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Are these functions?

Problem

@ Are these functions?

— rational p = rational ¢

—m<n

— d does not divide n

— n leaves a remainder of 5 when divided by d

— line ¢1 is parallel to line ¢

— person a is a parent of person b

— triangle t; is congruent to triangle ¢

— edge e; is adjacent to edge eo

— matrix A is orthogonal to matrix B

No! (Because an input is mapped to more than one output.)
@ What are these mappings called?

Relations!




Functions vs. relations
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What is a binary relation?

Definition

o If A and B are sets, then a binary relation from A to B
is a subset of A x B.

e We say that z is related to y by R, written = R y, if, and only
if, (x,y) € R. Denoted as ‘:v Ry < (z,y) € R‘.

Relationship

@ Set of all functions is a proper subset of the set of all relations.




Example: Marriage relation

Female

=]

Male

\/



Example: Less than

Problem

@ A relation L : R — R as follows.
For all real numbers z and y, (z,y) e L& x Ly < x <y.
Draw the graph of L as a subset of the Cartesian plane R x R.

Solution

o L ={(-10.678,30.23), (17.13,45.98), (100/9, 200), ...}
e Graph:

n

y




Example: Congruence modulo 2

Problem

@ Define a relation C' : Z — 7Z as follows.
For all (m,n) € Z x Z, m C n < m — n is even.
@ Prove that if n is any odd integer, then n C' 1.

Solution

o A={(2,4),(56,10),(—88,—64),...}
B ={(7,7),(57,11), (—87,—63), ...}
C=AUB
® Proof. (n,1)e C << nC1lsn—1iseven
Suppose n is odd i.e., n = 2k 4+ 1 for some integer k.
This implies that n — 1 = 2k is even.




Example: Congruence modulo 2




Inverse of a relation
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Inverse of a relation

Definition

@ Let R be a relation from A to B.

Then inverse relation R~* from B to A is:
R'={(y,z) e Bx A| (x,y) € R}|
o Forallz € Aand y € B,
(v,y) E R& (y,2) € R7L|




Example: Inverse of a finite relation

[ Problem

o Let A={2,3,4} and B = {2,6,8}.
Let R: Ato B. Forall (a,b) e AxB,aRb&alb
o Determine R and R~!. Draw arrow diagrams for both.
Describe R~! in words.

Solution

° R= {(2’ 2)7 (27 6)’ (27 8)’ (37 6)7 (4a 8)}
R~ =1{(2,2),(6,2),(8,2),(6,3),(8,4)}
o Forall (b,a) € B x A,
(b,a) € R~' < bis a multiple of a
A R B

—A




Example: Inverse of an infinite relation

Problem

@ Define a relation R from R to R as follows:
For all (u,v) e Rx R, u Rv < v =2|ul.

Is R~ a function?

o Draw the graphs of R and R~! in the Cartesian plane.

Solution

e R~ !is not a function. Why?

4
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Relation on a set

| Definition

® A relation on a set A is a relation from A to A.
@ The resulting arrow diagram is a directed graph possibly con-
taining loops




Example: Relation on a set

Problem

o Let A={3,4,5,6,7,8}. Define relation R on A as follows.
Forall z,y € A, x Ry < 2|(x — y). Draw the graph of R.

Solution




Reflexivity, symmetry, and transitivity

Properties

o Set A=1{2,3,4,6,7,9)
Relation Ronset Ais: Vz,y € A, x Ry < 3| (z —y)

&

o Reflexivity. Vo € A, (z,z) € R.
o Symmetry. Va,y € A, if (z,y) € R, then (y,z) € R.
@ Transitivity.
Va,y,z € A, if (x,y) € R and (y,2) € R, then (z,2) € R.




Example

Problem

o A=1{0,1,2,3}.

R = {(07 0)7 (07 1)7 (07 3)7 (17 0)7 (17 1)7 (27 2)7 (37 0)7 (37 3)}
Is R reflexive, symmetric, and transitive?

Solution

o Reflexive. Vo € A, (z,z) € R.

o Symmetric. Va,y € A, if (z,y) € R, then (y,x) € R.

e Not transitive. e.g.: (1,0),(0,3) € R but (1,3) ¢ R.
dz,y,z € A, if (x,y) € R and (y,2) € R, then (z,z) € R.




Example

Problem

e A=1{0,1,2,3}. R=1{(0,0),(0,2),(0,3),(2,3)}.
Is R reflexive, symmetric, and transitive?

