Discrete Mathematics (Predicate Logic)

Pramod Ganapathi
Department of Computer Science
State University of New York at Stony Brook

January 24, 2021

Contents

Contents

- Predicates and Quantified Statements
- Statements with Multiple Quantifiers
- Arguments with Quantified Statements

Predicates and Quantified Statements

What is a propositional function or predicate?

Definition

- A propositional function or predicate is a sentence that contains one or more variables
- A predicate is neither true nor false
- A predicate becomes a proposition when the variables are substituted with specific values
- The domain of a predicate variable is the set of all values that may be substituted for the variable

Examples

Symbol	Predicate	Domain	Propositions
$p(x)$	$x>5$	$x \in \mathbb{R}$	$p(6), p(-3.6), p(0), \ldots$
$p(x, y)$	$x+y$ is odd	$x \in \mathbb{Z}, y \in \mathbb{Z}$	$p(4,5), p(-4,-4), \ldots$
$p(x, y)$	$x^{2}+y^{2}=4$	$x \in \mathbb{R}, y \in \mathbb{R}$	$p(-1.7,8.9), p(-\sqrt{3},-1), \ldots$

What is a truth set?

Definition

- A truth set of a predicate is the set of all values of the predicate that makes the predicate true
- If $p(x)$ is a predicate and x has domain D, then the truth set of $p(x)$ is the set of all elements of D that makes $p(x)$ true when the values are substituted for x. That is,

$$
\text { Truth set of } p(x)=\{x \in D \mid p(x)\}
$$

Examples

Symbol	Predicate	Domain	Truth set
$p(x)$	$x>5$	$x \in \mathbb{R}$	$\{p(6), p(13.6), p(5.001), \ldots\}$
$p(x, y)$	$x+y$ is odd	$x \in \mathbb{Z}, y \in \mathbb{Z}$	$\{p(4,5), p(-4,-3), \ldots\}$
$p(x, y)$	$x^{2}+y^{2}=4$	$x \in \mathbb{R}, y \in \mathbb{R}$	$\{p(-2,2), p(-\sqrt{3},-1), \ldots\}$

Predicates to propositions

There are two methods to obtain propositions from predicates

1. Assign specific values to variables
2. Add quantifiers

What are quantifiers?

Definition

- Quantifiers are words that refer to quantities such as "all" or "some" and they tell for how many elements a given predicate is true
- Introduced into logic by logicians Charles Sanders Pierce and Gottlob Frege during late 19th century
- Two types of quantifiers:

1. Universal quantifier (\forall)
2. Existential quantifier (\exists)

Universal quantifier (\forall)

Definition

- Let $p(x)$ be a predicate and D be the domain of x
- A universal statement is a statement of the form

$$
\forall x \in D, p(x)
$$

- Forms:
- " $p(x)$ is true for all values of x "
- "For all $x, p(x)$ "
- "For each $x, p(x)$ "
- "For every $x, p(x)$ "
- "Given any $x, p(x)$ "
- It is true if $p(x)$ is true for each x in D; It is false if $p(x)$ is false for at least one x in D
- A counterexample to the universal statement is the value of x for which $p(x)$ is false

Universal quantifier (\forall)

Examples

Universal st.s	Domain	Truth value	Method
$\forall x \in D, x^{2} \geq x$	$D=\{1,2,3\}$	True	Method of exhaustion
$\forall x \in \mathbb{R}, x^{2} \geq x$	\mathbb{R}	False	Counterexample
		$x=0.1$	

Caution

- Method of exhaustion cannot be used to prove universal statements for infinite sets

Existential quantifier (\exists)

Definition

- Let $p(x)$ be a predicate and D be the domain of x
- An existential statement is a statement of the form

$$
\exists x \in D, p(x)
$$

- Forms:
- "There exists an x such that $p(x)$ "
- "For some $x, p(x)$ "
- "We can find an x, such that $p(x)$ "
- "There is some x such that $p(x)$ "
- "There is at least one x such that $p(x)$ "
- It is true if $p(x)$ is true for at least one x in D; It is false if $p(x)$ is false for all x in D
- A counterproof to the existential statement is the proof to show that $p(x)$ is true is for no x

Existential quantifier (\exists)

Examples

Universal st.s	Domain	Truth value	Method
$\exists x \in D, x^{2} \geq x$	$D=\{1,2,3\}$	True	Method of exhaust.
$\exists x \in \mathbb{R}, x^{2} \geq x$	\mathbb{R}	True	Example
$\exists x \in \mathbb{Z}, x+1 \leq x$	\mathbb{Z}	False	How?

