CSE 215 Practice Questions

By Nicholas Smirnov

Truth Tables

Construct truth tables for the following statements:

1. $\sim (p \wedge r) \leftrightarrow (q \oplus r)$

p	q	r	$p \wedge r$	$\sim (p \wedge r)$	$q\oplus r$	$\sim (p \wedge r) \leftrightarrow (q \oplus r)$
Т	Т	T	Т	F	F	Т
T	T	F	F	T	T	T
T	F	T	T	F	T	F
T	F	F	F	Т	F	F
F	Т	T	F	T	F	F
F	T	F	F	T	T	T
F	F	T	F	Т		T
F	F	F	F	Т	F	F

2. $\sim (q \lor r) \rightarrow (p \oplus (r \land q))$

p	q	r	$q \vee r$	$\sim (q \vee r)$	$r \wedge q$	$p \oplus (r \wedge q)$	$\sim (q \lor r) \rightarrow (p \oplus (r \land q))$
T	T	T	Т	F	Т	F	Т
T	T	F	T	F	F	Т	T
T	F	T	Т	F	F	Т	T
T	F	F	F	Т	F	T	T
F	T	Т	Т	F	Т	Т	T
F	T	F	T	F	F	F	T
F	F	Т	Т	F	F	F	T
F	F	F	F	Т	F	F	F

3. $((p \land q) \rightarrow r) \rightarrow (\sim q \lor \sim r)$

p	q	r	$p \wedge q$	$(p \land q) \to r$	$\sim q$	$\sim r$	$\sim q \lor \sim r$	$((p \land q) \to r) \to (\sim q \lor \sim r)$
T	T	Т	Т	Т	F	F	F	F
T	T	F	T	F	F	T	T	T
T	F	T	F	Т	Т	F	T	T
T	F	F	F	Т	Т	T	T	T
F	T	T	F	Т	F	F	F	F
F	T	F	F	Т	F	T	T	T
F	F	Т	F		Т	F		T
F	F	F	F		Т	T		T

4. $(q \lor (r \oplus p)) \leftrightarrow (p \land (r \oplus q))$

p	q	r	$r\oplus p$	$q \lor (r \oplus p)$	$r\oplus q$	$p \wedge (r \oplus q)$	$(q \lor (r \oplus p)) \leftrightarrow (p \land (r \oplus q))$
T	T	T	F	T	F	F	F
T	T	F	T	T	T	Т	T
T	F	T	F	F	T	Т	F
T	F	F	T	T	F	F	F
F	T	T	T	T	F	F	F
F	T	F	F	T	Т	F	F
F	F	T	T	T	T	F	F
F	F	F	F	F	F	F	T

p	q	r	$p \rightarrow q$	$q \rightarrow r$	$(p \to q) \land (q \to r)$	$p \rightarrow r$	$((p \to q) \land (q \to r)) \leftrightarrow (p \to r)$
T	T	T	Т	Т	T	T	T
T	T	F	Т	F	F	F	T
T	F	T	F	Т	F	Т	F
T	F	F	F	Т	F	F	T
F	T	T	Т	Т	T	Т	T
F	T	F	Т	F	F	Т	F
F	F	T	Т	T	T	T	T
F	F	F	Т	T	Т	T	T

5. $((p \to q) \land (q \to r)) \leftrightarrow (p \to r)$

Deduction Rules

Determine if the following deduction rules are valid:

1. $p \to q$ $\sim r \to p$ $\therefore q \lor r$

p	q	r	$p \rightarrow q$	$\sim r$	$\sim r \rightarrow p$	$q \vee r$
T	Т	Т	Т	F	Т	Т
T	T	F	T	Т	Т	Т
T	F	T	F	F	F	
T	F	F	F	Т	Т	
F	T	T	T	F	T	Т
F	Т	F	T	Т	F	
F	F	T	T	F	T	Т
F	F	F	T	Т	F	

Therefore, it is valid.

 $2. \ p \leftrightarrow q$

 $\sim q \wedge \sim r$

 $\therefore \sim r$

p	q	r	$p \leftrightarrow q$	$\sim q$	$\sim r$	$\sim q \wedge \sim r$	$\sim r$
T	T	T	T	F	F	F	
Т	T	F	T	F	Т	F	
Т	F	T	F	Т	F	F	
Т	F	F	F	Т	Т	T	
F	T	T	F	F	F	F	
F	Т	F	F	F	Т	F	
F	F	T	T	Т	F	F	
F	F	F	T	Т	Т	T	Т

Therefore, it is valid.

3.	$(p \oplus q)$	$\rightarrow r, (p \oplus$	$(r) \to q,$	$(q \oplus r)$	$\rightarrow p,$	$\therefore p \land$	$q \wedge r$
----	----------------	----------------------------	--------------	----------------	------------------	----------------------	--------------

p	q	r	$p\oplus q$	$(p \oplus q) \to r$	$p\oplus r$	$(p\oplus r)\to q$	$q\oplus r$	$(q\oplus r)\to p$	$p \wedge q \wedge r$
T	Т	T	F	Т	F	Т	F	Т	T
T	Т	F	F	Т	T	T	T	T	F
T	F	T	T	Т	F	T	T	T	F
T	F	F	T	F	Т	F	F	T	
F	Т	T	T	Т	T	T	F	T	F
F	Т	F	T	F	F	T	T	F	
F	F	T	F	Т	T	F	T	F	
F	F	F	F	T	F	T	F	T	F

Therefore, it is invalid.

Logical Language

Rewrite the following sentences into two logically equivalent statements:

P is a necessary condition for Q. ~ P → ~ Q ≡ Q → P
 P is a sufficient condition for Q. P → Q ≡ ~ Q → ~ P
 P if and only if Q. P ↔ Q ≡ (P → Q) ∧ (Q → P)
 A necessary condition for R is P and Q. ~ (P ∧ Q) → ~ R ≡ R → (P ∧ Q)
 R and T are both necessary and sufficient conditions for P or Q.

$$\sim (R \wedge T) \rightarrow \sim (P \lor Q) \equiv (P \lor Q) \rightarrow (R \land T)$$

Logical Rules and Fallacies

Deduce if the statements are valid. If so, state which rule. If not, state which fallacy.

1. If you study math, you are smart.

I do not study math.

- \therefore I am not smart. Invalid: Inverse Error
- 2. If you get above an 80 on this final, you get a B+.

I got above an 80 on this final.

- \therefore I get a B+. Valid: Modus Ponens
- 3. If you are a good person, you pay taxes.

I pay taxes.

- \therefore I am a good person. Invalid: Converse Error
- 4. If you like cats, you like furry animals.

I do not like furry animals.

∴ I do not like cats. Valid: Modus Tollens

Logical Deduction (Many Premises)

Use the valid arguments forms to deduce the conclusion from the premises.

1. $a \to \sim f$ $a \lor b$ $(b \wedge f) \to d$ f $e \to \sim d$ $\therefore \sim e$ $a \rightarrow \sim f$ (P1), f (P4) $\sim a \pmod{\text{Tollens}}$ $a \lor b$ (P2), $\sim a$ (S1) b (Elimination) b (S2), f (P4) $b \wedge f$ (Conjunction) $(b \wedge f) \rightarrow d$ (P3), $b \wedge f$ (S3) d (Modus Ponens) d (S4), $e \rightarrow \sim d$ (P5) $\sim e$ (Modus Tollens)

2. $\sim h \rightarrow f$

 $c \to \sim (f \land g)$ g $h \to f$ $c \lor q$

 $\therefore q$

$\sim h \rightarrow f$ (P1), $h \rightarrow f$ (P4)	f (Division into Cases)
f (S1), g (P3)	$f \wedge g$ (Conjunction)
$c \to \sim (f \land g) \ (P2), \ f \land g \ (S2)$	$\sim c \; (\text{Modus Tollens})$
$c \lor q \ (P5), \sim c \ (S3)$	q (Elimination)

Logic with Quantifiers

Find negations for the following statements:

1. There exists a student such that they have a higher grade than all other students.

For every student, there is a student who has a grade that is \geq than theirs.

