CSE 215 Practice Questions

By Nicholas Smirnov

Truth Tables

Construct truth tables for the following statements:

1. $\sim (p \wedge r) \leftrightarrow (q \oplus r)$

\boldsymbol{p}	q	$\,r\,$				$ p \wedge r \sim (p \wedge r) q \oplus r \sim (p \wedge r) \leftrightarrow (q \oplus r)$
T	T	T	T	\overline{F}	$\,F$	T
T	T	\boldsymbol{F}	$\,F$	T	T	T
T	$\,F$	T	T	$\,F$	T	\overline{F}
T	$\,F$	$\,F$	$\,F$	T	$\,F$	\overline{F}
\overline{F}	T	T	$\,F$	T	$\,F$	$\,F$
\overline{F}	T	\boldsymbol{F}	$\,F$	T	T	T
\overline{F}	\overline{F}	T	\overline{F}	T	T	T
\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}	$\,F$	T	$\,F$	\boldsymbol{F}

2. $\sim (q \vee r) \rightarrow (p \oplus (r \wedge q))$

3. $((p \land q) \to r) \to (\sim q \lor \sim r)$

4. $(q \vee (r \oplus p)) \leftrightarrow (p \wedge (r \oplus q))$

5.
$$
((p \to q) \land (q \to r)) \leftrightarrow (p \to r)
$$

Deduction Rules

Determine if the following deduction rules are valid:

1. $p \rightarrow q$ $\sim r \to p$ ∴ q ∨ r

\boldsymbol{p}	q	$\,r\,$			$ p \rightarrow q \sim r \sim r \rightarrow p$	$q \vee r$
T	T	T	T	$\,F$	T	T
T	T	\overline{F}	T	T	T	T
T	\overline{F}	T	\overline{F}	\boldsymbol{F}	$\cal F$	
T	$\cal F$	\overline{F}	\boldsymbol{F}	T	T	
\boldsymbol{F}	T	T	T	\boldsymbol{F}	T	T
\boldsymbol{F}	T	\overline{F}	T	T	\boldsymbol{F}	
\boldsymbol{F}	\overline{F}	T	T	\boldsymbol{F}	T	T
\overline{F}	$\,F$	\boldsymbol{F}	T	T	\boldsymbol{F}	

Therefore, it is valid.

2. $p \leftrightarrow q$

 $∼ q ∧ ∼ r$

∴ ∼ r

Therefore, it is valid.

\boldsymbol{p}	q	\mathcal{r}	$p \oplus q$	$(p \oplus q) \rightarrow r p \oplus r $		$(p \oplus r) \rightarrow q \mid q \oplus r \mid$		$\vert (q \oplus r) \rightarrow p \vert p \wedge q \wedge r$	
T	T	T	$\,F$	T	\overline{F}	T	$\,F$	T	T
T	T	$\,F$	\boldsymbol{F}	T	T	T	T	T	\boldsymbol{F}
T	\boldsymbol{F}	T	T	T	\overline{F}	T	T	T	$\,F$
T	$\,F$	\boldsymbol{F}	T	$\cal F$	T	$\,F$	$\cal F$	T	
\boldsymbol{F}	T	T	T	T	T	T	$\cal F$	T	$\,F$
\boldsymbol{F}	T	\boldsymbol{F}	T	\boldsymbol{F}	\overline{F}	T	T	\boldsymbol{F}	
\boldsymbol{F}	\boldsymbol{F}	T	\boldsymbol{F}	T	T	\boldsymbol{F}	T	\boldsymbol{F}	
$\,F$	$\,F$	\boldsymbol{F}	\boldsymbol{F}	T	$\,F$	T	$\,F$	T	$\,F$

Therefore, it is invalid.

Logical Language

Rewrite the following sentences into two logically equivalent statements:

- 1. P is a necessary condition for Q. $\boxed{\sim P \rightarrow \sim Q \equiv Q \rightarrow P}$ 2. P is a sufficient condition for Q. $\boxed{P \rightarrow Q \equiv \, \sim Q \rightarrow \, \sim P}$ 3. P if and only if Q. $\boxed{P \leftrightarrow Q \equiv (P \to Q) \land (Q \to P)}$ 4. A necessary condition for R is P and Q. $\boxed{\sim (P \land Q) \rightarrow \sim R \equiv R \rightarrow (P \land Q)}$
- 5. R and T are both necessary and sufficient conditions for P or Q.

$$
\sim (R \wedge T) \to \sim (P \vee Q) \equiv (P \vee Q) \to (R \wedge T)
$$

Logical Rules and Fallacies

Deduce if the statements are valid. If so, state which rule. If not, state which fallacy.

1. If you study math, you are smart.

I do not study math.

- ∴ I am not smart. Invalid: Inverse Error
- 2. If you get above an 80 on this final, you get a B+.

I got above an 80 on this final.

- ∴ I get a B+. Valid: Modus Ponens
- 3. If you are a good person, you pay taxes.

I pay taxes.

- ∴ I am a good person. Invalid: Converse Error
- 4. If you like cats, you like furry animals.

I do not like furry animals.

∴ I do not like cats. Valid: Modus Tollens

Logical Deduction (Many Premises)

Use the valid arguments forms to deduce the conclusion from the premises.

1. $a \rightarrow \sim f$ $a \vee b$ $(b \wedge f) \rightarrow d$ f e → \sim d ∴ ∼ e $a \to \sim f(\text{P1}), f(\text{P4})$ $\sim a(\text{Modus Tollens})$ $a \vee b$ (P2), $\sim a$ (S1) | b (Elimination) b (S2), f (P4) $\vert b \wedge f$ (Conjunction) $(b \wedge f) \rightarrow d$ (P3), $b \wedge f$ (S3) d (Modus Ponens) d (S4), $e \rightarrow \sim d$ (P5) $\vert \sim e$ (Modus Tollens)

2. $\sim h \rightarrow f$

 $c \to \sim (f \wedge g)$ g $h \to f$ $c \vee q$

∴ q

Logic with Quantifiers

Find negations for the following statements:

1. There exists a student such that they have a higher grade than all other students.

For every student, there is a student who has a grade that is $>$ than theirs.

2. For all animals, if you are a pet, then you have an owner.

There exists an animal such that they are a pet but do not have an owner.

3.
$$
\forall x \in \mathbb{R}, \exists y \in \mathbb{Z}, xy \ge 0. \boxed{\exists x \in \mathbb{R}, \forall y \in \mathbb{Z}, xy < 0.}
$$

4. Passing both midterms is a sufficient condition to do well in this class.

One passed both midterms and didn't do well in this class.

5. If you get a 100% on the final or 100% on both midterms, you are going to get an A. One got a 100% on the final or 100% on both midterms and didn't get an A.

6.
$$
\forall x, \forall y, \forall z, \exists \alpha, \exists \beta, \exists \zeta, \alpha^{\beta} + \zeta \ge xyz \ge \alpha^{\beta} - \zeta
$$

$$
\boxed{\exists x, \exists y, \exists z, \forall \alpha, \forall \beta, \forall \zeta, (\alpha^{\beta} + \zeta < xyz) \lor (\alpha^{\beta} - \zeta > xyz)}
$$

Quantifiers

Deduce if the following statements are true or false:

1. $\forall x \in \mathbb{R}, \exists y \in \mathbb{Z}, xy \ge 0$. True. Let $y = 0$. 2. $\forall x \in \mathbb{R}, \forall y \in \mathbb{Z}, xy > 0.$ False. Let $x = -1$ and $y = 1$. 3. $\forall x, y \in \mathbb{Z}^+, (x^2 > y^2) \rightarrow (x > y)$. True because the domain is \mathbb{Z}^+ . 4. $\forall x, y \in \mathbb{Z}, \left(\frac{x}{y}\right)$ $\frac{x}{y} > \frac{y}{x}$ $\frac{y}{x}$ \rightarrow $(x \neq y)$. True. Use the previous question in the proof. 5. $\forall x, y \in \{\mathbf{c}, \mathbf{t}\}, \exists z \in \{\mathbf{c}, \mathbf{t}\}, (x \wedge y) \rightarrow z \equiv \mathbf{t}$ True. Let $z \equiv \mathbf{t}$.

