Discrete Mathematics (Predicate Logic)

Pramod Ganapathi

Department of Computer Science State University of New York at Stony Brook

January 24, 2021

Contents

- Predicates and Quantified Statements
- Statements with Multiple Quantifiers
- Arguments with Quantified Statements

Predicates and Quantified Statements

What is a propositional function or predicate?

Definition

- A propositional function or predicate is a sentence that contains one or more variables
- A predicate is neither true nor false
- A predicate becomes a proposition when the variables are substituted with specific values
- The domain of a predicate variable is the set of all values that may be substituted for the variable

Examples

Symbol	Predicate	Domain	Propositions
p(x)	x > 5	$x \in \mathbb{R}$	$p(6), p(-3.6), p(0), \dots$
p(x,y)	x + y is odd	$x\in\mathbb{Z},y\in\mathbb{Z}$	$p(4,5), p(-4,-4), \ldots$
p(x,y)	$x^2 + y^2 = 4$	$x \in \mathbb{R}, y \in \mathbb{R}$	$p(-1.7, 8.9), p(-\sqrt{3}, -1), \dots$

What is a truth set?

Definition

- A truth set of a predicate is the set of all values of the predicate that makes the predicate true
- If p(x) is a predicate and x has domain D, then the truth set of p(x) is the set of all elements of D that makes p(x) true when the values are substituted for x. That is,

Truth set of
$$p(x) = \{x \in D \mid p(x)\}$$

Examples

Symbol	Predicate	Domain	Truth set
p(x)	x > 5	$x \in \mathbb{R}$	$\{p(6), p(13.6), p(5.001), \ldots\}$
p(x,y)	x + y is odd	$x\in\mathbb{Z},y\in\mathbb{Z}$	$\{p(4,5), p(-4,-3), \ldots\}$
p(x,y)	$x^2 + y^2 = 4$	$x \in \mathbb{R}, y \in \mathbb{R}$	$\{p(-2,2), p(-\sqrt{3},-1),\ldots\}$

There are two methods to obtain propositions from predicates

- 1. Assign specific values to variables
- 2. Add quantifiers

Definition

- Quantifiers are words that refer to quantities such as "all" or "some" and they tell for how many elements a given predicate is true
- Introduced into logic by logicians Charles Sanders Pierce and Gottlob Frege during late 19th century
- Two types of quantifiers:
 - 1. Universal quantifier (\forall)
 - 2. Existential quantifier (\exists)

Universal quantifier (\forall)

Definition

- $\bullet \ \mbox{Let} \ p(x)$ be a predicate and D be the domain of x
- A universal statement is a statement of the form

$$\forall x \in D, p(x)$$

• Forms:

- "p(x) is true for all values of x"
- "For all x, p(x)"
- "For each x, p(x)"
- "For every $x, \ p(x)$ "
- "Given any x, p(x)"
- It is true if p(x) is true for each x in D; It is false if p(x) is false for at least one x in D
- A counterexample to the universal statement is the value of x for which $p(\boldsymbol{x})$ is false

Examples					
	Universal st.s	Domain	Truth value	Method	
	$\forall x \in D, x^2 \geq x$	$D = \{1, 2, 3\}$	True	Method of exhaustion	
	$\forall x \in \mathbb{R}, x^2 \ge x$	\mathbb{R}	False	Counterexample	
				x = 0.1	
_					
(Caution				

• Method of exhaustion cannot be used to prove universal statements for infinite sets

Existential quantifier (\exists)

Definition

- $\bullet \ \mbox{Let} \ p(x)$ be a predicate and D be the domain of x
- An existential statement is a statement of the form

$$\exists x \in D, p(x)$$

• Forms:

- "There exists an x such that p(x)"
- "For some x, p(x)"
- "We can find an x, such that p(x)"
- "There is some x such that p(x)"
- $\bullet\,$ "There is at least one x such that p(x)"
- It is true if p(x) is true for at least one x in D; It is false if p(x) is false for all x in D
- A counterproof to the existential statement is the proof to show that p(x) is true is for no x

Examples				
(Universal st.s	Domain	Truth value	Method
	$\exists x \in D, x^2 \geq x$	$D = \{1, 2, 3\}$	True	Method of exhaust.
	$\exists x \in \mathbb{R}, x^2 \geq x$	\mathbb{R}	True	Example
	$\exists x \in \mathbb{Z}, x+1 \le x$	\mathbb{Z}	False	How?

