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Truth Tables

Construct truth tables for the following statements:

1. ∼ (p ∧ r) ↔ (q ⊕ r)

p q r p ∧ r ∼ (p ∧ r) q ⊕ r ∼ (p ∧ r) ↔ (q ⊕ r)

T T T T F F T

T T F F T T T

T F T T F T F

T F F F T F F

F T T F T F F

F T F F T T T

F F T F T T T

F F F F T F F

2. ∼ (q ∨ r) → (p⊕ (r ∧ q))

p q r q ∨ r ∼ (q ∨ r) r ∧ q p⊕ (r ∧ q) ∼ (q ∨ r) → (p⊕ (r ∧ q))

T T T T F T F T

T T F T F F T T

T F T T F F T T

T F F F T F T T

F T T T F T T T

F T F T F F F T

F F T T F F F T

F F F F T F F F
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3. ((p ∧ q) → r) → (∼ q ∨ ∼ r)

p q r p ∧ q (p ∧ q) → r ∼ q ∼ r ∼ q ∨ ∼ r ((p ∧ q) → r) → (∼ q ∨ ∼ r)

T T T T T F F F F

T T F T F F T T T

T F T F T T F T T

T F F F T T T T T

F T T F T F F F F

F T F F T F T T T

F F T F T T F T T

F F F F T T T T T

4. (q ∨ (r ⊕ p)) ↔ (p ∧ (r ⊕ q))

p q r r ⊕ p q ∨ (r ⊕ p) r ⊕ q p ∧ (r ⊕ q) (q ∨ (r ⊕ p)) ↔ (p ∧ (r ⊕ q))

T T T F T F F F

T T F T T T T T

T F T F F T T F

T F F T T F F F

F T T T T F F F

F T F F T T F F

F F T T T T F F

F F F F F F F T
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5. ((p → q) ∧ (q → r)) ↔ (p → r)

p q r p → q q → r (p → q) ∧ (q → r) p → r ((p → q) ∧ (q → r)) ↔ (p → r)

T T T T T T T T

T T F T F F F T

T F T F T F T F

T F F F T F F T

F T T T T T T T

F T F T F F T F

F F T T T T T T

F F F T T T T T

Deduction Rules

Determine if the following deduction rules are valid:

1. p → q

∼ r → p

∴ q ∨ r

p q r p → q ∼ r ∼ r → p q ∨ r

T T T T F T T

T T F T T T T

T F T F F F

T F F F T T

F T T T F T T

F T F T T F

F F T T F T T

F F F T T F

Therefore, it is valid.
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2. p ↔ q

∼ q ∧ ∼ r

∴ ∼ r

p q r p ↔ q ∼ q ∼ r ∼ q ∧ ∼ r ∼ r

T T T T F F F

T T F T F T F

T F T F T F F

T F F F T T T

F T T F F F F

F T F F F T F

F F T T T F F

F F F T T T T T

Therefore, it is valid.

3. (p⊕ q) → r, (p⊕ r) → q, (q ⊕ r) → p, ∴ p ∧ q ∧ r

p q r p⊕ q (p⊕ q) → r p⊕ r (p⊕ r) → q q ⊕ r (q ⊕ r) → p p ∧ q ∧ r

T T T F T F T F T T

T T F F T T T T T F

T F T T T F T T T F

T F F T F T F F T

F T T T T T T F T F

F T F T F F T T F

F F T F T T F T F

F F F F T F T F T F

Therefore, it is invalid.
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Logical Language

Rewrite the following sentences into two logically equivalent statements:

1. P is a necessary condition for Q. ∼ P →∼ Q ≡ Q → P

2. P is a sufficient condition for Q. P → Q ≡ ∼ Q →∼ P

3. P if and only if Q. P ↔ Q ≡ (P → Q) ∧ (Q → P )

4. A necessary condition for R is P and Q. ∼ (P ∧Q) →∼ R ≡ R → (P ∧Q)

5. R and T are both necessary and sufficient conditions for P or Q.

∼ (R ∧ T ) →∼ (P ∨Q) ≡ (P ∨Q) → (R ∧ T )

Logical Rules and Fallacies

Deduce if the statements are valid. If so, state which rule. If not, state which fallacy.

1. If you study math, you are smart.

I do not study math.