Direct Proofs

Prove each of the following using a direct proof method:

1. The sum of any two odd integers is even.

Let two odd integers be a and b . By definition, an odd integer can be written as: $a = 2m + 1$ and $b = 2n + 1$, where m and n are integers. The sum of a and b is: $a + b = (2m + 1) + (2n + 1)$ $= 2m + 2n + 2$ $= 2(m + n + 1).$ Since $m + n + 1$ is an integer, $a + b$ is divisible by 2 and hence is even. ∴ The sum of any two odd integers is even.

2. If n and m are odd, then nm is also odd.

Let n and m be odd integers. By definition, an odd integer can be written as: $n = 2a + 1$ and $m = 2b + 1$, where a and b are integers. The product of n and m is: $nm = (2a + 1)(2b + 1)$ $= 4ab + 2a + 2b + 1$ $= 2(2ab + a + b) + 1.$ Since $2ab + a + b$ is an integer, nm is of the form $2k + 1$, where k is an integer. ∴ nm is odd.

3. The product of any two consecutive integers is even.

Let the two consecutive integers be n and $n + 1$. Consider the two cases for n:

Case 1: n is even.

If *n* is even, we can write $n = 2k$ for some integer k. Then,

$$
n(n+1) = (2k)(2k+1)
$$

 $= 2k(2k + 1).$

Since 2k is a multiple of 2, the product $n(n + 1)$ is divisible by 2, and hence even.

Case 2: n is odd.

If *n* is odd, we can write $n = 2k + 1$ for some integer k. Then,

$$
n(n+1) = (2k+1)(2k+2)
$$

$$
= (2k+1)(2(k+1))
$$

$$
= 2(2k+1)(k+1).
$$

Here, $2(2k+1)(k+1)$ is divisible by 2, so the product $n(n+1)$ is even.

In both cases, the product of two consecutive integers is divisible by 2.

∴ The product of any two consecutive integers is even.

4. If $a|p$ and $p|q$, then $a|q$

Given: $a|p$ and $p|q$. By def. of divisibility, there exist integers k and m such that: $p = ak$ and $q = pm$. Substitute $p = ak$ into $q = pm$: $q = (ak)m$ $q = a(km)$. Since k and m are integers, km is also an integer. Thus, q is divisible by a . ∴ $a|q$.

Proofs by Contrapositive

Prove each of the following using the contrapositive method:

1. If pq is even, then p or q is even.

We prove the contrapositive: If p and q are odd, then pq is odd. Let p and q be odd integers. By definition, we can write: $p = 2k + 1$ and $q = 2m + 1$, where k and m are integers. The product of p and q is: $pq = (2k + 1)(2m + 1)$ $= 4km + 2k + 2m + 1$ $= 2(2km + k + m) + 1.$ Since $2km + k + m$ is an integer, pq is of the form $2n + 1$, where n is an integer. Thus, pq is odd. ∴ The contrapositive is true, so the original statement is true.

2. If $n^2 - 6n + 5$ is even, then *n* is odd.

We prove the contrapositive: If *n* is even, then $n^2 - 6n + 5$ is odd. Let *n* be an even integer. By definition, $n = 2k$ for some integer k. Then, $n^2 - 6n + 5 = (2k)^2 - 6(2k) + 5$ $= 4k^2 - 12k + 5.$ Factor out 2 from the terms: $n^2 - 6n + 5 = 2(2k^2 - 6k + 2) + 1.$ Since $2k^2 - 6k + 2$ is an integer, the expression is of the form $2m + 1$, where m is an integer. Thus, $n^2 - 6n + 5$ is odd.

∴ The contrapositive is true, so the original statement is true.

3. If $x^2 + 5x + 6 \neq 0$, then $x \notin \{-3, -2\}$.

We prove the contrapositive: If $x \in \{-3, -2\}$, then $x^2 + 5x + 6 = 0$. **Case 1:** Let $x = -3$. Substitute $x = -3$ into $x^2 + 5x + 6$: $x^2 + 5x + 6 = (-3)^2 + 5(-3) + 6$ $= 9 - 15 + 6$ $= 0.$ **Case 2:** Let $x = -2$. Substitute $x = -2$ into $x^2 + 5x + 6$: $x^2 + 5x + 6 = (-2)^2 + 5(-2) + 6$ $= 4 - 10 + 6$ $= 0.$ In both cases, $x^2 + 5x + 6 = 0$. Thus, the contrapositive is true. ∴ If $x^2 + 5x + 6 \neq 0$, then $x \notin \{-3, -2\}$.

4. If 3 doesn't divide xy , then 3 doesn't divide x and y.

We prove the contrapositive: If 3 divides x or y, then 3 divides xy .

Case 1: Suppose 3 divides x .

This means $x = 3k$ for some integer k. Then, $xy = (3k)y = 3(ky)$.

Since ky is an integer, 3 divides xy .

Case 2: Suppose 3 divides y .

This means $y = 3m$ for some integer m. Then, $xy = x(3m) = 3(xm)$.

Since xm is an integer, 3 divides xy .

In both cases, if 3 divides x or y , then 3 divides xy . Thus, the contrapositive is true.

∴ If 3 doesn't divide xy, then 3 doesn't divide x and y.

Proofs by Contradiction

1. If x^2 is irrational, then x is irrational.

We prove by contradiction: Assume x^2 is irrational, but x is rational. Since x is rational, we can write $x =$ p q , where $p, q \in \mathbb{Z}$ and $q \neq 0$, and $gcd(p, q) = 1$. Then, x^2 can be expressed as: $x^2 = \left(\frac{p}{q}\right)$ q \setminus^2 = p^2 $\frac{P}{q^2}$. Since p^2 and q^2 are integers, p^2 $\frac{p}{q^2}$ is rational. This contradicts the assumption that x^2 is irrational. ∴ If x^2 is irrational, then x must be irrational.

2. $\sqrt{2}$ is irrational.

We prove by contradiction: Assume $\sqrt{2}$ is rational. Then, $\sqrt{2} =$ p \overline{q} , where $p, q \in \mathbb{Z}, q \neq 0$, and $gcd(p, q) = 1$. Squaring both sides, we have: $2 =$ p^2 $\frac{P}{q^2}$. Rewriting, $p^2 = 2q^2$. This implies p^2 is even, so p must also be even. Let $p = 2k$, where $k \in \mathbb{Z}$. Then: $p^2 = (2k)^2 = 4k^2.$ Substituting, $4k^2 = 2q^2$, or $q^2 = 2k^2$. This implies q^2 is even, so q must also be even. Thus, both p and q are even, contradicting the assumption that $gcd(p, q) = 1$. ∴ √ 2 is irrational.

3. If ab is irrational and a is rational, then b is irrational.

We prove by contradiction: Assume ab is irrational, a is rational, and b is rational. Since a and b are rational, we can write $a =$ p q and $b =$ r s , where: $p, q, r, s \in \mathbb{Z}, \quad q \neq 0, \quad s \neq 0.$ Then, the product *ab* is: $ab =$ p q $\cdot \frac{r}{\cdot}$ s = pr qs . Since *pr* and *qs* are integers, pr qs is rational. This contradicts the assumption that ab is irrational. ∴ If ab is irrational and a is rational, then b must be irrational.

4. There doesn't exist a largest number.

We prove by contradiction: Assume there exists a largest number, say M. By definition of a largest number, M is such that for any $x \in \mathbb{R}$, $x \leq M$. Consider the number $M + 1$. Clearly, $M + 1 > M$. This contradicts the assumption that M is the largest number. ∴ There doesn't exist a largest number.

