What is a proof?

• A **proof** is a method for establishing the truth of a statement.

<table>
<thead>
<tr>
<th>Rigor</th>
<th>Truth type</th>
<th>Field</th>
<th>Truth teller</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Word of God</td>
<td>Religion</td>
<td>God/Priests</td>
</tr>
<tr>
<td>1</td>
<td>Authoritative truth</td>
<td>Business/School</td>
<td>Boss/Teacher</td>
</tr>
<tr>
<td>2</td>
<td>Legal truth</td>
<td>Judiciary</td>
<td>Law/Judge/Law makers</td>
</tr>
<tr>
<td>3</td>
<td>Philosophical truth</td>
<td>Philosophy</td>
<td>Plausible argument</td>
</tr>
<tr>
<td>4</td>
<td>Scientific truth</td>
<td>Physical sciences</td>
<td>Experiments/Observations</td>
</tr>
<tr>
<td>5</td>
<td>Statistical truth</td>
<td>Statistics</td>
<td>Data sampling</td>
</tr>
<tr>
<td>6</td>
<td>Mathematical truth</td>
<td>Mathematics</td>
<td>Logical deduction</td>
</tr>
</tbody>
</table>
What is a mathematical proof?

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>• A mathematical proof is a verification for establishing the truth of a proposition by a chain of logical deductions from a set of axioms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concepts</th>
</tr>
</thead>
</table>
| 1. **Proposition**
Covered in sufficient depth in logic |
| 2. **Axiom**
An axiom is a proposition that is assumed to be true
Example: For mathematical quantities a and b, if $a = b$, then $b = a$ |
| 3. **Logical deduction**
We call this process – **the axiomatic method**
We will cover several proof techniques in this chapter |
Why care for mathematical proofs?

- The current world ceases to function without math proofs
- (My belief) **Reduction tree** showing subjects that possibly could be expressed or understood in terms of other subjects

![Reduction tree diagram](image-url)
Methods of mathematical proof

<table>
<thead>
<tr>
<th>Statements</th>
<th>Method of proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proving existential statements</td>
<td>Constructive proof</td>
</tr>
<tr>
<td>(Disproving universal statements)</td>
<td>Non-constructive proof</td>
</tr>
<tr>
<td>Proving universal statements</td>
<td>Direct proof</td>
</tr>
<tr>
<td>(Disproving existential statements)</td>
<td>Proof by mathematical induction</td>
</tr>
<tr>
<td></td>
<td>Well-ordering principle</td>
</tr>
<tr>
<td></td>
<td>Proof by exhaustion</td>
</tr>
<tr>
<td></td>
<td>Proof by cases</td>
</tr>
<tr>
<td></td>
<td>Proof by contradiction</td>
</tr>
<tr>
<td></td>
<td>Proof by contraposition</td>
</tr>
<tr>
<td></td>
<td>Computer-aided proofs</td>
</tr>
</tbody>
</table>
Introduction to number theory

Definition

- Number theory is the branch of mathematics that deals with the study of **integers**

<table>
<thead>
<tr>
<th>Numbers</th>
<th>Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural numbers ((\mathbb{N}))</td>
<td>{1, 2, 3, \ldots}</td>
</tr>
<tr>
<td>Whole numbers ((\mathbb{W}))</td>
<td>{0, 1, 2, \ldots}</td>
</tr>
<tr>
<td>Integers ((\mathbb{Z}))</td>
<td>{0, \pm 1, \pm 2, \pm 3, \ldots}</td>
</tr>
<tr>
<td>Even numbers ((\mathbb{E}))</td>
<td>{0, \pm 2, \pm 4, \pm 6, \ldots}</td>
</tr>
<tr>
<td>Odd numbers ((\mathbb{O}))</td>
<td>{\pm 1, \pm 3, \pm 5, \pm 7, \ldots}</td>
</tr>
<tr>
<td>Prime numbers ((\mathbb{P}))</td>
<td>{2, 3, 5, 7, 11, \ldots}</td>
</tr>
<tr>
<td>Composite numbers ((\mathbb{C}))</td>
<td>{Natural numbers (> 1) that are not prime}</td>
</tr>
<tr>
<td>Rational numbers ((\mathbb{Q}))</td>
<td>{Ratio of integers with non-zero denominator}</td>
</tr>
<tr>
<td>Real numbers ((\mathbb{R}))</td>
<td>{Numbers with infinite decimal representation}</td>
</tr>
<tr>
<td>Irrational numbers ((\mathbb{I}))</td>
<td>{Real numbers that are not rational}</td>
</tr>
<tr>
<td>Complex numbers ((\mathbb{S}))</td>
<td>{real + i \cdot real}</td>
</tr>
</tbody>
</table>
Even and odd numbers

Definitions

- An integer n is **even** iff n equals twice some integer;
 Formally, for any integer n,

 \[n \text{ is even} \iff n = 2k \text{ for some integer } k \]

- An integer n is **odd** iff n equals twice some integer plus 1;
 Formally, for any integer n,

 \[n \text{ is odd} \iff n = 2k + 1 \text{ for some integer } k \]

Examples

- **Even numbers:**
 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, …

- **Odd numbers:**
 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, …
Rational and irrational numbers

Definitions

- A real number r is **rational** iff it can be expressed as a ratio of two integers with a nonzero denominator; Formally, if r is a real number, then

 r is rational $\iff \exists$ integers a, b such that $r = \frac{a}{b}$ and $b \neq 0$

- A real number r is **irrational** iff it is not rational

Examples

- **Rational numbers:**
 10, $-56.47, \frac{10}{13}, 0, -\frac{17}{9}, 0.121212\ldots, -91, \ldots$

- **Irrational numbers:**
 $\sqrt{2}, \sqrt{3}, \sqrt{2^{\sqrt{2}}}, \pi, \phi, e, \pi^2, e^2, 2^{1/3}, \log_2 3, \ldots$

- **Open problems:**
 It’s not known if $\pi + e, \pi e, \pi/e, e^\pi, \pi^{\sqrt{2}},$ and $\ln \pi$ are irrational
Divisibility

Definitions

- If \(n \) and \(d \) are integers, then \(n \) is divisible by \(d \), denoted by \(d \mid n \), iff \(n \) equals \(d \) times some integer and \(d \neq 0 \); Formally, if \(n \) and \(d \) are integers

\[
d \mid n \iff \exists \text{ integer } k \text{ such that } n = dk \text{ and } d \neq 0
\]

- Instead of “\(n \) is divisible by \(d \),” we can say:
 - \(n \) is a multiple of \(d \), or
 - \(d \) is a factor of \(n \), or
 - \(d \) is a divisor of \(n \), or
 - \(d \) divides \(n \) (denoted by \(d \mid n \))

- Note: \(d \mid n \) is different from \(d/n \)

Examples

- Divides: \(1 \mid 1, 10 \mid 10, 2 \mid 4, 3 \mid 24, 7 \mid -14, \ldots \)
- Does not divide: \(2 \nmid 1, 10 \nmid 2, 7 \nmid 10, 10 \nmid 7, 10 \nmid -7, \ldots \)
Theorem

Given any integer n and a positive integer d, there exists an integer q and a whole number r such that

$$n = qd + r \text{ and } r \in [0, d - 1]$$

Examples

Let $n = 6$ and $d \in [1, 7]$

<table>
<thead>
<tr>
<th>Num. (n)</th>
<th>Divisor (d)</th>
<th>Theorem</th>
<th>Quotient (q)</th>
<th>Rem. (r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td>$6 = 6 \times 1 + 0$</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>$6 = 3 \times 2 + 0$</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>$6 = 2 \times 3 + 0$</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>$6 = 1 \times 4 + 2$</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>$6 = 1 \times 5 + 1$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>$6 = 1 \times 6 + 0$</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>$6 = 0 \times 7 + 6$</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>
Prime numbers

