P (k + 1)
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Proof by mathematical induction: Example 2
Proposition

1
1·2 + 1

2·3 + · · ·+ 1
n·(n+1) = n

n+1 for all integers n ≥ 1.

Proof
Let P (n) denote 1

1·2 + 1
2·3 + · · ·+ 1

n·(n+1) = n
n+1 .

Basis step. P (1) is true. B How?
Induction step.
Assume P (k): 1

1·2 + 1
2·3 + · · ·+ 1

k·(k+1) = k
k+1 for some k ≥ 1
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1·2 + 1

2·3 + · · ·+ 1
(k+1)·(k+2) = k+1

k+2
LHS of P (k + 1)
=
(

1
1·2 + 1

2·3 + · · ·+ 1
k·(k+1)

)
+ 1

(k+1)·(k+2)

= k
k+1 + 1

(k+1)·(k+2) (∵ P (k) is true)
= k2+2k+1

(k+1)·(k+2) (∵ common denominator)
= (k+1)2

(k+1)·(k+2) (∵ simplify)
= k+1

k+2 (∵ remove common factor)
= RHS of P (k + 1)
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Problems for practice

For all integers n ≥ 1:
1 + 3 + · · ·+ (2n− 1) = n2

2 + 4 + · · ·+ 2n = n(n + 1)
12 + 22 + · · ·+ n2 = n(n+1)(2n+1)

6

13 + 23 + · · ·+ n3 =
(

n(n+1)
2

)2

1 · 2 + 2 · 3 + · · ·+ n(n + 1) = n(n+1)(n+2)
3

22 + 52 + 82 + · · ·+ (3n− 1)2 = n(6n2+3n−1)
2∑n

i=1
1

(2i−1)(2i+1) = n
2n+1∑n

i=1 i(i + 1)(i + 2) = n(n+1)(n+2)(n+3)
4

111 . . . 1︸ ︷︷ ︸
n times

= 10n−1
9



Proof by mathematical induction: Example 3

Proposition

Fibonacci sequence is: F (0) = 1, F (1) = 1, and
F (n) = F (n− 1) + F (n− 2) for n ≥ 2. Prove that:
F (0)2 + F (1)2 + · · ·+ F (n)2 = F (n)F (n + 1) for all n ≥ 0.

Proof
Let P (n) denote F (0)2 + F (1)2 + · · ·+ F (n)2 = F (n)F (n + 1).
Basis step. P (0) is true. B How?
Induction step. Suppose that P (k) is true for some k ≥ 0.
Now, we want to show that P (k + 1) is true.
LHS of P (k + 1)
= (F (0)2 + F (1)2 + · · ·+ F (k)2) + F (k + 1)2

= F (k)F (k + 1) + F (k + 1)2 (∵ P (k) is true)
= F (k + 1)(F (k) + F (k + 1)) (∵ distributive law)
= F (k + 1)F (k + 2) (∵ recursive definition)
= RHS of P (k + 1)
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Proof by mathematical induction: Example 4

Proposition

1 + r + r2 + · · ·+ rn = rn+1−1
r−1 for all integers n ≥ 1.

Proof

Let P (n) denote 1 + r + r2 + · · ·+ rn = rn+1−1
r−1 .

Basis step. P (1) is true. B How?
Induction step. Suppose that P (k) is true for some k ≥ 1.
Now, we want to show that P (k + 1) is true.
LHS of P (k + 1)
= (1 + r + r2 + · · ·+ rk) + rk+1

=
(

rk+1−1
r−1

)
+ rk+1 (∵ P (k) is true)

= (rk+1−1)+rk+1(r−1)
r−1 (∵ common denominator)

= r(k+1)+1−1
r−1 (∵ simplify)

= RHS of P (k + 1)
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Proof by mathematical induction: Example 5
Proposition

22n − 1 is divisible by 3, for all integers n ≥ 0.

Proof
Let P (n) denote 22n − 1 is divisible by 3.
Basis step. P (0) is true. B How?
Induction step. Suppose that P (k) is true for some k ≥ 0.
Now, we want to show that P (k + 1) is true.
LHS of P (k + 1)
= 22(k+1) − 1
= 22 · 22k − 1 (∵ ab+c = ab · ac)
= (3 + 1) · 22k − 1 (∵ rewrite)
= 3 · 22k + (22k − 1) (∵ distributive law)
= 3 · 22k + 3r (∵ P (k) is true)
= 3 · (22k + r) (∵ distributive law)
= 3 · integer (∵ addition is closed on integers)
= RHS of P (k + 1)



Proof by mathematical induction: Example 5
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Problems for practice

For all integers n ≥ 0:
5n − 1 is divisible by 4
7n − 1 is divisible by 6
9n + 3 is divisible by 4
32n − 1 is divisible by 8
7n − 2n is divisible by 5
7n+2 + 82n+1 is divisible by 57
n3 + 2n is divisible by 3
n3 − 7n + 3 is divisible by 3
17n3 + 103n is divisible by 6



Proof by mathematical induction: Example 6
Proposition

xn − yn is divisible by x − y, for all integers x, y such that
x 6= y, for all integers n ≥ 0.

Proof
Let P (n) denote xn − yn is divisible by x− y, s.t. x 6= y.
Basis step. P (0) is true. B How?
Induction step. Suppose that P (k) is true for some k ≥ 0.
Now, we want to show that P (k + 1) is true.
LHS of P (k + 1)
= xk+1 − yk+1

= xk+1 − x · yk + x · yk − yk+1 (∵ subtract and add)
= x · (xk − yk) + yk(x− y) (∵ distributive law)
= x · (x− y)r + yk(x− y) (∵ P (k) is true)
= (x− y)(xr + yk) (∵ distributive law)
= (x− y) · integer (∵ +,×, expo are closed on integers)
= RHS of P (k + 1)
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Proof by mathematical induction: Example 7

Proposition
2n < n!, for all integers n ≥ 4.