Solution

o Not reflexive. e.g.: (1,1) € R. Jz € A, (z,x) &€ R.
e Not symmetric. e.g.: (0,3) € R but (3,0) ¢ R.
dz,y € A, if (z,y) € R, then (y,x) € R.
® Transitive.
Va,y,z € A, if (z,y) € R and (y, 2) € R, then (z,z) € R.




Example

Problem

o A=40,1,2,3}. R=1{(0,1),(2,3)}.
Is R reflexive, symmetric, and transitive?

Solution

©@—0) @)

o Not reflexive. e.g.: (0,0) € R. 3z € A, (z,x) &€ R.
e Not symmetric. e.g.: (0,1) € R but (1,0) € R.
dz,y € A, if (z,y) € R, then (y,z) € R.
@ Transitive. Why?
Vz,y,z € A, if (x,y) € R and (y,z) € R, then (z,2) € R.




Equivalence relation and equivalence class

Definition

@ Relation R on set A is an equivalence relation iff
IR is reflexive, symmetric, and transitive.l

e Equivalence class of element a, denoted by [a], for an equiva-
lence relation is defined as:
la] ={z € A| (z,a) € R}.|




Example: Less than

Problem

@ Suppose R is a relation on R such that z Ry < x < y.
Is R an equivalence relation?

Solution

o Not reflexive. e.g.: 0 £ 0. Iz € R,z £ z.
e Not symmetric. e.g.: 0 <1 but 1 £ 0.
Jr,y € R, if x <y, then y £ x.
@ Transitive. Vz,y,z € R, if z <y and y < z, then z < z.
So, R is not an equivalence relation.




Example: Equality (or Identity relation)

Problem

@ Suppose R is a relation on R such that z Ry < x = y.
Is R an equivalence relation?

Solution

o Reflexive. Vo € R,z = .

e Symmetric. Vx,y € R, if z =y, then y = x.

@ Transitive. Vr,y,z € R, if xt =y and y = z, then x = 2.
So, R is an equivalence relation.

Equivalence classes: [a] = {a}.




Example: Partition

Problem

@ Suppose R is a partition relation on A such that
Ve,ye A,z Ry < x,y € A; for some subset A;.

o A=1{0,1,2,3,4}. Partition of A is {{0,3,4},{1},{2}}.
Is R an equivalence relation?

Solution

® R is reflexive, symmetric, and transitive.

@ So, R is an equivalence relation.
o Equivalence classes: [0] = {0, 3,4}, [1] = {1}, and [2] = {2}.




Example: Partition

Problem

@ Suppose R is a partition relation on A such that
Ve,ye A,z Ry & x,y € A; for some subset A;.
Is R an equivalence relation?

Solution

o Reflexive. Ym € A, (m,m) € R.
e Symmetric. Ym,n € A, if (m,n) € R, then (n,m) € R.
@ Transitive.
VYm,n,p € A, if (m,n) € R and (n,p) € R, then (m,p) € R.
So, R is an equivalence relation.




Example: Least element

Problem

o Let X denote the power set of {1,2,3}.
Suppose R is a relation on X such that VA, B € X
A R B < Least element of A is same as that of B.
Is R an equivalence relation?

Solution

@ R is reflexive, symmetric, and transitive.
@ So, R is an equivalence relation.
e Equivalence classes: [{1}], [{2}], and [{3}].




Example: Congruence modulo 3

Problem

® Suppose R is a relation on Z such that m Rn < 3 | (m —n).
Is R an equivalence relation?

Solution

o Reflexive. Ym € A,3 | (m —m).
e Symmetric. Ym,n € A, if 3| (m —n), then 3 | (n —m).
® Transitive.
Vm,n,p € A, if 3| (m—n) and 3 | (n—p), then 3| (m — p).
So, R is an equivalence relation.




Example: Congruence modulo 3

Solution

@ Equivalence classes.
Three distinct equivalence classes are [0], [1], and [2].
0={a€Z|a=0 (mod 3)} ={0,+3,+£6,49,...}
M={a€Z|a=1(mod3)} ={1,14+3,1+61+9,...}
2l={a€Z|a=2(mod 3)} ={2,24+3,2+£6,249,...}

Intuition.

0] = Set of integers when divided by 3 leave a remainder of 0.
1] = Set of integers when divided by 3 leave a remainder of 1.
2] = Set of integers when divided by 3 leave a remainder of 2.