<table>
<thead>
<tr>
<th>Num.</th>
<th>Factorization</th>
<th>Prime?</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$2 = 1 \times 2 = 2 \times 1$</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>$3 = 1 \times 3 = 3 \times 1$</td>
<td>✓</td>
</tr>
<tr>
<td>4</td>
<td>$4 = 1 \times 4 = 4 \times 1 = 2 \times 2$</td>
<td>✗</td>
</tr>
<tr>
<td>5</td>
<td>$5 = 1 \times 5 = 5 \times 1$</td>
<td>✓</td>
</tr>
<tr>
<td>6</td>
<td>$6 = 1 \times 6 = 6 \times 1 = 2 \times 3 = 3 \times 2$</td>
<td>✗</td>
</tr>
<tr>
<td>7</td>
<td>$7 = 1 \times 7 = 7 \times 1$</td>
<td>✓</td>
</tr>
<tr>
<td>8</td>
<td>$8 = 1 \times 8 = 8 \times 1 = 2 \times 4 = 4 \times 2$</td>
<td>✗</td>
</tr>
<tr>
<td>9</td>
<td>$9 = 1 \times 9 = 9 \times 1 = 3 \times 3$</td>
<td>✗</td>
</tr>
<tr>
<td>10</td>
<td>$10 = 1 \times 10 = 10 \times 1 = 2 \times 5 = 5 \times 2$</td>
<td>✗</td>
</tr>
<tr>
<td>11</td>
<td>$11 = 1 \times 11 = 11 \times 1$</td>
<td>✓</td>
</tr>
<tr>
<td>12</td>
<td>$12 = 1 \times 12 = 12 \times 1 = 2 \times 6 = 6 \times 2 = 3 \times 4 = 4 \times 3$</td>
<td>✗</td>
</tr>
<tr>
<td>13</td>
<td>$13 = 1 \times 13 = 13 \times 1$</td>
<td>✓</td>
</tr>
<tr>
<td>14</td>
<td>$14 = 1 \times 14 = 14 \times 1 = 2 \times 7 = 7 \times 2$</td>
<td>✗</td>
</tr>
<tr>
<td>15</td>
<td>$15 = 1 \times 15 = 15 \times 1 = 3 \times 5 = 5 \times 3$</td>
<td>✗</td>
</tr>
<tr>
<td>16</td>
<td>$16 = 1 \times 16 = 16 \times 1 = 2 \times 8 = 8 \times 2 = 4 \times 4$</td>
<td>✗</td>
</tr>
<tr>
<td>17</td>
<td>$17 = 1 \times 17 = 17 \times 1$</td>
<td>✓</td>
</tr>
</tbody>
</table>
Prime numbers

<table>
<thead>
<tr>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A natural number n is prime iff $n > 1$ and it has exactly two positive divisors: 1 and n</td>
</tr>
<tr>
<td>A natural number n is composite iff $n > 1$ and it has at least three positive divisors, two of which are 1 and n</td>
</tr>
<tr>
<td>A natural number n is a perfect square iff it has an odd number of divisors</td>
</tr>
<tr>
<td>A natural number n is not a perfect square iff it has an even number of divisors</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfect squares: 1, 4, 9, 16, 25, ...</td>
</tr>
<tr>
<td>Not perfect squares: 2, 3, 5, 6, 7, 8, 10, ...</td>
</tr>
</tbody>
</table>
Definitions

- A natural number n is **prime** iff $n > 1$ and for all natural numbers r and s, if $n = rs$, then either r or s equals n; Formally, for each natural number n with $n > 1$,

 $$n\text{ is prime } \iff \forall \text{ natural numbers } r \text{ and } s, \text{ if } n = rs \text{ then } n = r \text{ or } n = s$$

- A natural number n is **composite** iff $n > 1$ and $n = rs$ for some natural numbers r and s with $1 < r < n$ and $1 < s < n$; Formally, for each natural number n with $n > 1$,

 $$n\text{ is composite } \iff \exists \text{ natural numbers } r \text{ and } s, \text{ if } n = rs \text{ and } 1 < r < n \text{ and } 1 < s < n$$
Unique prime factorization of natural numbers

<table>
<thead>
<tr>
<th>n</th>
<th>Unique prime factorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2^2</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>2×3</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>2^3</td>
</tr>
<tr>
<td>9</td>
<td>3^2</td>
</tr>
<tr>
<td>10</td>
<td>2×5</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>$2^2 \times 3$</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>2×7</td>
</tr>
<tr>
<td>15</td>
<td>3×5</td>
</tr>
<tr>
<td>16</td>
<td>2^4</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td>2×3^2</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>$2^2 \times 5$</td>
</tr>
<tr>
<td>21</td>
<td>3×7</td>
</tr>
<tr>
<td>22</td>
<td>2×11</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>24</td>
<td>$2^3 \times 3$</td>
</tr>
<tr>
<td>25</td>
<td>5^2</td>
</tr>
<tr>
<td>26</td>
<td>2×13</td>
</tr>
<tr>
<td>27</td>
<td>3^3</td>
</tr>
<tr>
<td>28</td>
<td>$2^2 \times 7$</td>
</tr>
<tr>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>30</td>
<td>$2 \times 3 \times 5$</td>
</tr>
<tr>
<td>31</td>
<td>31</td>
</tr>
<tr>
<td>32</td>
<td>2^5</td>
</tr>
<tr>
<td>33</td>
<td>3×11</td>
</tr>
<tr>
<td>34</td>
<td>2×17</td>
</tr>
<tr>
<td>35</td>
<td>5×7</td>
</tr>
<tr>
<td>36</td>
<td>$2^2 \times 3^2$</td>
</tr>
<tr>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>38</td>
<td>2×19</td>
</tr>
<tr>
<td>39</td>
<td>3×13</td>
</tr>
<tr>
<td>40</td>
<td>$2^3 \times 5$</td>
</tr>
<tr>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>42</td>
<td>$2 \times 3 \times 7$</td>
</tr>
<tr>
<td>43</td>
<td>43</td>
</tr>
</tbody>
</table>

- What is the pattern?
Definition

- Any natural number $n > 1$ can be uniquely represented as a product of primes as follows:

$$n = p_1^{e_1} \times p_2^{e_2} \times \cdots \times p_k^{e_k}$$

such that $p_1 < p_2 < \cdots < p_k$ are primes in $[2, n]$, e_1, e_2, \ldots, e_k are whole number exponents, and k is a natural number.

- The theorem is also called **fundamental theorem of arithmetic**
- The form is called **standard factored form**
Definitions

- **Absolute value** of real number x, denoted by $|x|$ is

 $$|x| = \begin{cases}
 x & \text{if } x \geq 0 \\
 -x & \text{if } x < 0
 \end{cases}$$

- **Triangle inequality.** For all real numbers x and y,

 $$|x + y| \leq |x| + |y|$$

- **Floor** of a real number x, denoted by $\lfloor x \rfloor$ is

 $$\lfloor x \rfloor = \text{unique integer } n \text{ such that } n \leq x < n + 1$$

 $$\lfloor x \rfloor = n \iff n \leq x < n + 1$$

- **Ceiling** of a real number x, denoted by $\lceil x \rceil$ is

 $$\lceil x \rceil = \text{unique integer } n \text{ such that } n - 1 < x \leq n$$

 $$\lceil x \rceil = n \iff n - 1 < x \leq n$$
Some terms

Definitions

- Given an integer n and a natural number d,
 - $n \div d = \text{integer quotient obtained when } n \text{ is divided by } d$,
 - $n \mod d = \text{whole number remainder obtained when } n \text{ is divided by } d$.
- Symbolically,
 - $n \div d = q$ and $n \mod d = r \iff n = dq + r$
 - where q and r are integers and $0 \leq r < d$.
Properties of a proof

<table>
<thead>
<tr>
<th>Properties</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concise</td>
<td>(not unnecessarily long)</td>
</tr>
<tr>
<td>Clear</td>
<td>(not ambiguous)</td>
</tr>
<tr>
<td>Complete</td>
<td>(no missing intermediate steps)</td>
</tr>
<tr>
<td>Logical</td>
<td>(every statement logically follows)</td>
</tr>
<tr>
<td>Rigorous</td>
<td>(uses mathematical expressions)</td>
</tr>
<tr>
<td>Convincing</td>
<td>(does not raise questions)</td>
</tr>
</tbody>
</table>

The way a proof is presented might be different from the way the proof is discovered.
Direct Proof
Proposition

- Sum of an even integer and an odd integer is odd.
Proposition

- Sum of an even integer and an odd integer is odd.

Proof

- Suppose a is even and b is odd. Then

 $a + b$

 $= (2m) + b$
 \hspace{1cm} (defn. of even, $a = 2m$ for integer m)

 $= (2m) + (2n + 1)$
 \hspace{1cm} (defn. of odd, $b = 2n + 1$ for integer n)

 $= 2(m + n) + 1$
 \hspace{1cm} (taking 2 as common factor)

 $= 2p + 1$
 \hspace{1cm} ($p = m + n$ and addition is closed on integers)

 $= \text{odd}$
 \hspace{1cm} (defn. of odd)
Prove the following propositions:

- Even + even = even
- Even + odd = odd
- Odd + odd = even
- Even × integer = even
- Odd × odd = odd
Proposition

- The square of an odd integer is odd.
Proposition

- The square of an odd integer is odd.

