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Predicates and Quantified Statements



What is a propositional function or predicate?

Definition

@ A propositional function or predicate is a sentence that contains
one or more variables

® A predicate is neither true nor false

@ A predicate becomes a proposition when the variables are sub-
stituted with specific values

@ The domain of a predicate variable is the set of all values that
may be substituted for the variable

Examples
Symbol Predicate Domain Propositions
pl) x>5 z€R p(6),p(=3.6),p(0), .. .

p(z,y) x+yisodd ze€Z,yeZ p4,5),p(—4,—4),...
p(xay) 752"’2/2 =4 (L'ER7’y€R p(_17789)ap(_\/§1_1)7




What is a truth set?

Definition

o A truth set of a predicate is the set of all values of the predicate
that makes the predicate true

o If p(z) is a predicate and x has domain D, then the truth set
of p(x) is the set of all elements of D that makes p(x) true
when the values are substituted for x. That is,

Truth set of p(z) = {x € D | p(z)}

Examples
Symbol Predicate Domain Truth set
p(x) x>5 z€R {p(6),p(13.6),p(5.001),...}

plr,y) x+yisodd zecZyecZ {p(45),p(=4,-3),...}
plz,y) 2*+y*=4 zeRyeR {p(-2,2),p(—V3,-1),...}




Predicates to propositions

There are two methods to obtain propositions from predicates
1. Assign specific values to variables
2. Add quantifiers

1. Assign specific values to variables

N

Predicates Propositions

7

2. Add quantifiers




What are quantifiers?

| Definition |
@ Quantifiers are words that refer to quantities such as “all” or
“some” and they tell for how many elements a given predicate
is true

@ Introduced into logic by logicians Charles Sanders Pierce and
Gottlob Frege during late 19th century

@ Two types of quantifiers:
1. Universal quantifier (V)
2. Existential quantifier (3)



Universal quantifier (V)

Definition

o Let p(x) be a predicate and D be the domain of z
@ A universal statement is a statement of the form

Va € D, p(x)

® Forms:
e “p(z) is true for all values of ="
e “For all z, p(z)”
e “For each z, p(x)”
o “For every z, p(x)"
® “Given any z, p(x)"
o It is true if p(x) is true for each = in D; It is false if p(x) is
false for at least one x in D
@ A counterexample to the universal statement is the value of x
for which p(x) is false




Universal quantifier (V)

Examples
Universal st.s Domain Truth value Method
Vee D22 >x D=1{1,2,3} True Method of exhaustion
VeieR, 22>z R False Counterexample
z=0.1
Caution
@ Method of exhaustion cannot be used to prove universal state-
ments for infinite sets




Existential quantifier (3)

Definition

Let p(x) be a predicate and D be the domain of z
An existential statement is a statement of the form

Jz € D,p(x)

e Forms:
® “There exists an x such that p(z)”
e “For some z, p(z)"
® “We can find an z, such that p(z)”
® “There is some x such that p(x)”
® “There is at least one z such that p(z)”
o It is true if p(x) is true for at least one x in D; It is false if p(z)
is false for all z in D
@ A counterproof to the existential statement is the proof to show
that p(z) is true is for no z




Existential quantifier (3)

Examples
Universal st.s Domain Truth value Method
JzeD,2’>z D ={1,2,3} True Method of exhaust.
JreR, 22>z R True Example
dreZ,x+1<x 7Z False How?




Formal and informal languages

Example

OV;UER,:I:2ZO

Every real number has a nonnegative square
All real numbers have nonnegative squares
Any real number has a nonnegative square
The square of each real number is nonnegative
No real numbers have negative squares

x? is nonnegative for every real z

22 is not less than zero for each real number




Universal conditional statement (V, —)

Definition

@ A universal conditional statement is of the form

Vz, if p(x) then g(x)

Examples

o Vx € R, if z > 2 then 22 > 4
@ Y real number x, if z is an integer then z is rational

Y integer x, x is rational > Logically equivalent
e Yz, if x is a square then z is a rectangle

V square x, x is a rectangle > Logically equivalent
o Vx € U, if p(x) then ¢(z)

Va € D, q(x) > Logically equivalent

(where, D = {x € U | p(x) is true})

o Can be extended to existential conditional statement (3, —)



Implicit quantification (=, <)