5. There is no smallest positive real number.

We prove by contradiction: Assume there exists a smallest positive real number, say ϵ . By definition, ϵ is such that for all positive real numbers $x, x \geq \epsilon$. Consider the number $\frac{\epsilon}{2}$ 2 . Clearly, $\frac{\epsilon}{2}$ 2 is a positive real number and ϵ 2 $< \epsilon$.

This contradicts the assumption that ϵ is the smallest positive real number.

∴ There is no smallest positive real number.

Proofs by Induction

Prove each of the following through induction:

1. The sum of the first *n* odd numbers is n^2 .

Let
$$
P(n) : \sum_{i=0}^{n-1} (2i + 1) = n^2
$$
 for integers $n \ge 1$.
\n**Base Case:** $P(1)$
\n $P(1)$ LHS: $\sum_{i=0}^{0} (2i + 1) = 1$.
\n $P(1)$ RHS: $(1)^2 = 1$.
\n∴ $P(1)$ is true because LHS = RHS.
\nInductive Step: Suppose $P(k)$ is true for some $k \ge 1$. Prove $P(k + 1)$.
\nInductive Hypothesis: Assume $\sum_{i=0}^{k-1} (2i + 1) = k^2$.
\n $P(k + 1)$ LHS: $\sum_{i=0}^{k} (2i + 1) = \sum_{i=0}^{k-1} (2i + 1) + (2k + 1)$.
\nBy the inductive hypothesis: $\sum_{i=0}^{k-1} (2i + 1) = k^2$.
\nSubstitute: $\sum_{i=0}^{k} (2i + 1) = k^2 + (2k + 1)$.
\nSimplify: $k^2 + (2k + 1) = k^2 + 2k + 1 = (k + 1)^2$.
\nThus, $\sum_{i=0}^{k} (2i + 1) = (k + 1)^2$.
\n∴ $P(k + 1)$ is true.

Conclusion: By the principle of mathematical induction, $P(n)$ is true for all $n \ge 1$.

2. For all $n \geq 1$,

$$
1 + x + x^2 + \dots + x^n = \frac{x^{n+1} - 1}{x - 1} \quad \text{where } x \neq 1
$$
\nLet $P(n) : 1 + x + x^2 + \dots + x^n = \frac{x^{n+1} - 1}{x - 1}$ for integers $n \geq 1$ and $x \neq 1$.\n\n**Base Case:** $P(1)$ \n
$$
P(1) \text{ LHS: } 1 + x = \frac{x^{1+1} - 1}{x - 1}.
$$
\nRHS: Expand $\frac{x^2 - 1}{x - 1} = \frac{(x - 1)(x + 1)}{x - 1} = x + 1$.\n\n
$$
\therefore P(1) \text{ is true because } \text{LHS} = \text{RHS}.
$$
\nInductive Step: Suppose $P(k)$ is true for some $k \geq 1$. Prove $P(k + 1)$.
\nInductive Hypothesis: Assume $1 + x + x^2 + \dots + x^k = \frac{x^{k+1} - 1}{x - 1}$.\n\n
$$
P(k + 1) \text{ LHS: } 1 + x + x^2 + \dots + x^k + x^{k+1}.
$$
\nUsing the inductive hypothesis:\n
$$
1 + x + x^2 + \dots + x^k + x^{k+1} = \frac{x^{k+1} - 1}{x - 1} + x^{k+1}.
$$
\nRewrite the second term with a common denominator:\n
$$
\frac{x^{k+1} - 1}{x - 1} + x^{k+1} = \frac{x^{k+1} - 1 + x^{k+1}(x - 1)}{x - 1}.
$$
\nSimplify the numerator:\n
$$
x^{k+1} - 1 + x^{k+2} - x^{k+1} = x^{k+2} - 1.
$$
\nThus, $\frac{x^{k+1} - 1}{x - 1} + x^{k+1} = \frac{x^{k+2} - 1}{x - 1}.$ \nThis matches the RHS of $P(k + 1)$.\n\n
$$
\therefore P(k + 1) \text{ is true.}
$$
\n**Conclusion:** By the principle of mathematical induction, $P(n)$ is true for all $n \geq 1$.

3. For all $n\geq 1,$

$$
\sum_{i=1}^{n} i(i+1) = \frac{n(n+1)(n+2)}{3}
$$

Let $P(n): \sum_{i=1}^{n} i(i+1) = \frac{n(n+1)(n+2)}{3}$ for integers $n \ge 1$.
Base Case: $P(1)$
 $P(1)$ LHS: $\sum_{i=1}^{1} i(i+1) = 1(1+1) = 2$.
 $P(1)$ RHS: $\frac{1(1+1)(1+2)}{3} = \frac{1 \cdot 2 \cdot 3}{3} = 2$.
 $\therefore P(1)$ is true because LHS = RHS.
Inductive Step: Suppose $P(k)$ is true for some $k \ge 1$. Prove $P(k+1)$.
 $P(k+1)$ LHS: $\sum_{i=1}^{k+1} i(i+1) = \sum_{i=1}^{k} i(i+1) + (k+1)((k+1)+1)$.
Using the inductive hypothesis:
 $\sum_{i=1}^{k+1} i(i+1) = \sum_{i=1}^{k} i(i+1) + (k+1)(k+2)$.
Factor $(k+1)(k+2)$:
 $\sum_{i=1}^{k+1} i(i+1) = \frac{k(k+1)(k+2)}{3} + (k+1)(k+2)$.
Factor $(k+1)(k+2)$:
 $\sum_{i=1}^{k+1} i(i+1) = \frac{k(k+1)(k+2)}{3} + \frac{3(k+1)(k+2)}{3}$.
Factor out $(k+1)(k+2)$:
 $\sum_{i=1}^{k+1} i(i+1) = \frac{(k+1)(k+2)(k+3)}{3} =$ RHS of $P(k+1)$.
 $\therefore P(k+1)$ is true.

 $+ 1).$

 $\frac{n}{\sqrt{2}}$

Conclusion: By the principle of mathematical induction, $P(n)$ is true for all $n \ge 1$.

4. For all $n \geq 2$,

$$
\sum_{i=2}^{n} i^{2}(i-1) = \frac{n(n^{2}-1)(3n+2)}{12}
$$

Let $P(n): \sum_{i=2}^{n} i^{2}(i-1) = \frac{n(n^{2}-1)(3n+2)}{12}$ for integers $n \ge 2$.
Base Case: $P(2)$
 $P(2)$ LHS: $\sum_{i=2}^{2} i^{2}(i-1) = 2^{2}(2-1) = 4$.
 $P(2)$ RHS: $\frac{2(2^{2}-1)(3 \cdot 2 + 2)}{12} = \frac{2(4-1)(8)}{12} = \frac{2 \cdot 3 \cdot 8}{12} = 4$.
 $\therefore P(2)$ is true because LHS = RHS.
Inductive Step: Suppose $P(k)$ is true for some $k \ge 2$. Prove $P(k + 1)$.
Inductive Hypothesis: Assume $\sum_{i=2}^{k} i^{2}(i-1) = \frac{k(k^{2}-1)(3k+2)}{12}$.
 $P(k + 1)$ LHS: $\sum_{i=2}^{k+1} i^{2}(i-1) = \sum_{i=2}^{k} i^{2}(i-1) + (k+1)^{2}(k+1-1)$.
Using the inductive hypothesis:
 $\sum_{i=2}^{k+1} i^{2}(i-1) = \frac{k(k^{2}-1)(3k+2)}{12} + (k+1)^{2}k$.
Combine terms with a common denominator:
 $\sum_{i=2}^{k+1} i^{2}(i-1) = \frac{k(k^{2}-1)(3k+2) + 12k(k+1)^{2}}{12}$.
Factorize the numerator:
 $k(k^{2}-1)(3k+2) + 12k(k+1)^{2} = (k+1)((k+1)^{2})(3k+2)$.
 $\therefore \sum_{i=2}^{k+1} i^{2}(i-1) = \frac{(k+1)((k+1)^{2}-1)(3(k+1)+2)}{12}$.
This is precisely $\frac{(k+1)((k+1)^{2}-1)(3(k+1)+2)}{12}$, proving $P(k + 1)$.
Conclusion: By induction, $P(n)$ holds for all $n \ge 2$.