Proof
Let P (n) denote 2n < n!.
Basis step. P (4) is true. B How?
Induction step. Suppose that P (k) is true for some k ≥ 4.
Now, we want to show that P (k + 1) is true.
LHS of P (k + 1)
= 2k+1

= 2k · 2 (∵ ab+c = ab · ac)
< k! · 2 (∵ P (k) is true)
< k! · (k + 1) (∵ 2 < (k + 1) for k ≥ 4)
= (k + 1)! (∵ factorial recursive definition)
= RHS of P (k + 1)
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Induction step. Suppose that P (k) is true for some k ≥ 4.
Now, we want to show that P (k + 1) is true.
LHS of P (k + 1)
= 2k+1

= 2k · 2 (∵ ab+c = ab · ac)
< k! · 2 (∵ P (k) is true)
< k! · (k + 1) (∵ 2 < (k + 1) for k ≥ 4)
= (k + 1)! (∵ factorial recursive definition)
= RHS of P (k + 1)



Proof by mathematical induction: Example 8
Proposition

n2 < 2n, for all integers n ≥ 5.

Proof
Let P (n) denote n2 < 2n.
Basis step. P (5) is true. B How?
Induction step. Suppose that P (k) is true for some k ≥ 5.
Now, we want to show that P (k + 1) is true.
LHS of P (k + 1)
= (k + 1)2 = k2 + 2k + 1 (∵ expand)
< k2 + 2k + k (∵ 1 < k)
= k2 + 3k (∵ simplify)
< k2 + k2 (∵ 3 < k)
= 2k2 (∵ simplify)
< 2 · 2k (∵ P (k) is true)
= 2k+1 (∵ ab · ac = ab+c)
= RHS of P (k + 1)



Proof by mathematical induction: Example 8
Proposition

n2 < 2n, for all integers n ≥ 5.
Proof
Let P (n) denote n2 < 2n.
Basis step. P (5) is true. B How?
Induction step. Suppose that P (k) is true for some k ≥ 5.
Now, we want to show that P (k + 1) is true.
LHS of P (k + 1)
= (k + 1)2 = k2 + 2k + 1 (∵ expand)
< k2 + 2k + k (∵ 1 < k)
= k2 + 3k (∵ simplify)
< k2 + k2 (∵ 3 < k)
= 2k2 (∵ simplify)
< 2 · 2k (∵ P (k) is true)
= 2k+1 (∵ ab · ac = ab+c)
= RHS of P (k + 1)



Proof by mathematical induction: Example 9

Proposition
If one square is removed from a 2n × 2n board, the remaining
squares can be completely covered by L-shaped trominoes, for
all integers n ≥ 1.

Example
L-shaped tromino:

L-shaped trominoes cover 23× 23 board with a missing square:

Source: pd4cs.org
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Proof by mathematical induction: Example 9

Proposition
If one square is removed from a 2n × 2n board, the remaining
squares can be completely covered by L-shaped trominoes, for
all integers n ≥ 1.

Proof
Let P (n) denote “A 2n × 2n board with a square removed can
be completely covered by L-shaped trominoes.”
Basis step. P (1) is true. B How?
Induction step. Suppose that P (k) is true for some k ≥ 1.
Now, we want to show that P (k + 1) is true.
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Proposition
If one square is removed from a 2n × 2n board, the remaining
squares can be completely covered by L-shaped trominoes, for
all integers n ≥ 1.

Proof
Let P (n) denote “A 2n × 2n board with a square removed can
be completely covered by L-shaped trominoes.”
Basis step. P (1) is true. B How?
Induction step. Suppose that P (k) is true for some k ≥ 1.
Now, we want to show that P (k + 1) is true.



Proof by mathematical induction: Example 9

Proof (continued)

Induction step.
Consider 2k+1 × 2k+1 board with a square removed.
Divide it into four equal quadrants.
Consider the quadrant with the missing square. We can tile
this quadrant with trominoes because P (k) is true.
Remaining three quadrants meet at the center. Place a tromino
on the three central squares of the three quadrants.
The three quadrants can now be tiled using trominoes because
P (k) is true. As all four quadrants can be covered with tromi-
noes, P (k + 1) is true.



Proof by mathematical induction: Example 10
Proposition

There are some fuel stations located on a circular road (or
looping highway). The stations have different amounts of fuel.
However, the total amount of fuel at all the stations is enough
to make a trip around the circular road exactly once. Prove
that it is possible to find an initial location from where if we
start on a car with an empty tank, we can drive all the way
around the circular road without running out of fuel.

Proof
Let P (n) denote “It is possible to find an initial location from
where if we start on a car with an empty tank, we can drive all
around the circular road with n fuel stations without running out
of fuel.”
Basis step. P (1) is true. B How?
Induction step. Suppose that P (i) is true for some k ≥ 1 and
any i ∈ [1, k]. We want to show that P (k + 1) is true.
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There are some fuel stations located on a circular road (or
looping highway). The stations have different amounts of fuel.
However, the total amount of fuel at all the stations is enough
to make a trip around the circular road exactly once. Prove
that it is possible to find an initial location from where if we
start on a car with an empty tank, we can drive all the way
around the circular road without running out of fuel.

Proof
Let P (n) denote “It is possible to find an initial location from
where if we start on a car with an empty tank, we can drive all
around the circular road with n fuel stations without running out
of fuel.”
Basis step. P (1) is true. B How?
Induction step. Suppose that P (i) is true for some k ≥ 1 and
any i ∈ [1, k]. We want to show that P (k + 1) is true.



Proof by mathematical induction: Example 10

Proof (continued)

As the total amount of fuel in all k + 1 stations is enough for a
car to make a round trip, there must be at least one fuel station
A, that contains enough fuel to enable the car to reach the next
fuel station X, in the direction of travel.