Proof

- Prove: If \(n \) is odd, then \(n^2 \) is odd.

\[
\begin{align*}
n \text{ is odd} & \quad \rightarrow \quad n = (2k + 1) \quad \text{(defn. of odd, } k \text{ is an integer)} \\
\quad \rightarrow n^2 = (2k + 1)^2 & \quad \text{(squaring on both sides)} \\
\quad \rightarrow n^2 = 4k^2 + 4k + 1 & \quad \text{(expanding the binomial)} \\
\quad \rightarrow n^2 = 2(2k^2 + 2k) + 1 & \quad \text{(factoring 2 from first two terms)} \\
\quad \rightarrow n^2 = 2j + 1 & \quad \text{(let } j = 2k^2 + 2k) \\
\quad \rightarrow j \text{ is an integer as mult. and add. are closed on integers} \\
\quad \rightarrow n^2 \text{ is odd} & \quad \text{(defn. of odd)}
\end{align*}
\]
Proposition

- Every odd integer is equal to the difference between the squares of two integers.
Proposition

- Every odd integer is equal to the difference between the squares of two integers

Workout

- Write a formal statement.
 \[\forall \text{ integer } k, \exists \text{ integers } m, n \text{ such that } (2k + 1) = m^2 - n^2. \]

- Try out a few examples.

 \[
 \begin{align*}
 1 &= 1^2 - 0^2 & -1 &= 0^2 - (-1)^2 \\
 3 &= 2^2 - 1^2 & -3 &= (-1)^2 - (-2)^2 \\
 5 &= 3^2 - 2^2 & -5 &= (-2)^2 - (-3)^2 \\
 7 &= 4^2 - 3^2 & -7 &= (-3)^2 - (-4)^2 \\
 \end{align*}
 \]

- Find a pattern.

 \[(k + 1)^2 - k^2 = (k^2 + 2k + 1) - k^2 = 2k + 1 = \text{ odd}\]
Proposition

- Every odd integer is equal to the difference between the squares of two integers.

Proof

- Any odd integer can be written as \((2k + 1)\) for some integer \(k\).
- We rewrite the expression as follows.

 \[
 2k + 1 = (k^2 + 2k + 1) - k^2 \quad \text{(adding and subtracting } k^2) \\
 = (k + 1)^2 - k^2 \quad \text{(write the first term as sum)} \\
 = m^2 - n^2 \quad \text{(set } m = k + 1 \text{ and } n = k)
 \]

 The term \(m\) is an integer as addition is closed on integers.

- So, every odd integer can be written as the difference between two squares.
Odd = difference of squares

\[k^2 \text{ cells} \]

\[(k + 1)^2 \text{ cells} \]
If \(a \mid b \text{ and } b \mid c \), **then** \(a \mid c \)

<table>
<thead>
<tr>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>• (Transitivity) For integers (a, b, c), if (a \mid b) and (b \mid c), then (a \mid c).</td>
</tr>
</tbody>
</table>
If \(a \mid b \) and \(b \mid c \), then \(a \mid c \)

Proposition

- (Transitivity) For integers \(a, b, c \), if \(a \mid b \) and \(b \mid c \), then \(a \mid c \).

Proof

- Formal statement.
 \(\forall \) integers \(a, b, c \), if \(a \mid b \) and \(b \mid c \), then \(a \mid c \).
- \(c \)

 \[
 = bn \quad \text{(} b \mid c \text{ and definition of divisibility)}

 = (am)n \quad \text{(} a \mid b \text{ and definition of divisibility)}

 = a(mn) \quad \text{(multiplication is associative)}

 = ak \quad \text{(let } k = mn \text{ and multiplication is closed on integers)}

 \implies a \mid c \quad \text{(definition of divisibility and } k \text{ is an integer)}
 \]
Proposition

- \[1 + 2 + 3 + \cdots + n = \frac{n(n + 1)}{2}. \]
Proposition

1 + 2 + 3 + \cdots + n = \frac{n(n + 1)}{2}.

Proof

- **Formal statement.** \(\forall \) natural number \(n \), prove that

 \[1 + 2 + 3 + \cdots + n = \frac{n(n + 1)}{2}. \]

- \(S = 1 + 2 + 3 + \cdots + n \)

 \[\Rightarrow S = n + (n - 1) + (n - 2) + \cdots + 1 \]

 (addition on integers is commutative)

 \[\Rightarrow 2S = (n + 1) + (n + 1) + (n + 1) + \cdots + (n + 1) \]

 \[\text{\(n \) terms} \]

 (adding the previous two equations)

 \[\Rightarrow 2S = n(n + 1) \]

 (simplifying)

 \[\Rightarrow S = \frac{n(n + 1)}{2} \]

 (divide both sides by 2)
Proof by Negation
Proposition

- $2^{999} + 1$ is prime.
Proposition

- $2^{999} + 1$ is prime.

Workout

- Trying out a few examples is not possible here.
- When is a number prime?
 A number that is not composite is prime.
- When is a number composite?
 A number is composite if we can factorize it.
- How do you check if a number can be factorized?
 Check whether the number satisfies an algebraic formula that can be factored.
 It seems like the given number can be represented as $a^3 + b^3$.
Proposition

- $2^{999} + 1$ is prime.

Solution

- **False!** $2^{999} + 1$ is composite.
- $2^{999} + 1$
 - $= (2^{333})^3 + 1^3$
 - $= a^3 + b^3$
 (terms represented as cubes)
 - $= (a + b)(a^2 - ab + b^2)$
 (set $a = 2^{333}$, $b = 1$)
 - $= (2^{333} + 1)((2^{666} - 2^{333} + 1)$
 (factorize $a^3 + b^3$)
 - $= composite$
 (substituting a and b values)
Proposition

- There is a natural number n such that $n^2 + 3n + 2$ is prime.
Proposition

There is a natural number \(n \) such that \(n^2 + 3n + 2 \) is prime.

Workout

- Write a formal statement.
 \(\exists \) natural number \(n \) such that \(n^2 + 3n + 2 \) is prime.
- Try out a few examples.
 \[
 \begin{align*}
 1^2 + 3(1) + 2 &= 6 \quad \text{composite} \\
 2^2 + 3(2) + 2 &= 12 \quad \text{composite} \\
 3^2 + 3(3) + 2 &= 20 \quad \text{composite} \\
 4^2 + 3(4) + 2 &= 30 \quad \text{composite} \\
 5^2 + 3(5) + 2 &= 42 \quad \text{composite}
 \end{align*}
 \]
- Find a pattern.
 It seems like \(n^2 + 3n + 2 \) is always composite.
Proposition

- There is a natural number n such that $n^2 + 3n + 2$ is prime.

Solution

- **False!**
- Proving that the given statement is false is equivalent to proving that its negation is true.

Negation. \forall natural number n, $n^2 + 3n + 2$ is composite.

- $n^2 + 3n + 2$

 $= n^2 + n + 2n + 2$
 (split $3n$)

 $= n(n + 1) + 2(n + 1)$
 (taking common factors)

 $= (n + 1)(n + 2)$
 (distributive law)

 $= \text{composite}$
 ($n + 1 > 1$ and $n + 2 > 1$)
Proposition

- If \(x^3 - 7x^2 + x - 7 = 0 \), then \(x = 7 \).
Polynomial root

<table>
<thead>
<tr>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>• If $x^3 - 7x^2 + x - 7 = 0$, then $x = 7$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Substitute $x = 7$ in the expression to get $7^3 - 7(7^2) + 7 - 7 = 0$. As x satisfies the equation, $x = 7$.</td>
</tr>
</tbody>
</table>
Proposition

- If \(x^3 - 7x^2 + x - 7 = 0 \), then \(x = 7 \).

Proof

- Substitute \(x = 7 \) in the expression to get \(7^3 - 7(7^2) + 7 - 7 = 0 \).

 As \(x \) satisfies the equation, \(x = 7 \).

- Incorrect! What's wrong?
Proposition

- If \(x^3 - 7x^2 + x - 7 = 0 \), then \(x = 7 \).
Polynomial root

Proposition

• If $x^3 - 7x^2 + x - 7 = 0$, then $x = 7$.

Proof

• False!
• A polynomial equation of degree n has n roots.
 So, the polynomial equation $x^3 - 7x^2 + x - 7 = 0$ has 3 roots.
• We factorize the expression.