Example

- $\bullet \ \forall x \in \mathbb{R}, x^2 \geq 0$
 - Every real number has a nonnegative square
 - All real numbers have nonnegative squares
 - Any real number has a nonnegative square
 - The square of each real number is nonnegative
 - No real numbers have negative squares
 - x^2 is nonnegative for every real x
 - $\bullet \ x^2$ is not less than zero for each real number x

Universal conditional statement (\forall, \rightarrow)

• Can be extended to existential conditional statement (\exists, \rightarrow)

Implicit quantification $(\Rightarrow, \Leftrightarrow)$

Examples

- If a number is an integer, then it is a rational number Implicit meaning: ∀ number x, if x is an integer, x is rational
- The number 10 can be written as a sum of two prime numbers Implicit meaning: \exists prime numbers p and q such that 10 = p+q
- If x > 2, then $x^2 > 4$ Implicit meaning: \forall real x, if x > 2, then $x^2 > 4$

Definition

• Let p(x) and q(x) be predicates and D be the common domain of x. Then implicit quant. symbols \Rightarrow , \Leftrightarrow are defined as:

$$p(x) \Rightarrow q(x) \equiv \forall x, p(x) \rightarrow q(x)$$
$$p(x) \Leftrightarrow q(x) \equiv \forall x, p(x) \leftrightarrow q(x)$$

Implicit quantification $(\Rightarrow, \Leftrightarrow)$

Problem

- q(n): n is a factor of 8; r(n): n is a factor of 4 s(n): n < 5 and $n \neq 3$ Domain of n is \mathbb{Z}^+ (i.e., positive integers)
- What are the relationships between q(n), r(n), and s(n) using symbols \Rightarrow and \Leftrightarrow ?

Implicit quantification $(\Rightarrow, \Leftrightarrow)$

Problem

- q(n): n is a factor of 8; r(n): n is a factor of 4 s(n): n < 5 and $n \neq 3$ Domain of n is \mathbb{Z}^+ (i.e., positive integers)
- What are the relationships between q(n), r(n), and s(n) using symbols \Rightarrow and \Leftrightarrow ?

- Truth set of $q(n) = \{1, 2, 4, 8\}$; Truth set of $r(n) = \{1, 2, 4\}$; Truth set of $s(n) = \{1, 2, 4\}$
- $\forall n \text{ in } \mathbb{Z}^+, r(n) \rightarrow q(n) \text{ i.e., } r(n) \Rightarrow q(n)$ i.e., "n is a factor of 4" \Rightarrow "n is a factor of 8"

•
$$\forall n \text{ in } \mathbb{Z}^+, r(n) \leftrightarrow s(n) \text{ i.e., } r(n) \Leftrightarrow s(n)$$

i.e., "n is a factor of 4" \Leftrightarrow "n < 5 and $n \neq 3$ "

i.e., "
$$n < 5$$
 and $n \neq 3$ " \Rightarrow " n is a factor of 8"

Negation of quantified statements (\sim)

Definition

• Formally,

$$\begin{split} &\sim (\forall x \in D, p(x)) \equiv \exists x \in D, \sim p(x) \\ &\sim (\exists x \in D, p(x)) \equiv \forall x \in D, \sim p(x) \end{split}$$

• Negation of a universal statement ("all are") is logically equivalent to an existential statement ("there is at least one that is not")

Negation of an existential statement ("some are") is logically equivalent to a universal statement ("all are not")

Methods

Two methods to avoid errors while finding negations:

- 1. Write the statements formally and then take negations
- 2. Ask "What exactly would it mean for the given statement to be false?"