Examples

@ |f a number is an integer, then it is a rational number

Implicit meaning: V number z, if = is an integer, x is rational
@ The number 10 can be written as a sum of two prime numbers

Implicit meaning: 3 prime numbers p and ¢ such that 10 = p+q
o If x > 2, then 22 >4

Implicit meaning: V real z, if x > 2, then 22 > 4

Definition

o Let p(z) and ¢(z) be predicates and D be the common domain
of . Then implicit quant. symbols =, < are defined as:

p(z) = q(x) = Vz,p(z) = q(z)
p(z) & q(z) =V, p(x) < q(x)




Implicit quantification (=, <)

Problem

® ¢(n): nis a factor of 8; r(n): n is a factor of 4
s(n): n<b5andn#3
Domain of n is Z* (i.e., positive integers)

® What are the relationships between ¢(n), r(n), and s(n) using
symbols = and <7




Implicit quantification (=, <)

Problem

® ¢(n): nis a factor of 8; r(n): n is a factor of 4
s(n): n<b5andn#3
Domain of n is Z* (i.e., positive integers)

® What are the relationships between ¢(n), r(n), and s(n) using
symbols = and <7

Solution

o Truth set of g(n) = {1,2,4,8}; Truth set of r(n) = {1,2,4};
Truth set of s(n) = {1,2,4}
° Vn in Z*,r(n) — q(n) ie., r(n) = q(n)
i.e., “nis a factor of 4" = "“n is a factor of 8"
° Vn in Z*,r(n) <+ s(n) i.e., r(n) & s(n)
i.e., "nis afactorof 4" < "n <5 andn # 3"
° Vnin Z*,s(n) — q(n) ie., s(n) = q(n)
i.e,, “n <5 and n # 3" = "nis a factor of 8"




Negation of quantified statements (~)

Definition

e Formally,

~ (V€ D,p(x) = 3w € D, ~ p(x)
~ (3z € D,p(x)) =Vz € D,~ p(z)

o Negation of a universal statement (“all are”) is logically equiv-
alent to an existential statement (“there is at least one that is
not”)

Negation of an existential statement (“some are”) is logically
equivalent to a universal statement (“all are not”)

Methods

Two methods to avoid errors while finding negations:

1. Write the statements formally and then take negations

2. Ask “What exactly would it mean for the given statement to
be false?”




Negation of quantified statements (~)

Examples

o All mathematicians wear glasses
Negation (incorrect): No mathematician wears glasses
Negation (incorrect + ambiguous): All mathematicians do not
wear glasses
Negation (correct): There is at least one mathematician who
does not wear glasses

e Some snowflakes are the same
Negation (incorrect):: Some snowflakes are different
Negation (correct):: All snowflakes are different




Negation of quantified statements (~)

Examples

® Y primes p, p is odd
Negation: 3 primes p, p is even

@ J triangle T', sum of angles of T" equals 200°
V triangles T', sum of angles of T" does not equal 200°

® No politicians are honest
Formal statement: V politicians x, x is not honest
Formal negation: 3 politician x, x is honest
Informal negation: Some politicians are honest

@ 1357 is not divisible by any integer between 1 and 37
Formal statement: Vn € [1,37], 1357 is not divisible by n
Formal negation: 3n € [1,37], 1357 is divisible by n
Informal negation: 1357 is divisible by some integer between 1
and 37




Negation of universal conditional statements

Definition
e Formally,
~ (Vo,p(x) = q(z)) = 3z, ~ (p(z) = q(x))
= Jz, (p(x)A ~ q(x))
Examples

o V real z, if x > 10, then 22 > 100.
Negation: 3 real « such that 2 > 10 and 22 < 100.

o If a computer program has more than 100,000 lines, then it
contains a bug.
Negation: There is at least one computer program that has
more than 100,000 lines and does not contain a bug.