 $x^3 - 7x^2 + x - 7$
 $= x^2(x - 7) + (x - 7)$ (taking x^2 factor from first two terms)
 $= (x - 7)(x^2 + 1)$ (taking $(x - 7)$ factor)
 $= (x - 7)(x + i)(x - i)$ (factorizing $(x^2 + 1)$)
 (this is because $(x + i)(x - i) = (x^2 - i^2) = (x^2 + 1)$)

 So, the three roots to the equation $x^3 - 7x^2 + x - 7 = 0$ are
 $x = 7$, $x = -\sqrt{-1}$, and $x = \sqrt{-1}$.
Polynomial root

<table>
<thead>
<tr>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>• If (x^3 - 7x^2 + x - 7 = 0), then (x = 7).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proof (continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Exactly one of the three roots is (x = 7). Hence, we have</td>
</tr>
</tbody>
</table>
| \[
\begin{align*}
 x &= 7 \\
 &\implies x^3 - 7x^2 + x - 7 = 0 \\
 x^3 - 7x^2 + x - 7 &= 0 &\iff x = 7
\end{align*}
\] |
Polynomial root

Proposition

- If \(x \) is a real number and \(x^3 - 7x^2 + x - 7 = 0 \), then \(x = 7 \).
Polynomial root

<table>
<thead>
<tr>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>• If (x) is a real number and (x^3 - 7x^2 + x - 7 = 0), then (x = 7).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>• We factorize the expression.</td>
</tr>
<tr>
<td>(x^3 - 7x^2 + x - 7)</td>
</tr>
<tr>
<td>(= x^2(x - 7) + (x - 7)) (taking (x^2) factor from first two terms)</td>
</tr>
<tr>
<td>(= (x - 7)(x^2 + 1)) (taking ((x - 7)) factor)</td>
</tr>
<tr>
<td>(= (x - 7)(x + i)(x - i)) (factorizing ((x^2 + 1)))</td>
</tr>
<tr>
<td>(this is because ((x + i)(x - i) = (x^2 - i^2) = (x^2 + 1)))</td>
</tr>
<tr>
<td>So, the three roots to the equation (x^3 - 7x^2 + x - 7 = 0) are</td>
</tr>
<tr>
<td>(x = 7, \ x = -\sqrt{-1},) and (x = \sqrt{-1}).</td>
</tr>
<tr>
<td>As (x) has to be a real number, (x = 7).</td>
</tr>
</tbody>
</table>
Proof by Counterexample
<table>
<thead>
<tr>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>For all real numbers a and b, if $a^2 = b^2$, then $a = b$.</td>
</tr>
</tbody>
</table>
Proposition

• For all real numbers a and b, if $a^2 = b^2$, then $a = b$.

Solution

• False! Counterexample: $a = 1$ and $b = -1$.
 In this example, $a^2 = b^2$ but $a \neq b$.
Proposition

- For all real numbers a and b, if $a^2 = b^2$, then $a = b$.

Solution

- **False!** Counterexample: $a = 1$ and $b = -1$.

 In this example, $a^2 = b^2$ but $a \neq b$.

Proposition

- For all nonzero integers a and b, if $a | b$ and $b | a$, then $a = b$.
Proposition

- For all real numbers a and b, if $a^2 = b^2$, then $a = b$.

Solution

- **False!** Counterexample: $a = 1$ and $b = -1$.
 In this example, $a^2 = b^2$ but $a \neq b$.

Proposition

- For all nonzero integers a and b, if $a|b$ and $b|a$, then $a = b$.

Solution

- **False!** Counterexample: $a = 1$ and $b = -1$.
 In this example, $a|b$ and $b|a$, however, $a \neq b$.
<table>
<thead>
<tr>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>• $2^n + 1$ is prime for any natural number n.</td>
</tr>
</tbody>
</table>
Proposition

- $2^n + 1$ is prime for any natural number n.

Workout

- **Write a formal statement.**
 \[
 \forall \text{ natural number } n, 2^n + 1 \text{ is prime.}
 \]

- **Try out a few examples.**

 \begin{align*}
 2^1 + 1 &= 3 \quad &\text{prime} \\
 2^2 + 1 &= 5 \quad &\text{prime} \\
 2^3 + 1 &= 9 = 3^2 \quad &\text{composite}
 \end{align*}

- **Find a pattern.**

 $2^n + 1$ can be either prime or composite.
<table>
<thead>
<tr>
<th>Proposition</th>
<th>$2^n + 1$ is prime for any natural number n.</th>
</tr>
</thead>
</table>
| Workout | Write a formal statement. \(\forall\) natural number n, \(2^n + 1\) is prime.
| | Try out a few examples. \[
| | 2^1 + 1 = 3 \quad \text{prime} \]
| | \[
| | 2^2 + 1 = 5 \quad \text{prime} \]
| | \[
| | 2^3 + 1 = 9 = 3^2 \quad \text{composite} \]
| | Find a pattern. \(2^n + 1\) can be either prime or composite. |
| Solution | False! Counterexample: \(n = 3\) \[
| | When \(n = 3\), then \(2^n + 1 = 2^3 + 1 = 9 = 3^2\) is composite. |
$n^2 + n + 41$

Proposition

- $n^2 + n + 41$ is prime for any whole number n.

Workout

Write a formal statement.

\forall whole number n, $n^2 + n + 41$ is prime.

Try out a few examples.

- $0^2 + 0 + 41 = 41$ prime
- $1^2 + 1 + 41 = 43$ prime
- $2^2 + 2 + 41 = 47$ prime
- $3^2 + 3 + 41 = 53$ prime
- $4^2 + 4 + 41 = 61$ prime

Find a pattern.

It seems like $n^2 + n + 41$ is always prime.
Proposition

• $n^2 + n + 41$ is prime for any whole number n.

Workout

• Write a formal statement.
 \forall whole number n, $n^2 + n + 41$ is prime.
• Try out a few examples.

 $0^2 + 0 + 41 = 41$ prime
 $1^2 + 1 + 41 = 43$ prime
 $2^2 + 2 + 41 = 47$ prime
 $3^2 + 3 + 41 = 53$ prime
 $4^2 + 4 + 41 = 61$ prime
 $5^2 + 5 + 41 = 71$ prime

• Find a pattern.
 It seems like $n^2 + n + 41$ is always prime.
Proposition

- $n^2 + n + 41$ is prime for any whole number n.

Solution: False!

Formal statement: \forall whole numbers n, $n^2 + n + 41$ is prime.

Counterexample: 41.

$41^2 + 41 + 41 = 41(41 + 1 + 1) = 41 \times 43$

Another counterexample: 40.

$40^2 + 40 + 41 = 40(40 + 1) + 41 = 40 \times 41 + 41 = 41(40 + 1) = 41 \times 41$
$n^2 + n + 41$

Proposition

- $n^2 + n + 41$ is prime for any whole number n.

Solution

- **False!**
- **Formal statement.** \forall whole numbers n, $n^2 + n + 41$ is prime.
- **Counterexample:** 41.

 \[
 (41^2 + 41 + 41 = 41(41 + 1 + 1) = 41 \times 43)
 \]
- **Another counterexample:** 40.

 \[
 (40^2 + 40 + 41 = 40(40 + 1) + 41 = 40 \times 41 + 41 = 41(40 + 1) = 41 \times 41)
 \]
Proposition

\[\frac{x}{y + z} + \frac{y}{x + z} + \frac{z}{x + y} = 4 \]

has no positive integer solutions.
\[\frac{x}{y+z} + \frac{y}{x+z} + \frac{z}{x+y} = 4 \]

Proposition

- \(\frac{x}{y+z} + \frac{y}{x+z} + \frac{z}{x+y} = 4 \) has no positive integer solutions.

Workout

- **Write a formal statement.**
 \(\forall x, y, z \in \mathbb{N}, \frac{x}{y+z} + \frac{y}{x+z} + \frac{z}{x+y} \neq 4. \)
- **Try out a few examples.**
 \[
 \begin{align*}
 (x, y, z) & \quad x/(y + z) + y/(x + z) + z/(x + y) = 4 ? \\
 (1, 1, 1) & \quad 1/2 + 1/2 + 1/2 = 1.5 \neq 4 \\
 (1, 2, 1) & \quad 1/3 + 2/2 + 1/3 = 1.666\cdots \neq 4 \\
 (1, 2, 3) & \quad 1/5 + 2/4 + 3/3 = 1.7 \neq 4 \\
 (1, 10, 100) & \quad 1/110 + 10/101 + 100/11 = 9.199\cdots \neq 4
 \end{align*}
 \]
- **Find a pattern.**
 It seems like there are no +ve integers satisfying the property.
\[
x/(y + z) + y/(x + z) + z/(x + y)
\]

Proposition

- \(\frac{x}{y+z} + \frac{y}{x+z} + \frac{z}{x+y} = 4 \) has no positive integer solutions.