5. For all $n \geq 1$, $5^n + 3$ is divisible by 4.

Let $P(n): 5^n + 3$ is divisible by 4. Base Case: $P(1)$ $P(1)$ LHS: $5^1 + 3 = 8$ is divisible by $4 \rightarrow P(1)$ is true. **Inductive Step:** Suppose $P(k)$ is true for some $k \ge 1$. Prove $P(k+1)$. $P(k+1)$ LHS: $5^{k+1} + 3 = 5 \cdot 5^k + 3$. Rewrite: $5^{k+1} + 3 = 4 \cdot 5^k + 5^k + 3$. Substitute the inductive hypothesis: $5^k + 3 = 4m$. Thus, $5^{k+1} + 3 = 4 \cdot 5^k + 4m = 4(5^k + m)$. Since $5^k + m$ is an integer, $5^{k+1} + 3$ is divisible by 4. **Conclusion:** By induction, $P(n)$ is true for all $n \geq 1$.

6. For all $n \geq 1$, $4^{2n} - 1$ is divisible by 15.

Let $P(n): 4^{2n} - 1$ is divisible by 15. Base Case: $P(1)$ P(1) LHS: $4^{2 \cdot 1} - 1 = 16 - 1 = 15$ is divisible by $15 \rightarrow P(1)$ is true. **Inductive Step:** Suppose $P(k)$ is true for some $k \ge 1$. Prove, $P(k+1)$. $P(k+1)$ LHS: $4^{2(k+1)} - 1 = 4^{2k+2} - 1$. Rewrite: $4^{2k+2} - 1 = (4^2) \cdot 4^{2k} - 1 = 16 \cdot 4^{2k} - 1 = 15 \cdot 4^{2k} + 4^{2k} - 1$ Substitute the inductive hypothesis: $4^{2k} - 1 = 15m$. Thus, $(4^{2k} – 1)(16) + 15 = (15m)(16) + 15 = 15(16m + 1).$ Since $16m + 1$ is an integer, $4^{2(k+1)} - 1$ is divisible by 15. **Conclusion:** By induction, $P(n)$ is true for all $n \geq 1$.

7. For all $n \geq 1$, $4^n + 6n - 1$ is divisible by 3.

Let $P(n): 4^n + 6n - 1$ is divisible by 3. Base Case: $P(1)$ P(1) LHS: $4^1 + 6(1) - 1 = 4 + 6 - 1 = 9$, which is divisible by 3. Thus, $P(1)$ is true. **Inductive Step:** Suppose $P(k)$ is true for some $k \ge 1$. Prove $P(k+1)$. $P(k + 1)$ LHS: $4^{k+1} + 6(k + 1) - 1$ $= 4 \cdot 4^k + 6k + 6 - 1$ $= 4 \cdot 4^k + 6k + 5.$ We can rewrite this as: $4 \cdot 4^k + (6k + 5)$ $= (4 \cdot 4^k + 6k - 1) + 6$ By the inductive hypothesis, we know that $4^k + 6k - 1$ is divisible by 3. Thus, $(4 \cdot 4^k + 6k - 1)$ is divisible by 3. Therefore, $4^{k+1} + 6(k+1) - 1 = (4 \cdot 4^k + 6k - 1) + 6$ is divisible by 3. **Conclusion:** By induction, $P(n)$ is true for all $n \geq 1$.

Proofs by Strong Induction

Prove each of the following using strong induction:

1. For all $n \geq 1$, the *n*-th term of the sequence defined by

$$
a_n = \begin{cases} n & \text{if } n = 1 \text{ or } n = 2, \\ a_{n-1} + 2a_{n-2} & \text{if } n \ge 3, \end{cases}
$$

is given by $a_n = 2^{n-1}$.

Let $P(n): a_n = 2^{n-1}$ for all $n \ge 1$. **Base Case:** $P(1)$ and $P(2)$. For $n = 1$, $a_1 = 1$ (given), $2^{1-1} = 2^0 = 1$. For $n = 2$, $a_2 = 2$ (given), $2^{2-1} = 2^1 = 2$. **Inductive Step:** Assume $P(i)$ is true for all $i \in [1, k]$ for some $k \geq 2$. Prove $P(k + 1)$. We need to show that $P(k + 1)$ is true, i.e., $a_{k+1} = 2^k$. By the recurrence relation, we have: $a_{k+1} = a_k + 2a_{k-1}.$ Using the inductive hypothesis, $a_k = 2^{k-1}$ and $a_{k-1} = 2^{k-2}$. Substitute these into the recurrence: $a_{k+1} = 2^{k-1} + 2(2^{k-2}).$ $a_{k+1} = 2^{k-1} + 2^{k-1} = 2 \cdot 2^{k-1} = 2^k.$ **Conclusion:** By induction, $P(n)$ is true for all $n \geq 1$.

2. For the Fibonacci sequence defined as

$$
F_1 = 1, F_2 = 1, F_n = F_{n-1} + F_{n-2}
$$
 for $n \ge 3$,

prove that $F_n < 2^n$ for all $n \geq 1$.

Let $P(n): F_n < 2^n$ for all $n \geq 1$. **Base Case:** $P(1)$ and $P(2)$. For $n = 1$, $F_1 = 1$ and $2^1 = 2$, $F_1 < 2^1$. For $n = 2$, $F_2 = 1$ and $2^2 = 4$, $F_2 < 2^2$. Thus, $P(1)$ and $P(2)$ hold true. **Inductive Step:** Assume $P(k)$ is true for all $i \in [1, k]$ for some $k \ge 2$. Prove $P(k + 1)$. We need to show that $P(k+1)$ is true, i.e., $F_{k+1} < 2^{k+1}$. From the recurrence relation, we have: $F_{k+1} = F_k + F_{k-1}.$ By the inductive hypothesis, we know that $F_k < 2^k$ and $F_{k-1} < 2^{k-1}$. Thus, $F_{k+1} = F_k + F_{k-1} < 2^k + 2^{k-1} = 2^{k-1}(2+1) = 2^{k-1} \cdot 3.$ Now observe that $2^{k-1} \cdot 3 < 2^{k+1}$ for all $k \geq 2$. Therefore, $F_{k+1} < 2^{k+1}$. **Conclusion:** By induction, $P(n)$ is true for all $n \geq 1$.

3. Prove that the n-th Fibonacci term can be written as

$$
\operatorname{Let} P(n): F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right).
$$

Base Case: $P(1)$ and $P(2)$.

For $n = 1$, $F_1 = 1$, and the right-hand side evaluates to 1.

For $n = 2$, $F_2 = 1$, and the right-hand side evaluates to 1.

Thus, $P(1)$ and $P(2)$ hold true.

Inductive Step: Assume $P(k)$ is true for all $i \in [1, k]$ for some $k \ge 2$. Prove $P(k + 1)$.

We need to show that
$$
F_{k+1} = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^{k+1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{k+1} \right).
$$

Using the inductive hypothesis:

$$
F_k = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^k - \left(\frac{1 - \sqrt{5}}{2} \right)^k \right),
$$

$$
F_{k-1} = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^{k-1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{k-1} \right).
$$

Adding these:

$$
F_{k+1} = \frac{1}{\sqrt{5}} \left[\left(\left(\frac{1+\sqrt{5}}{2} \right)^k + \left(\frac{1+\sqrt{5}}{2} \right)^{k-1} \right) - \left(\left(\frac{1-\sqrt{5}}{2} \right)^k + \left(\frac{1-\sqrt{5}}{2} \right)^{k-1} \right) \right].
$$

Factor out powers:

$$
\left(\frac{1+\sqrt{5}}{2}\right)^{k+1} = \left(\frac{1+\sqrt{5}}{2}\right)^k + \left(\frac{1+\sqrt{5}}{2}\right)^{k-1},
$$
\n
$$
\left(\frac{1-\sqrt{5}}{2}\right)^{k+1} = \left(\frac{1-\sqrt{5}}{2}\right)^k + \left(\frac{1-\sqrt{5}}{2}\right)^{k-1}.
$$
\nThus, $F_{k+1} = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2}\right)^{k+1} - \left(\frac{1-\sqrt{5}}{2}\right)^{k+1}\right).$

Conclusion: By induction, $P(n)$ is true for all $n \geq 1$.