Relation between quantifiers (V,3) and (A, V)

Relation

@ Universal statements are generalizations of and statements
Existential statements are generalizations of or statements

o If p(z) is a predicate and D = {1, z2,...,x,} is the domain
of x, then

Va € D,p(x)
Jdx € D, p(z)

—

p(x1) Ap(x2) A Ap(zy)
p(z1) Vp(z2) V-V p(,)




Vacuous truth of universal statements

Problem
o @ Consider the bowl and the balls
:: o Consider the statement:
A All the balls in the bowl are blue
?
Bou] Balls @ |s the statement true?
Solution

@ The statement is false iff its negation is true
@ Negation: There exists a ball in the bowl that is not blue
@ The negation is false; So, the statement is true, by default

Definition

@ A statement of the form
Vz in D, if p(z), then ¢(z)

is vacuously true or true by default, if and only if p(x) is false
for all x in D




Universal conditional statements (Vx,p(x) — ¢(z))

Definitions

Statement: Vz, if p(x) then g(x)

Contrapositive of the statement is Vz, if ~ g(x) then ~ p(x)
Converse of the statement is Vz, if g(x) then p(z)

Inverse of the statement is Vz, if ~ p(x) then ~ ¢(z)

Identities

Conditional = Contrapositive > Useful for proofs
Conditional # Converse

Conditional # Inverse

Converse = Inverse

Formulas

o Vz,p(x (z
° YV, p(x (z
° Vz,p(x (
° Vz,q(x (

V:c ~ q(z) =~ p(x) > Useful for proofs

,q(x) = p(x)

Il *H~L \H~L Il

)
)
)
)

— — —

—q
— q
—q Vi,
— p(x Va,




Universal conditional statement Vz,p(z) — ¢(x)

Definitions

® Vx,p(x) is a sufficient condition for ¢(z) means
Vz, if p(z) then ¢(z)

® Vx,p(x) is a necessary condition for ¢(z) means
Va, if ~ p(x) then ~ q(z) =V, if g(x) then p(x)

e Vx,p(x) only if g(x) means
Va, if ~ q(x) then ~ p(z) =V, if p(z) then g(x)

Example
® For real z, x = 1 is a sufficient condition for z2 = 1

ie., Vo, if £ =1then 22 =1 > True
e For real , 2 = 1 is a necessary condition for z = 1

ie., Vo, if 22 # 1 then z # 1 > True

o Forreal z, v =1 only if 22 =1
ie., Vo, if 2 # 1 then x # 1 > True




Statements with Multiple Quantifiers



Statements with multiple quantifiers

Problem

@ What is the interpretation for the following statement?
“There is a person supervising every detail of the production
process.”

Ambiguous interpretations

1. There is one single person who supervises all the details of the
production process.
3 person p such that V detail d, p supervises d

2. For any particular production detail, there is a person who
supervises that detail, but there might be different supervisors
for different details.
V detail d, 3 person p such that p supervises d




Statements with multiple quantifiers

Definitions

1. Statement form:
Vx € D,3y € E such that P(z,y)

Interpretation: Allow someone else to pick whatever element
x in D they wish. Then, you must find an element y in E that
“works" for that particular x.

2. Statement form:

Jz € D such that Vy € E, P(z,vy)

Interpretation: Your job is to find one particular x in D that
will “work™ no matter what y in E anyone might choose to
challenge you with.




Example: Tarski world

,_

Problem

@ For all triangles x, there is a square y such that x and y have
the same color. Truth value?

Answer

@ True. How?




Example: Tarski world

i

[ Problem

@ There is a triangle x such that for all circles y, x is to the right
of y. Truth value?

Answer

® True. How?




Example: College cafeteria

Salads
1 green salad
fruit salad

Main courses

Tim

Yuen

Beverages
milk
soda
coffee

Problem

@ 7 an item [ such that V students S, S chose I.
o [nformal statement? Truth value?

Solution

@ There is an item that was chosen by every student.
® True. How?




Example: College cafeteria

Salads

Yuen
Beverages

milk
soda
coffee

Problem

@ 7 a student S such that V items I, S chose I.
o [nformal statement? Truth value?

Solution

@ There is a student who chose every available item.
@ False. How?




Example: College cafeteria

Salads

_——green salad
- fruit salad

Uta —
T Main courses

Yuen

“coffee

Problem

@ 7 a student S such that V stations Z, 3 an item [ in Z such

that S chose I.
o [nformal statement? Truth value?

Solution

@ There is a student who chose at least one item from every

station.
@ True. How?




Example: College cafeteria

Salads

_— greensalad
//// _ fruit salad

Main courses

Yuen

™ coffee

Problem

@ V students S and V stations Z, 3 an item I in Z such that S
chose I.
o [nformal statement? Truth value?

Solution

@ Every student chose at least one item from every station.
@ False. How?




Translating from informal to formal language

Problem

@ Every nonzero real number has a reciprocal.
@ There is a real number with no reciprocal.
@ There is a smallest positive integer.