Examples

 All mathematicians wear glasses Negation (incorrect): No mathematician wears glasses Negation (incorrect + ambiguous): All mathematicians do not wear glasses Negation (correct): There is at least one mathematician who does not wear glasses
 Some snowflakes are the same

Negation (incorrect):: Some snowflakes are different Negation (correct):: All snowflakes are different

Examp

- \forall primes p, p is odd Negation: \exists primes p, p is even
- ∃ triangle T, sum of angles of T equals 200°
 ∀ triangles T, sum of angles of T does not equal 200°
- No politicians are honest
 Formal statement: ∀ politicians x, x is not honest
 Formal negation: ∃ politician x, x is honest
 Informal negation: Some politicians are honest
- 1357 is not divisible by any integer between 1 and 37 Formal statement: $\forall n \in [1, 37]$, 1357 is not divisible by nFormal negation: $\exists n \in [1, 37]$, 1357 is divisible by nInformal negation: 1357 is divisible by some integer between 1 and 37

Negation of universal conditional statements

Definition

• Formally,

$$\sim (\forall x, p(x) \to q(x)) \equiv \exists x, \sim (p(x) \to q(x))$$
$$\equiv \exists x, (p(x) \land \sim q(x))$$

Examples

- \forall real x, if x > 10, then $x^2 > 100$. Negation: \exists real x such that x > 10 and $x^2 \le 100$.
- If a computer program has more than 100,000 lines, then it contains a bug.
 Negation: There is at least one computer program that has more than 100,000 lines and does not contain a bug.

Relation

- Universal statements are generalizations of and statements Existential statements are generalizations of or statements
- If p(x) is a predicate and $D = \{x_1, x_2, \dots, x_n\}$ is the domain of x, then

$$\forall x \in D, p(x) \equiv p(x_1) \land p(x_2) \land \dots \land p(x_n) \exists x \in D, p(x) \equiv p(x_1) \lor p(x_2) \lor \dots \lor p(x_n)$$

Vacuous truth of universal statements


```
\forall x \text{ in } D, if p(x), then q(x)
```

is vacuously true or true by default, if and only if $p(\boldsymbol{x})$ is false for all \boldsymbol{x} in D

Universal conditional statements $(\forall x, p(x) \rightarrow q(x))$

Definitions

- Statement: $\forall x$, if p(x) then q(x)
- Contrapositive of the statement is $\forall x,$ if $\sim q(x)$ then $\sim p(x)$
- Converse of the statement is $\forall x$, if q(x) then p(x)
- \bullet Inverse of the statement is $\forall x,$ if $\sim p(x)$ then $\sim q(x)$

Identities

- Conditional \equiv Contrapositive
- Conditional $\not\equiv$ Converse
- Conditional $\not\equiv$ Inverse
- Converse ≡ Inverse

Formulas

$$\bullet \ \forall x, p(x) \to q(x) \equiv \forall x, \sim q(x) \to \sim p(x) \quad \rhd \text{ Useful for proofs}$$

•
$$\forall x, p(x) \to q(x) \not\equiv \forall x, q(x) \to p(x)$$

•
$$\forall x, p(x) \to q(x) \not\equiv \forall x, \sim p(x) \to \sim q(x)$$

•
$$\forall x, q(x) \rightarrow p(x) \equiv \forall x, \sim p(x) \rightarrow \sim q(x)$$

▷ Useful for proofs

Universal conditional statement $\forall x, p(x) \rightarrow q(x)$

Definitions

- $\forall x, p(x)$ is a sufficient condition for q(x) means $\forall x$, if p(x) then q(x)
- $\forall x, p(x)$ is a necessary condition for q(x) means $\forall x$, if $\sim p(x)$ then $\sim q(x) \equiv \forall x$, if q(x) then p(x)

•
$$\forall x, p(x) \text{ only if } q(x) \text{ means}$$

 $\forall x, \text{ if } \sim q(x) \text{ then } \sim p(x) \equiv \forall x, \text{ if } p(x) \text{ then } q(x)$