Suppose you transfer all fuel from X to A. The result would be
a problem with k fuel stations. As P (k) is true, it is possible
to find an initial location for the car so that it does the round trip.

Use that location as the starting point for the car. When
the car reaches A, the amount of fuel in A is enough to
enable it to reach X, and once the car reaches X, the ad-
ditional amount of fuel in X enables it to complete the round trip.

Hence, P (k + 1) is true.



Proof by mathematical induction: Example 11

Proposition
All dogs in the world have the same color.

Proof
Let P (n) denote “In any collection of n dogs, all of them have
the same color.”
Basis step. P (1) is true. B How?
Induction step. Suppose that P (k) is true for some k ≥ 1.
Now, we want to show that P (k + 1) is true.
Consider a set of k + 1 dogs, say, {d1, d2, . . . , dk, dk+1}.
{d1, d2, . . . , dk} dogs have the same color. (∵ P (k) is true)
{d2, d3, . . . , dk+1} dogs have the same color. (∵ P (k) is true)
So, all k + 1 dogs have the same color.
That is, P (k + 1) is true.

What’s wrong?
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Proof by mathematical induction: Example 11

Proposition
All dogs in the world have the same color.

Proof
Let P (n) denote “In any collection of n dogs, all of them have
the same color.”
Basis step. P (1) is true. B How?
Induction step. Suppose that P (k) is true for some k ≥ 1.
Now, we want to show that P (k + 1) is true.
Consider a set of k + 1 dogs, say, {d1, d2, . . . , dk, dk+1}.
{d1, d2, . . . , dk} dogs have the same color. (∵ P (k) is true)
{d2, d3, . . . , dk+1} dogs have the same color. (∵ P (k) is true)
So, all k + 1 dogs have the same color.
That is, P (k + 1) is true.

What’s wrong?



Proof by mathematical induction: Example 12

Proposition
All sand in the world cannot make a heap.

Proof
Let P (n) denote “n grains of sand is not a heap.”
Basis step. P (1) is true. B How?
Induction step. Suppose that P (k) is true for some k ≥ 1.
Now, we want to show that P (k + 1) is true.
If n grains of sand is not a heap of sand, then n + 1 grains of
sand is not a heap of sand either.
Therefore, P (k + 1) is true.

What’s wrong?
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Proposition
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Proof
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Basis step. P (1) is true. B How?
Induction step. Suppose that P (k) is true for some k ≥ 1.
Now, we want to show that P (k + 1) is true.
If n grains of sand is not a heap of sand, then n + 1 grains of
sand is not a heap of sand either.
Therefore, P (k + 1) is true.

What’s wrong?



Proof by mathematical induction: Example 13

Proposition
We are nonliving things.

Proof
Let P (n) denote “n atoms of matter is nonliving.”
Basis step. P (1) is true. B How?
Induction step. Suppose that P (k) is true for some k ≥ 1.
Now, we want to show that P (k + 1) is true.
Consider n atoms of matter that is not living. Add one more
atom to this collection. Adding one more atom cannot suddenly
bring life to the nonliving. So, n + 1 atoms of matter is not
living.
Therefore, P (k + 1) is true.

What’s wrong?



Proof by mathematical induction: Example 13

Proposition
We are nonliving things.

Proof
Let P (n) denote “n atoms of matter is nonliving.”
Basis step. P (1) is true. B How?
Induction step. Suppose that P (k) is true for some k ≥ 1.
Now, we want to show that P (k + 1) is true.
Consider n atoms of matter that is not living. Add one more
atom to this collection. Adding one more atom cannot suddenly
bring life to the nonliving. So, n + 1 atoms of matter is not
living.
Therefore, P (k + 1) is true.

What’s wrong?



Proof by mathematical induction: Example 13

Proposition
We are nonliving things.

Proof
Let P (n) denote “n atoms of matter is nonliving.”
Basis step. P (1) is true. B How?
Induction step. Suppose that P (k) is true for some k ≥ 1.
Now, we want to show that P (k + 1) is true.
Consider n atoms of matter that is not living. Add one more
atom to this collection. Adding one more atom cannot suddenly
bring life to the nonliving. So, n + 1 atoms of matter is not
living.
Therefore, P (k + 1) is true.

What’s wrong?



Strong Mathematical Induction



Proof by strong mathematical induction

Proposition

For all integers n ≥ a, a property P (n) is true.

Proof
Basis step.
Show that P (a), P (a + 1), . . . , P (b) are true.
Induction step.
Assume {P (a), P (a + 1), . . . , P (k)} are true for some k ≥ b.
(This supposition is called the inductive hypothesis.)
Now, prove that P (k + 1) is true.



Proof by strong mathematical induction

Proposition

For all integers n ≥ a, a property P (n) is true.

Proof
Basis step.
Show that P (a), P (a + 1), . . . , P (b) are true.
Induction step.
Assume {P (a), P (a + 1), . . . , P (k)} are true for some k ≥ b.
(This supposition is called the inductive hypothesis.)
Now, prove that P (k + 1) is true.



Proof by strong mathematical induction

Equivalence
Any statement that can be proved with ordinary mathematical
induction can be proved with strong mathematical induction
and vice versa.
Hence, ordinary and strong mathematical induction techniques
are equivalent

Applications
Ordinary mathematical induction seems simpler.
Then why do we care for strong mathematical induction?
There are many propositions for which strong mathematical
induction seems both simpler and more natural way of proving



Proof by mathematical induction: Example 1

Proposition
Consider the sequence: a0 = 0, a1 = 4, and
ak = 6ak−1 − 5ak−2 for all integers k ≥ 2.
Prove that an = 5n − 1 for all integers n ≥ 0.