Set Theory (Element Methods)

1. For all sets A, B, and C, prove that $(A \cup B) - (A \cap C) = (A - C) \cup (B - C)$.

To prove: $(A \cup B) - (A \cap C) = (A - C) \cup (B - C)$, show: (1) $x \in (A \cup B) - (A \cap C) \implies x \in (A - C) \cup (B - C),$ (2) $x \in (A - C) \cup (B - C) \implies x \in (A \cup B) - (A \cap C).$ (1) Prove $x \in (A \cup B) - (A \cap C) \implies x \in (A - C) \cup (B - C)$. Let $x \in (A \cup B) - (A \cap C) \implies x \in A \cup B$ and $x \notin A \cap C$. If $x \in A \cup B$, then $x \in A$ or $x \in B$. If $x \notin A \cap C$, then it is not true that $x \in A$ and $x \in C$. Case 1: If $x \in A$ and $x \notin C$, then $x \in A - C$. Case 2: If $x \in B$ and $x \notin C$, then $x \in B - C$. Thus, $x \in (A - C) \cup (B - C)$. (2) Prove $x \in (A - C) \cup (B - C) \implies x \in (A \cup B) - (A \cap C)$. Let $x \in (A - C) \cup (B - C) \implies x \in A - C$ or $x \in B - C$. Case 1: If $x \in A - C$, then $x \in A$ and $x \notin C$. Since $x \in A$, we have $x \in A \cup B$. Since $x \notin C$, it is not true that $x \in A \cap C$. Thus, $x \in (A \cup B) - (A \cap C)$. Case 2: If $x \in B - C$, then $x \in B$ and $x \notin C$. Since $x \in B$, we have $x \in A \cup B$. Since $x \notin C$, it is not true that $x \in A \cap C$. Thus, $x \in (A \cup B) - (A \cap C)$. Conclusion: $(A \cup B) - (A \cap C) = (A - C) \cup (B - C)$.

2. For all sets A, B, and C, prove that $A - (B \cup C) = (A - B) \cap (A - C)$.

To prove: $A - (B \cup C) = (A - B) \cap (A - C)$. We will prove this using an element-based argument by showing: (1) $x \in A - (B \cup C) \implies x \in (A - B) \cap (A - C),$ (2) $x \in (A - B) \cap (A - C) \implies x \in A - (B \cup C)$. (1) Prove $x \in A - (B \cup C) \implies x \in (A - B) \cap (A - C)$. Let $x \in A - (B \cup C)$. Then $x \in A$ and $x \notin B \cup C$. If $x \notin B \cup C$, then $x \notin B$ and $x \notin C$. Since $x \in A$ and $x \notin B$, it follows that $x \in A - B$. Since $x \in A$ and $x \notin C$, it follows that $x \in A - C$. Thus, $x \in (A - B) \cap (A - C)$. (2) Prove $x \in (A - B) \cap (A - C) \implies x \in A - (B \cup C)$. Let $x \in (A - B) \cap (A - C)$. Then $x \in A - B$ and $x \in A - C$. If $x \in A - B$, then $x \in A$ and $x \notin B$. If $x \in A - C$, then $x \in A$ and $x \notin C$. Since $x \notin B$ and $x \notin C$, it follows that $x \notin B \cup C$. Thus, $x \in A$ and $x \notin B \cup C$, so $x \in A - (B \cup C)$. Conclusion: $A - (B \cup C) = (A - B) \cap (A - C)$.

3. For all sets A, B, and C, prove that $A \times (B - C) = (A \times B) - (A \times C)$.

To prove: $A \times (B - C) = (A \times B) - (A \times C)$. We will prove this using an element-based argument by showing: (1) $(x, y) \in A \times (B - C) \implies (x, y) \in (A \times B) - (A \times C),$ (2) $(x, y) \in (A \times B) - (A \times C) \implies (x, y) \in A \times (B - C).$ (1) Prove $(x, y) \in A \times (B - C) \implies (x, y) \in (A \times B) - (A \times C)$. Let $(x, y) \in A \times (B - C)$. Then $x \in A$ and $y \in B - C$. Since $y \in B - C$, we know that $y \in B$ and $y \notin C$. Thus, $(x, y) \in A \times B$. Since $y \notin C$, it follows that $(x, y) \notin A \times C$. Therefore, $(x, y) \in (A \times B) - (A \times C)$. (2) Prove $(x, y) \in (A \times B) - (A \times C) \implies (x, y) \in A \times (B - C)$. Let $(x, y) \in (A \times B) - (A \times C)$. Then $(x, y) \in A \times B$ and $(x, y) \notin A \times C$. Since $(x, y) \in A \times B$, it follows that $x \in A$ and $y \in B$. Since $(x, y) \notin A \times C$, it follows that $y \notin C$. Thus, $y \in B$ and $y \notin C$, so $y \in B - C$. Therefore, $(x, y) \in A \times (B - C)$. Conclusion: $A \times (B - C) = (A \times B) - (A \times C)$.

4. For all sets A, B, and C, prove that if $A \subseteq B$ and $C \subseteq B$, then $A \times C \subseteq B \times B$.

To prove: $A \times C \subseteq B \times B$. We are given that $A \subseteq B$ and $C \subseteq B$. We will prove this using an element-based argument. Let $(x, y) \in A \times C$. Then, by the definition of Cartesian product, $x \in A$ and $y \in C$. Since $A \subseteq B$ and $x \in A$, it follows that $x \in B$. Since $C \subseteq B$ and $y \in C$, it follows that $y \in B$. Thus, $(x, y) \in B \times B$. Therefore, $A \times C \subseteq B \times B$.

Set Theory (Algebraic Methods)

Prove each of the following using algebraic-based method:

1. For all sets A, B, and C, prove that $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$.

We want to prove that $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$. First, we rewrite the left-hand side using the distributive law: $(A \cup B) \cap C = (A \cap C) \cup (B \cap C).$ Thus, by the distributive property, we have: $(A \cup B) \cap C = (A \cap C) \cup (B \cap C).$ Therefore, the identity is proven.

2. For all sets A, B, and C, prove that $A - (B \cup C) = (A - B) \cap (A - C)$.

We want to prove that $A - (B \cup C) = (A - B) \cap (A - C)$. First, we rewrite the left-hand side using the set difference law: $A - (B \cup C) = A \cap (B \cup C)^c$. Now, apply De Morgan's law: $(B\cup C)^c = B^c \cap C^c,$ so we have: $A - (B \cup C) = A \cap (B^c \cap C^c).$ By the distributive property, we get: $A - (B \cup C) = (A \cap B^c) \cap (A \cap C^c).$ This simplifies to: $(A - B) \cap (A - C).$ Thus, we have shown that: $A - (B \cup C) = (A - B) \cap (A - C).$

3. For all sets A, B, and C, prove that $(A \cup B) - (A \cap B) = (A - B) \cup (B - A)$.

We want to prove that $(A \cup B) - (A \cap B) = (A - B) \cup (B - A)$. First, we rewrite the left-hand side using the set difference law: $(A \cup B) - (A \cap B) = (A \cup B) \cap (A \cap B)^c$. Now, apply De Morgan's law: $(A \cap B)^c = A^c \cup B^c$, so we have: $(A \cup B) - (A \cap B) = (A \cup B) \cap (A^c \cup B^c).$ By distributive law: $(A \cup B) \cap (A^c \cup B^c) = (A \cap A^c) \cup (A \cap B^c) \cup (B \cap A^c) \cup (B \cap B^c).$ Now simplify: $A \cap A^c = \emptyset$, $B \cap B^c = \emptyset$, so we have: $(A \cup B) - (A \cap B) = (A \cap B^c) \cup (B \cap A^c).$ By the definition of set difference, this simplifies to: $(A - B) \cup (B - A).$ Thus, we have shown that: $(A \cup B) - (A \cap B) = (A - B) \cup (B - A).$