@ There is no smallest positive real number.




Translating from informal to formal language

Problem

@ Every nonzero real number has a reciprocal.
@ There is a real number with no reciprocal.
@ There is a smallest positive integer.

@ There is no smallest positive real number.

Solution

@ V nonzero real numbers u, 3 a real number v such that uv = 1.

@ 1 a real number ¢ such that V real numbers d, cd # 1.

@ - a positive integer m such that V positive integers n, m < n.

@ V positive real numbers x, 3 a positive real number y such that
y<zwx.




Negations of multiply-quantified statements

Definitions

 ~ (Vz in D, Jy in E such that P(z,y))
= Jdz in D such that ~ (Jy in E such that P(z,y))
= Jdz in D such that Vy in E, ~ P(x,y)
® ~ (Jz in D such that Yy in E, P(z,vy))
=Vzin D, ~ (Yyin E, P(x,y))
=Vz in D, Jy in E such that ~ P(xz,y)




Example: Tarski world

,.

Problem

e For all squares z, there is a circle y such that  and y have the
same color. Negation?

Answer

@ 7 a square x such that V circles y, x and y do not have the
same color. True. How?




Example: Tarski world

,.

Problem

@ There is a triangle x such that for all squares y, x is to the
right of y. Negation?

Answer

@ Y triangles z, 3 a square y such that z is not to the right of y.
True. How?




Order of quantifiers

Order

@ The order of quantifiers are important when multiple quantifiers
are involved

Example

@ Y people x, 3 a person y such that z loves y.
Quite possible.

@ 7 a person y such that V people z, = loves y.
Quite impossible.




Order of quantifiers

,_

Example

® For every square z there is a triangle y such that x and y have
different colors > True
@ There exists a triangle y such that for every square x, = and y
have different colors. > False




Order of quantifiers

Example

Suppose R* is a set of nonzero real numbers.

o Vxre€Z,JyeR(zy < 1) > True
Two cases:

a. Forz <0, lety=1, then zy < 1
b. Forx >0, let y =1/(x 4+ 1), then zy < 1

o JyecR*"Vx € Z (zy < 1) > False
Two cases:
a. Fory >0, if integer x > 1/y, then zy £ 1
b. Fory <0, if integer x < 1/y, then zy £ 1
In both the cases, an adversary can choose an integer that
makes the predicate false. Hence, the quantified statement is
false.




Formal logical notation

Definitions

° Vz in D, P(z)
=Vz(z in D — P(x))
e Jdx in D such that P(z)
= Jx(z in D A P(x))




Example: Tarski world

Definitions

Triangle(z): x is a triangle

Circle(z): x is a circle

Square(x): x is a square

Blue(z): x is blue

Gray(z): x is gray

Black(x): z is black

RightOf(z,y): z is to the right of y
Above(zx,y): x is above y

SameColor(z,y): x has the same color as y




Example: Tarski world

Problem

@ For all circles x, x is above f.
@ Formal statement? Formal negation?

Solution

@ Formal statement
Vz(Circle(x) — Above(z, f))

@ Formal negation
~ (Va(Circle(z) — Above(z, f)))
= Jdz ~ (Circle(x) — Above(z, f))
= Jz(Circle(z)A ~ Above(z, f))




Example: Tarski world

Problem

@ There is a square x such that x is black.
@ Formal statement? Formal negation?

Solution

® Formal statement
Jz(Square(z) A Black(z))

@ Formal negation
~ (Jxz(Square(x) A Black(x)))
= Vx ~ (Square(z) A Black(x))
= Vx(~ Square(x)V ~ Black(x))




Example: Tarski world

Problem

@ For all circles x, there is a square y such that  and y have the
same color.
@ Formal statement? Formal negation?

Solution

® Formal statement
Vz(Circle(x) — Jy(Square(y) A SameColor(z,y)))

® Formal negation
~ (Vz(Circle(x) — Jy(Square(y) A SameColor(z,y))))
= Ja ~ (Circle(x) — Jy(Square(y) A SameColor(z,y)))
= Jx(Circle(z)A ~ (Jy(Square(y) A SameColor(z,y))))
= Jz(Circle(z) A Vy(~ (Square(y) A SameColor(z,y))))
= Jx(Circle(z) A Vy(~ Square(y)V ~ SameColor(z,y)))




Example: Tarski world

Problem

@ There is a square x such that for all triangles y, x is to right
of y.
@ Formal statement? Formal negation?