2. For all animals, if you are a pet, then you have an owner.

There exists an animal such that they are a pet but do not have an owner.

3.
$$\forall x \in \mathbb{R}, \exists y \in \mathbb{Z}, xy \ge 0. \ \exists x \in \mathbb{R}, \forall y \in \mathbb{Z}, xy < 0.$$

4. Passing both midterms is a sufficient condition to do well in this class.

One passed both midterms and didn't do well in this class.

5. If you get a 100% on the final or 100% on both midterms, you are going to get an A.One got a 100% on the final or 100% on both midterms and didn't get an A.

6.
$$\forall x, \forall y, \forall z, \exists \alpha, \exists \beta, \exists \zeta, \ \alpha^{\beta} + \zeta \ge xyz \ge \alpha^{\beta} - \zeta$$

$$\boxed{\exists x, \exists y, \exists z, \forall \alpha, \forall \beta, \forall \zeta, \ (\alpha^{\beta} + \zeta < xyz) \lor (\alpha^{\beta} - \zeta > xyz)}$$

Quantifiers

Deduce if the following statements are true or false:

∀x ∈ ℝ, ∃y ∈ ℤ, xy ≥ 0. True. Let y = 0.
 ∀x ∈ ℝ, ∀y ∈ ℤ, xy > 0. False. Let x = -1 and y = 1.
 ∀x, y ∈ ℤ⁺, (x² > y²) → (x > y). True because the domain is ℤ⁺.
 ∀x, y ∈ ℤ, (^x/_y > ^y/_x) → (x ≠ y). True. Use the previous question in the proof.
 ∀x, y ∈ {c, t}, ∃z ∈ {c, t}, (x ∧ y) → z ≡ t True. Let z ≡ t.

Direct Proofs

Prove each of the following using a direct proof method:

1. The sum of any two odd integers is even.

Let two odd integers be a and b. By definition, an odd integer can be written as: a = 2m + 1 and b = 2n + 1, where m and n are integers. The sum of a and b is: a + b = (2m + 1) + (2n + 1) = 2m + 2n + 2 = 2(m + n + 1).Since m + n + 1 is an integer, a + b is divisible by 2 and hence is even. \therefore The sum of any two odd integers is even.

2. If n and m are odd, then nm is also odd.

Let *n* and *m* be odd integers. By definition, an odd integer can be written as: n = 2a + 1 and m = 2b + 1, where *a* and *b* are integers. The product of *n* and *m* is: nm = (2a + 1)(2b + 1) = 4ab + 2a + 2b + 1 = 2(2ab + a + b) + 1.Since 2ab + a + b is an integer, *nm* is of the form 2k + 1, where *k* is an integer. \therefore *nm* is odd. 3. The product of any two consecutive integers is even.

Let the two consecutive integers be n and n + 1. Consider the two cases for n:

Case 1: n is even.

If n is even, we can write n = 2k for some integer k. Then,

$$n(n+1) = (2k)(2k+1)$$

$$= 2k(2k+1).$$

Since 2k is a multiple of 2, the product n(n+1) is divisible by 2, and hence even.

Case 2: n is odd.

If n is odd, we can write n = 2k + 1 for some integer k. Then,

$$n(n+1) = (2k+1)(2k+2)$$

$$= (2k+1)(2(k+1))$$

$$= 2(2k+1)(k+1).$$

Here, 2(2k+1)(k+1) is divisible by 2, so the product n(n+1) is even.

In both cases, the product of two consecutive integers is divisible by 2.

 \therefore The product of any two consecutive integers is even.

4. If a|p and p|q, then a|q

Given: a|p and p|q. By def. of divisibility, there exist integers k and m such that: p = ak and q = pm. Substitute p = ak into q = pm: q = (ak)m q = a(km). Since k and m are integers, km is also an integer. Thus, q is divisible by a. $\therefore a|q$.

Proofs by Contrapositive

Prove each of the following using the contrapositive method:

1. If pq is even, then p or q is even.

We prove the contrapositive: If p and q are odd, then pq is odd. Let p and q be odd integers. By definition, we can write: p = 2k + 1 and q = 2m + 1, where k and m are integers. The product of p and q is: pq = (2k + 1)(2m + 1)= 4km + 2k + 2m + 1= 2(2km + k + m) + 1. Since 2km + k + m is an integer, pq is of the form 2n + 1, where n is an integer. Thus, pq is odd. \therefore The contrapositive is true, so the original statement is true.

2. If $n^2 - 6n + 5$ is even, then n is odd.

We prove the contrapositive: If n is even, then $n^2 - 6n + 5$ is odd. Let n be an even integer. By definition, n = 2k for some integer k. Then, $n^2 - 6n + 5 = (2k)^2 - 6(2k) + 5$ $= 4k^2 - 12k + 5$. Factor out 2 from the terms: $n^2 - 6n + 5 = 2(2k^2 - 6k + 2) + 1$. Since $2k^2 - 6k + 2$ is an integer, the expression is of the form 2m + 1, where m is an integer.

Thus, $n^2 - 6n + 5$ is odd.

 \therefore The contrapositive is true, so the original statement is true.

3. If $x^2 + 5x + 6 \neq 0$, then $x \notin \{-3, -2\}$.

We prove the contrapositive: If $x \in \{-3, -2\}$, then $x^2 + 5x + 6 = 0$. **Case 1:** Let x = -3. Substitute x = -3 into $x^2 + 5x + 6$: $x^2 + 5x + 6 = (-3)^2 + 5(-3) + 6$ = 9 - 15 + 6 = 0. **Case 2:** Let x = -2. Substitute x = -2 into $x^2 + 5x + 6$: $x^2 + 5x + 6 = (-2)^2 + 5(-2) + 6$ = 4 - 10 + 6 = 0. In both cases, $x^2 + 5x + 6 = 0$. Thus, the contrapositive is true. \therefore If $x^2 + 5x + 6 \neq 0$, then $x \notin \{-3, -2\}$.

4. If 3 doesn't divide xy, then 3 doesn't divide x and y.

We prove the contrapositive: If 3 divides x or y, then 3 divides xy.

Case 1: Suppose 3 divides x.

This means x = 3k for some integer k. Then, xy = (3k)y = 3(ky).

Since ky is an integer, 3 divides xy.

Case 2: Suppose 3 divides y.

This means y = 3m for some integer m. Then, xy = x(3m) = 3(xm).

Since xm is an integer, 3 divides xy.

In both cases, if 3 divides x or y, then 3 divides xy. Thus, the contrapositive is true.

: If 3 doesn't divide xy, then 3 doesn't divide x and y.

Proofs by Contradiction

1. If x^2 is irrational, then x is irrational.

We prove by contradiction: Assume x^2 is irrational, but x is rational. Since x is rational, we can write $x = \frac{p}{q}$, where $p, q \in \mathbb{Z}$ and $q \neq 0$, and gcd(p,q) = 1. Then, x^2 can be expressed as: $x^2 = \left(\frac{p}{q}\right)^2 = \frac{p^2}{q^2}$. Since p^2 and q^2 are integers, $\frac{p^2}{q^2}$ is rational. This contradicts the assumption that x^2 is irrational. \therefore If x^2 is irrational, then x must be irrational.

2. $\sqrt{2}$ is irrational.

We prove by contradiction: Assume $\sqrt{2}$ is rational. Then, $\sqrt{2} = \frac{p}{q}$, where $p, q \in \mathbb{Z}, q \neq 0$, and gcd(p,q) = 1. Squaring both sides, we have: $2 = \frac{p^2}{q^2}$. Rewriting, $p^2 = 2q^2$. This implies p^2 is even, so p must also be even. Let p = 2k, where $k \in \mathbb{Z}$. Then: $p^2 = (2k)^2 = 4k^2$. Substituting, $4k^2 = 2q^2$, or $q^2 = 2k^2$. This implies q^2 is even, so q must also be even. Thus, both p and q are even, contradicting the assumption that gcd(p,q) = 1. $\therefore \sqrt{2}$ is irrational. 3. If ab is irrational and a is rational, then b is irrational.