Formal and informal languages

Example

- $\forall x \in \mathbb{R}, x^{2} \geq 0$
- Every real number has a nonnegative square
- All real numbers have nonnegative squares
- Any real number has a nonnegative square
- The square of each real number is nonnegative
- No real numbers have negative squares
- x^{2} is nonnegative for every real x
- x^{2} is not less than zero for each real number x

Universal conditional statement (\forall, \rightarrow)

Definition

- A universal conditional statement is of the form

$$
\forall x, \text { if } p(x) \text { then } q(x)
$$

Examples

- $\forall x \in \mathbb{R}$, if $x>2$ then $x^{2}>4$
- \forall real number x, if x is an integer then x is rational
\forall integer x, x is rational \quad Logically equivalent
- $\forall x$, if x is a square then x is a rectangle
\forall square x, x is a rectangle
\triangleright Logically equivalent
- $\forall x \in U$, if $p(x)$ then $q(x)$
$\forall x \in D, q(x) \quad \triangleright$ Logically equivalent (where, $D=\{x \in U \mid p(x)$ is true $\}$)
- Can be extended to existential conditional statement (\exists, \rightarrow)

Implicit quantification $(\Rightarrow, \Leftrightarrow)$

Examples

- If a number is an integer, then it is a rational number Implicit meaning: \forall number x, if x is an integer, x is rational
- The number 10 can be written as a sum of two prime numbers Implicit meaning: \exists prime numbers p and q such that $10=p+q$
- If $x>2$, then $x^{2}>4$

Implicit meaning: \forall real x, if $x>2$, then $x^{2}>4$

Definition

- Let $p(x)$ and $q(x)$ be predicates and D be the common domain of x. Then implicit quant. symbols $\Rightarrow, \Leftrightarrow$ are defined as:

$$
\begin{aligned}
& p(x) \Rightarrow q(x) \\
& p(x) \Leftrightarrow q x, p(x) \rightarrow q(x) \\
& p q(x) \equiv \forall x, p(x) \leftrightarrow q(x)
\end{aligned}
$$

Implicit quantification $(\Rightarrow, \Leftrightarrow)$

Problem

- $q(n): n$ is a factor of $8 ; r(n): n$ is a factor of 4
$s(n): n<5$ and $n \neq 3$
Domain of n is \mathbb{Z}^{+}(i.e., positive integers)
- What are the relationships between $q(n), r(n)$, and $s(n)$ using symbols \Rightarrow and \Leftrightarrow ?

Implicit quantification $(\Rightarrow, \Leftrightarrow)$

Problem

- $q(n): n$ is a factor of $8 ; r(n): n$ is a factor of 4 $s(n): n<5$ and $n \neq 3$
Domain of n is \mathbb{Z}^{+}(i.e., positive integers)
- What are the relationships between $q(n), r(n)$, and $s(n)$ using symbols \Rightarrow and \Leftrightarrow ?

Solution

- Truth set of $q(n)=\{1,2,4,8\}$; Truth set of $r(n)=\{1,2,4\}$; Truth set of $s(n)=\{1,2,4\}$
- $\forall n$ in $\mathbb{Z}^{+}, r(n) \rightarrow q(n)$ i.e., $r(n) \Rightarrow q(n)$ i.e., " n is a factor of 4 " \Rightarrow " n is a factor of 8 "
- $\forall n$ in $\mathbb{Z}^{+}, r(n) \leftrightarrow s(n)$ i.e., $r(n) \Leftrightarrow s(n)$ i.e., " n is a factor of 4 " \Leftrightarrow " $n<5$ and $n \neq 3$ "
- $\forall n$ in $\mathbb{Z}^{+}, s(n) \rightarrow q(n)$ i.e., $s(n) \Rightarrow q(n)$ i.e., " $n<5$ and $n \neq 3$ " \Rightarrow " n is a factor of 8 "

Negation of quantified statements (\sim)

Definition

- Formally,

$$
\begin{aligned}
& \sim(\forall x \in D, p(x)) \equiv \exists x \in D, \sim p(x) \\
& \sim(\exists x \in D, p(x)) \equiv \forall x \in D, \sim p(x)
\end{aligned}
$$

- Negation of a universal statement ("all are") is logically equivalent to an existential statement ("there is at least one that is not")
Negation of an existential statement ("some are") is logically equivalent to a universal statement ("all are not")

Methods

Two methods to avoid errors while finding negations:

1. Write the statements formally and then take negations
2. Ask "What exactly would it mean for the given statement to be false?"