Solution

- **False!**
- **Counterexample:**

\[
x = 15447680210874616644195131501991983748566432566 \\
 9565431700026634898253202035277999 \\
y = 36875131794129999827197811565225474825492979968 \\
 971970996283137471637224634055579 \\
z = 37361267792869725786125260237139015281653755816 \\
 1613618621437993378423467772036
\]
Proposition

- For whole numbers n, $1211 \cdots 1$ is composite.

\(n\) terms
Proposition

- For whole numbers n, $1211 \cdots 1$ is composite.

n terms

Workout

- Try out a few examples.

<table>
<thead>
<tr>
<th>(n, Number)</th>
<th>Factorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 12)</td>
<td>3×4</td>
</tr>
<tr>
<td>(1, 121)</td>
<td>11×11</td>
</tr>
<tr>
<td>(2, 1211)</td>
<td>7×173</td>
</tr>
<tr>
<td>(3, 12111)</td>
<td>33×367</td>
</tr>
<tr>
<td>(4, 121111)</td>
<td>281×431</td>
</tr>
<tr>
<td>(5, 1211111)</td>
<td>253×4787</td>
</tr>
</tbody>
</table>

- Find a pattern.

It seems like the sequence of numbers is composite.
Proposition

- For whole numbers $n \geq 0$, $1211 \cdots 1$ is composite.

Solution

- False!
- Smallest counterexample: $n = 136$.

$$12,1111111111, 11111111111, 1111111111111, 1111111111111111,$$
$$1111111111111111, 1111111111111111,$$
$$1111111111111111, 1111111111111111,$$
$$1111111111111111, 1111111111111111$$

is prime.
Proof by Contraposition
Proposition

- If \(n^2 \) is odd, then \(n \) is odd.
Proposition

- If n^2 is odd, then n is odd.

Proof

- Seems very difficult to prove directly.

 Contraposition: If n is even, then n^2 is even.

 n is even

 $\implies n = 2k$
 (defn. of even, k is an integer)

 $\implies n^2 = (2k)^2$
 (squaring on both sides)

 $\implies n^2 = 4k^2$
 (simplifying)

 $\implies n^2 = 2(2k^2)$
 (factoring 2)

 $\implies n^2 = 2j$
 (let $j = 2k^2$)

 (j is an integer as mult. is closed on integers)

 $\implies n^2$ is even
 (defn. of even)
The square of an integer is odd if and only if the integer itself is odd.
\(n \text{ is odd} \iff n^2 \text{ is odd} \)

Proposition
- The square of an integer is odd if and only if the integer itself is odd.

Workout
- **Write a formal statement.**
 \[\forall \text{ integer } n, \, n^2 \text{ is odd} \iff n \text{ is odd} \]
- **Try out a few examples.**

<table>
<thead>
<tr>
<th>Odd numbers</th>
<th>Even numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1, 1)</td>
<td>(0, 0)</td>
</tr>
<tr>
<td>(3, 9)</td>
<td>(2, 4)</td>
</tr>
<tr>
<td>(5, 25)</td>
<td>(4, 16)</td>
</tr>
<tr>
<td>(7, 49)</td>
<td>(6, 36)</td>
</tr>
</tbody>
</table>

- **Pattern.** It seems that the proposition is true.
Proposition

- The square of an integer is odd if and only if the integer itself is odd.

Proof

There are two parts in the proof.

1. *Prove that if* \(n \) *is odd, then* \(n^2 \) *is odd.*
 - *Direct proof*

2. *Prove that if* \(n^2 \) *is odd, then* \(n \) *is odd.*
 - *Proof by contraposition*
Corollary

• Prove that the fourth power of an integer is odd if and only if the integer itself is odd.
Corollary

- Prove that the fourth power of an integer is odd if and only if the integer itself is odd.

Proof

- We have

 \[\text{\textit{n is odd} } \iff \text{\textit{n}^2 \text{ is odd}} \quad \text{(previous theorem)}\]

 \[\implies \text{\textit{n}^2 \text{ is odd} } \iff \text{\textit{n}^4 \text{ is odd}} \quad \text{(previous theorem used on } \text{\textit{n}^2})\]

 \[\implies \text{\textit{n is odd} } \iff \text{\textit{n}^4 \text{ is odd}} \quad \text{(transitivity of biconditional)}\]
Corollary

- Prove that the fourth power of an integer is odd if and only if the integer itself is odd.

Proof

- We have

\[
\begin{align*}
n & \text{ is odd } \iff n^2 \text{ is odd} \\
\implies & \quad n^2 \text{ is odd } \iff n^4 \text{ is odd} \quad \text{(previous theorem used on } n^2) \\
\implies & \quad n \text{ is odd } \iff n^4 \text{ is odd} \quad \text{(transitivity of biconditional)}
\end{align*}
\]

Problem

- Suppose \(k \) is a whole number. Prove that an integer \(n \) is odd if and only if \(n^{2^k} \) is odd.
Proposition

- For all integers n, if n^2 is even, then n is even.
Proposition

• For all integers n, if n^2 is even, then n is even.

Proof

• Contrapositive. For all integers, if n is odd, then n^2 is odd.
 • $n = 2k + 1$
 (definition of odd number)
 $\implies n^2 = (2k + 1)^2$
 (squaring both sides)
 $\implies n^2 = 4k^2 + 4k + 1$
 (expand)
 $\implies n^2 = 2(2k^2 + 2k) + 1$
 (taking 2 out from two terms)
 $\implies n^2 = 2m + 1$
 (set $m = 2k^2 + 2k$)
 (m is an integer as multiplication is closed on integers)
 $\implies n^2 = \text{odd}$
 (definition of odd number)
• Hence, the proposition is true.
Proposition

- If $x^3 - 7x^2 + x - 7 = 0$, then $x \neq 10$.

Proof

Contrapositive. If $x = 10$, then $x^3 - 7x^2 + x - 7 \neq 0$.

Substitute $x = 10$ in the expression. We get

$10^3 - 7(10^2) + 10 - 7 = 1000 - 700 + 10 - 7 = 303 \neq 0$.

That is, $x = 10$ does not satisfy $x^3 - 7x^2 + x - 7 = 0$ equation.

Hence, the contraposition is correct which implies that the original statement is correct.
Proposition

- If \(x^3 - 7x^2 + x - 7 = 0 \), then \(x \neq 10 \).

Proof

- **Contrapositive.** If \(x = 10 \), then \(x^3 - 7x^2 + x - 7 \neq 0 \)

 Substitute \(x = 10 \) in the expression.

 We get
 \[
 10^3 - 7(10^2) + 10 - 7 = 1000 - 700 + 10 - 7 = 303 \neq 0.
 \]

 That is, \(x = 10 \) does not satisfy \(x^3 - 7x^2 + x - 7 = 0 \) equation.

 Hence, the contraposition is correct which implies that the original statement is correct.
<table>
<thead>
<tr>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Let (a, b, n \in \mathbb{Z}). If (n \nmid ab), then (n \nmid a) and (n \nmid b).</td>
</tr>
</tbody>
</table>
Proposition

- Let $a, b, n \in \mathbb{Z}$. If $n \nmid ab$, then $n \nmid a$ and $n \nmid b$.

Proof

- Contrapositive. Let $a, b, n \in \mathbb{Z}$. If $n|a$ or $n|b$, then $n|ab$.
 - $n|a$
 - $a = nc$ (for some $c \in \mathbb{Z}$)
 - $ab = (nc)b = n(cb)$ (multiply by b)
 - $n|ab$ (definition of divisibility)
 - $n|b$
 - $b = nd$ (for some $d \in \mathbb{Z}$)
 - $ab = a(nd) = n(ad)$ (multiply by a)
 - $n|ab$ (definition of divisibility)

- Hence, the proposition is true.
Proposition

Let $n \in \mathbb{Z}$. If $n^2 - 6n + 5$ is even, then n is odd.
Proposition

- Let $n \in \mathbb{Z}$. If $n^2 - 6n + 5$ is even, then n is odd.

Proof

- **Contrapositive.** If n is even, then $n^2 - 6n + 5$ is odd.

- n is even
 - $\implies n = 2a$ for some integer a \hspace{1cm} (defn. of even)
 - $\implies n^2 - 6n + 5 = (2a)^2 - 6(2a) + 5$ \hspace{1cm} (substitute $n = 2a$)
 - $\implies n^2 - 6n + 5 = 2(2a^2) - 2(6a) + 2(2) + 1$ \hspace{1cm} (simplify)
 - $\implies n^2 - 6n + 5 = 2(2a^2 - 6a + 2) + 1$ \hspace{1cm} (take 2 common)
 - $\implies n^2 - 6n + 5$ is odd \hspace{1cm} (defn. of odd)

- Hence, the proposition is true.
Proposition

- For reals x and y, if $xy > 9$, then either $x > 3$ or $y > 3$.
<table>
<thead>
<tr>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>For reals x and y, if $xy > 9$, then either $x > 3$ or $y > 3$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proof</th>
</tr>
</thead>
</table>
| • **Contrapositive.** If $x \leq 3$ and $y \leq 3$, then $xy \leq 9$.
 • Suppose $x \leq 3$ and $y \leq 3$.
 $\implies xy \leq 9$
 (multiply the two inequalities)
 • Hence, the proposition is true. |
Proposition

- For reals x and y, if $xy > 9$, then either $x > 3$ or $y > 3$.