We prove by contradiction: Assume ab is irrational, a is rational, and b is rational. Since a and b are rational, we can write $a = \frac{p}{q}$ and $b = \frac{r}{s}$, where: $p, q, r, s \in \mathbb{Z}, \quad q \neq 0, \quad s \neq 0.$ Then, the product ab is: $ab = \frac{p}{q} \cdot \frac{r}{s} = \frac{pr}{qs}.$ Since pr and qs are integers, $\frac{pr}{qs}$ is rational. This contradicts the assumption that ab is irrational. \therefore If ab is irrational and a is rational, then b must be irrational.

4. There doesn't exist a largest number.

We prove by contradiction: Assume there exists a largest number, say M. By definition of a largest number, M is such that for any $x \in \mathbb{R}, x \leq M$. Consider the number M + 1. Clearly, M + 1 > M. This contradicts the assumption that M is the largest number. \therefore There doesn't exist a largest number.

5. There is no smallest positive real number.

We prove by contradiction: Assume there exists a smallest positive real number, say ϵ . By definition, ϵ is such that for all positive real numbers $x, x \ge \epsilon$. Consider the number $\frac{\epsilon}{2}$. Clearly, $\frac{\epsilon}{2}$ is a positive real number and $\frac{\epsilon}{2} < \epsilon$.

This contradicts the assumption that ϵ is the smallest positive real number.

 \therefore There is no smallest positive real number.

Proofs by Induction

Prove each of the following through induction:

1. The sum of the first n odd numbers is n^2 .

Let
$$P(n) : \sum_{i=0}^{n-1} (2i+1) = n^2$$
 for integers $n \ge 1$.
Base Case: $P(1)$
 $P(1)$ LHS: $\sum_{i=0}^{0} (2i+1) = 1$.
 $P(1)$ RHS: $(1)^2 = 1$.
 $\therefore P(1)$ is true because LHS = RHS.
Inductive Step: Suppose $P(k)$ is true for some $k \ge 1$. Prove $P(k+1)$.
Inductive Hypothesis: Assume $\sum_{i=0}^{k-1} (2i+1) = k^2$.
 $P(k+1)$ LHS: $\sum_{i=0}^{k} (2i+1) = \sum_{i=0}^{k-1} (2i+1) + (2k+1)$.
By the inductive hypothesis: $\sum_{i=0}^{k-1} (2i+1) = k^2$.
Substitute: $\sum_{i=0}^{k} (2i+1) = k^2 + (2k+1)$.
Simplify: $k^2 + (2k+1) = k^2 + 2k + 1 = (k+1)^2$.
Thus, $\sum_{i=0}^{k} (2i+1) = (k+1)^2$.
 $\therefore P(k+1)$ is true.

Conclusion: By the principle of mathematical induction, P(n) is true for all $n \ge 1$.

2. For all $n \ge 1$,

$$1 + x + x^2 + \ldots + x^n = \frac{x^{n+1} - 1}{x - 1} \quad \text{where } x \neq 1$$
Let $P(n) : 1 + x + x^2 + \cdots + x^n = \frac{x^{n+1} - 1}{x - 1}$ for integers $n \ge 1$ and $x \ne 1$.
Base Case: $P(1)$

$$P(1) \text{ LHS: } 1 + x = \frac{x^{1+1} - 1}{x - 1}.$$
RHS: Expand $\frac{x^2 - 1}{x - 1} = \frac{(x - 1)(x + 1)}{x - 1} = x + 1.$
 $\therefore P(1)$ is true because LHS = RHS.
Inductive Step: Suppose $P(k)$ is true for some $k \ge 1$. Prove $P(k + 1)$.
Inductive Hypothesis: Assume $1 + x + x^2 + \cdots + x^k = \frac{x^{k+1} - 1}{x - 1}.$
 $P(k + 1) \text{ LHS: } 1 + x + x^2 + \cdots + x^k + x^{k+1}.$
Using the inductive hypothesis:
 $1 + x + x^2 + \cdots + x^k + x^{k+1} = \frac{x^{k+1} - 1}{x - 1} + x^{k+1}.$
Rewrite the second term with a common denominator:
 $\frac{x^{k+1} - 1}{x - 1} + x^{k+1} = \frac{x^{k+1} - 1 + x^{k+1}(x - 1)}{x - 1}.$
Simplify the numerator:
 $x^{k+1} - 1 + x^{k+2} - x^{k+1} = x^{k+2} - 1.$
Thus, $\frac{x^{k+1} - 1}{x - 1} + x^{k+1} = \frac{x^{k+2} - 1}{x - 1}.$
This matches the RHS of $P(k + 1)$.
 $\therefore P(k + 1)$ is true.
Conclusion: By the principle of mathematical induction, $P(n)$ is true for all $n \ge 1$

3. For all $n \ge 1$,

$$\sum_{i=1}^{n} i(i+1) = \frac{n(n+1)(n+2)}{3}$$
Let $P(n) : \sum_{i=1}^{n} i(i+1) = \frac{n(n+1)(n+2)}{3}$ for integers $n \ge 1$.
Base Case: $P(1)$
 $P(1)$ LHS: $\sum_{i=1}^{1} i(i+1) = 1(1+1) = 2$.
 $P(1)$ RHS: $\frac{1(1+1)(1+2)}{3} = \frac{1 \cdot 2 \cdot 3}{3} = 2$.
 $\therefore P(1)$ is true because LHS = RHS.
Inductive Step: Suppose $P(k)$ is true for some $k \ge 1$. Prove $P(k+1)$.
Inductive Hypothesis: Assume $\sum_{i=1}^{k} i(i+1) = \frac{k(k+1)(k+2)}{3}$.
 $P(k+1)$ LHS: $\sum_{i=1}^{k+1} i(i+1) = \sum_{i=1}^{k} i(i+1) + (k+1)((k+1)+1)$.
Using the inductive hypothesis:
 $\sum_{i=1}^{k+1} i(i+1) = \frac{k(k+1)(k+2)}{3} + (k+1)(k+2)$.
Factor $(k+1)(k+2)$:
 $\sum_{i=1}^{k+1} i(i+1) = \frac{k(k+1)(k+2)}{3} + \frac{3(k+1)(k+2)}{3}$.
Factor out $(k+1)(k+2)$:
Factor out $(k+1)(k+2)$:
 $\sum_{i=1}^{k+1} i(i+1) = \frac{k(k+1)(k+2)+3(k+1)(k+2)}{3}$.
Factor out $(k+1)(k+2)$:
 $\sum_{i=1}^{k+1} i(i+1) = \frac{(k+1)(k+2)(k+3)}{3}$. = RHS of $P(k+1)$.
 $\therefore P(k+1)$ is true.

+1).

Conclusion: By the principle of mathematical induction, P(n) is true for all $n \ge 1$.