Proof
Let P (n) denote “an = 5n − 1.”
Basis step. P (0) and P (1) are true. B How?
Induction step. Suppose that P (i) is true for some k ≥ 1 and
any i ∈ [0, k]. We want to show that P (k + 1) is true.
LHS of P (k + 1)
= ak+1
= 6ak − 5ak−1 (∵ recursive definition)
= 6(5k − 1)− 5(5k−1 − 1) (∵ P (k), P (k − 1) are true)
= 5k+1 − 1 (∵ simplify)
= RHS of P (k + 1)



Proof by mathematical induction: Example 1

Proposition
Consider the sequence: a0 = 0, a1 = 4, and
ak = 6ak−1 − 5ak−2 for all integers k ≥ 2.
Prove that an = 5n − 1 for all integers n ≥ 0.

Proof
Let P (n) denote “an = 5n − 1.”
Basis step. P (0) and P (1) are true. B How?
Induction step. Suppose that P (i) is true for some k ≥ 1 and
any i ∈ [0, k]. We want to show that P (k + 1) is true.
LHS of P (k + 1)
= ak+1
= 6ak − 5ak−1 (∵ recursive definition)
= 6(5k − 1)− 5(5k−1 − 1) (∵ P (k), P (k − 1) are true)
= 5k+1 − 1 (∵ simplify)
= RHS of P (k + 1)



Problems for practice
Consider the sequence: a0 = 12, a1 = 29, and
ak = 5ak−1 − 6ak−2 for all integers k ≥ 2.
Prove that an = 5 · 3n + 7 · 2n for all integers n ≥ 0.
Consider the sequence: a1 = 3, a2 = 5, and
ak = 3ak−1 − 2ak−2 for all integers k ≥ 3.
Prove that an = 2n + 1 for all integers n ≥ 1.
Consider the sequence: a0 = 1, a1 = 2, a2 = 3, and
ak = ak−1 + ak−2 + ak−3 for all integers k ≥ 3.
Prove that an ≤ 3n for all integers n ≥ 0.
Consider the sequence: a0 = 1, a1 = 3, and
ak = 2ak−1 − ak−2 for all integers k ≥ 2.
Prove that an = 2n + 1 for all integers n ≥ 0.
Consider the sequence: a0 = 1, a1 = 1, and
ak = 5ak−1 − 6ak−2 for all integers k ≥ 2.
Prove that an = 3n − 2n for all integers n ≥ 0.
Consider the sequence: a1 = 1, a2 = 8, and
ak = ak−1 + 2ak−2 for all integers k ≥ 3.
Prove that an = 3 · 2n−1 + 2(−1)n for all integers n ≥ 1.



Proof by mathematical induction: Example 2

Proposition
Any integer greater than 1 is divisible by a prime number.

Proof
Let P (n) denote “n is divisible by a prime number.”
Basis step. P (2) is true. B How?
Induction step. Suppose that P (i) is true for some k ≥ 2 and
any i ∈ [2, k]. We want to show that P (k + 1) is true.
Two cases:
Case 1: [k + 1 is prime.] P (k + 1) is true. B How?
Case 2: [k + 1 is not prime.] We can write k + 1 = ab such
that both a, b ∈ [2, k] using the definition of a composite. This
means, k + 1 is divisible by a. We see that a is divisible by a
prime due to the inductive hypothesis. As k + 1 is divisible by
a and a is divisible by a prime, k +1 is divisible by a prime, due
to the transitivity of divisibility. Hence, P (k + 1) is true.
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Proposition
Any integer greater than 1 is divisible by a prime number.

Proof
Let P (n) denote “n is divisible by a prime number.”
Basis step. P (2) is true. B How?
Induction step. Suppose that P (i) is true for some k ≥ 2 and
any i ∈ [2, k]. We want to show that P (k + 1) is true.
Two cases:
Case 1: [k + 1 is prime.] P (k + 1) is true. B How?
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that both a, b ∈ [2, k] using the definition of a composite. This
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Proof by mathematical induction: Example 3
Proposition

n cents can be obtained using a combination of 3- and 5-cent
coins, for all integers n ≥ 8.
(Assume you have an infinite supply of 3- and 5-cent coins.)

Proof
Let P (n) denote “n cents can be obtained using a combination
of 3- and 5-cent coins.”
Basis step. P (8), P (9), P (10), P (11), P (12) are true. How?
Induction step. Suppose that P (i) is true for some k ≥ 12 and
any i ∈ [8, k]. We want to show that P (k + 1) is true.
k + 1 = (k − 4)︸ ︷︷ ︸

Part 1

+ 5︸︷︷︸
Part 2

Part 1 can be obtained by a collection of 3- and 5-cent coins
because P (k − 4) is true and (k − 4) ≥ 8.
Part 2 requires a 5-cent coin.
Hence, P (k + 1) is true.
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Proof
Let P (n) denote “n cents can be obtained using a combination
of 3- and 5-cent coins.”
Basis step. P (8), P (9), P (10), P (11), P (12) are true. How?
Induction step. Suppose that P (i) is true for some k ≥ 12 and
any i ∈ [8, k]. We want to show that P (k + 1) is true.
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Proof by mathematical induction: Example 3
Proposition

n cents can be obtained using a combination of 3 and 5 cent
coins, for all integers n ≥ 8.
(Assume you have an infinite supply of 3- and 5-cent coins.)

Proof (improved)

Let P (n) denote “n cents can be obtained using a combination
of 3- and 5-cent coins.”
Basis step. P (8), P (9), and P (10) are true. B How?
Induction step. Suppose that P (i) is true for some k ≥ 10 and
any i ∈ [8, k]. We want to show that P (k + 1) is true.
k + 1 = (k − 2)︸ ︷︷ ︸

Part 1

+ 3︸︷︷︸
Part 2

Part 1 can be obtained by a collection of 3- and 5-cent coins
because P (k − 2) is true and (k − 2) ≥ 8.
Part 2 requires a 3-cent coin.
Hence, P (k + 1) is true.