[
[
[




Congruence modulo n

Definition

Let a and b be integers and n be a positive integer.

The following statements are equivalent:

@ g and b leave the same remainder when divided by n.
’amodnzbmodn.‘

@ ¢ is congruent to b modulo n.

‘azb(modn)‘

° for some integer k.

Examples

® 12=7 (mod 5)
° 6=—6 (mod 4)
° 3=3 (mod 7)




Example: Congruence modulo n

Problem

® Suppose R is a relation on Z such that
aRb< a=0b(mod n).
Is R an equivalence relation?

Solution

o Reflexive. Ya € Z,a = a (mod n).

® Symmetric.
Va,b € Z, if a =b (mod n), then b = a (mod n).

® Transitive.
Va,b,c € Z, if a = b (mod n) and b = ¢ (mod n), then
a = ¢ (mod n).

So, R is an equivalence relation.

Equivalence classes: [0], [1],...,[n — 1].




Example: Congruence modulo n

Solution

o R is Reflexive. Show that Va € Z,n | (a — a). We know that
a—a=0andn|0. Hence, n | (a —a).

® R is Symmetric. Show that Va,b € Z, if a = b (mod n),
then b = a (mod n). We see that a = b (mod n) means

n | (a—b).

Let (a — b) = nk, for some integer k.

= —(a—b) = —nk (multiply both sides by -1)
= (b—a) =n(—k) (simplify)

= n|(b—a) (—kis an integer; use defn. of divisibility)
In other words, b = a (mod n).




Example: Congruence modulo n

Solution

® R is transitive. Show that Va,b,c € Z, if a = b (mod n) and
b= c (mod n), then a = ¢ (mod n).
We see that a = b (mod n) and b = ¢ (mod n) imply that
n | (a—b)and n | (b— c), respectively.
Let (a — b) = nk and (b — ¢) = nt, for some integers k and /.
Adding the two equations, we get
(a — c¢) = (k + £)n, where k + £ is an integer because addition
is closed on integers.
By definition of divisibility, n | (a — ¢) or a = ¢ (mod n).




Modular arithmetic

Modular arithmetic

Let a,b, c,d,n be integers with n > 1.
Suppose a = ¢ (mod n) and b = d (mod n). Then

1. |[(a+b) =(c+d) (mod n)
2. |(a—b)=(c—d) (mod n)
3. | (ab) = (ed) (mod n)
4. |(

a™) = (¢™) (mod n) ’ for all positive integers m




Units digit

Problem

o What is the units digit of 1483%6507

Solution

e Units digit of 14838050 is the units digit of 3%6°°,
e Units digit of 3°,3',32,33, and 3% are
1,3,9,7, and 1, respectively.
@ Periodicity is 4. Therefore,
e Units digit of 3%10 is 1.
Units digit of 3%++1 is 3.
Units digit of 3%12 is 9.
Units digit of 3%+3 is 7.
o Units digit of 38050 = 34x2162+2 5 g
@ Hence, the answer is 9.




Equation solving

Problem

@ Use modular arithmetic to solve the equations.
16z 4+ 12y = 32 and 40z — 9y = 7.

Solution

@ Apply mod 3 on both sides of the first equation.
(16 + 12y) mod 3 = 32 mod 3
= x=2mod 3
Similarly, apply mod 3 on both sides of the second equation.
(40z — 9y) mod 3 = 7 mod 3
= z=1mod 3
@ These two congruences are contradictory.
Hence, the system of equations does not have a solution.




Universal product code (UPC)

@ Check digits are used to reduce errors universal product codes,
tracking operations for shipping operations, book identification
numbers (ISBNs), vehicle numbers, ID for the healthcare
industry, etc.

e UPC is a 12-digit number, where the last digit is the check digit.

@ Suppose the first 11 digits of the UPC are
a1a2a3a4a5a6a7a8a9a10a11. 1hen the check digit can be
computed using the following formula
a1z = (210 — k) mod 10

’k‘:?)(cu+a3-|----+all)+(a2+a4+"'+“10)‘

, where




Universal product code (UPC)

Problem

@ The first eleven digits of the UPC for a package of ink cartridges
are 88442334010. What is the check digit?

Solution

© k=3(8444+24+34+0+0)+8+4+3+4+1)="T1
check digit = (210 — 71) mod 10 =9