4. For all $n \ge 2$,

$$\sum_{i=2}^{n} i^{2}(i-1) = \frac{n(n^{2}-1)(3n+2)}{12}$$
Let $P(n) : \sum_{i=2}^{n} i^{2}(i-1) = \frac{n(n^{2}-1)(3n+2)}{12}$ for integers $n \ge 2$.
Base Case: $P(2)$

$$P(2)$$
 LHS: $\sum_{i=2}^{2} i^{2}(i-1) = 2^{2}(2-1) = 4$.
 $P(2)$ RHS: $\frac{2(2^{2}-1)(3\cdot 2+2)}{12} = \frac{2(4-1)(8)}{12} = \frac{2\cdot 3\cdot 8}{12} = 4$.
 $\therefore P(2)$ is true because LHS = RHS.
Inductive Step: Suppose $P(k)$ is true for some $k \ge 2$. Prove $P(k+1)$.
Inductive Hypothesis: Assume $\sum_{i=2}^{k} i^{2}(i-1) = \frac{k(k^{2}-1)(3k+2)}{12}$.
 $P(k+1)$ LHS: $\sum_{i=2}^{k+1} i^{2}(i-1) = \sum_{i=2}^{k} i^{2}(i-1) + (k+1)^{2}(k+1-1)$.
Using the inductive hypothesis:
 $\sum_{i=2}^{k+1} i^{2}(i-1) = \frac{k(k^{2}-1)(3k+2)}{12} + (k+1)^{2}k$.
Combine terms with a common denominator:
 $\sum_{i=2}^{k+1} i^{2}(i-1) = \frac{k(k^{2}-1)(3k+2) + 12k(k+1)^{2}}{12}$.
Factorize the numerator:
 $k(k^{2}-1)(3k+2) + 12k(k+1)^{2} = (k+1)((k+1)^{2})(3k+2)$.
 $\therefore \sum_{i=2}^{k+1} i^{2}(i-1) = \frac{(k+1)((k+1)^{2}-1)(3(k+1)+2)}{12}$.
This is precisely $\frac{(k+1)((k+1)^{2}-1)(3(k+1)+2)}{12}$, proving $P(k+1)$.
Conclusion: By induction, $P(n)$ holds for all $n \ge 2$.

5. For all $n \ge 1$, $5^n + 3$ is divisible by 4.

Let $P(n) : 5^n + 3$ is divisible by 4. **Base Case:** P(1) P(1) LHS: $5^1 + 3 = 8$ is divisible by $4 \rightarrow P(1)$ is true. **Inductive Step:** Suppose P(k) is true for some $k \ge 1$. Prove P(k + 1). P(k + 1) LHS: $5^{k+1} + 3 = 5 \cdot 5^k + 3$. Rewrite: $5^{k+1} + 3 = 4 \cdot 5^k + 5^k + 3$. Substitute the inductive hypothesis: $5^k + 3 = 4m$. Thus, $5^{k+1} + 3 = 4 \cdot 5^k + 4m = 4(5^k + m)$. Since $5^k + m$ is an integer, $5^{k+1} + 3$ is divisible by 4. **Conclusion:** By induction, P(n) is true for all $n \ge 1$.

6. For all $n \ge 1$, $4^{2n} - 1$ is divisible by 15.

Let $P(n): 4^{2n} - 1$ is divisible by 15. **Base Case:** P(1) P(1) LHS: $4^{2\cdot 1} - 1 = 16 - 1 = 15$ is divisible by $15 \rightarrow P(1)$ is true. **Inductive Step:** Suppose P(k) is true for some $k \ge 1$. Prove, P(k + 1). P(k + 1) LHS: $4^{2(k+1)} - 1 = 4^{2k+2} - 1$. Rewrite: $4^{2k+2} - 1 = (4^2) \cdot 4^{2k} - 1 = 16 \cdot 4^{2k} - 1 = 15 \cdot 4^{2k} + 4^{2k} - 1$ Substitute the inductive hypothesis: $4^{2k} - 1 = 15 \cdot 4^{2k} + 4^{2k} - 1$ Thus, $(4^{2k} - 1)(16) + 15 = (15m)(16) + 15 = 15(16m + 1)$. Since 16m + 1 is an integer, $4^{2(k+1)} - 1$ is divisible by 15. **Conclusion:** By induction, P(n) is true for all $n \ge 1$. 7. For all $n \ge 1$, $4^n + 6n - 1$ is divisible by 3.

Let $P(n) : 4^n + 6n - 1$ is divisible by 3. **Base Case:** P(1) P(1) LHS: $4^1 + 6(1) - 1 = 4 + 6 - 1 = 9$, which is divisible by 3. Thus, P(1) is true. **Inductive Step:** Suppose P(k) is true for some $k \ge 1$. Prove P(k + 1). P(k + 1) LHS: $4^{k+1} + 6(k + 1) - 1$ $= 4 \cdot 4^k + 6k + 6 - 1$ $= 4 \cdot 4^k + 6k + 5$. We can rewrite this as: $4 \cdot 4^k + (6k + 5)$ $= (4 \cdot 4^k + 6k - 1) + 6$ By the inductive hypothesis, we know that $4^k + 6k - 1$ is divisible by 3. Thus, $(4 \cdot 4^k + 6k - 1)$ is divisible by 3. Therefore, $4^{k+1} + 6(k + 1) - 1 = (4 \cdot 4^k + 6k - 1) + 6$ is divisible by 3. **Conclusion:** By induction, P(n) is true for all $n \ge 1$.

Proofs by Strong Induction

Prove each of the following using strong induction:

1. For all $n \ge 1$, the *n*-th term of the sequence defined by

$$a_n = \begin{cases} n & \text{if } n = 1 \text{ or } n = 2, \\ a_{n-1} + 2a_{n-2} & \text{if } n \ge 3, \end{cases}$$

is given by $a_n = 2^{n-1}$.

Let $P(n) : a_n = 2^{n-1}$ for all $n \ge 1$. **Base Case:** P(1) and P(2). For n = 1, $a_1 = 1$ (given), $2^{1-1} = 2^0 = 1$. For n = 2, $a_2 = 2$ (given), $2^{2-1} = 2^1 = 2$. **Inductive Step:** Assume P(i) is true for all $i \in [1, k]$ for some $k \ge 2$. Prove P(k + 1). We need to show that P(k + 1) is true, i.e., $a_{k+1} = 2^k$. By the recurrence relation, we have: $a_{k+1} = a_k + 2a_{k-1}$. Using the inductive hypothesis, $a_k = 2^{k-1}$ and $a_{k-1} = 2^{k-2}$. Substitute these into the recurrence: $a_{k+1} = 2^{k-1} + 2(2^{k-2})$. $a_{k+1} = 2^{k-1} + 2^{k-1} = 2 \cdot 2^{k-1} = 2^k$. **Conclusion:** By induction, P(n) is true for all $n \ge 1$. 2. For the Fibonacci sequence defined as

$$F_1 = 1, F_2 = 1, F_n = F_{n-1} + F_{n-2}$$
 for $n \ge 3$,

prove that $F_n < 2^n$ for all $n \ge 1$.

Let $P(n): F_n < 2^n$ for all $n \ge 1$.

Base Case: P(1) and P(2).

For n = 1, $F_1 = 1$ and $2^1 = 2$, $F_1 < 2^1$.

For n = 2, $F_2 = 1$ and $2^2 = 4$, $F_2 < 2^2$.

Thus, P(1) and P(2) hold true.

Inductive Step: Assume P(k) is true for all $i \in [1, k]$ for some $k \ge 2$. Prove P(k + 1).

We need to show that P(k+1) is true, i.e., $F_{k+1} < 2^{k+1}$.

From the recurrence relation, we have:

 $F_{k+1} = F_k + F_{k-1}.$

By the inductive hypothesis, we know that $F_k < 2^k$ and $F_{k-1} < 2^{k-1}$.

Thus,

 $F_{k+1} = F_k + F_{k-1} < 2^k + 2^{k-1} = 2^{k-1}(2+1) = 2^{k-1} \cdot 3.$

Now observe that $2^{k-1} \cdot 3 < 2^{k+1}$ for all $k \ge 2$.

Therefore, $F_{k+1} < 2^{k+1}$.

Conclusion: By induction, P(n) is true for all $n \ge 1$.

3. Prove that the n-th Fibonacci term can be written as

Let
$$P(n): F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right)$$

Base Case: P(1) and P(2).

For n = 1, $F_1 = 1$, and the right-hand side evaluates to 1.

For n = 2, $F_2 = 1$, and the right-hand side evaluates to 1.

Thus, P(1) and P(2) hold true.

Inductive Step: Assume P(k) is true for all $i \in [1, k]$ for some $k \ge 2$. Prove P(k + 1).

