Discrete Mathematics (Relations)

Pramod Ganapathi
Department of Computer Science
State University of New York at Stony Brook

January 24, 2021

Are these functions?

Problem

- Are these functions?
- rational $p=$ rational q
$-m<n$
$-d$ does not divide n
- n leaves a remainder of 5 when divided by d
- line ℓ_{1} is parallel to line ℓ_{2}
- person a is a parent of person b
- triangle t_{1} is congruent to triangle t_{2}
- edge e_{1} is adjacent to edge e_{2}
- matrix A is orthogonal to matrix B

No! (Because an input is mapped to more than one output.)

- What are these mappings called?

Relations!

Functions vs. relations

What is a binary relation?

Definition

- If A and B are sets, then a binary relation from A to B is a subset of $A \times B$.
- We say that x is related to y by R, written $x R y$, if, and only if, $(x, y) \in R$. Denoted as $x R y \Leftrightarrow(x, y) \in R$.

Relationship

- Set of all functions is a proper subset of the set of all relations.

Female

Example: Less than

Problem

- A relation $L: \mathbb{R} \rightarrow \mathbb{R}$ as follows.

For all real numbers x and $y,(x, y) \in L \Leftrightarrow x L y \Leftrightarrow x<y$. Draw the graph of L as a subset of the Cartesian plane $\mathbb{R} \times \mathbb{R}$.

Solution

- $L=\{(-10.678,30.23),(17.13,45.98),(100 / 9,200), \ldots\}$
- Graph:

Example: Congruence modulo 2

Problem

- Define a relation $C: \mathbb{Z} \rightarrow \mathbb{Z}$ as follows. For all $(m, n) \in \mathbb{Z} \times \mathbb{Z}, m C n \Leftrightarrow m-n$ is even.
- Prove that if n is any odd integer, then $n C 1$.

Solution

- $A=\{(2,4),(56,10),(-88,-64), \ldots\}$
$B=\{(7,7),(57,11),(-87,-63), \ldots\}$
$C=A \cup B$
- Proof. $(n, 1) \in C \Leftrightarrow n C 1 \Leftrightarrow n-1$ is even Suppose n is odd i.e., $n=2 k+1$ for some integer k. This implies that $n-1=2 k$ is even.

Female
Female

Inverse of a relation

Definition

- Let R be a relation from A to B.

Then inverse relation R^{-1} from B to A is:

$$
R^{-1}=\{(y, x) \in B \times A \mid(x, y) \in R\}
$$

- For all $x \in A$ and $y \in B$,
$(x, y) \in R \Leftrightarrow(y, x) \in R^{-1}$

Example: Inverse of a finite relation

Problem

- Let $A=\{2,3,4\}$ and $B=\{2,6,8\}$.

Let R : A to B. For all $(a, b) \in A \times B, a R b \Leftrightarrow a \mid b$

- Determine R and R^{-1}. Draw arrow diagrams for both. Describe R^{-1} in words.

Solution

- $R=\{(2,2),(2,6),(2,8),(3,6),(4,8)\}$ $R^{-1}=\{(2,2),(6,2),(8,2),(6,3),(8,4)\}$
- For all $(b, a) \in B \times A$,
$(b, a) \in R^{-1} \Leftrightarrow b$ is a multiple of a

Example: Inverse of an infinite relation

Problem

- Define a relation R from \mathbb{R} to \mathbb{R} as follows:

For all $(u, v) \in \mathbb{R} \times \mathbb{R}, u R v \Leftrightarrow v=2|u|$.

- Draw the graphs of R and R^{-1} in the Cartesian plane. Is R^{-1} a function?

Solution

- R^{-1} is not a function. Why?

Relation on a set

Definition

- A relation on a set A is a relation from A to A.
- The resulting arrow diagram is a directed graph possibly containing loops

Example: Relation on a set

Problem

- Let $A=\{3,4,5,6,7,8\}$. Define relation R on A as follows. For all $x, y \in A, x R y \Leftrightarrow 2 \mid(x-y)$. Draw the graph of R.