Example

• For real x, x = 1 is a sufficient condition for $x^2 = 1$ i.e., $\forall x$, if x = 1 then $x^2 = 1$ \triangleright True • For real $x, x^2 = 1$ is a necessary condition for x = 1i.e., $\forall x$, if $x^2 \neq 1$ then $x \neq 1$ \triangleright True • For real x, x = 1 only if $x^2 = 1$ i.e., $\forall x$, if $x^2 \neq 1$ then $x \neq 1$ \triangleright True

Statements with Multiple Quantifiers

• What is the interpretation for the following statement? "There is a person supervising every detail of the production process."

Ambiguous interpretations

- 1. There is one single person who supervises all the details of the production process.
 - \exists person p such that \forall detail d, p supervises d
- 2. For any particular production detail, there is a person who supervises that detail, but there might be different supervisors for different details.

 \forall detail d, \exists person p such that p supervises d

Statements with multiple quantifiers

Definitions

1. Statement form:

```
\forall x \in D, \exists y \in E \text{ such that } P(x, y)
```

Interpretation: Allow someone else to pick whatever element x in D they wish. Then, you must find an element y in E that "works" for that particular x.

2. Statement form:

```
\exists x \in D \text{ such that } \forall y \in E, P(x, y)
```

Interpretation: Your job is to find one particular x in D that will "work" no matter what y in E anyone might choose to challenge you with.

Example: Tarski world

Problem

• For all triangles x, there is a square y such that x and y have the same color. Truth value?

Answer

• True. How?

Example: Tarski world

Problem

• There is a triangle x such that for all circles y, x is to the right of y. Truth value?

Answer

• True. How?

Problem

- \exists an item I such that \forall students S, S chose I.
- Informal statement? Truth value?

- There is an item that was chosen by every student.
- True. How?

Problem

- \exists a student S such that \forall items I, S chose I.
- Informal statement? Truth value?

- There is a student who chose every available item.
- False. How?

Problem

- \exists a student S such that \forall stations Z, \exists an item I in Z such that S chose I.
- Informal statement? Truth value?

- There is a student who chose at least one item from every station.
- True. How?

Problem

- \forall students S and \forall stations Z, \exists an item I in Z such that S chose I.
- Informal statement? Truth value?

- Every student chose at least one item from every station.
- False. How?

- Every nonzero real number has a reciprocal.
- There is a real number with no reciprocal.
- There is a smallest positive integer.
- There is no smallest positive real number.

- Every nonzero real number has a reciprocal.
- There is a real number with no reciprocal.
- There is a smallest positive integer.
- There is no smallest positive real number.

- \forall nonzero real numbers u, \exists a real number v such that uv = 1.
- \exists a real number c such that \forall real numbers d, $cd \neq 1$.
- \exists a positive integer m such that \forall positive integers n, $m \leq n$.
- \forall positive real numbers x, \exists a positive real number y such that y < x.

Definitions

• ~
$$(\forall x \text{ in } D, \exists y \text{ in } E \text{ such that } P(x, y))$$

 $\equiv \exists x \text{ in } D \text{ such that } \sim (\exists y \text{ in } E \text{ such that } P(x, y))$
 $\equiv \exists x \text{ in } D \text{ such that } \forall y \text{ in } E, \sim P(x, y)$
• ~ $(\exists x \text{ in } D \text{ such that } \forall y \text{ in } E, P(x, y))$
 $\equiv \forall x \text{ in } D, \sim (\forall y \text{ in } E, P(x, y))$
 $\equiv \forall x \text{ in } D, \exists y \text{ in } E \text{ such that } \sim P(x, y)$

Example: Tarski world

Problem

• For all squares x, there is a circle y such that x and y have the same color. Negation?

Answer

• \exists a square x such that \forall circles y, x and y do not have the same color. True. How?

Example: Tarski world

Problem

• There is a triangle x such that for all squares y, x is to the right of y. Negation?