We need to show that
$$F_{k+1} = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{k+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{k+1} \right).$$

Using the inductive hypothesis:

$$F_{k} = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{k} - \left(\frac{1-\sqrt{5}}{2} \right)^{k} \right),$$
$$F_{k-1} = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{k-1} - \left(\frac{1-\sqrt{5}}{2} \right)^{k-1} \right)$$

Adding these:

$$F_{k+1} = \frac{1}{\sqrt{5}} \left[\left(\left(\frac{1+\sqrt{5}}{2} \right)^k + \left(\frac{1+\sqrt{5}}{2} \right)^{k-1} \right) - \left(\left(\frac{1-\sqrt{5}}{2} \right)^k + \left(\frac{1-\sqrt{5}}{2} \right)^{k-1} \right) \right].$$

Factor out powers:

$$\left(\frac{1+\sqrt{5}}{2}\right)^{k+1} = \left(\frac{1+\sqrt{5}}{2}\right)^{k} + \left(\frac{1+\sqrt{5}}{2}\right)^{k-1},$$
$$\left(\frac{1-\sqrt{5}}{2}\right)^{k+1} = \left(\frac{1-\sqrt{5}}{2}\right)^{k} + \left(\frac{1-\sqrt{5}}{2}\right)^{k-1}.$$
Thus, $F_{k+1} = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2}\right)^{k+1} - \left(\frac{1-\sqrt{5}}{2}\right)^{k+1}\right)$

Conclusion: By induction, P(n) is true for all $n \ge 1$.

Set Theory (Element Methods)

1. For all sets A, B, and C, prove that $(A \cup B) - (A \cap C) = (A - C) \cup (B - C)$.

To prove: $(A \cup B) - (A \cap C) = (A - C) \cup (B - C)$, show: (1) $x \in (A \cup B) - (A \cap C) \implies x \in (A - C) \cup (B - C),$ (2) $x \in (A - C) \cup (B - C) \implies x \in (A \cup B) - (A \cap C).$ (1) Prove $x \in (A \cup B) - (A \cap C) \implies x \in (A - C) \cup (B - C).$ Let $x \in (A \cup B) - (A \cap C) \implies x \in A \cup B$ and $x \notin A \cap C$. If $x \in A \cup B$, then $x \in A$ or $x \in B$. If $x \notin A \cap C$, then it is not true that $x \in A$ and $x \in C$. Case 1: If $x \in A$ and $x \notin C$, then $x \in A - C$. Case 2: If $x \in B$ and $x \notin C$, then $x \in B - C$. Thus, $x \in (A - C) \cup (B - C)$. (2) Prove $x \in (A - C) \cup (B - C) \implies x \in (A \cup B) - (A \cap C)$. Let $x \in (A - C) \cup (B - C) \implies x \in A - C$ or $x \in B - C$. Case 1: If $x \in A - C$, then $x \in A$ and $x \notin C$. Since $x \in A$, we have $x \in A \cup B$. Since $x \notin C$, it is not true that $x \in A \cap C$. Thus, $x \in (A \cup B) - (A \cap C)$. Case 2: If $x \in B - C$, then $x \in B$ and $x \notin C$. Since $x \in B$, we have $x \in A \cup B$. Since $x \notin C$, it is not true that $x \in A \cap C$. Thus, $x \in (A \cup B) - (A \cap C)$. Conclusion: $(A \cup B) - (A \cap C) = (A - C) \cup (B - C).$

2. For all sets A, B, and C, prove that $A - (B \cup C) = (A - B) \cap (A - C)$.

To prove: $A - (B \cup C) = (A - B) \cap (A - C)$. We will prove this using an element-based argument by showing: (1) $x \in A - (B \cup C) \implies x \in (A - B) \cap (A - C),$ (2) $x \in (A - B) \cap (A - C) \implies x \in A - (B \cup C).$ (1) Prove $x \in A - (B \cup C) \implies x \in (A - B) \cap (A - C)$. Let $x \in A - (B \cup C)$. Then $x \in A$ and $x \notin B \cup C$. If $x \notin B \cup C$, then $x \notin B$ and $x \notin C$. Since $x \in A$ and $x \notin B$, it follows that $x \in A - B$. Since $x \in A$ and $x \notin C$, it follows that $x \in A - C$. Thus, $x \in (A - B) \cap (A - C)$. (2) Prove $x \in (A - B) \cap (A - C) \implies x \in A - (B \cup C)$. Let $x \in (A - B) \cap (A - C)$. Then $x \in A - B$ and $x \in A - C$. If $x \in A - B$, then $x \in A$ and $x \notin B$. If $x \in A - C$, then $x \in A$ and $x \notin C$. Since $x \notin B$ and $x \notin C$, it follows that $x \notin B \cup C$. Thus, $x \in A$ and $x \notin B \cup C$, so $x \in A - (B \cup C)$. Conclusion: $A - (B \cup C) = (A - B) \cap (A - C)$.

3. For all sets A, B, and C, prove that $A \times (B - C) = (A \times B) - (A \times C)$.

To prove: $A \times (B - C) = (A \times B) - (A \times C)$. We will prove this using an element-based argument by showing: (1) $(x,y) \in A \times (B-C) \implies (x,y) \in (A \times B) - (A \times C),$ (2) $(x,y) \in (A \times B) - (A \times C) \implies (x,y) \in A \times (B - C).$ (1) Prove $(x, y) \in A \times (B - C) \implies (x, y) \in (A \times B) - (A \times C)$. Let $(x, y) \in A \times (B - C)$. Then $x \in A$ and $y \in B - C$. Since $y \in B - C$, we know that $y \in B$ and $y \notin C$. Thus, $(x, y) \in A \times B$. Since $y \notin C$, it follows that $(x, y) \notin A \times C$. Therefore, $(x, y) \in (A \times B) - (A \times C)$. (2) Prove $(x, y) \in (A \times B) - (A \times C) \implies (x, y) \in A \times (B - C).$ Let $(x, y) \in (A \times B) - (A \times C)$. Then $(x, y) \in A \times B$ and $(x, y) \notin A \times C$. Since $(x, y) \in A \times B$, it follows that $x \in A$ and $y \in B$. Since $(x, y) \notin A \times C$, it follows that $y \notin C$. Thus, $y \in B$ and $y \notin C$, so $y \in B - C$. Therefore, $(x, y) \in A \times (B - C)$. **Conclusion:** $A \times (B - C) = (A \times B) - (A \times C).$

4. For all sets A, B, and C, prove that if $A \subseteq B$ and $C \subseteq B$, then $A \times C \subseteq B \times B$.

To prove: $A \times C \subseteq B \times B$. We are given that $A \subseteq B$ and $C \subseteq B$. We will prove this using an element-based argument. Let $(x, y) \in A \times C$. Then, by the definition of Cartesian product, $x \in A$ and $y \in C$. Since $A \subseteq B$ and $x \in A$, it follows that $x \in B$. Since $C \subseteq B$ and $y \in C$, it follows that $y \in B$. Thus, $(x, y) \in B \times B$. Therefore, $A \times C \subseteq B \times B$.

Set Theory (Algebraic Methods)

Prove each of the following using algebraic-based method:

1. For all sets A, B, and C, prove that $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$.

We want to prove that $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$. First, we rewrite the left-hand side using the distributive law: $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$. Thus, by the distributive property, we have: $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$. Therefore, the identity is proven. 2. For all sets A, B, and C, prove that $A - (B \cup C) = (A - B) \cap (A - C)$.

We want to prove that $A - (B \cup C) = (A - B) \cap (A - C)$. First, we rewrite the left-hand side using the set difference law: $A - (B \cup C) = A \cap (B \cup C)^c$. Now, apply De Morgan's law: $(B \cup C)^c = B^c \cap C^c$, so we have: $A - (B \cup C) = A \cap (B^c \cap C^c)$. By the distributive property, we get: $A - (B \cup C) = (A \cap B^c) \cap (A \cap C^c)$. This simplifies to: $(A - B) \cap (A - C)$. Thus, we have shown that: $A - (B \cup C) = (A - B) \cap (A - C)$. 3. For all sets A, B, and C, prove that $(A \cup B) - (A \cap B) = (A - B) \cup (B - A)$.