Solution

Reflexivity, symmetry, and transitivity

Properties

- Set $A=\{2,3,4,6,7,9\}$

Relation R on set A is: $\forall x, y \in A, x R y \Leftrightarrow 3 \mid(x-y)$

- Reflexivity. $\forall x \in A,(x, x) \in R$.
- Symmetry. $\forall x, y \in A$, if $(x, y) \in R$, then $(y, x) \in R$.
- Transitivity.
$\forall x, y, z \in A$, if $(x, y) \in R$ and $(y, z) \in R$, then $(x, z) \in R$.

Example

Problem

- $A=\{0,1,2,3\}$. $R=\{(0,0),(0,1),(0,3),(1,0),(1,1),(2,2),(3,0),(3,3)\}$. Is R reflexive, symmetric, and transitive?

Solution

- Reflexive. $\forall x \in A,(x, x) \in R$.
- Symmetric. $\forall x, y \in A$, if $(x, y) \in R$, then $(y, x) \in R$.
- Not transitive. e.g.: $(1,0),(0,3) \in R$ but $(1,3) \notin R$. $\exists x, y, z \in A$, if $(x, y) \in R$ and $(y, z) \in R$, then $(x, z) \notin R$.

Example

Problem

- $A=\{0,1,2,3\} . R=\{(0,0),(0,2),(0,3),(2,3)\}$. Is R reflexive, symmetric, and transitive?

Solution

- Not reflexive. e.g.: $(1,1) \notin R . \exists x \in A,(x, x) \notin R$.
- Not symmetric. e.g.: $(0,3) \in R$ but $(3,0) \notin R$.
$\exists x, y \in A$, if $(x, y) \in R$, then $(y, x) \notin R$.
- Transitive.
$\forall x, y, z \in A$, if $(x, y) \in R$ and $(y, z) \in R$, then $(x, z) \in R$.

Example

Problem

- $A=\{0,1,2,3\} . R=\{(0,1),(2,3)\}$.

Is R reflexive, symmetric, and transitive?

Solution

- Not reflexive. e.g.: $(0,0) \notin R . \exists x \in A,(x, x) \notin R$.
- Not symmetric. e.g.: $(0,1) \in R$ but $(1,0) \notin R$. $\exists x, y \in A$, if $(x, y) \in R$, then $(y, x) \notin R$.
- Transitive. Why?
$\forall x, y, z \in A$, if $(x, y) \in R$ and $(y, z) \in R$, then $(x, z) \in R$.

Equivalence relation and equivalence class

Definition

- Relation R on set A is an equivalence relation iff
R is reflexive, symmetric, and transitive.
- Equivalence class of element a, denoted by $[a]$, for an equivalence relation is defined as:

$$
[a]=\{x \in A \mid(x, a) \in R\} .
$$

Example: Less than

Problem

- Suppose R is a relation on \mathbb{R} such that $x R y \Leftrightarrow x<y$. Is R an equivalence relation?

Solution

- Not reflexive. e.g.: $0 \nless 0 . \exists x \in \mathbb{R}, x \nless x$.
- Not symmetric. e.g.: $0<1$ but $1 \nless 0$. $\exists x, y \in \mathbb{R}$, if $x<y$, then $y \nless x$.
- Transitive. $\forall x, y, z \in \mathbb{R}$, if $x<y$ and $y<z$, then $x<z$. So, R is not an equivalence relation.

Example: Equality (or Identity relation)

Problem

- Suppose R is a relation on \mathbb{R} such that $x R y \Leftrightarrow x=y$. Is R an equivalence relation?

Solution

- Reflexive. $\forall x \in \mathbb{R}, x=x$.
- Symmetric. $\forall x, y \in \mathbb{R}$, if $x=y$, then $y=x$.
- Transitive. $\forall x, y, z \in \mathbb{R}$, if $x=y$ and $y=z$, then $x=z$.

So, R is an equivalence relation.
Equivalence classes: $[a]=\{a\}$.

Example: Partition

Problem

- Suppose R is a partition relation on A such that $\forall x, y \in A, x R y \Leftrightarrow x, y \in A_{i}$ for some subset A_{i}.
- $A=\{0,1,2,3,4\}$. Partition of A is $\{\{0,3,4\},\{1\},\{2\}\}$. Is R an equivalence relation?