Answer

• \forall triangles x, \exists a square y such that x is not to the right of y. True. How?

Order

• The order of quantifiers are important when multiple quantifiers are involved

Example

- \forall people x, \exists a person y such that x loves y. Quite possible.
- \exists a person y such that \forall people x, x loves y. Quite impossible.

Order of quantifiers

Example

- For every square x there is a triangle y such that x and y have different colors \triangleright True
- There exists a triangle y such that for every square x, x and y have different colors. > False

Example			
Suppose \mathbb{R}^* is a set of nonzero real numbers.			
• $\forall x \in \mathbb{Z}, \exists y \in \mathbb{R}^* (xy < 1)$	⊳ True		
Two cases:			
a . For $x \leq 0$, let $y = 1$, then $xy < 1$			
b. For $x > 0$, let $y = 1/(x+1)$, then $xy < 1$			
• $\exists y \in \mathbb{R}^*, \forall x \in \mathbb{Z} \ (xy < 1)$	⊳ False		
Two cases:			
$a.$ For $y>0$, if integer $x\geq 1/y$, then $xy eq 1$			
$b.$ For $y < 0$, if integer $x \leq 1/y$, then $xy ot < 1$			
In both the cases, an adversary can choose an i	nteger that		
makes the predicate false. Hence, the quantified s	tatement is		
false.			

Definitions

- $\forall x \text{ in } D, P(x)$
 - $\equiv \forall x (x \text{ in } D \to P(x))$
- $\exists x \text{ in } D \text{ such that } P(x)$ $\equiv \exists x(x \text{ in } D \land P(x))$

Example: Tarski world

Definitions

- Triangle(x): x is a triangle
- Circle(x): x is a circle
- Square(x): x is a square
- $\mathsf{Blue}(x)$: x is blue
- Gray(x): x is gray
- Black(x): x is black
- RightOf(x, y): x is to the right of y
- Above(x, y): x is above y
- SameColor(x, y): x has the same color as y

- For all circles x, x is above f.
- Formal statement? Formal negation?

- Formal statement $\forall x (Circle(x) \rightarrow Above(x, f))$
- Formal negation

$$\sim (\forall x(\mathsf{Circle}(x) \to \mathsf{Above}(x,f)))$$

- $\equiv \exists x \sim (\mathsf{Circle}(x) \to \mathsf{Above}(x, f))$
- $\equiv \exists x (\mathsf{Circle}(x) \land \sim \mathsf{Above}(x, f))$

- There is a square x such that x is black.
- Formal statement? Formal negation?

Solution

- Formal statement $\exists x(Square(x) \land Black(x))$
- Formal negation

$$\sim (\exists x (\mathsf{Square}(x) \land \mathsf{Black}(x)))$$

$$\equiv \forall x \sim (\mathsf{Square}(x) \land \mathsf{Black}(x))$$

 $\equiv \forall x (\sim \mathsf{Square}(x) \lor \sim \mathsf{Black}(x))$

- For all circles x, there is a square y such that x and y have the same color.
- Formal statement? Formal negation?

- Formal statement $\forall x (Circle(x) \rightarrow \exists y (Square(y) \land SameColor(x, y)))$
- Formal negation
 - $\sim (\forall x(\mathsf{Circle}(x) \to \exists y(\mathsf{Square}(y) \land \mathsf{SameColor}(x,y))))$
 - $\equiv \exists x \sim (\mathsf{Circle}(x) \rightarrow \exists y (\mathsf{Square}(y) \land \mathsf{SameColor}(x,y)))$
 - $\equiv \exists x (\mathsf{Circle}(x) \land \sim (\exists y (\mathsf{Square}(y) \land \mathsf{SameColor}(x, y))))$
 - $\equiv \exists x (\mathsf{Circle}(x) \land \forall y (\sim (\mathsf{Square}(y) \land \mathsf{SameColor}(x, y))))$
 - $\equiv \exists x (\mathsf{Circle}(x) \land \forall y (\sim \mathsf{Square}(y) \lor \sim \mathsf{SameColor}(x,y)))$

- There is a square x such that for all triangles y, x is to right of y.
- Formal statement? Formal negation?