We want to prove that $(A \cup B) - (A \cap B) = (A - B) \cup (B - A)$. First, we rewrite the left-hand side using the set difference law: $(A \cup B) - (A \cap B) = (A \cup B) \cap (A \cap B)^c.$ Now, apply De Morgan's law: $(A \cap B)^c = A^c \cup B^c,$ so we have: $(A \cup B) - (A \cap B) = (A \cup B) \cap (A^c \cup B^c).$ By distributive law: $(A \cup B) \cap (A^c \cup B^c) = (A \cap A^c) \cup (A \cap B^c) \cup (B \cap A^c) \cup (B \cap B^c)$ Now simplify: $A \cap A^c = \emptyset, \quad B \cap B^c = \emptyset,$ so we have: $(A \cup B) - (A \cap B) = (A \cap B^c) \cup (B \cap A^c).$ By the definition of set difference, this simplifies to: $(A-B) \cup (B-A).$ Thus, we have shown that: $(A \cup B) - (A \cap B) = (A - B) \cup (B - A).$

4. For all sets A, B, and C, prove that $(A \cap B) \cup (A - B) = A$.

We want to prove that $(A \cap B) \cup (A - B) = A$. $A - B = A \cap B^c \implies (A \cap B) \cup (A \cap B^c)$. Now, factor out A using the distributive law: $(A \cap B) \cup (A \cap B^c) = A \cap (B \cup B^c)$. Since $B \cup B^c = U$ (the universal set), we have: $A \cap (B \cup B^c) = A \cap U = A$

5. For all sets A, B, and C, prove that $A - (B \cap C) = (A - B) \cup (A - C)$.

We want to prove that $A - (B \cap C) = (A - B) \cup (A - C)$. First, rewrite the left-hand side using the set difference law: $A - (B \cap C) = A \cap (B \cap C)^c$. Now, apply De Morgan's law to $(B \cap C)^c$: $(B \cap C)^c = B^c \cup C^c$. So, the expression becomes: $A - (B \cap C) = A \cap (B^c \cup C^c)$. Now, apply the distributive law to expand the intersection: $A \cap (B^c \cup C^c) = (A \cap B^c) \cup (A \cap C^c)$. By the definition of set difference, we recognize: $A \cap B^c = A - B$ and $A \cap C^c = A - C$. Thus, we have: $A - (B \cap C) = (A - B) \cup (A - C)$. Therefore, we have proven the identity.

Set Theory Counterexamples

Provide a counterexample to disprove each of the following:

1. For all sets A and B, $A \cup B = A - B$ if and only if A = B.

Let
$$A = \{1, 2\}$$
 and $B = \{2\}$.
First, compute $A \cup B$:
 $A \cup B = \{1, 2\} \cup \{2\} = \{1, 2\}$.
Next, compute $A - B$:
 $A - B = \{1, 2\} - \{2\} = \{1\}$.
Clearly, $A \cup B = \{1, 2\} \neq \{1\} = A - B$.

2. For all sets A, B, and C, $(A \cup B) - C = (A - C) \cap (B - C)$.

Let $A = \{1, 2\}, B = \{2, 3\}, \text{ and } C = \{2\}.$ First, compute the left-hand side: $A \cup B = \{1, 2\} \cup \{2, 3\} = \{1, 2, 3\},$ $(A \cup B) - C = \{1, 2, 3\} - \{2\} = \{1, 3\}.$ Now, compute the right-hand side: $A - C = \{1, 2\} - \{2\} = \{1\},$ $B - C = \{2, 3\} - \{2\} = \{1\},$ $B - C = \{2, 3\} - \{2\} = \{3\},$ $(A - C) \cap (B - C) = \{1\} \cap \{3\} = \emptyset.$ In this case, we observe that the left-hand side and right-hand side are not equal: $(A \cup B) - C = \{1, 3\} \neq \emptyset = (A - C) \cap (B - C).$ 3. For all sets A, B, and C, $A - (B \cap C) = (A - B) \cap (A - C)$.

Let $A = \{1, 2, 3, 4\}, B = \{2, 3\}, C = \{3, 4\}.$ First, calculate $B \cap C$: $B \cap C = \{2, 3\} \cap \{3, 4\} = \{3\}.$ Now, calculate the left-hand side $A - (B \cap C)$: $A - (B \cap C) = \{1, 2, 3, 4\} - \{3\} = \{1, 2, 4\}.$ Next, calculate the right-hand side $(A - B) \cap (A - C)$: $A - B = \{1, 2, 3, 4\} - \{2, 3\} = \{1, 4\},$ $A - C = \{1, 2, 3, 4\} - \{3, 4\} = \{1, 2\},$ $(A - B) \cap (A - C) = \{1, 4\} \cap \{1, 2\} = \{1\}.$ Since $\{1, 2, 4\} \neq \{1\}$, the statement is disproved.

4. For all sets A, B, and C, $A \times (B \cup C) = (A \times B) \cap (A \times C)$ holds for all A, B, and C.

Let $A = \{1\}, B = \{2\}, C = \{3\}.$ First, calculate $B \cup C$: $B \cup C = \{2\} \cup \{3\} = \{2, 3\}.$ Now, calculate the left-hand side $A \times (B \cup C)$: $A \times (B \cup C) = \{1\} \times \{2, 3\} = \{(1, 2), (1, 3)\}.$ Next, calculate the right-hand side $(A \times B) \cap (A \times C)$: $A \times B = \{1\} \times \{2\} = \{(1, 2)\},$ $A \times C = \{1\} \times \{3\} = \{(1, 2)\},$ $(A \times B) \cap (A \times C) = \{(1, 2)\} \cap \{(1, 3)\} = \emptyset.$ Finally, compare the results: Since $\{(1, 2), (1, 3)\} \neq \emptyset$, the statement is disproved.

One-to-One Correspondence

Deduce if the following functions are one-to-one correspondences:

1. Define a function $f : \mathbb{Z} \to \mathbb{Z}$ by f(x) = 2x + 1.

1. One-to-One

A function is one-to-one if $f(x_1) = f(x_2)$ implies that $x_1 = x_2$.

Assume $f(x_1) = f(x_2)$.

Then, $2x_1 + 1 = 2x_2 + 1$.

Subtracting 1 from both sides: $2x_1 = 2x_2$.

Dividing both sides by 2: $x_1 = x_2$.

Thus, the function is one-to-one.

2. Onto

A function is onto if for every $y \in \mathbb{Z}$, there exists an $x \in \mathbb{Z}$ such that f(x) = y.

Let $y \in \mathbb{Z}$.

We need to find x such that f(x) = y, i.e., 2x + 1 = y.

Solving for x:

$$2x = y - 1$$
$$x = \frac{y - 1}{2}.$$

For x to be an integer, y - 1 must be even, which means that y must be odd.

Thus, the function is not onto, because there are no x values corresponding to even y values.

3. One-to-one Correspondence

Because the function is not onto, it is not a one-to-one correspondence.

2. Define a function $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = x^3$.

1. One-to-One

A function is one-to-one if $f(x_1) = f(x_2)$ implies that $x_1 = x_2$.

Assume $f(x_1) = f(x_2)$.

Then, $x_1^3 = x_2^3$.

Taking the cube root of both sides: $x_1 = x_2$.

Thus, the function is one-to-one.

2. Onto

A function is onto if for every $y \in \mathbb{R}$, there exists an $x \in \mathbb{R}$ such that f(x) = y.

Let $y \in \mathbb{R}$.

We need to find x such that f(x) = y, i.e., $x^3 = y$.

Solving for x:

$$x = \sqrt[3]{y}.$$

Since the cube root of any real number is defined and produces a real number,

the function is onto.

3. One-to-one Correspondence

Since the function is both one-to-one and onto, it is a one-to-one correspondence.

3. Define a function $f : \mathbb{N} \to \mathbb{N}$ by $f(x) = x^2$.

1. One-to-One

A function is one-to-one if $f(x_1) = f(x_2)$ implies that $x_1 = x_2$.

Assume $f(x_1) = f(x_2)$.