Proof by mathematical induction: Example 3

Proposition
n cents can be obtained using a combination of 3 and 5 cent
coins, for all integers n ≥ 8.
(Assume you have an infinite supply of 3 and 5 cent coins.)
Use ordinary mathematical induction.

Proof
Let P (n) denote “n cents can be obtained using a combination
of 3- and 5-cent coins.”
Basis step. P (8) is true. B How?
Induction step. Suppose that P (k) is true for some k ≥ 8. We
want to show that P (k + 1) is true.



Proof by mathematical induction: Example 3

Proof (continued)

Induction step. Suppose that P (k) is true for some k ≥ 8. We
want to show that P (k + 1) is true.
k + 1 = k︸︷︷︸

Part 1

+ (3 + 3− 5)︸ ︷︷ ︸
Part 2

Part 1: P (k) is true as k ≥ 8.
Part 2: Add two 3-cent coins and subtract one 5-cent coin.
Hence, P (k + 1) is true.

Incorrect! What’s wrong?
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Proof (continued)
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Part 1: P (k) is true as k ≥ 8.
Part 2: Add two 3-cent coins and subtract one 5-cent coin.
Hence, P (k + 1) is true.
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Proof (continued)

Induction step. Suppose that P (k) is true for some k ≥ 8. We
want to show that P (k + 1) is true.
k + 1 = k︸︷︷︸

Part 1

+ (5 + 5− 3− 3− 3)︸ ︷︷ ︸
Part 2

Part 1: P (k) is true as k ≥ 8.
Part 2: Add two 5-cent coins and subtract three 3-cent coins.
Hence, P (k + 1) is true.

Incorrect! What’s wrong?



Proof by mathematical induction: Example 3

Proof (continued)

Induction step. Suppose that P (k) is true for some k ≥ 8. We
want to show that P (k + 1) is true.
k + 1 = k︸︷︷︸

Part 1

+ (5 + 5− 3− 3− 3)︸ ︷︷ ︸
Part 2

Part 1: P (k) is true as k ≥ 8.
Part 2: Add two 5-cent coins and subtract three 3-cent coins.
Hence, P (k + 1) is true.

Incorrect! What’s wrong?



Proof by mathematical induction: Example 3

Proof (continued)

Induction step. Suppose that P (k) is true for some k ≥ 8. We
want to show that P (k + 1) is true.
Case 1. [There is a 5-cent coin in the set of k cents.]
k + 1 = k︸︷︷︸

Part 1

+ (3 + 3− 5)︸ ︷︷ ︸
Part 2

Part 1: P (k) is true as k ≥ 8.
Part 2: Add two 3-cent coins and subtract one 5-cent coin.
Case 2. [There is no 5-cent coin in the set of k cents.]
k + 1 = k︸︷︷︸

Part 1

+ (5 + 5− 3− 3− 3)︸ ︷︷ ︸
Part 2

Part 1: P (k) is true as k ≥ 8.
Part 2: Add two 5-cent coins and subtract three 3-cent coins.
Hence, P (k + 1) is true.



Problems for practice

Any collection of n people can be divided into teams of size
5 and 6, for all integers n ≥ 35
4 and 7, for all integers n ≥ 18

Every amount of postage of 12 cents or more can be formed
using just 4-cent and 5-cent stamps.
Fibonacci sequence is: f0 = 1, f1 = 1, and fn = fn−1 + fn−2 for
n ≥ 2. Prove that:

fn ≤ (7/4)n for all n ≥ 0.
fn ≥ (3/2)n−1 for all n ≥ 1.
fn ≥ 2(n−1)/2 for all n ≥ 3.
fn = (pn − qn)/

√
5 for all n ≥ 1,

where p = (1 +
√

5)/2 and q = (1−
√

5)/2.
Hint: Note that p and q are the roots of x2 − x− 1 = 0. So,
p2 = p + 1 and q2 = q + 1.



Recursion



Recursive functions

Examples

Suppose f(n) = n!, where n ∈W. Then,

f(n) =
{

1 if n = 0,

n · f(n− 1) if n ≥ 1.
Closed-form formula: f(n) = n · (n− 1) · · · · · 1
Suppose F (n) = nth Fibonacci number. Then,

F (n) =
{

1 if n = 0 or 1,

F (n− 1) + F (n− 2) if n ≥ 2.
Closed-form formula: F (n) = ?
Suppose C(n) = nth Catalan number. Then,

C(n) =
{

1 if n = 1,
4n−2
n+1 · C(n− 1) if n ≥ 2.

Closed-form formula: C(n) = 1
n+1 ·

(2n
n

)



Recursive functions

Examples

Suppose M(m, n) = product of m, n ∈ N. Then,

M(m, n) =
{

m if n = 1,

M(m, n− 1) + m if n ≥ 2.
Closed-form formula: M(m, n) = m× n
Suppose E(a, n) = an, where n ∈W. Then,

E(a, n) =
{

1 if n = 0,

E(a, n− 1)× a if n ≥ 1.
Closed-form formula: E(a, n) = an

Suppose O(n) = nth odd number ∈ N. Then,

O(n) =
{

1 if n = 1,

O(n− 1) + 2 if n ≥ 2.
Closed-form formula: O(n) = 2n− 1

Recursive function for primes?
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Relationship between induction and recursion

Observe Patterns

Discover Recursion

Guess Closed-Form Formulas

Prove by Induction

Write Computer Programs



Relationship between induction and recursion

Recursion Ordinary induction Strong induction
Base case Basis Basis

f(a) f(a), f(a + 1), . . . , f(b)
Recursive case Induction Induction

f(n− 1) f(n− 1), f(n− 2), . . . , f(a)



Example: Arithmetic sequence

Definition
Arithmetic sequence:
〈a0, a1, a2, . . . , an〉 = 〈a, a + d, a + 2d, . . . , a + nd〉
Recurrence:
ak = ak−1 + d for all integers k ≥ 1
nth term:
an = a + nd for all integers n ≥ 0
Summation:
a0 + a1 + · · ·+ an = (n + 1)a + dn(n + 1)/2



Example: Arithmetic sequence (Skydiving)

Problem
A skydiver’s speed upon leaving an airplane is approx. 9.8
m/sec one second after departure, 9.8 + 9.8 = 19.6 m/sec
two seconds after departure, and so forth. How fast would the
skydiver be falling 60 seconds after leaving the airplane?