4. For all sets A, B, and C, prove that $(A \cap B) \cup (A - B) = A$.

We want to prove that $(A \cap B) \cup (A - B) = A$. $A - B = A \cap B^c \implies (A \cap B) \cup (A \cap B^c).$ Now, factor out A using the distributive law: $(A \cap B) \cup (A \cap B^c) = A \cap (B \cup B^c).$ Since $B \cup B^c = U$ (the universal set), we have: $A \cap (B \cup B^c) = A \cap U = A$

5. For all sets A, B, and C, prove that $A - (B \cap C) = (A - B) \cup (A - C)$.

We want to prove that $A - (B \cap C) = (A - B) \cup (A - C)$. First, rewrite the left-hand side using the set difference law: $A - (B \cap C) = A \cap (B \cap C)^c$. Now, apply De Morgan's law to $(B \cap C)^c$: $(B \cap C)^c = B^c \cup C^c$. So, the expression becomes: $A - (B \cap C) = A \cap (B^c \cup C^c).$ Now, apply the distributive law to expand the intersection: $A \cap (B^c \cup C^c) = (A \cap B^c) \cup (A \cap C^c).$ By the definition of set difference, we recognize: $A \cap B^c = A - B$ and $A \cap C^c = A - C$. Thus, we have: $A - (B \cap C) = (A - B) \cup (A - C).$ Therefore, we have proven the identity.

Set Theory Counterexamples

Provide a counterexample to disprove each of the following:

1. For all sets A and B, $A \cup B = A - B$ if and only if $A = B$.

Let
$$
A = \{1, 2\}
$$
 and $B = \{2\}$.
\nFirst, compute $A \cup B$:
\n $A \cup B = \{1, 2\} \cup \{2\} = \{1, 2\}$.
\nNext, compute $A - B$:
\n $A - B = \{1, 2\} - \{2\} = \{1\}$.
\nClearly, $A \cup B = \{1, 2\} \neq \{1\} = A - B$.

2. For all sets A, B , and $C, (A \cup B) - C = (A - C) \cap (B - C)$.

Let $A = \{1, 2\}$, $B = \{2, 3\}$, and $C = \{2\}$. First, compute the left-hand side: $A \cup B = \{1, 2\} \cup \{2, 3\} = \{1, 2, 3\},\$ $(A \cup B) - C = \{1, 2, 3\} - \{2\} = \{1, 3\}.$ Now, compute the right-hand side: $A - C = \{1, 2\} - \{2\} = \{1\},\$ $B - C = \{2, 3\} - \{2\} = \{3\},\,$ $(A - C) \cap (B - C) = \{1\} \cap \{3\} = \emptyset.$ In this case, we observe that the left-hand side and right-hand side are not equal: $(A \cup B) - C = \{1, 3\} \neq \emptyset = (A - C) \cap (B - C).$

3. For all sets A, B, and C, $A - (B \cap C) = (A - B) \cap (A - C)$.

Let $A = \{1, 2, 3, 4\}, B = \{2, 3\}, C = \{3, 4\}.$ First, calculate $B \cap C$: $B \cap C = \{2,3\} \cap \{3,4\} = \{3\}.$ Now, calculate the left-hand side $A - (B \cap C)$: $A - (B \cap C) = \{1, 2, 3, 4\} - \{3\} = \{1, 2, 4\}.$ Next, calculate the right-hand side $(A - B) \cap (A - C)$: $A - B = \{1, 2, 3, 4\} - \{2, 3\} = \{1, 4\},\$ $A - C = \{1, 2, 3, 4\} - \{3, 4\} = \{1, 2\},\$ $(A - B) \cap (A - C) = \{1, 4\} \cap \{1, 2\} = \{1\}.$ Since $\{1, 2, 4\} \neq \{1\}$, the statement is disproved.

4. For all sets A, B, and C, $A \times (B \cup C) = (A \times B) \cap (A \times C)$ holds for all A, B, and C.

Let $A = \{1\}, B = \{2\}, C = \{3\}.$ First, calculate $B \cup C$: $B \cup C = \{2\} \cup \{3\} = \{2,3\}.$ Now, calculate the left-hand side $A \times (B \cup C)$: $A \times (B \cup C) = \{1\} \times \{2, 3\} = \{(1, 2), (1, 3)\}.$ Next, calculate the right-hand side $(A \times B) \cap (A \times C)$: $A \times B = \{1\} \times \{2\} = \{(1,2)\},\$ $A \times C = \{1\} \times \{3\} = \{(1,3)\},\$ $(A \times B) \cap (A \times C) = \{(1,2)\} \cap \{(1,3)\} = \emptyset.$ Finally, compare the results: Since $\{(1, 2), (1, 3)\}\neq \emptyset$, the statement is disproved.

One-to-One Correspondence

Deduce if the following functions are one-to-one correspondences:

1. Define a function $f : \mathbb{Z} \to \mathbb{Z}$ by $f(x) = 2x + 1$.

1. One-to-One

A function is one-to-one if $f(x_1) = f(x_2)$ implies that $x_1 = x_2$.

Assume $f(x_1) = f(x_2)$.

Then, $2x_1 + 1 = 2x_2 + 1$.

Subtracting 1 from both sides: $2x_1 = 2x_2$.

Dividing both sides by 2: $x_1 = x_2$.

Thus, the function is one-to-one.

2. Onto

A function is onto if for every $y \in \mathbb{Z}$, there exists an $x \in \mathbb{Z}$ such that $f(x) = y$.

Let $y \in \mathbb{Z}$.

We need to find x such that $f(x) = y$, i.e., $2x + 1 = y$.

Solving for x :

$$
2x = y - 1,
$$

$$
x = \frac{y - 1}{2}.
$$

For x to be an integer, $y - 1$ must be even, which means that y must be odd.

Thus, the function is not onto, because there are no x values corresponding to even y values.

3. One-to-one Correspondence

Because the function is not onto, it is not a one-to-one correspondence.

2. Define a function $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = x^3$.

1. One-to-One

A function is one-to-one if $f(x_1) = f(x_2)$ implies that $x_1 = x_2$.

Assume $f(x_1) = f(x_2)$.

Then, $x_1^3 = x_2^3$.

Taking the cube root of both sides: $x_1 = x_2$.

Thus, the function is one-to-one.

2. Onto

A function is onto if for every $y \in \mathbb{R}$, there exists an $x \in \mathbb{R}$ such that $f(x) = y$.

Let $y \in \mathbb{R}$.

We need to find x such that $f(x) = y$, i.e., $x^3 = y$.

Solving for x :

$$
x = \sqrt[3]{y}.
$$

Since the cube root of any real number is defined and produces a real number,

the function is onto.

3. One-to-one Correspondence

Since the function is both one-to-one and onto, it is a one-to-one correspondence.

3. Define a function $f : \mathbb{N} \to \mathbb{N}$ by $f(x) = x^2$.

1. One-to-One

A function is one-to-one if $f(x_1) = f(x_2)$ implies that $x_1 = x_2$.

Assume $f(x_1) = f(x_2)$.

Then, $x_1^2 = x_2^2$.

This implies that $x_1 = x_2$ or $x_1 = -x_2$.

However, since $x_1, x_2 \in \mathbb{N}$ (the set of natural numbers),

the possibility that $x_1 = -x_2$ is not valid.

Therefore, $x_1 = x_2$ and the function is one-to-one.

2. Onto

A function is onto if for every $y \in \mathbb{N}$, there exists an $x \in \mathbb{N}$ such that $f(x) = y$.