Then, $x_1^2 = x_2^2$.

This implies that $x_1 = x_2$ or $x_1 = -x_2$.

However, since $x_1, x_2 \in \mathbb{N}$ (the set of natural numbers),

the possibility that $x_1 = -x_2$ is not valid.

Therefore, $x_1 = x_2$ and the function is one-to-one.

2. Onto

A function is onto if for every $y \in \mathbb{N}$, there exists an $x \in \mathbb{N}$ such that f(x) = y.

Let $y \in \mathbb{N}$.

We need to find x such that f(x) = y, i.e., $x^2 = y$.

Solving for x, $x = \sqrt{y}$.

For $x \in \mathbb{N}$, the square root of y must also be a natural number.

Thus, the function is only onto for perfect squares in \mathbb{N} .

Therefore, not onto, because not all elements of \mathbb{N} have a corresponding x value.

3. One-to-one Correspondence

Since the function is one-to-one but not onto, it is not a one-to-one correspondence.

4. Define a function $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ by f(x, y) = (4y, 2x).

1. One-to-One

A function $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ is one-to-one if $f(x_1, y_1) = f(x_2, y_2) \implies (x_1, y_1) = (x_2, y_2)$. Assume $f(x_1, y_1) = f(x_2, y_2)$. Then, $(4y_1, 2x_1) = (4y_2, 2x_2).$ From the first component: $4y_1 = 4y_2 \implies y_1 = y_2$. From the second component: $2x_1 = 2x_2 \implies x_1 = x_2$. Thus, $(x_1, y_1) = (x_2, y_2)$ and the function is one-to-one. 2. Onto A function $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ is onto if for every $(a, b) \in \mathbb{R} \times \mathbb{R}$, there exists $(x, y) \in \mathbb{R} \times \mathbb{R}$ such that f(x, y) = (a, b). Let $(a, b) \in \mathbb{R} \times \mathbb{R}$. We need to find (x, y) where f(x, y) = (a, b), i.e., (4y, 2x) = (a, b). From the first component: $4y = a \implies y = \frac{a}{4}$. From the second component: $2x = b \implies x = \frac{b}{2}$. Thus, for every $(a,b) \in \mathbb{R} \times \mathbb{R}$, there exists $(x,y) = \left(\frac{b}{2}, \frac{a}{4}\right) \in \mathbb{R} \times \mathbb{R}$ where f(x,y) = (a,b). Therefore, the function is onto.

3. One-to-one Correspondence

Since the function is both one-to-one and onto, it is a one-to-one correspondence.

5. Define a function $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ by f(x, y) = (2y, 3x).

1. One-to-One

A function $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ is one-to-one if $f(x_1, y_1) = f(x_2, y_2) \implies (x_1, y_1) = (x_2, y_2)$.

Assume $f(x_1, y_1) = f(x_2, y_2)$.

Then, $(2y_1, 3x_1) = (2y_2, 3x_2)$.

From the first component: $2y_1 = 2y_2 \implies y_1 = y_2$.

From the second component: $3x_1 = 3x_2 \implies x_1 = x_2$.

Thus, $(x_1, y_1) = (x_2, y_2)$ and the function is one-to-one.

2. Onto

A function $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ is onto if for every $(a, b) \in \mathbb{N} \times \mathbb{N}$,

there exists $(x, y) \in \mathbb{N} \times \mathbb{N}$ such that f(x, y) = (a, b).

Let $(a, b) \in \mathbb{N} \times \mathbb{N}$.

We need to find (x, y) such that f(x, y) = (a, b), i.e., (2y, 3x) = (a, b).

From the first component: $2y = a \implies y = \frac{a}{2}$. From the second component: $3x = b \implies x = \frac{b}{3}$.

For y and x to be natural numbers, a must be even and b must be divisible by 3.

If a is odd or b is not divisible by 3, there are no such x, y in \mathbb{N} .

Thus, the function is not onto.

3. One-to-one Correspondence

Since the function is not onto, it is not a one-to-one correspondence.

Infinite Sets

Prove or disprove the following statements regarding infinite sets:

1. $|\mathbb{N}| = |\mathbb{N} - \{2, 4, 6, 8, ...\}|.$

1. Define a Bijection

To prove $|\mathbb{N}| = |\mathbb{N} - \{2, 4, 6, 8, ...\}|$, construct a bijection $f : \mathbb{N} \to \mathbb{N} - \{2, 4, 6, 8, ...\}$.

Define f(n) = 2n - 1.

2. One-to-One

A function is one-to-one if $f(n_1) = f(n_2)$ implies that $n_1 = n_2$.

Assume $f(n_1) = f(n_2)$.

Then, $2n_1 - 1 = 2n_2 - 1$.

Adding 1 to both sides: $2n_1 = 2n_2$.

Dividing both sides by 2: $n_1 = n_2$. \implies Thus, the function is one-to-one.

3. Onto

A function is onto if for every $y \in \mathbb{N} - \{2, 4, 6, 8, ...\}, \exists n \in \mathbb{N}$ such that f(n) = y.

Let $y \in \mathbb{N} - \{2, 4, 6, 8, ...\}$, so y is odd.

We need to find n such that f(n) = y, i.e., 2n - 1 = y.

Solving for n:

$$2n = y + 1$$
$$n = \frac{y+1}{2}.$$

Since y is odd, y + 1 is even, and $\frac{y+1}{2} \in \mathbb{N}$. \implies Thus, the function is onto.

4. Conclusion

Since f is both one-to-one and onto, it is a bijection.

Therefore, $|\mathbb{N}| = |\mathbb{N} - \{2, 4, 6, 8, \dots\}|.$

2. $|\{0, 2, 4, 6, 8, ...\}| = |\{1, 3, 5, 7, 9, ...\}|$

1. Define a Bijection

To prove $|\{0, 2, 4, 6, 8, ...\}| = |\{1, 3, 5, 7, 9, ...\}|$, construct a bijection.

Define f(n) = n + 1.

2. One-to-One

A function is one-to-one if $f(n_1) = f(n_2)$ implies that $n_1 = n_2$.

Assume $f(n_1) = f(n_2)$.

Then, $n_1 + 1 = n_2 + 1$.

Subtracting 1 from both sides: $n_1 = n_2$.

Thus, the function is one-to-one.

3. Onto

A function is onto if for every $y \in \{1, 3, 5, 7, 9, ...\}, \exists n \in \{0, 2, 4, 6, 8, ...\}, f(n) = y$.

Let $y \in \{1, 3, 5, 7, 9, \dots\}.$

We need to find n such that f(n) = y, i.e., n + 1 = y.

Solving for n:

$$n = y - 1.$$

Since y is odd, y - 1 is even, and $n \in \{0, 2, 4, 6, 8, ... \}$.

Thus, the function is onto.

4. Conclusion

Since f is both one-to-one and onto, it is a bijection.

Therefore, $|\{0, 2, 4, 6, 8, \dots\}| = |\{1, 3, 5, 7, 9, \dots\}|.$

3. $|\mathbb{N}| < |\mathbb{R}|$

1. Cantor's Diagonal Argument:

To show $|\mathbb{N}| < |\mathbb{R}|$, we prove that no bijection exists between \mathbb{N} and \mathbb{R} .

Assume for contradiction that such a bijection exists, $f : \mathbb{N} \to \mathbb{R}$.

Construct the decimal expansion of each real number in [0, 1) as follows:

 $f(1) = 0.a_{11}a_{12}a_{13}...$ $f(2) = 0.a_{21}a_{22}a_{23}...$ $f(3) = 0.a_{31}a_{32}a_{33}...$:

Construct a new number $x = 0.b_1b_2b_3...$ such that $b_i \neq a_{ii}$.

By construction, x differs from f(i) at the *i*th digit, for all i.

Thus, x is not in the range of f, contradicting the assumption that f is a bijection.

2. Conclusion:

No bijection exists between \mathbb{N} and \mathbb{R} . Therefore, $|\mathbb{N}| < |\mathbb{R}|$.