Solution
Let sn = skydiver speed (m/sec) n sec. after exiting the plane
sn = s0 + 9.8n for each integer n ≥ 0
s60 = 0 + (9.8)(60) = 588 m/sec.



Example: Arithmetic sequence (Skydiving)

Problem
A skydiver’s speed upon leaving an airplane is approx. 9.8
m/sec one second after departure, 9.8 + 9.8 = 19.6 m/sec
two seconds after departure, and so forth. How fast would the
skydiver be falling 60 seconds after leaving the airplane?

Solution
Let sn = skydiver speed (m/sec) n sec. after exiting the plane
sn = s0 + 9.8n for each integer n ≥ 0
s60 = 0 + (9.8)(60) = 588 m/sec.



Example: Geometric sequence

Definition
Geometric sequence:
〈a0, a1, a2, . . . , an〉 = 〈a, ar, ar2, . . . , arn〉
Recurrence:
ak = rak−1 for all integers k ≥ 1
nth term:
an = arn for all integers n ≥ 0
Summation:
a0 + a1 + · · ·+ an = a

(
rn+1−1

r−1

)



Example: Geometric sequence (Compound interest)

Problem
Suppose you deposit 100,000 dollars in your bank account for
your newborn baby. Suppose you earn 3% interest compounded
annually.
How much will be the amount when your kid hits 21 years of
age?

Solution
Suppose Ak = Amount in your account after k years. Then,

Ak =
{

100, 000 if k = 0,

(1 + 3%)×Ak−1 if k ≥ 1.
Solving the recurrence by the method of iteration, we get
Ak = ((1.03)k · 100, 000) dollars B How?
Homework: Prove the formula using induction
When your kid hits 21 years, k = 21, therefore
A21 = ((1.03)21 · 100, 000) ≈ 186, 029.46 dollars
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your newborn baby. Suppose you earn 3% interest compounded
annually.
How much will be the amount when your kid hits 21 years of
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Solution
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Solving the recurrence by the method of iteration, we get
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Homework: Prove the formula using induction
When your kid hits 21 years, k = 21, therefore
A21 = ((1.03)21 · 100, 000) ≈ 186, 029.46 dollars



Example: Geometric sequence (Compound interest)

Problem
Suppose you deposit 100,000 dollars in your bank account for
your newborn baby. Suppose you earn 3% interest compounded
quarterly.
How much will be the amount after 84 quarters (or periods)?

Solution
Suppose Ak = Amount in your account after k quarters. Then,

Ak =
{

100, 000 if k = 0,

(1 + 3
4%)×Ak−1 if k ≥ 1.

Solving the recurrence by the method of iteration, we get
Ak = ((1.0075)k · 100, 000) dollars B How?
Homework: Prove the formula using induction
After 84 quarters or pay periods (21 years), k = 84,
A84 = ((1.0075)84 · 100, 000) ≈ 187, 320.2 dollars
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quarterly.
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100, 000 if k = 0,

(1 + 3
4%)×Ak−1 if k ≥ 1.

Solving the recurrence by the method of iteration, we get
Ak = ((1.0075)k · 100, 000) dollars B How?
Homework: Prove the formula using induction
After 84 quarters or pay periods (21 years), k = 84,
A84 = ((1.0075)84 · 100, 000) ≈ 187, 320.2 dollars



Example: Towers of Hanoi

Problem
There are k disks on peg 1. Your aim is to move all k disks
from peg 1 to peg 3 with the minimum number of moves. You
can use peg 2 as an auxiliary peg. The constraint of the puzzle
is that at any time, you cannot place a larger disk on a smaller
disk.
What is the minimum number of moves required to transfer all
k disks from peg 1 to peg 3?



Example: Towers of Hanoi

Solution
Suppose k = 1. Then, the 1-step solution is:
1. Move disk 1 from peg A to peg C.

Source: http://mathforum.org/dr.math/faq/faq.tower.hanoi.html

http://mathforum.org/dr.math/faq/faq.tower.hanoi.html


Example: Towers of Hanoi

Solution
Suppose k = 2. Then, the 3-step solution is:
1. Move disk 1 from peg A to peg B.
2. Move disk 2 from peg A to peg C.
3. Move disk 1 from peg B to peg C.

Source: http://mathforum.org/dr.math/faq/faq.tower.hanoi.html

http://mathforum.org/dr.math/faq/faq.tower.hanoi.html


Example: Towers of Hanoi
Solution
Suppose k = 3. Then, the 7-step solution is:
1. Move disk 1 from peg A to peg C.
2. Move disk 2 from peg A to peg B.
3. Move disk 1 from peg C to peg B.
4. Move disk 3 from peg A to peg C.
5. Move disk 1 from peg B to peg A.
6. Move disk 2 from peg B to peg C.
7. Move disk 1 from peg A to peg C.



Example: Towers of Hanoi

Solution
Suppose k = 4. Then, the 15-step solution is:
1. Move disk 1 from peg A to peg B.
2. Move disk 2 from peg A to peg C.
3. Move disk 1 from peg B to peg C.
4. Move disk 3 from peg A to peg B.
5. Move disk 1 from peg C to peg A.
6. Move disk 2 from peg C to peg B.
7. Move disk 1 from peg A to peg B.
8. Move disk 4 from peg A to peg C.
9. Move disk 1 from peg B to peg C.