Proof

- **Contrapositive.** If $x \leq 3$ and $y \leq 3$, then $xy \leq 9$.
- Suppose $x \leq 3$ and $y \leq 3$.
 \[\Rightarrow xy \leq 9 \] (multiply the two inequalities)
- Hence, the proposition is true.

- Incorrect! Why?
Nonconstructive Proof
Irrational can be rational

Proposition

- An irrational raised to an irrational power may be rational.
Irrational numbers can be rational

Proposition

• An irrational raised to an irrational power may be rational.

Proof

• We make use of the fact that $\sqrt{2}$ is irrational.

Let $x = \sqrt{2}^{\sqrt{2}}$. Number x is either rational or irrational.

Case 1. If x is rational, then the proposition is true.

<table>
<thead>
<tr>
<th>Irrational</th>
<th>Irrational</th>
<th>Rational</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sqrt{2}$</td>
<td>$\sqrt{2}$</td>
<td>$\sqrt{2}^{\sqrt{2}} = x = \text{rational}$</td>
</tr>
</tbody>
</table>

Case 2. If x is irrational, then the proposition is true.

<table>
<thead>
<tr>
<th>Irrational</th>
<th>Irrational</th>
<th>Rational</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>$\sqrt{2}$</td>
<td>$x^{\sqrt{2}} = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^{\sqrt{2} \cdot \sqrt{2}} = \sqrt{2}^2 = 2$</td>
</tr>
</tbody>
</table>
Proof by Contradiction
Proposition

- For all integers \(n \), if \(n^2 \) is even, then \(n \) is even.
Proposition

• For all integers n, if n^2 is even, then n is even.

Proof

• Negation. Suppose there is an integer n such that n^2 is even but n is odd.

• $n = 2k + 1$
 \[\Rightarrow n^2 = (2k + 1)^2 \]
 \[\Rightarrow n^2 = 4k^2 + 4k + 1 \]
 \[\Rightarrow n^2 = 2(2k^2 + 2k) + 1 \]
 \[\Rightarrow n^2 = 2m + 1 \]
 \[(m \text{ is an integer as multiplication is closed on integers}) \quad (\text{set } m = 2k^2 + 2k) \]
 \[\Rightarrow n^2 = \text{odd} \]
 \[(\text{definition of odd number}) \]

• Contradiction! Hence, the proposition is true.
Proposition

- There is no greatest integer.
Proposition

• There is no greatest integer.

Proof

• **Negation.** Suppose there is a greatest integer N. Then $N \geq n$ for every integer n.

 Let $M = N + 1$.

 M is an integer since addition is closed on integers.

 $M > N$ since $M = N + 1$.

 M is an integer that is greater than N.

 So, N is not the greatest integer.

 Contradiction! Hence, the proposition is true.
\sqrt{2} is irrational

<table>
<thead>
<tr>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>• \sqrt{2} is irrational.</td>
</tr>
</tbody>
</table>
\(\sqrt{2} \) is irrational

Proposition

- \(\sqrt{2} \) is irrational.

Proof

- Suppose \(\sqrt{2} \) is the simplest rational.
 - \(\Rightarrow \sqrt{2} = m/n \) \((m, n \text{ have no common factors, } n \neq 0)\)
 - \(\Rightarrow m^2 = 2n^2 \) \(\text{(squaring and simplifying)}\)
 - \(\Rightarrow m^2 = \text{even} \) \(\text{(definition of even)}\)
 - \(\Rightarrow m = \text{even} \) \(\text{(why?)}\)
 - \(\Rightarrow m = 2k \text{ for some integer } k \) \(\text{(definition of even)}\)
 - \(\Rightarrow (2k)^2 = 2n^2 \) \(\text{(substitute } m)\)
 - \(\Rightarrow n^2 = 2k^2 \) \(\text{(simplify)}\)
 - \(\Rightarrow n^2 = \text{even} \) \(\text{(definition of even)}\)
 - \(\Rightarrow n = \text{even} \) \(\text{(why?)}\)
 - \(\Rightarrow m, n \text{ are even} \) \(\text{(previous results)}\)
 - \(\Rightarrow m, n \text{ have a common factor of } 2 \) \(\text{(definition of even)}\)
- Contradiction! Hence, the proposition is true.
If \(p \mid n \), then \(p \nmid (n + 1) \).

<table>
<thead>
<tr>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>● For any integer (n) and any prime (p), if (p \mid n), then (p \nmid (n + 1)).</td>
</tr>
</tbody>
</table>
If $p|n$, then $p \nmid (n + 1)$.

<table>
<thead>
<tr>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>• For any integer n and any prime p, if $p</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proof</th>
</tr>
</thead>
</table>
| • **Negation.** Suppose there exists integer n and prime p such that $p|n$ and $p|(n + 1)$.
 $p|n$ implies $pr = n$ for some integer r
 $p|(n + 1)$ implies $ps = n + 1$ for some integer s
 Eliminate n to get:
 $1 = (n + 1) - n = ps - pr = p(s - r)$
 Hence, $p|1$, from the definition of divisibility.
 As $p|1$, we have $p \leq 1$.
 As p is prime, $p > 1$.
 Contradiction! Hence, the proposition is true. |
Proposition

- The set of prime numbers is infinite.
Primes is infinite

<table>
<thead>
<tr>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The set of prime numbers is infinite.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proof</th>
</tr>
</thead>
</table>
| • Negation. Suppose the set of prime numbers is finite.
Let \(L \) be the largest of all the prime numbers.
Let the set of primes be \(\{2, 3, 5, 7, 11, \ldots, L\} \).
Let \(n = (2 \times 3 \times 5 \times 7 \times 11 \times \cdots \times L) \).
We know that \((n+1) > 1\). From the unique prime factorization theorem, there is a prime \(p \) that divides \((n+1)\), i.e., \(p | (n+1) \).
Because \(p \) is prime, \(p \) must be present in the set of primes.
This means \(p \) must divide the product of all primes, i.e., \(p | n \).
So for prime \(p \), we have \(p | n \) and \(p | (n+1) \).
From the previous theorem, if \(p | n \) then \(p \nmid (n + 1) \).
Contradiction! Hence, the proposition is true. |
Proof by Division into Cases
Proposition

- There is a natural number \(n \) such that \(n^2 + 3n + 2 \) is prime.

Proof 2

- False!
- Negation. \(\forall \) natural number \(n \), \(n^2 + 3n + 2 \) is composite.

 We prove the negation in two cases:
 1. \(n \) is even
 2. \(n \) is odd
<table>
<thead>
<tr>
<th>Proof 2 (continued)</th>
</tr>
</thead>
</table>
| 1. **Prove that** n **is even** $\implies n^2 + 3n + 2$ **is composite.**
 n **is even**
 $\implies n^2$ **is even** and $3n$ **is even** $\quad (\text{even } \times \text{ integer } = \text{ even})$
 $\implies n^2 + 3n + 2$ **is even** $\quad (\text{even } + \text{ even } = \text{ even})$
 $\implies n^2 + 3n + 2$ **is composite** $\quad (2 \text{ is a factor})$
| 2. **Prove that** n **is odd** $\implies n^2 + 3n + 2$ **is composite.**
 n **is odd**
 $\implies n^2$ **is odd** and $3n$ **is odd** $\quad (\text{odd } \times \text{ odd } = \text{ odd})$
 $\implies n^2 + 3n$ **is even** $\quad (\text{odd } + \text{ odd } = \text{ even})$
 $\implies n^2 + 3n + 2$ **is even** $\quad (\text{even } + \text{ even } = \text{ even})$
 $\implies n^2 + 3n + 2$ **is composite** $\quad (2 \text{ is a factor})$

Proof 2 (continued)

1. Prove that \(n \) is even \(\implies n^2 + 3n + 2 \) is composite.

 - \(n \) is even
 \[\implies n^2 \ \text{is even and } \ 3n \ \text{is even} \quad (\text{even } \times \text{ integer } = \text{ even})\]
 \[\implies n^2 + 3n + 2 \ \text{is even} \quad (\text{even } + \text{ even } = \text{ even})\]
 \[\implies n^2 + 3n + 2 \ \text{is composite} \quad (2 \ \text{is a factor})\]

2. Prove that \(n \) is odd \(\implies n^2 + 3n + 2 \) is composite.

 - \(n \) is odd
 \[\implies n^2 \ \text{is odd and } \ 3n \ \text{is odd} \quad (\text{odd } \times \text{ odd } = \text{ odd})\]
 \[\implies n^2 + 3n \ \text{is even} \quad (\text{odd } + \text{ odd } = \text{ even})\]
 \[\implies n^2 + 3n + 2 \ \text{is even} \quad (\text{even } + \text{ even } = \text{ even})\]
 \[\implies n^2 + 3n + 2 \ \text{is composite} \quad (2 \ \text{is a factor})\]

Proposition

- Use this approach to prove that for all natural number \(n \),
\[9n^4 - 7n^3 + 5n^2 - 3n + 10 \] is composite.
Proposition

- The square of any odd integer has the form $8m + 1$ for some integer m.