Negation of quantified statements (\sim)

Examples

- All mathematicians wear glasses Negation (incorrect): No mathematician wears glasses Negation (incorrect + ambiguous): All mathematicians do not wear glasses
Negation (correct): There is at least one mathematician who does not wear glasses
- Some snowflakes are the same Negation (incorrect):: Some snowflakes are different Negation (correct):: All snowflakes are different

Negation of quantified statements (\sim)

Examples

- \forall primes p, p is odd

Negation: \exists primes p, p is even

- \exists triangle T, sum of angles of T equals 200°
\forall triangles T, sum of angles of T does not equal 200°
- No politicians are honest

Formal statement: \forall politicians x, x is not honest
Formal negation: \exists politician x, x is honest Informal negation: Some politicians are honest

- 1357 is not divisible by any integer between 1 and 37 Formal statement: $\forall n \in[1,37], 1357$ is not divisible by n Formal negation: $\exists n \in[1,37], 1357$ is divisible by n Informal negation: 1357 is divisible by some integer between 1 and 37

Negation of universal conditional statements

Definition

- Formally,

$$
\begin{aligned}
\sim(\forall x, p(x) \rightarrow q(x)) & \equiv \exists x, \sim(p(x) \rightarrow q(x)) \\
& \equiv \exists x,(p(x) \wedge \sim q(x))
\end{aligned}
$$

Examples

- \forall real x, if $x>10$, then $x^{2}>100$.

Negation: \exists real x such that $x>10$ and $x^{2} \leq 100$.

- If a computer program has more than 100,000 lines, then it contains a bug.
Negation: There is at least one computer program that has more than 100,000 lines and does not contain a bug.

Relation between quantifiers (\forall, \exists) and (\wedge, \vee)

Relation

- Universal statements are generalizations of and statements Existential statements are generalizations of or statements
- If $p(x)$ is a predicate and $D=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is the domain of x, then

$$
\begin{aligned}
& \forall x \in D, p(x) \equiv p\left(x_{1}\right) \wedge p\left(x_{2}\right) \wedge \cdots \wedge p\left(x_{n}\right) \\
& \exists x \in D, p(x) \equiv p\left(x_{1}\right) \vee p\left(x_{2}\right) \vee \cdots \vee p\left(x_{n}\right)
\end{aligned}
$$

Vacuous truth of universal statements

Problem

- Consider the bowl and the balls
- Consider the statement:

All the balls in the bowl are blue

- Is the statement true?

Solution

- The statement is false iff its negation is true
- Negation: There exists a ball in the bowl that is not blue
- The negation is false; So, the statement is true, by default

Definition

- A statement of the form

$$
\forall x \text { in } D \text {, if } p(x) \text {, then } q(x)
$$

is vacuously true or true by default, if and only if $p(x)$ is false for all x in D

Universal conditional statements $(\forall x, p(x) \rightarrow q(x))$

Definitions

- Statement: $\forall x$, if $p(x)$ then $q(x)$
- Contrapositive of the statement is $\forall x$, if $\sim q(x)$ then $\sim p(x)$
- Converse of the statement is $\forall x$, if $q(x)$ then $p(x)$
- Inverse of the statement is $\forall x$, if $\sim p(x)$ then $\sim q(x)$

Identities

- Conditional \equiv Contrapositive
- Conditional $\not \equiv$ Converse
- Conditional $\not \equiv$ Inverse
- Converse \equiv Inverse

Formulas

- $\forall x, p(x) \rightarrow q(x) \equiv \forall x, \sim q(x) \rightarrow \sim p(x) \quad \triangleright$ Useful for proofs
- $\forall x, p(x) \rightarrow q(x) \not \equiv \forall x, q(x) \rightarrow p(x)$
- $\forall x, p(x) \rightarrow q(x) \not \equiv \forall x, \sim p(x) \rightarrow \sim q(x)$
- $\forall x, q(x) \rightarrow p(x) \equiv \forall x, \sim p(x) \rightarrow \sim q(x)$