10. Move disk 2 from peg B to peg A.
11. Move disk 1 from peg C to peg A.
12. Move disk 3 from peg B to peg C.
13. Move disk 1 from peg A to peg B.
14. Move disk 2 from peg A to peg C.
15. Move disk 1 from peg B to peg C.



Example: Towers of Hanoi

Solution
For any k ≥ 2, the recursive solution is:
1. Transfer the top k − 1 disks from peg A to peg B.
2. Move the bottom disk from peg A to peg C.
3. Transfer the top k − 1 disks from peg B to peg C.



Example: Towers of Hanoi

Towers-of-Hanoi(k, A, C, B)
1. if k = 1 then
2. Move disk k from A to C.
3. elseif k ≥ 2 then
4. Towers-of-Hanoi(k − 1, A, B, C)
5. Move disk k from A to C.
6. Towers-of-Hanoi(k − 1, B, C, A)



Example: Towers of Hanoi

Solution (continued)

Let M(k) denote the minimum number of moves required to
move k disks from one peg to another peg. Then

M(k) =
{

1 if k = 1,

2 ·M(k − 1) + 1 if k ≥ 2.
Solving the recurrence by the method of iteration, we get
M(k) = 2k − 1 B How?
Homework: Prove the formula using induction

Generalization
How do you solve the problem if there are p pegs instead of 3?
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Example: Greatest common divisor (GCD)

Definition
The greatest common divisor (GCD) of two integers a and b is
the largest integer that divides both a and b.
A simple way to compute GCD:
1. Find the divisors of the two numbers
2. Find the common divisors
3. Find the greatest of the common divisors

Examples

GCD(2, 100) = 2
GCD(3, 99) = 3
GCD(3, 4) = 1
GCD(12, 30) = 6
GCD(1071, 462) = 21



Example: Greatest common divisor (GCD)

Problem
Compute the GCD of two integers efficiently.

Solution
Recurrence relation: Suppose a > b.

GCD(a, b) =
{

a if b = 0,

GCD(b, a mod b) if b ≥ 1.

GCD(1071, 462)
= GCD(462, 1071 mod 462)
= GCD(462, 147) (∵ 1071 = 2 · 462 + 147)
= GCD(147, 462 mod 147)
= GCD(147, 21) (∵ 462 = 3 · 147 + 21)
= GCD(21, 147 mod 21)
= GCD(21, 0) (∵ 147 = 7 · 21 + 0)
= 21
https://upload.wikimedia.org/wikipedia/commons/1/1c/Euclidean_algorithm_1071_462.gif

https://upload.wikimedia.org/wikipedia/commons/1/1c/Euclidean_algorithm_1071_462.gif


Example: Greatest common divisor (GCD)

Problem
Compute the GCD of two integers efficiently.

Solution
Recurrence relation: Suppose a > b.

GCD(a, b) =
{

a if b = 0,

GCD(b, a mod b) if b ≥ 1.

GCD(1071, 462)
= GCD(462, 1071 mod 462)
= GCD(462, 147) (∵ 1071 = 2 · 462 + 147)
= GCD(147, 462 mod 147)
= GCD(147, 21) (∵ 462 = 3 · 147 + 21)
= GCD(21, 147 mod 21)
= GCD(21, 0) (∵ 147 = 7 · 21 + 0)
= 21
https://upload.wikimedia.org/wikipedia/commons/1/1c/Euclidean_algorithm_1071_462.gif

https://upload.wikimedia.org/wikipedia/commons/1/1c/Euclidean_algorithm_1071_462.gif


Example: Greatest common divisor (GCD)

Recursive algorithm (Euclidean algorithm)

GCD(a, b)
Input: Nonnegative integers a and b such that a > b.
Output: Greatest common divisor of a and b.
1. if b = 0 then
2. return a
3. else
4. return GCD(b, a mod b)



More Induction Problems



Example: 1/12 + 1/22 + · · ·+ 1/n2

Problem
Prove that 1

12 + 1
22 +· · ·+ 1

n2 < 2 for all natural numbers n ≥ 1.

Solution
It is difficult to solve the problem directly.
It is sometimes easier to prove a stronger result.
We prove the stronger statement that

∑n
i=1

1
i2 < 2− 1

n .
Let P (n) denote

∑n
i=1

1
i2 < 2− 1

n for n ≥ 2.
Basis step. P (2) is true. B How?
Induction step. Suppose that P (k) is true for some k ≥ 2. We
need to prove that P (k + 1) is true.
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Example: 1/12 + 1/22 + · · ·+ 1/n2

Solution (continued)

Induction step. Suppose that P (k) is true for some k ≥ 2.
We need to prove that P (k + 1) is true.
LHS of P (k + 1)
=
(

1
12 + 1

22 + · · ·+ 1
k2

)
+ 1

(k+1)2

<
(
2− 1

k

)
+ 1

(k+1)2 (∵ P (k) is true)

= 2− (k+1)2−k
k(k+1)2 (∵ taking common denominator)

= 2− k(k+1)+1
k(k+1)2 (∵ simplify)

< 2− k(k+1)
k(k+1)2 (∵ decrease 1 in the numerator)

= 2− 1
k+1 (∵ canceling common factors)

= RHS of P (k + 1)



Example: xn + 1/xn

Problem
Suppose x ∈ R+ and (x + 1/x) ∈ Z. Prove using strong
induction that (xn + 1/xn) ∈ Z for all natural numbers n.

Solution
Let P (n) denote (xn + 1/xn) ∈ Z for n ≥ 1.
Basis step. P (1) is true. B How?
Induction step. Suppose that P (i) is true for all i ∈ [1, k],
where k ≥ 1. We need to prove that P (k + 1) is true.
Observation:

(
xk + 1/xk

)
(x + 1/x)

=
(
xk+1 + 1/xk+1

)
+
(
xk−1 + 1/xk−1

)
. So, we have

LHS of P (k + 1)
=
(
xk+1 + 1/xk+1

)
=
(
xk + 1/xk

)
(x + 1/x)−

(
xk−1 + 1/xk−1

)
= integer × integer − integer (∵ inductive hypothesis)
= RHS of P (k + 1)
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Example: Chocolate bar

Problem
Prove that breaking a chocolate bar with n ≥ 1 pieces into
individual pieces requires n− 1 breaks.