Proof

n is odd $\Rightarrow n = 4q$ or $n = 4q + 1$ or $n = 4q + 3$ (Using the quotient-remainder theorem)

But, $n \neq 4q$ and $n \neq 4q + 2$ (as $4q$ and $4q + 2$ are even)

Hence, $n = 4q + 1$ or $n = 4q + 3$.

Case 1. $n = 4q + 1$.

$\Rightarrow n^2 = (4q + 1)^2 = 8q^2 + 8q + 1 = 8m + 1$, where $m = 2q^2 + q$ is an integer.

Case 2. $n = 4q + 3$.

$\Rightarrow n^2 = (4q + 3)^2 = 8q^2 + 12q + 9 = 8m + 1$, where $m = 2q^2 + 3q + 1$ is an integer.
Proposition

- The square of any odd integer has the form $8m + 1$ for some integer m.

Proof

- n is odd
 \[n = 4q \text{ or } n = 4q + 1 \text{ or } n = 4q + 2 \text{ or } n = 4q + 3 \]
 (as $4q$ and $4q + 2$ are even)
 Hence, $n = 4q + 1$ or $n = 4q + 3$.

- **Case 1.** $n = 4q + 1$.
 \[n^2 = (4q + 1)^2 = 8(2q^2 + q) + 1 = 8m + 1, \]
 where $m = 2q^2 + q = \text{integer}$.

- **Case 2.** $n = 4q + 3$.
 \[n^2 = (4q + 3)^2 = 8(2q^2 + 3q + 1) + 1 = 8m + 1, \]
 where $m = 2q^2 + 3q + 1 = \text{integer}$.
\[(x^2 - y^2) \mod 4 \neq 2\]

Proposition

- There is no solution in integers to: \((x^2 - y^2) \mod 4 = 2\).
Proposition

• There is no solution in integers to: \((x^2 - y^2) \mod 4 = 2\).

Proof

• **Case 1.** \(x\) is even and \(y\) is even.
 \[
 \implies x^2 = 4m \quad \text{and} \quad y^2 = 4n \\
 \implies x^2 - y^2 = 4(m - n).
 \]

• **Case 2.** \(x\) is even and \(y\) is odd.
 \[
 \implies x^2 = 4m \quad \text{and} \quad y^2 = 4n + 1 \\
 \implies x^2 - y^2 = 4(m - n) - 1.
 \]

• **Case 3.** \(x\) is odd and \(y\) is even.
 \[
 \implies x^2 = 4m + 1 \quad \text{and} \quad y^2 = 4n \\
 \implies x^2 - y^2 = 4(m - n) + 1.
 \]

• **Case 4.** \(x\) is odd and \(y\) is odd.
 \[
 \implies x^2 = 4m + 1 \quad \text{and} \quad y^2 = 4n + 1 \\
 \implies x^2 - y^2 = 4(m - n).
 \]

• In all these four cases, \((x^2 - y^2) \mod 4 \neq 2\).
Prove $1 = 2$ using basic algebra

<table>
<thead>
<tr>
<th>Proof</th>
</tr>
</thead>
</table>
| • $a > 0, b > 0$
 ▶ Given
 "Given"
 "Multiply both sides by $b"
 "Subtract a^2 from both sides"
 "Factoring"
 "Divide both sides by $(b - a)$"
 "Subtract a from both sides"
 "Add b to both sides"
 "Divide both sides by $b"" |
| • $a = b$
 ▶ Given
 "Given" |
| • $ab = b^2$
 ▶ Multiply both sides by b |
| • $ab - a^2 = b^2 - a^2$
 ▶ Subtract a^2 from both sides |
| • $a(b - a) = (b + a)(b - a)$
 ▶ Factoring |
| • $a = b + a$
 ▶ Divide both sides by $(b - a)$ |
| • $0 = b$
 ▶ Subtract a from both sides |
| • $b = 2b$
 ▶ Add b to both sides |
| • $1 = 2$
 ▶ Divide both sides by b |
| • What is the problem with this proof? |
Prove 1 = 2 using basic algebra

Proof

- \(a > 0, b > 0 \)
- \(a = b \)
- \(ab = b^2 \)
- \(ab - a^2 = b^2 - a^2 \)
- \(a(b - a) = (b + a)(b - a) \)
- \(a = b + a \)
- \(0 = b \)
- \(b = 2b \)
- \(1 = 2 \)

What is the problem with this proof?

Error

- Cannot divide by 0 in mathematics
- Cannot divide by \((b - a)\) as \(a = b\)
Prove $1 = 2$ using basic algebra

Proof

- $n^2 + 2n + 1 = (n + 1)^2$ ▶️ Expand
- $n^2 = (n + 1)^2 - (2n + 1)$ ▶️ Subtract
- $n^2 - n(2n + 1) = (n + 1)^2 - (2n + 1) - n(2n + 1)$ ▶️ Subtract
- $n^2 - n(2n + 1) = (n + 1)^2 - (n + 1)(2n + 1)$ ▶️ Factoring
- $n^2 - n(2n + 1) + (2n + 1)^2/4 =$
 - $(n + 1)^2 - (n + 1)(2n + 1) + (2n + 1)^2/4$ ▶️ Add
- $(n - (2n + 1)/2)^2 = ((n + 1) - (2n + 1)/2)^2$ ▶️ Simplify
- $n - (2n + 1)/2 = (n + 1) - (2n + 1)/2$ ▶️ Square roots
- $n = n + 1$ ▶️ Add
- $1 = 2$ ▶️ Subtract

- **What is the problem with this proof?**

Error: Cannot take square roots directly

$a^2 = b^2$ does not imply $a = b$

E.g.: $1^2 = (-1)^2$ does not imply $1 = -1$
Prove $1 = 2$ using basic algebra

<table>
<thead>
<tr>
<th>Proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>• $n^2 + 2n + 1 = (n + 1)^2$</td>
</tr>
<tr>
<td>• $n^2 = (n + 1)^2 - (2n + 1)$</td>
</tr>
<tr>
<td>• $n^2 - n(2n + 1) = (n + 1)^2 - (2n + 1) - n(2n + 1)$ ▷ Subtract</td>
</tr>
<tr>
<td>• $n^2 - n(2n + 1) = (n + 1)^2 - (n + 1)(2n + 1)$ ▷ Factoring</td>
</tr>
<tr>
<td>• $n^2 - n(2n + 1) + (2n + 1)^2/4 =$</td>
</tr>
<tr>
<td>$(n + 1)^2 - (n + 1)(2n + 1) + (2n + 1)^2/4$ ▷ Add</td>
</tr>
<tr>
<td>• $(n - (2n + 1)/2)^2 = ((n + 1) - (2n + 1)/2)^2$ ▷ Simplify</td>
</tr>
<tr>
<td>• $n - (2n + 1)/2 = (n + 1) - (2n + 1)/2$ ▷ Square roots</td>
</tr>
<tr>
<td>• $n = n + 1$</td>
</tr>
<tr>
<td>• $1 = 2$</td>
</tr>
<tr>
<td>• What is the problem with this proof?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Cannot take square roots directly</td>
</tr>
<tr>
<td>• $a^2 = b^2$ does not imply $a = b$</td>
</tr>
<tr>
<td>E.g.: $1^2 = (-1)^2$ does not imply $1 = -1$</td>
</tr>
</tbody>
</table>
Proof

- $\int uv - \int vdu$ ➤ Product rule
- Set $u = \frac{1}{x}$ and $v = x$; We get $du = -\frac{1}{x^2}dx$ and $dv = dx$
- $\int \frac{1}{x}dx = x \cdot \frac{1}{x} - \int x \cdot \left(-\frac{1}{x^2} \right) dx$ ➤ Substitute
- $\int \frac{1}{x}dx = 1 + \int \frac{1}{x}dx$ ➤ Simplify
- $0 = 1$ ➤ Subtract
- $1 = 2$ ➤ Add
- What is the problem with this proof?