Universal conditional statement $\forall x, p(x) \rightarrow q(x)$

Definitions

- $\forall x, p(x)$ is a sufficient condition for $q(x)$ means $\forall x$, if $p(x)$ then $q(x)$
- $\forall x, p(x)$ is a necessary condition for $q(x)$ means $\forall x$, if $\sim p(x)$ then $\sim q(x) \equiv \forall x$, if $q(x)$ then $p(x)$
- $\forall x, p(x)$ only if $q(x)$ means
$\forall x$, if $\sim q(x)$ then $\sim p(x) \equiv \forall x$, if $p(x)$ then $q(x)$

Example

- For real $x, x=1$ is a sufficient condition for $x^{2}=1$ i.e., $\forall x$, if $x=1$ then $x^{2}=1$
- For real $x, x^{2}=1$ is a necessary condition for $x=1$ i.e., $\forall x$, if $x^{2} \neq 1$ then $x \neq 1$
\triangleright True
- For real $x, x=1$ only if $x^{2}=1$
i.e., $\forall x$, if $x^{2} \neq 1$ then $x \neq 1$
\triangleright True

Statements with Multiple Quantifiers

Statements with multiple quantifiers

Problem

- What is the interpretation for the following statement?
"There is a person supervising every detail of the production process."

Ambiguous interpretations

1. There is one single person who supervises all the details of the production process.
\exists person p such that \forall detail d, p supervises d
2. For any particular production detail, there is a person who supervises that detail, but there might be different supervisors for different details.
\forall detail d, \exists person p such that p supervises d

Statements with multiple quantifiers

Definitions

1. Statement form:

$$
\forall x \in D, \exists y \in E \text { such that } P(x, y)
$$

Interpretation: Allow someone else to pick whatever element x in D they wish. Then, you must find an element y in E that "works" for that particular x.
2. Statement form:

$$
\exists x \in D \text { such that } \forall y \in E, P(x, y)
$$

Interpretation: Your job is to find one particular x in D that will "work" no matter what y in E anyone might choose to challenge you with.

Example: Tarski world

		a		
b	c		d	
e		f		g
	h			
			i	j

Problem

- For all triangles x, there is a square y such that x and y have the same color. Truth value?

Answer

- True. How?

Example: Tarski world

Problem

- There is a triangle x such that for all circles y, x is to the right of y. Truth value?

Answer

- True. How?

Example: College cafeteria

Problem

- \exists an item I such that \forall students S, S chose I.
- Informal statement? Truth value?

Solution

- There is an item that was chosen by every student.
- True. How?

Example: College cafeteria

Problem

- \exists a student S such that \forall items I, S chose I.
- Informal statement? Truth value?

Solution

- There is a student who chose every available item.
- False. How?

Example: College cafeteria

Problem

- \exists a student S such that \forall stations Z, \exists an item I in Z such that S chose I.
- Informal statement? Truth value?

Solution

- There is a student who chose at least one item from every station.
- True. How?

Example: College cafeteria

Problem

- \forall students S and \forall stations Z, \exists an item I in Z such that S chose I.
- Informal statement? Truth value?

Solution

- Every student chose at least one item from every station.
- False. How?

Translating from informal to formal language

Problem

- Every nonzero real number has a reciprocal.
- There is a real number with no reciprocal.
- There is a smallest positive integer.
- There is no smallest positive real number.

Translating from informal to formal language

Problem

- Every nonzero real number has a reciprocal.
- There is a real number with no reciprocal.
- There is a smallest positive integer.
- There is no smallest positive real number.

Solution

- \forall nonzero real numbers u, \exists a real number v such that $u v=1$.
- \exists a real number c such that \forall real numbers $d, c d \neq 1$.
- \exists a positive integer m such that \forall positive integers $n, m \leq n$.
- \forall positive real numbers x, \exists a positive real number y such that $y<x$.

Negations of multiply-quantified statements

Definitions

- $\sim(\forall x$ in $D, \exists y$ in E such that $P(x, y))$
$\equiv \exists x$ in D such that $\sim(\exists y$ in E such that $P(x, y))$
$\equiv \exists x$ in D such that $\forall y$ in $E, \sim P(x, y)$
- $\sim(\exists x$ in D such that $\forall y$ in $E, P(x, y))$
$\equiv \forall x$ in $D, \sim(\forall y$ in $E, P(x, y))$
$\equiv \forall x$ in $D, \exists y$ in E such that $\sim P(x, y)$

Example: Tarski world

		a		
b	c		d	
e		f		g
	h			
			i	j

Problem

- For all squares x, there is a circle y such that x and y have the same color. Negation?