4. $|\mathbb{N}| < |\mathcal{P}(\mathbb{N})|$

1. Cantor's Theorem:

To show $|\mathbb{N}| < |\mathcal{P}(\mathbb{N})|$, we prove that no bijection exists between \mathbb{N} and $\mathcal{P}(\mathbb{N})$.

Assume for contradiction that such a bijection exists, $f : \mathbb{N} \to \mathcal{P}(\mathbb{N})$.

Define a set $S \subseteq \mathbb{N}$ as follows: $S = \{n \in \mathbb{N} : n \notin f(n)\}.$

Since $S \subseteq \mathbb{N}$, it must be in the codomain of f, so there $\exists k \in \mathbb{N}$ such that f(k) = S.

Now, consider whether $k \in S$:

If $k \in S$, then by definition of S, we must have $k \notin f(k)$.

But f(k) = S, so $k \notin S$. This is a contradiction.

If $k \notin S$, then by definition of S, we must have $k \in f(k)$.

But f(k) = S, so $k \in S$. This is also a contradiction.

Thus, no such k can exist, and f cannot be a bijection.

2. Conclusion:

No bijection exists between \mathbb{N} and $\mathcal{P}(\mathbb{N})$. Therefore, $|\mathbb{N}| < |\mathcal{P}(\mathbb{N})|$.

Equivalence Relations

Prove or disprove the following statements about equivalence relations:

 Let R be a relation on the set of integers Z defined by a R b if and only if a−b is divisible by 3. Prove that R is an equivalence relation on Z, and describe the equivalence classes of R.

1. Reflexive:
For any $a \in \mathbb{Z}$, $a - a = 0$ is divisible by 3, so $a R a$ holds.
2. Symmetric:
If $a R b$, then $a - b = 3k$ for some $k \in \mathbb{Z}$.
Thus, $b - a = -3k$ is divisible by 3, so $b R a$ holds.
3. Transitive:
If $a R b$ and $b R c$, then $a - b = 3k$ and $b - c = 3m$ for some $k, m \in \mathbb{Z}$.
Adding these gives $a - c = 3(k + m)$, which is divisible by 3, so $a R c$.
4. Equivalence Classes:
The equivalence classes are the sets of integers that differ by multiples of 3:
$[0] = \{\dots, -3, 0, 3, 6, \dots\}, [1] = \{\dots, -2, 1, 4, 7, \dots\},\$
$[2] = \{\dots, -1, 2, 5, 8, \dots\}.$

2. Let R be a relation on the set of all strings over the alphabet $\{a, b\}$ defined by x R y if and only if x and y have the same length. Prove that R is an equivalence relation and describe the equivalence classes of R.

1. Reflexive:

For any string x, we have |x| = |x|, so x R x holds.

2. Symmetric:

If x R y, then |x| = |y|.

Thus, |y| = |x|, so y R x holds.

3. Transitive:

If x R y and y R z, then |x| = |y| and |y| = |z|.

Thus, |x| = |z|, so x R z holds.

4. Equivalence Classes:

The equivalence classes are the sets of strings with the same length.

For any non-negative integer n, the equivalence class of strings of length n is:

 $[n] = \{x \mid x \text{ is a string over } \{a, b\} \text{ with length } n\}.$

3. Let R be a relation on \mathbb{R} defined by a R b if and only if $a^2 = b^2$. Prove that R is an equivalence relation, and describe the equivalence classes of R.

1. Reflexive:

For any $a \in \mathbb{R}$, we have $a^2 = a^2$, so a R a holds.

2. Symmetric:

If a R b, then $a^2 = b^2$.

Thus, $b^2 = a^2$, so b R a holds.

3. Transitive:

If a R b and b R c, then $a^2 = b^2$ and $b^2 = c^2$.

Thus, $a^2 = c^2$, so a R c holds.

4. Equivalence Classes:

The equivalence classes are the sets of real numbers with the same absolute value.

For any non-negative real number r, the equivalence class of r is:

 $[r] = \{x \in \mathbb{R} \mid |x| = r\} = \{-r, r\} \text{ (if } r \neq 0), \text{ and } [0] = \{0\}.$

4. Let R be a relation on the set of all people, where a R b if and only if a and b have the same birth year. Prove that R is an equivalence relation on the set of all people and describe the equivalence classes of R.

1. Reflexive:

For any person a, the relation holds because a has the same birth year as a.

Thus, a R a holds.

2. Symmetric:

If a R b, then a and b have the same birth year.

Since having the same birth year is a mutual property, b R a also holds.

3. Transitive:

If a R b and b R c, then a and b have the same year, and b and c have the same year.

Thus, a and c must also have the same birth year, so a R c holds.

4. Equivalence Classes:

The equivalence classes of R are the sets of people born in the same year.

For any year y, the equivalence class of people born in year y is:

 $[y] = \{a \mid a \text{ is born in year } y\}.$

5. Let R be a relation on the set of all points in the plane \mathbb{R}^2 defined by $(x_1, y_1) R(x_2, y_2)$ if and only if $x_1 = x_2$ or $y_1 = y_2$. Prove that R is an equivalence relation and describe the equivalence classes of R.

1. Reflexive:

For any point (x_1, y_1) , we have $(x_1, y_1) R(x_1, y_1)$ since $x_1 = x_1$ and $y_1 = y_1$.

Thus, the relation is reflexive.

2. Symmetric:

If $(x_1, y_1) R(x_2, y_2)$, then either $x_1 = x_2$ or $y_1 = y_2$.

If $x_1 = x_2$, then clearly $x_2 = x_1$.

If $y_1 = y_2$, then clearly $y_2 = y_1$.

Thus, the relation is symmetric.

3. Transitive:

If $(x_1, y_1) R(x_2, y_2)$ and $(x_2, y_2) R(x_3, y_3)$,

then either $x_1 = x_2$ or $y_1 = y_2$, and either $x_2 = x_3$ or $y_2 = y_3$.

If $x_1 = x_2$ and $x_2 = x_3$, then $x_1 = x_3$.

If $y_1 = y_2$ and $y_2 = y_3$, then $y_1 = y_3$.

Thus, the relation is transitive.

4. Equivalence Classes:

The equivalence classes of R are the points where either the x-value y-value are equal.

For a given point (x, y), the equivalence class of (x, y) is:

 $[(x,y)] = \{(x',y') \mid x' = x \lor y' = y\}.$

Units Digit

Solve the following problems related to units digits:

1. Find the units digit of 7^{100} .

To find the units digit of 7^{100} , observe the cycle in the units digits of powers of 7: 7,9,3,1 (cycle length is 4). Since $100 \div 4 = 25$ remainder 0, the units digit of 7^{100} is the same as that of 7^4 . The units digit of 7^4 is 1. Thus, the units digit of 7^{100} is 1.

2. Find the units digit of 3^{50} .

To find the units digit of 3^{50} , observe the cycle in the units digits of powers of 3: 3,9,7,1 (cycle length is 4). Since $50 \div 4 = 12$ remainder 2, the units digit of 3^{50} matches that of 3^{2} . The units digit of 3^{2} is 9. Thus, the units digit of 3^{50} is 9.

3. Find the units digit of 12^{1234} .

The units digits of powers of 12 repeat in a cycle: 2, 4, 8, 6.

To find the units digit of 12^{1234} , calculate $1234 \div 4$ which gives remainder 2.

Thus, the units digit of 12^{1234} is the same as that of 12^2 , which is 4.

4. Find the units digit of 2^{987} .

The units digits of powers of 2 repeat in a cycle: 2, 4, 8, 6.

To find the units digit of 2^{987} , calculate $987 \div 4$ which gives remainder 3.

Thus, the units digit of 2^{987} is the same as that of 2^3 , which is 8.

5. Find the units digit of 9^{999} .

The units digits of powers of 9 repeat in a cycle of length 2: 9, 1.

To find the units digit of 9^{999} , calculate $999 \div 2$ which gives remainder 1.

Thus, the units digit of 9^{999} is the same as that of 9^1 , which is 9.