Let $y \in \mathbb{N}$.

We need to find x such that $f(x) = y$, i.e., $x^2 = y$.

Solving for x , $x =$ √ \overline{y} .

For $x \in \mathbb{N}$, the square root of y must also be a natural number.

Thus, the function is only onto for perfect squares in N.

Therefore, not onto, because not all elements of N have a corresponding x value.

3. One-to-one Correspondence

Since the function is one-to-one but not onto, it is not a one-to-one correspondence.

4. Define a function $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ by $f(x, y) = (4y, 2x)$.

1. One-to-One

A function $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ is one-to-one if $f(x_1, y_1) = f(x_2, y_2) \implies (x_1, y_1) = (x_2, y_2)$. Assume $f(x_1, y_1) = f(x_2, y_2)$. Then, $(4y_1, 2x_1) = (4y_2, 2x_2)$. From the first component: $4y_1 = 4y_2 \implies y_1 = y_2$. From the second component: $2x_1 = 2x_2 \implies x_1 = x_2$. Thus, $(x_1, y_1) = (x_2, y_2)$ and the function is one-to-one. 2. Onto A function $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ is onto if for every $(a, b) \in \mathbb{R} \times \mathbb{R}$, there exists $(x, y) \in \mathbb{R} \times \mathbb{R}$ such that $f(x, y) = (a, b)$. Let $(a, b) \in \mathbb{R} \times \mathbb{R}$. We need to find (x, y) where $f(x, y) = (a, b)$, i.e., $(4y, 2x) = (a, b)$. From the first component: $4y = a \implies y = \frac{a}{4}$ 4 . From the second component: $2x = b \implies x = \frac{b}{2}$ 2 . Thus, for every $(a, b) \in \mathbb{R} \times \mathbb{R}$, there exists $(x, y) = \begin{pmatrix} b \\ 0 \end{pmatrix}$ 2 , a 4 $\Big) \in \mathbb{R} \times \mathbb{R}$ where $f(x, y) = (a, b)$. Therefore, the function is onto.

3. One-to-one Correspondence

Since the function is both one-to-one and onto, it is a one-to-one correspondence.

5. Define a function $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ by $f(x, y) = (2y, 3x)$.

1. One-to-One

A function $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ is one-to-one if $f(x_1, y_1) = f(x_2, y_2) \implies (x_1, y_1) = (x_2, y_2)$.

Assume $f(x_1, y_1) = f(x_2, y_2)$.

Then, $(2y_1, 3x_1) = (2y_2, 3x_2)$.

From the first component: $2y_1 = 2y_2 \implies y_1 = y_2$.

From the second component: $3x_1 = 3x_2 \implies x_1 = x_2$.

Thus, $(x_1, y_1) = (x_2, y_2)$ and the function is one-to-one.

2. Onto

A function $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ is onto if for every $(a, b) \in \mathbb{N} \times \mathbb{N}$,

there exists $(x, y) \in \mathbb{N} \times \mathbb{N}$ such that $f(x, y) = (a, b)$.

Let $(a, b) \in \mathbb{N} \times \mathbb{N}$.

We need to find (x, y) such that $f(x, y) = (a, b)$, i.e., $(2y, 3x) = (a, b)$.

From the first component: $2y = a \implies y = \frac{a}{2}$ 2 . From the second component: $3x = b \implies x = \frac{b}{2}$ 3 .

For y and x to be natural numbers, a must be even and b must be divisible by 3.

If a is odd or b is not divisible by 3, there are no such x, y in \mathbb{N} .

Thus, the function is not onto.

3. One-to-one Correspondence

Since the function is not onto, it is not a one-to-one correspondence.

Infinite Sets

Prove or disprove the following statements regarding infinite sets:

1. $|\mathbb{N}|=|\mathbb{N}-\{2,4,6,8,\ldots\}|.$

1. Define a Bijection

To prove $|\mathbb{N}| = |\mathbb{N} - \{2, 4, 6, 8, \dots\}|$, construct a bijection $f : \mathbb{N} \to \mathbb{N} - \{2, 4, 6, 8, \dots\}$.

Define $f(n) = 2n - 1$.

2. One-to-One

A function is one-to-one if $f(n_1) = f(n_2)$ implies that $n_1 = n_2$.

Assume $f(n_1) = f(n_2)$.

Then, $2n_1 - 1 = 2n_2 - 1$.

Adding 1 to both sides: $2n_1 = 2n_2$.

Dividing both sides by 2: $n_1 = n_2$. \implies Thus, the function is one-to-one.

3. Onto

A function is onto if for every $y \in \mathbb{N} - \{2, 4, 6, 8, \dots\}$, $\exists n \in \mathbb{N}$ such that $f(n) = y$.

Let $y \in \mathbb{N} - \{2, 4, 6, 8, \dots\}$, so y is odd.

We need to find n such that $f(n) = y$, i.e., $2n - 1 = y$.

Solving for n :

$$
2n = y + 1,
$$

$$
n = \frac{y + 1}{2}.
$$

Since y is odd, $y + 1$ is even, and $\frac{y + 1}{2}$ 2 $\in \mathbb{N}$. \implies Thus, the function is onto.

4. Conclusion

Since f is both one-to-one and onto, it is a bijection.

Therefore, $|\mathbb{N}| = |\mathbb{N} - \{2, 4, 6, 8, \dots\}|$.

2. $|\{0, 2, 4, 6, 8, \ldots\}| = |\{1, 3, 5, 7, 9, \ldots\}|$

1. Define a Bijection

To prove $|\{0, 2, 4, 6, 8, \dots\}| = |\{1, 3, 5, 7, 9, \dots\}|$, construct a bijection.

Define $f(n) = n + 1$.

2. One-to-One

A function is one-to-one if $f(n_1) = f(n_2)$ implies that $n_1 = n_2$.

Assume $f(n_1) = f(n_2)$.

Then, $n_1 + 1 = n_2 + 1$.

Subtracting 1 from both sides: $n_1 = n_2$.

Thus, the function is one-to-one.

3. Onto

A function is onto if for every $y \in \{1, 3, 5, 7, 9, \dots\}$, $\exists n \in \{0, 2, 4, 6, 8, \dots\}$, $f(n) = y$.

Let $y \in \{1, 3, 5, 7, 9, \dots\}.$

We need to find *n* such that $f(n) = y$, i.e., $n + 1 = y$.

Solving for n :

```
n = y - 1.
```
Since y is odd, $y - 1$ is even, and $n \in \{0, 2, 4, 6, 8, \dots\}.$

Thus, the function is onto.

4. Conclusion

Since f is both one-to-one and onto, it is a bijection.

Therefore, $|\{0, 2, 4, 6, 8, \dots\}| = |\{1, 3, 5, 7, 9, \dots\}|$.

3. $|\mathbb{N}| < |\mathbb{R}|$

1. Cantor's Diagonal Argument:

To show $|\mathbb{N}| < |\mathbb{R}|$, we prove that no bijection exists between \mathbb{N} and \mathbb{R} .

Assume for contradiction that such a bijection exists, $f : \mathbb{N} \to \mathbb{R}$.

Construct the decimal expansion of each real number in $[0, 1)$ as follows:

 $f(1) = 0.a_{11}a_{12}a_{13} \ldots$ $f(2) = 0.a_{21}a_{22}a_{23}...$ $f(3) = 0.a_{31}a_{32}a_{33}...$. . .

Construct a new number $x = 0.b_1b_2b_3\ldots$ such that $b_i \neq a_{ii}$.

By construction, x differs from $f(i)$ at the *i*th digit, for all *i*.

Thus, x is not in the range of f , contradicting the assumption that f is a bijection.

2. Conclusion:

No bijection exists between N and R. Therefore, $|\mathbb{N}| < |\mathbb{R}|$.

4. $|\mathbb{N}| < |\mathcal{P}(\mathbb{N})|$

1. Cantor's Theorem:

To show $|\mathbb{N}| < |\mathcal{P}(\mathbb{N})|$, we prove that no bijection exists between N and $\mathcal{P}(\mathbb{N})$.