Answer

- \exists a square x such that \forall circles y, x and y do not have the same color. True. How?

Example: Tarski world

		a		
b	c		d	
e		f		g
	h			
			i	j

Problem

- There is a triangle x such that for all squares y, x is to the right of y. Negation?

Answer

- \forall triangles x, \exists a square y such that x is not to the right of y. True. How?

Order of quantifiers

Order

- The order of quantifiers are important when multiple quantifiers are involved

Example

- \forall people x, \exists a person y such that x loves y. Quite possible.
- \exists a person y such that \forall people x, x loves y. Quite impossible.

Order of quantifiers

Example

- For every square x there is a triangle y such that x and y have different colors
\triangleright True
- There exists a triangle y such that for every square x, x and y have different colors.
\triangleright False

Order of quantifiers

Example

Suppose \mathbb{R}^{*} is a set of nonzero real numbers.

- $\forall x \in \mathbb{Z}, \exists y \in \mathbb{R}^{*}(x y<1)$

Two cases:
a. For $x \leq 0$, let $y=1$, then $x y<1$
b. For $x>0$, let $y=1 /(x+1)$, then $x y<1$

- $\exists y \in \mathbb{R}^{*}, \forall x \in \mathbb{Z}(x y<1)$
\triangleright False
Two cases:
a. For $y>0$, if integer $x \geq 1 / y$, then $x y \nless 1$
b. For $y<0$, if integer $x \leq 1 / y$, then $x y \nless 1$

In both the cases, an adversary can choose an integer that makes the predicate false. Hence, the quantified statement is false.

Formal logical notation

Definitions

- $\forall x$ in $D, P(x)$
$\equiv \forall x(x$ in $D \rightarrow P(x))$
- $\exists x$ in D such that $P(x)$
$\equiv \exists x(x$ in $D \wedge P(x))$

Example: Tarski world

Definitions

- Triangle $(x): x$ is a triangle
- Circle $(x): x$ is a circle
- Square $(x): x$ is a square
- Blue $(x): x$ is blue
- $\operatorname{Gray}(x): x$ is gray
- Black $(x): x$ is black
- $\operatorname{RightOf}(x, y): x$ is to the right of y
- Above $(x, y): x$ is above y
- SameColor $(x, y): x$ has the same color as y

Example: Tarski world

Problem

- For all circles x, x is above f.
- Formal statement? Formal negation?

Solution

- Formal statement
$\forall x(\operatorname{Circle}(x) \rightarrow \operatorname{Above}(x, f))$
- Formal negation
$\sim(\forall x(\operatorname{Circle}(x) \rightarrow \operatorname{Above}(x, f)))$
$\equiv \exists x \sim(\operatorname{Circle}(x) \rightarrow \operatorname{Above}(x, f))$
$\equiv \exists x(\operatorname{Circle}(x) \wedge \sim \operatorname{Above}(x, f))$

Example: Tarski world

Problem

- There is a square x such that x is black.
- Formal statement? Formal negation?

Solution

- Formal statement $\exists x($ Square $(x) \wedge \operatorname{Black}(x))$
- Formal negation
$\sim(\exists x($ Square $(x) \wedge \operatorname{Black}(x)))$
$\equiv \forall x \sim($ Square $(x) \wedge \operatorname{Black}(x))$
$\equiv \forall x(\sim \operatorname{Square}(x) \vee \sim \operatorname{Black}(x))$

Example: Tarski world

Problem

- For all circles x, there is a square y such that x and y have the same color.
- Formal statement? Formal negation?

Solution

- Formal statement
$\forall x(\operatorname{Circle}(x) \rightarrow \exists y(\operatorname{Square}(y) \wedge$ SameColor $(x, y)))$
- Formal negation
$\sim(\forall x(\operatorname{Circle}(x) \rightarrow \exists y(\operatorname{Square}(y) \wedge \operatorname{SameColor}(x, y))))$
$\equiv \exists x \sim(\operatorname{Circle}(x) \rightarrow \exists y(\operatorname{Square}(y) \wedge \operatorname{SameColor}(x, y)))$
$\equiv \exists x(\operatorname{Circle}(x) \wedge \sim(\exists y($ Square $(y) \wedge \operatorname{SameColor}(x, y))))$
$\equiv \exists x(\operatorname{Circle}(x) \wedge \forall y(\sim($ Square $(y) \wedge$ SameColor $(x, y))))$
$\equiv \exists x(\operatorname{Circle}(x) \wedge \forall y(\sim \operatorname{Square}(y) \vee \sim$ SameColor $(x, y)))$

Example: Tarski world

Problem

- There is a square x such that for all triangles y, x is to right of y.
- Formal statement? Formal negation?