Solution

- R is reflexive, symmetric, and transitive.
- So, R is an equivalence relation.
- Equivalence classes: $[0]=\{0,3,4\},[1]=\{1\}$, and $[2]=\{2\}$.

Example: Partition

Problem

- Suppose R is a partition relation on A such that $\forall x, y \in A, x R y \Leftrightarrow x, y \in A_{i}$ for some subset A_{i}. Is R an equivalence relation?

Solution

- Reflexive. $\forall m \in A,(m, m) \in R$.
- Symmetric. $\forall m, n \in A$, if $(m, n) \in R$, then $(n, m) \in R$.
- Transitive.
$\forall m, n, p \in A$, if $(m, n) \in R$ and $(n, p) \in R$, then $(m, p) \in R$.
So, R is an equivalence relation.

Example: Least element

Problem

- Let X denote the power set of $\{1,2,3\}$.

Suppose R is a relation on X such that $\forall A, B \in X$ $A R B \Leftrightarrow$ Least element of A is same as that of B.
Is R an equivalence relation?

Solution

- R is reflexive, symmetric, and transitive.
- So, R is an equivalence relation.
- Equivalence classes: [\{1\}], [\{2\}], and [\{3\}].

Example: Congruence modulo 3

Problem

- Suppose R is a relation on \mathbb{Z} such that $m R n \Leftrightarrow 3 \mid(m-n)$. Is R an equivalence relation?

Solution

- Reflexive. $\forall m \in A, 3 \mid(m-m)$.
- Symmetric. $\forall m, n \in A$, if $3 \mid(m-n)$, then $3 \mid(n-m)$.
- Transitive.
$\forall m, n, p \in A$, if $3 \mid(m-n)$ and $3 \mid(n-p)$, then $3 \mid(m-p)$.
So, R is an equivalence relation.

Example: Congruence modulo 3

Solution

- Equivalence classes.

Three distinct equivalence classes are [0], [1], and [2].

$$
\begin{aligned}
& {[0]=\{a \in \mathbb{Z} \mid a \equiv 0(\bmod 3)\}=\{0, \pm 3, \pm 6, \pm 9, \ldots\}} \\
& {[1]=\{a \in \mathbb{Z} \mid a \equiv 1(\bmod 3)\}=\{1,1 \pm 3,1 \pm 6,1 \pm 9, \ldots\}} \\
& {[2]=\{a \in \mathbb{Z} \mid a \equiv 2(\bmod 3)\}=\{2,2 \pm 3,2 \pm 6,2 \pm 9, \ldots\}}
\end{aligned}
$$

Intuition.
$[0]=$ Set of integers when divided by 3 leave a remainder of 0 .
$[1]=$ Set of integers when divided by 3 leave a remainder of 1 .
$[2]=$ Set of integers when divided by 3 leave a remainder of 2 .

Congruence modulo n

Definition

Let a and b be integers and n be a positive integer.
The following statements are equivalent:

- a and b leave the same remainder when divided by n.
$a \bmod n=b \bmod n$.
- $n \mid(a-b)$.
- a is congruent to b modulo n.
$a \equiv b(\bmod n)$
- $a=b+k n$ for some integer k.

Examples

- $12 \equiv 7(\bmod 5)$
- $6 \equiv-6(\bmod 4)$
- $3 \equiv 3(\bmod 7)$

Example: Congruence modulo n

Problem

- Suppose R is a relation on \mathbb{Z} such that
$a R b \Leftrightarrow a \equiv b(\bmod n)$.
Is R an equivalence relation?

Solution

- Reflexive. $\forall a \in \mathbb{Z}, a \equiv a(\bmod n)$.
- Symmetric.
$\forall a, b \in \mathbb{Z}$, if $a \equiv b(\bmod n)$, then $b \equiv a(\bmod n)$.
- Transitive.
$\forall a, b, c \in \mathbb{Z}$, if $a \equiv b(\bmod n)$ and $b \equiv c(\bmod n)$, then $a \equiv c(\bmod n)$.
So, R is an equivalence relation.
Equivalence classes: $[0],[1], \ldots,[n-1]$.