Assume for contradiction that such a bijection exists, $f : \mathbb{N} \to \mathcal{P}(\mathbb{N})$.

Define a set $S \subseteq \mathbb{N}$ as follows: $S = \{n \in \mathbb{N} : n \notin f(n)\}.$

Since $S \subseteq \mathbb{N}$, it must be in the codomain of f, so there $\exists k \in \mathbb{N}$ such that $f(k) = S$.

Now, consider whether $k \in S$:

If $k \in S$, then by definition of S, we must have $k \notin f(k)$.

But $f(k) = S$, so $k \notin S$. This is a contradiction.

If $k \notin S$, then by definition of S, we must have $k \in f(k)$.

But $f(k) = S$, so $k \in S$. This is also a contradiction.

Thus, no such k can exist, and f cannot be a bijection.

2. Conclusion:

No bijection exists between N and $\mathcal{P}(\mathbb{N})$. Therefore, $|\mathbb{N}| < |\mathcal{P}(\mathbb{N})|$.

Equivalence Relations

Prove or disprove the following statements about equivalence relations:

1. Let R be a relation on the set of integers $\mathbb Z$ defined by a R b if and only if $a-b$ is divisible by 3. Prove that R is an equivalence relation on \mathbb{Z} , and describe the equivalence classes of R.

```
1. Reflexive:
For any a \in \mathbb{Z}, a - a = 0 is divisible by 3, so a R a holds.
2. Symmetric:
If a R b, then a - b = 3k for some k \in \mathbb{Z}.
Thus, b - a = -3k is divisible by 3, so b R a holds.
3. Transitive:
If a R b and b R c, then a - b = 3k and b - c = 3m for some k, m \in \mathbb{Z}.
Adding these gives a - c = 3(k + m), which is divisible by 3, so a R c.
4. Equivalence Classes:
The equivalence classes are the sets of integers that differ by multiples of 3:
[0] = {\ldots, -3, 0, 3, 6, \ldots}, \quad [1] = {\ldots, -2, 1, 4, 7, \ldots},[2] = {\ldots, -1, 2, 5, 8, \ldots}.
```
2. Let R be a relation on the set of all strings over the alphabet $\{a, b\}$ defined by x R y if and only if x and y have the same length. Prove that R is an equivalence relation and describe the equivalence classes of R.

1. Reflexive: For any string x, we have $|x| = |x|$, so $x R x$ holds. 2. Symmetric: If $x R y$, then $|x| = |y|$. Thus, $|y| = |x|$, so $y R x$ holds. 3. Transitive: If $x R y$ and $y R z$, then $|x| = |y|$ and $|y| = |z|$. Thus, $|x| = |z|$, so $x R z$ holds. 4. Equivalence Classes: The equivalence classes are the sets of strings with the same length. For any non-negative integer n , the equivalence class of strings of length n is: $[n] = \{x \mid x$ is a string over $\{a, b\}$ with length $n\}$.

3. Let R be a relation on R defined by $a R b$ if and only if $a^2 = b^2$. Prove that R is an equivalence relation, and describe the equivalence classes of R.

1. Reflexive:

For any $a \in \mathbb{R}$, we have $a^2 = a^2$, so $a R a$ holds.

2. Symmetric:

If a R b, then $a^2 = b^2$.

Thus, $b^2 = a^2$, so $b R a$ holds.

3. Transitive:

If a R b and b R c, then $a^2 = b^2$ and $b^2 = c^2$.

Thus, $a^2 = c^2$, so a R c holds.

4. Equivalence Classes:

The equivalence classes are the sets of real numbers with the same absolute value.

For any non-negative real number r , the equivalence class of r is:

 $[r] = \{x \in \mathbb{R} \mid |x| = r\} = \{-r, r\}$ (if $r \neq 0$), and $[0] = \{0\}.$

4. Let R be a relation on the set of all people, where $a R b$ if and only if a and b have the same birth year. Prove that R is an equivalence relation on the set of all people and describe the equivalence classes of R.

1. Reflexive:

For any person a, the relation holds because a has the same birth year as a.

Thus, a R a holds.

2. Symmetric:

If $a R b$, then a and b have the same birth year.

Since having the same birth year is a mutual property, $b R a$ also holds.

3. Transitive:

If $a R b$ and $b R c$, then a and b have the same year, and b and c have the same year.

Thus, a and c must also have the same birth year, so $a R c$ holds.

4. Equivalence Classes:

The equivalence classes of R are the sets of people born in the same year.

For any year y , the equivalence class of people born in year y is:

 $[y] = \{a \mid a \text{ is born in year } y\}.$

5. Let R be a relation on the set of all points in the plane \mathbb{R}^2 defined by $(x_1, y_1) R (x_2, y_2)$ if and only if $x_1 = x_2$ or $y_1 = y_2$. Prove that R is an equivalence relation and describe the equivalence classes of R.

1. Reflexive:

For any point (x_1, y_1) , we have $(x_1, y_1) R (x_1, y_1)$ since $x_1 = x_1$ and $y_1 = y_1$.

Thus, the relation is reflexive.

2. Symmetric:

If $(x_1, y_1) R (x_2, y_2)$, then either $x_1 = x_2$ or $y_1 = y_2$.

If $x_1 = x_2$, then clearly $x_2 = x_1$.

If $y_1 = y_2$, then clearly $y_2 = y_1$.

Thus, the relation is symmetric.

3. Transitive:

If $(x_1, y_1) R (x_2, y_2)$ and $(x_2, y_2) R (x_3, y_3)$,

then either $x_1 = x_2$ or $y_1 = y_2$, and either $x_2 = x_3$ or $y_2 = y_3$.

If $x_1 = x_2$ and $x_2 = x_3$, then $x_1 = x_3$.

If $y_1 = y_2$ and $y_2 = y_3$, then $y_1 = y_3$.

Thus, the relation is transitive.

4. Equivalence Classes:

The equivalence classes of R are the points where either the x-value y-value are equal.

For a given point (x, y) , the equivalence class of (x, y) is:

 $[(x, y)] = \{(x', y') | x' = x \lor y' = y\}.$

Units Digit

Solve the following problems related to units digits:

1. Find the units digit of 7^{100} .

To find the units digit of 7^{100} , observe the cycle in the units digits of powers of 7: 7, 9, 3, 1 (cycle length is 4). Since $100 \div 4 = 25$ remainder 0, the units digit of 7^{100} is the same as that of 7^4 . The units digit of 7^4 is 1. Thus, the units digit of 7^{100} is $\boxed{1}$.

2. Find the units digit of 3^{50} .

```
To find the units digit of 3^{50}, observe the cycle in the units digits of powers of 3:
3, 9, 7, 1 (cycle length is 4).
Since 50 \div 4 = 12 remainder 2, the units digit of 3^{50} matches that of 3^2.
The units digit of 3^2 is 9.
Thus, the units digit of 3^{50} is \boxed{9}.
```
3. Find the units digit of 12^{1234} .

The units digits of powers of 12 repeat in a cycle: 2, 4, 8, 6.

To find the units digit of 12^{1234} , calculate $1234 \div 4$ which gives remainder 2.

Thus, the units digit of 12^{1234} is the same as that of 12^2 , which is $\boxed{4}$.

4. Find the units digit of 2^{987} .

The units digits of powers of 2 repeat in a cycle: 2, 4, 8, 6.

To find the units digit of 2^{987} , calculate $987 \div 4$ which gives remainder 3.

Thus, the units digit of 2^{987} is the same as that of 2^3 , which is $\boxed{8}$.

5. Find the units digit of 9⁹⁹⁹ .

The units digits of powers of 9 repeat in a cycle of length 2: 9, 1.

To find the units digit of 9^{999} , calculate $999 \div 2$ which gives remainder 1.

Thus, the units digit of 9^{999} is the same as that of 9^1 , which is $\boxed{9}$.