Solution

- Formal statement
$\exists x($ Square $(x) \wedge \forall y(\operatorname{Triangle}(y) \rightarrow \operatorname{RightOf}(x, y)))$
- Formal negation
$\sim(\exists x($ Square $(x) \wedge \forall y(\operatorname{Triangle}(y) \rightarrow \operatorname{RightOf}(x, y))))$
$\equiv \forall x \sim($ Square $(x) \wedge \forall y($ Triangle $(y) \rightarrow \operatorname{RightOf}(x, y)))$
$\equiv \forall x(\sim \operatorname{Square}(x) \vee \sim(\forall y(\operatorname{Triangle}(y) \rightarrow \operatorname{RightOf}(x, y))))$
$\equiv \forall x(\sim \operatorname{Square}(x) \vee \exists y(\sim(\operatorname{Triangle}(y) \rightarrow \operatorname{RightOf}(x, y))))$
$\equiv \forall x(\sim \operatorname{Square}(x) \vee \exists y(\operatorname{Triangle}(y) \wedge \sim \operatorname{RightOf}(x, y)))$

Arguments with Quantified Statements

Universal instantiation

Definition

- If some property is true of everything in a set, then it is true of any particular thing in the set.

Example

- All men are mortal.

Socrates is a man.
\therefore Socrates is mortal.

Rule of inference: Universal modus ponens

Definition

- It has the form:
$\forall x$, if $P(x)$ then $Q(x)$
$P(a)$ for a particular a
$\therefore Q(a)$
- Used in direct proofs

Example

- Informal argument

If an integer is even, then its square is even.
k is a particular integer that is even.
$\therefore k^{2}$ is even

- Formal argument
$\forall x$, if $E(x)$ then $S(x)$
$E(k)$ for a particular k
$\therefore S(k)$

Rule of inference: Universal modus tollens

Definition

- It has the form:
$\forall x$, if $P(x)$ then $Q(x)$
$\sim Q(a)$ for a particular a
$\therefore \sim P(a)$
- Used in proof by contradiction

Example

- Informal argument

All human beings are mortal.
Zeus is not mortal.
\therefore Zeus is not human.

- Formal argument
$\forall x$, if $H(x)$ then $M(x)$
$\triangleright H(x) ? M(x) ? Z ?$
$\sim M(Z)$
$\therefore \sim H(Z)$

Fallacy: Converse and inverse errors

Definition

- Converse error has the form:
$\forall x$, if $P(x)$ then $Q(x)$
$Q(a)$ for a particular a
$\therefore P(a)$
- Inverse error has the form:
$\forall x$, if $P(x)$ then $Q(x)$
$\sim P(a)$ for a particular a
$\therefore \sim Q(a)$

Fallacy: Converse error

Example

- Law

All the town criminals frequent the Hot Life bar.
John frequents the Hot Life bar.
\therefore John is one of the town criminals.
Suspect John but don't convict him.

- Medicine

For all x, if x has pneumonia, then x has a fever and chills, coughs deeply, and feels exceptionally tired and miserable. John has a fever and chills, coughs deeply, and feels exceptionally tired and miserable.
\therefore John has pneumonia.
Diagnosis of pneumonia is a strong possibility, though not a certainty.

Using diagrams to test validity: Example 1

Example

- All human beings are mortal.

Zeus is not mortal.
\therefore Zeus is not human.

$$
\triangleright \text { Valid (Modus tollens) }
$$

Using diagrams to test validity: Example 2

Example

- All human beings are mortal.

Felix is mortal.
\therefore Felix is a human being. $\quad \triangleright$ Invalid (Converse error)

Using diagrams to test validity: Example 3

Example

- No polynomial functions have horizontal asymptotes.

This function has a horizontal asymptote.
\therefore This function is not a polynomial function.

functions with horizontal asymptotes

- this function

Equivalence

- $P(x): x$ is a polynomial function
$Q(x): x$ does not have a horizontal asymptote $\forall x$, if $P(x)$ then $Q(x)$
$\sim Q(a)$ for a particular a
$\therefore \sim P(a)$