Error

Cannot subtract integrals from both sides

$\int dx = x + \text{const.}$ ➤ const. depends on conditions

E.g.: $\frac{d}{dx}(x + 1) = \frac{d}{dx}(x + 2)$ does not imply $\int \frac{d}{dx}(x + 1) = \int \frac{d}{dx}(x + 2)$
Prove $1 = 2$ using calculus

Proof

- $\int u \, dv = uv - \int v \, du$ ▶ Product rule
- Set $u = \frac{1}{x}$ and $v = x$; We get $du = -\frac{1}{x^2} \, dx$ and $dv = dx$
- $\int \frac{1}{x} \, dx = x \cdot \frac{1}{x} - \int x \cdot \left(-\frac{1}{x^2}\right) \, dx$ ▶ Substitute
- $\int \frac{1}{x} \, dx = 1 + \int \frac{1}{x} \, dx$
- $0 = 1$
- $1 = 2$
- What is the problem with this proof?

Error

- Cannot subtract integrals from both sides
- $\int dx = x + \text{const.}$ ▶ const. depends on conditions

 E.g.: $\frac{d}{dx} (x + 1) = \frac{d}{dx} (x + 2)$ does not imply
 $\int \frac{d}{dx} (x + 1) = \int \frac{d}{dx} (x + 2)$
Prove $1 = 2$ using algebra and calculus

<table>
<thead>
<tr>
<th>Proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>- $x \neq 0$</td>
</tr>
<tr>
<td>- $x = x$</td>
</tr>
<tr>
<td>- $x + x = 2x$</td>
</tr>
<tr>
<td>- $x + x + \cdots + x = x^2$</td>
</tr>
<tr>
<td>- $1 + 1 + \cdots + 1 = 2x$</td>
</tr>
<tr>
<td>- $x = 2x$</td>
</tr>
<tr>
<td>- $1 = 2$</td>
</tr>
<tr>
<td>- What is the problem with this proof?</td>
</tr>
</tbody>
</table>

- $x \neq 0$ Given
- $x = x$ Given
- $x + x = 2x$ Add
- $x + x + \cdots + x = x^2$ Repeatedly add x times
- $1 + 1 + \cdots + 1 = 2x$ Differentiate
- $x = 2x$ Simplify
- $1 = 2$ Divide

What is the problem with this proof?

Error Cannot write $x + x + \cdots + x = x^2$ for non-integers E.g.: Cannot write $1.5 + 1.5 + \cdots + 1.5 = 2$.5
Proof

- \(x \neq 0 \)
 ▶ Given
- \(x = x \)
 ▶ Given
- \(x + x = 2x \)
 ▶ Add
- \(\underbrace{x + x + \cdots + x}_{x \text{ times}} = x^2 \)
 ▶ Repeatedly add \(x \) times
- \(\underbrace{1 + 1 + \cdots + 1}_{x \text{ times}} = 2x \)
 ▶ Differentiate
- \(x = 2x \)
 ▶ Simplify
- \(1 = 2 \)
 ▶ Divide
- **What is the problem with this proof?**

Error

- **Cannot write** \(\underbrace{x + x + \cdots + x}_{x \text{ times}} = x^2 \) **for non-integers**
- **E.g.: Cannot write** \(\underbrace{1.5 + 1.5 + \cdots + 1.5}_{1.5 \text{ times}} = 1.5^2 \)
Prove $1 = 2$ using continued fractions

Proof

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\frac{2}{3-1} = \frac{2}{3-\frac{2}{3-1}} = \frac{2}{3 - \frac{2}{3 - \frac{2}{3 - 1}}} = \frac{2}{3 - \frac{2}{3 - \frac{2}{3 - \frac{2}{3 - 1}}}} = \frac{2}{3 - 1}}}}}}}}}}}}}}}}}}}}}}}}}}$</td>
</tr>
<tr>
<td>2</td>
<td>$\frac{2}{3-2} = \frac{2}{3 - \frac{2}{3 - \frac{2}{3 - 2}}} = \frac{2}{3 - \frac{2}{3 - \frac{2}{3 - \frac{2}{3 - 2}}}} = \frac{2}{3 - 2}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$</td>
</tr>
</tbody>
</table>

1 = 2 \quad \Rightarrow \quad \text{Continued fractions are the same}

What is the problem with this proof?
Prove 1 = 2 using continued fractions

Proof

\[1 = \frac{2}{3-1} = \frac{2}{3-\frac{2}{3-1}} = \frac{2}{3-\frac{2}{3-\frac{2}{3-1}}} = \cdots \]

\[2 = \frac{2}{3-2} = \frac{2}{3-\frac{2}{3-2}} = \frac{2}{3-\frac{2}{3-\frac{2}{3-2}}} = \cdots \]

\[1 = 2 \quad \text{Continued fractions are the same} \]

What is the problem with this proof?

Error

- Cannot equate the values of the continued fractions
- The given continued fraction is \(x = \frac{2}{3-x} \)
 Solving for \(x \), we have \(x = 1 \) or \(x = 2 \)
- Beware of infinity!
Proof

- Consider Grandi’s series \(S = 1 - 1 + 1 - 1 + \cdots \)
- \(S = (1 - 1) + (1 - 1) + \cdots = 0 + 0 + \cdots = 0 \)
- \(S = 1 + (-1 + 1) + (-1 + 1) + \cdots = 1 + 0 + 0 + \cdots = 1 \)
- \(0 = 1 \quad \implies \quad S = 0 \quad \text{and} \quad S' = 1 \)
- \(1 = 2 \)
 ▶ Add
- **What is the problem with this proof?**

Error

- Cannot use several algebraic methods on a divergent series
- Grandi’s series is divergent
- Beware of infinity!
Proof

- Consider Grandi’s series $S = 1 - 1 + 1 - 1 + \cdots$
- $S = (1 - 1) + (1 - 1) + \cdots = 0 + 0 + \cdots = 0$
- $S = 1 + (-1 + 1) + (-1 + 1) + \cdots = 1 + 0 + 0 + \cdots = 1$
- $0 = 1$ \[\triangleright S = 0 \text{ and } S' = 1\]
- $1 = 2$
- **What is the problem with this proof?**

Error

- Cannot use several algebraic methods on a divergent series
- Grandi’s series is divergent
- Beware of infinity!
Proof

- Using Georg Cantor's set theory and his idea of one-to-one correspondence, we can show that the number of points on the number line segment \([0, 1]\) is same as the number of points on the number line segment \([0, 2]\)
- \(1 = 2\)
- **What is the problem with this proof?**

Error

Solution is out of scope

The problem is because the principles that apply in the world of finite quantities do not apply in the world of infinite quantities. **Beware of infinity!**
Proof

- Using Georg Cantor’s set theory and his idea of one-to-one correspondence, we can show that the number of points on the number line segment $[0, 1]$ is same as the number of points on the number line segment $[0, 2]$
- $1 = 2$
- **What is the problem with this proof?**

Error

- **Solution is out of scope**
- The problem is because the principles that apply in the world of finite quantities do not apply in the world of infinite quantities
- Beware of infinity!
Prove 1 = 2 using geometry

Proof

- Banach-Tarski paradox states that a solid ball can be split into a finite number of disjoint subsets, which can then be assembled to create two identical copies of the original solid ball

1 = 2

What is the problem with this proof?
Proof

- Banach-Tarski paradox states that a solid ball can be split into a finite number of disjoint subsets, which can then be assembled to create two identical copies of the original solid ball.

\[1 = 2 \]

What is the problem with this proof?

Error

- Solution is out of scope
- The problem is because the principles that apply in the world of finite quantities do not apply in the world of infinite quantities
- Beware of infinity!
The Pythagorean theorem

- **History.** The theorem first appeared in a Babylonian tablet dated 1900-1600 B.C.
- **Incorrect proofs.** Alexander Bogomolny’s website Cut-The-Knot https://www.cut-the-knot.org/pythagoras/FalseProofs.shtml presents 9 incorrect proofs of the theorem
- **Correct proofs.** Elisha Scott Loomis’ book “The Pythagorean Proposition” presents 367 correct proofs of the theorem (algebraic proofs + geometric proofs + trigonometric proofs)
- **More Proofs.** An infinite number of algebraic and geometric proofs exist for the theorem (Proof?)