Solution
Let P (n) denote “Breaking a chocolate bar with n pieces into
individual pieces requires n− 1 breaks”.
Basis step. P (1) is true. B How?
Induction step. Suppose that P (i) is true for all i ∈ [1, k],
where k ≥ 1. We need to prove that P (k + 1) is true.
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Example: Chocolate bar

Solution (continued)

j pieces

(j − 1) breaks

(k + 1− j) pieces

(k − j) breaks

k + 1 pieces

Induction step. Suppose that P (i) is true for all i ∈ [1, k],
where k ≥ 1. We need to prove that P (k + 1) is true.
Bar with k + 1 pieces is split into two parts using 1 break.
First part has j pieces and second part has k + 1− j pieces.
#Breaks for chocolate bar with k + 1 pieces
= 1+ #Breaks for the first part + #Breaks for the second part
= 1 + (j − 1) + (k − j) (∵ P (j), P (k + 1− j) are true)
= k. Hence, P (k + 1) is true.



Example: McCarthy’s 91 function

Problem
Let M : Z→ Z be the following function.

M(n) =
{

n− 10 if n ≥ 101,

M(M(n + 11)) if n ≤ 100.

Prove that M(n) = 91 for all integers n ≤ 100.

Solution
Basis step. M(n) = 91 for n ∈ [90, 100]. How?

M(n) = M(M(n + 11)) (∵ By definition)
= M((n + 11)− 10) (∵ (n + 11) ≥ 101)
= M(n + 1)

So, M(n) = M(101) = 91 for n ∈ [90, 100].
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Example: McCarthy’s 91 function

Solution (continued)

Induction step. Suppose that M(i) = 91 for some k ≤ 90 and
any i ∈ [k, 100]. We want to show that M(k − 1) = 91.

M(k − 1) = M(M(k − 1 + 11)) (∵ By definition)
= M(M(k + 10)) (∵ Simplify)
= M(91) (∵ Inductive hypothesis, because

k < (k + 10) ≤ 100)
= 91 (∵ Base case)



Example: McCarthy’s 91 function

Knuth’s generalization
Suppose a ∈ Z and b, c, d ∈ N. Consider the function.

K(x) =


x− b if x > a,

K(K(· · ·K(︸ ︷︷ ︸
c times

x + d) · · · )) if x ≤ a.

Let ∆ = (d− (c− 1)b) > 0.
Then, the function evaluates to

K(x) =
{

x− b if x > a,

a + ∆− b− ((a− x) mod ∆) if x ≤ a.
Reference: https://arxiv.org/abs/cs/9301113

https://arxiv.org/abs/cs/9301113


Example: Staircase problem

Problem
You need to ascend a staircase consisting of n steps. The
number of steps you can climb at a time is at most b. What is
the number of ways of ascending the staircase?

Solution
Suppose Sk = #ways of ascending a staircase with k steps.
Then,

Sk =

 ? if k ∈ [1, b],

? if k ∈ [b + 1, n].
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Example: Staircase problem

Solution (continued)

Steps Ways #Ways
1 1 1
2 1 + 1, 2 2
3 1 + 1 + 1, 1 + 2, 2 + 1, 3 4
4 1 + 1 + 1 + 1, 1 + 1 + 2, 1 + 2 + 1, 2 + 1 + 1, 2 + 2, 8

1 + 3, 3 + 1, 4
Base case.
Is Sk = 2k−1? for k ∈ [1, b]. B Proof?

Sk =
{

1 if k = 1,
Sk−1 + · · ·+ S1 + 1 if k ∈ [2, b].

B How?

Solving the recurrence, we get Sk = 2k−1 for k ∈ [1, b].
Recursion case.
Sk = Sk−1 + Sk−2 + · · ·+ Sk−b for k ∈ [b + 1, n].



Example: Continued fractions

Problem
Prove that every rational number can be written as a continued
fraction.

Solution
A continued fraction an expression of the form:
a1 + 1

a2+ 1
a3+ 1

···+ 1
an

Formally, a continued fraction is:
(i) integer, or
(ii) integer + 1/(continued fraction)
Example: Golden ratio = 1+

√
5

2 = 1 + 1
1+ 1

1+ 1
1+···
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Example: Continued fractions

Solution (continued)

Given an integer n and a natural number d,
we can write n = qd + r such that r ∈ [0, d− 1].
Observe that the rational number n/d can be written as:
n
d = q + r

d = q + 1
d
r

Every rational can be written with a positive denominator.

Let P (d) denote
“Any rational with denominator d has a continued fraction”.
Basis step. P (1) is true. B How?
Induction step. Suppose that P (i) is true for all i ∈ [1, d], for
some d ≥ 1. We need to prove that P (d + 1) is true.



Example: Continued fractions

Solution (continued)

Induction step. Suppose that P (i) is true for all i ∈ [1, d], for
some d ≥ 1. We need to prove that P (d + 1) is true.
Consider the rational n

d+1 for some integer n.
Using the division theorem, we have n = q(d + 1) + r,
where r ∈ [0, d].
We consider two cases:
Case [r = 0]. Then, n

d+1 = q = integer.
An integer is a continued fraction.
Case [r 6= 0]. Then, n

d+1 = q + r
d+1 = q + 1

d+1
r

.
d+1

r is a continued fraction due to inductive hypothesis be-
cause P (r) is true. (∵ r ∈ [1, d])
Integer + 1/(continued fraction) is a continued fraction.

Hence, P (d + 1) is true.