- Formal statement $\exists x(\mathsf{Square}(x) \land \forall y(\mathsf{Triangle}(y) \to \mathsf{RightOf}(x, y)))$
- Formal negation

$$\begin{array}{l} \sim (\exists x (\mathsf{Square}(x) \land \forall y (\mathsf{Triangle}(y) \to \mathsf{RightOf}(x, y)))) \\ \equiv \forall x \sim (\mathsf{Square}(x) \land \forall y (\mathsf{Triangle}(y) \to \mathsf{RightOf}(x, y))) \\ \equiv \forall x (\sim \mathsf{Square}(x) \lor \sim (\forall y (\mathsf{Triangle}(y) \to \mathsf{RightOf}(x, y)))) \\ \equiv \forall x (\sim \mathsf{Square}(x) \lor \exists y (\sim (\mathsf{Triangle}(y) \to \mathsf{RightOf}(x, y)))) \\ \equiv \forall x (\sim \mathsf{Square}(x) \lor \exists y (\mathsf{Triangle}(y) \land \sim \mathsf{RightOf}(x, y))) \end{array}$$

Arguments with Quantified Statements

Definition

• If some property is true of everything in a set, then it is true of any particular thing in the set.

Example

• All men are mortal.

Socrates is a man.

.:. Socrates is mortal.

Rule of inference: Universal modus ponens

Definition

- It has the form: $\forall x$, if P(x) then Q(x) P(a) for a particular a $\therefore Q(a)$
- Used in direct proofs

Example

• Informal argument

If an integer is even, then its square is even.

- \boldsymbol{k} is a particular integer that is even.
- $\therefore k^2$ is even
- Formal argument

 $\forall x, \text{ if } E(x) \text{ then } S(x)$ E(k) for a particular k $\therefore S(k)$ $\triangleright E(x)$? S(x)? k?

Rule of inference: Universal modus tollens

Definition

- It has the form: $\forall x$, if P(x) then Q(x) $\sim Q(a)$ for a particular a $\therefore \sim P(a)$
- Used in proof by contradiction

Example

Informal argument

All human beings are mortal.

- Zeus is not mortal.
- ∴ Zeus is not human.
- Formal argument $\forall x$, if H(x) then M(x) $\sim M(Z)$

$$\therefore \sim H(Z)$$

 \triangleright H(x)? M(x)? Z?

Definition

- Converse error has the form: ∀x, if P(x) then Q(x) Q(a) for a particular a ∴ P(a)
 Inverse error has the form: ∀x, if P(x) then Q(x)
 - $\sim P(a)$ for a particular a
 - $\therefore \sim Q(a)$

Example		
• Law		
All the town criminals frequent the Hot Life bar.		
John frequents the Hot Life bar.		
∴ John is one of the town criminals.		
Suspect John but don't convict him.		
Medicine		
For all x , if x has pneumonia, then x has a fever and chills, coughs deeply, and feels exceptionally tired and miserable.		
John has a fever and chills, coughs deeply, and feels exception-		
ally tired and miserable.		
∴ John has pneumonia.		
Diagnosis of pneumonia is a strong possibility, though not a		
certainty.		

Using diagrams to test validity: Example 1

Using diagrams to test validity: Example 2

Example

- All human beings are mortal. Felix is mortal.
 - .:. Felix is a human being.

▷ Invalid (Converse error)

Using diagrams to test validity: Example 3

Example

- No polynomial functions have horizontal asymptotes. This function has a horizontal asymptote.
 - ... This function is not a polynomial function.

⊳ Valid

Equivalence

•
$$P(x) : x$$
 is a polynomial function
 $Q(x) : x$ does not have a horizontal asymptote
 $\forall x$, if $P(x)$ then $Q(x)$
 $\sim Q(a)$ for a particular a
 $\therefore \sim P(a)$ \triangleright Modus tollens