Example: Congruence modulo n

Solution

- R is Reflexive. Show that $\forall a \in \mathbb{Z}, n \mid(a-a)$. We know that $a-a=0$ and $n \mid 0$. Hence, $n \mid(a-a)$.
- R is Symmetric. Show that $\forall a, b \in \mathbb{Z}$, if $a \equiv b(\bmod n)$, then $b \equiv a(\bmod n)$. We see that $a \equiv b(\bmod n)$ means $n \mid(a-b)$. Let $(a-b)=n k$, for some integer k.
$\Longrightarrow-(a-b)=-n k \quad$ (multiply both sides by -1)
$\Longrightarrow(b-a)=n(-k)$ (simplify)
$\Longrightarrow n \mid(b-a) \quad(-k$ is an integer; use defn. of divisibility) In other words, $b \equiv a(\bmod n)$.

Example: Congruence modulo n

Solution

- R is transitive. Show that $\forall a, b, c \in \mathbb{Z}$, if $a \equiv b(\bmod n)$ and $b \equiv c(\bmod n)$, then $a \equiv c(\bmod n)$.
We see that $a \equiv b(\bmod n)$ and $b \equiv c(\bmod n)$ imply that $n \mid(a-b)$ and $n \mid(b-c)$, respectively.
Let $(a-b)=n k$ and $(b-c)=n \ell$, for some integers k and ℓ. Adding the two equations, we get
$(a-c)=(k+\ell) n$, where $k+\ell$ is an integer because addition is closed on integers.
By definition of divisibility, $n \mid(a-c)$ or $a \equiv c(\bmod n)$.

Modular arithmetic
Let a, b, c, d, n be integers with $n>1$.
Suppose $a \equiv c(\bmod n)$ and $b \equiv d(\bmod n)$. Then

1. $(a+b) \equiv(c+d)(\bmod n)$
2. $(a-b) \equiv(c-d)(\bmod n)$
3. $(a b) \equiv(c d)(\bmod n)$
4. $\left(a^{m}\right) \equiv\left(c^{m}\right)(\bmod n)$ for all positive integers m

Units digit

Problem

- What is the units digit of 1483^{8650} ?

Solution

- Units digit of 1483^{8650} is the units digit of 3^{8650}.
- Units digit of $3^{0}, 3^{1}, 3^{2}, 3^{3}$, and 3^{4} are
$1,3,9,7$, and 1 , respectively.
- Periodicity is 4 . Therefore,
- Units digit of $3^{4 k+0}$ is 1 .

Units digit of $3^{4 k+1}$ is 3 .
Units digit of $3^{4 k+2}$ is 9 .
Units digit of $3^{4 k+3}$ is 7 .

- Units digit of $3^{8650}=3^{4 \times 2162+2}$ is 9 .
- Hence, the answer is 9 .

Equation solving

Problem

- Use modular arithmetic to solve the equations.
$16 x+12 y=32$ and $40 x-9 y=7$.

Solution

- Apply mod 3 on both sides of the first equation.
$(16 x+12 y) \bmod 3 \equiv 32 \bmod 3$
$\Longrightarrow x \equiv 2 \bmod 3$
Similarly, apply mod 3 on both sides of the second equation.
$(40 x-9 y) \bmod 3 \equiv 7 \bmod 3$
$\Longrightarrow x \equiv 1 \bmod 3$
- These two congruences are contradictory. Hence, the system of equations does not have a solution.

Universal product code (UPC)

- Check digits are used to reduce errors universal product codes, tracking operations for shipping operations, book identification numbers (ISBNs), vehicle numbers, ID for the healthcare industry, etc.
- UPC is a 12-digit number, where the last digit is the check digit.
- Suppose the first 11 digits of the UPC are
$a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} a_{7} a_{8} a_{9} a_{10} a_{11}$. Then the check digit can be computed using the following formula

$$
\begin{aligned}
& \hline a_{12}=(210-k) \bmod 10, \text { where } \\
& \hline k=3\left(a_{1}+a_{3}+\cdots+a_{11}\right)+\left(a_{2}+a_{4}+\cdots+a_{10}\right)
\end{aligned}
$$

Universal product code (UPC)

Problem

- The first eleven digits of the UPC for a package of ink cartridges are 88442334010 . What is the check digit?

Solution

- $k=3(8+4+2+3+0+0)+(8+4+3+4+1)=71$ check digit $=(210-71) \bmod 10=9$