Solution

® Formal statement
Jz(Square(z) A Vy(Triangle(y) — RightOf(z,y)))

® Formal negation
~ (Jx(Square(x) A Vy(Triangle(y) — RightOf(z,y))))
= Va ~ (Square(z) A Yy(Triangle(y) — RightOf(z,y)))
= Vx(~ Square(z)V ~ (Vy(Triangle(y) — RightOf(z,y))))
= Va(~ Square(x) V Jy(~ (Triangle(y) — RightOf(z,y))))
= Vx(~ Square(z) V Jy(Triangle(y)A ~ RightOf(x,y)))

A~ —




Arguments with Quantified Statements



Universal instantiation

Definition

@ |f some property is true of everything in a set, then it is true of
any particular thing in the set.

Example

@ All men are mortal.
Socrates is a man.
.. Socrates is mortal.




Rule of inference: Universal modus ponens

Definition

@ |t has the form:
Va, if P(x) then Q(x)
P(a) for a particular a
" Q(a)

® Used in direct proofs

Example

@ Informal argument
If an integer is even, then its square is even.
k is a particular integer that is even.
“. k2 is even
® Formal argument
Vz, if E(z) then S(x) > E(x)? S(x)? k7
E(k) for a particular k
. S(k)




Rule of inference: Universal modus tollens

Definition

@ |t has the form:
Vz, if P(z) then Q(z)
~ Q(a) for a particular a
.~ P(a)
@ Used in proof by contradiction

Example

@ Informal argument
All human beings are mortal.
Zeus is not mortal.
.. Zeus is not human.
® Formal argument
Vz, if H(x) then M (z) > H(z)? M(z)? 27
~ M(Z)
~H(Z)




Fallacy: Converse and inverse errors

Definition

@ Converse error has the form:
Vz, if P(z) then Q(z)
Q(a) for a particular a
. P(a)

@ Inverse error has the form:
Vz, if P(z) then Q(z)
~ P(a) for a particular a

"~ Qa)




Fallacy: Converse error

Example

° Law
All the town criminals frequent the Hot Life bar.
John frequents the Hot Life bar.
.. John is one of the town criminals.
Suspect John but don't convict him.

® Medicine
For all z, if  has pneumonia, then x has a fever and chills,
coughs deeply, and feels exceptionally tired and miserable.
John has a fever and chills, coughs deeply, and feels exception-
ally tired and miserable.
.. John has pneumonia.
Diagnosis of pneumonia is a strong possibility, though not a
certainty.




Using diagrams to test validity: Example 1

Example

@ All human beings are mortal.
Zeus is not mortal.

.. Zeus is not human. > Valid (Modus tollens)
// ’ morals \\\ // n\\ / s \\\
,"/ N ‘;" \ / // \
\ ( \ | mortals | ." \ .
\ | human beings | | H / Zeus ':_‘ | human beings | | Zeus

_~ S~ — -



Using diagrams to test validity: Example 2

‘ Example
@ All human beings are mortal.
Felix is mortal.
Felix is a human being Invalid (Converse error)
/,/""--7- S ™~ // — T~ \
mortals N\,
,.’ ’ T \'\\ / ‘:\
\‘ l"‘. ,‘" "‘.‘
\ mortals |

[ .,/
{ human beings \ " \
/ /*' "‘\ ® Felix
AN S

\

\“_\
/e Fenx//"" T \\‘_
\

/ mortals .
\, I‘. !
\ ‘ | ,
I".‘ ‘ human beings \ ;' ‘-.\ I human beings
/,«
/ / \\ S/

\ \ @ Felix
\‘t.‘ -




Using diagrams to test validity: Example 3

‘ Example

@ No polynomial functions have horizontal asymptotes.
This function has a horizontal asymptote.
.. This function is not a polynomial function. > Valid

/ AN i AN
‘\. 7 \‘
functions with

| horizontal asymptotes |

[ . . X ‘.I
| polynomial functions |

"\\ // AN . ® this flmc[ion’ /

e

Equivalence

® P(z): x is a polynomial function
Q(x) : x does not have a horizontal asymptote
Vz, if P(z) then Q(z)
~ Q(a) for a particular a
.~ P(a) > Modus tollens