∴ I am not smart. Invalid: Inverse Error

2. If you get above an 80 on this final, you get a B+.

I got above an 80 on this final.

∴ I get a B+. Valid: Modus Ponens

3. If you are a good person, you pay taxes.

I pay taxes.

∴ I am a good person. Invalid: Converse Error

4. If you like cats, you like furry animals.

I do not like furry animals.

∴ I do not like cats. Valid: Modus Tollens
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Logical Deduction (Many Premises)

Use the valid arguments forms to deduce the conclusion from the premises.

1. a →∼ f

a ∨ b

(b ∧ f) → d

f

e →∼ d

∴ ∼ e

a →∼ f (P1), f (P4) ∼ a (Modus Tollens)

a ∨ b (P2), ∼ a (S1) b (Elimination)

b (S2), f (P4) b ∧ f (Conjunction)

(b ∧ f) → d (P3), b ∧ f (S3) d (Modus Ponens)

d (S4), e →∼ d (P5) ∼ e (Modus Tollens)

2. ∼ h → f

c →∼ (f ∧ g)

g

h → f

c ∨ q

∴ q

∼ h → f (P1), h → f (P4) f (Division into Cases)

f (S1), g (P3) f ∧ g (Conjunction)

c →∼ (f ∧ g) (P2), f ∧ g (S2) ∼ c (Modus Tollens)

c ∨ q (P5),∼ c (S3) q (Elimination)
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Logic with Quantifiers

Find negations for the following statements:

1. There exists a student such that they have a higher grade than all other students.

For every student, there is a student who has a grade that is ≥ than theirs.

2. For all animals, if you are a pet, then you have an owner.

There exists an animal such that they are a pet but do not have an owner.

3. ∀x ∈ R,∃y ∈ Z, xy ≥ 0. ∃x ∈ R,∀y ∈ Z, xy < 0.

4. Passing both midterms is a sufficient condition to do well in this class.

One passed both midterms and didn’t do well in this class.

5. If you get a 100% on the final or 100% on both midterms, you are going to get an A.

One got a 100% on the final or 100% on both midterms and didn’t get an A.

6. ∀x,∀y,∀z,∃α, ∃β, ∃ζ, αβ + ζ ≥ xyz ≥ αβ − ζ

∃x,∃y,∃z, ∀α, ∀β, ∀ζ, (αβ + ζ < xyz) ∨ (αβ − ζ > xyz)

Quantifiers

Deduce if the following statements are true or false:

1. ∀x ∈ R,∃y ∈ Z, xy ≥ 0. True. Let y = 0.

2. ∀x ∈ R,∀y ∈ Z, xy > 0. False. Let x = −1 and y = 1.

3. ∀x, y ∈ Z+, (x2 > y2) → (x > y). True because the domain is Z+.

4. ∀x, y ∈ Z, (x
y
> y

x
) → (x ̸= y). True. Use the previous question in the proof.

5. ∀x, y ∈ {c, t},∃z ∈ {c, t}, (x ∧ y) → z ≡ t True. Let z ≡ t.
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Direct Proofs

Prove each of the following using a direct proof method:

1. The sum of any two odd integers is even.

Let two odd integers be a and b. By definition, an odd integer can be written as:

a = 2m+ 1 and b = 2n+ 1, where m and n are integers.

The sum of a and b is:

a+ b = (2m+ 1) + (2n+ 1)

= 2m+ 2n+ 2

= 2(m+ n+ 1).

Since m+ n+ 1 is an integer, a+ b is divisible by 2 and hence is even.

∴ The sum of any two odd integers is even.

2. If n and m are odd, then nm is also odd.

Let n and m be odd integers. By definition, an odd integer can be written as:

n = 2a+ 1 and m = 2b+ 1, where a and b are integers.

The product of n and m is:

nm = (2a+ 1)(2b+ 1)

= 4ab+ 2a+ 2b+ 1

= 2(2ab+ a+ b) + 1.

Since 2ab+ a+ b is an integer, nm is of the form 2k + 1, where k is an integer.

∴ nm is odd.
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3. The product of any two consecutive integers is even.

Let the two consecutive integers be n and n+ 1. Consider the two cases for n:

Case 1: n is even.

If n is even, we can write n = 2k for some integer k. Then,

n(n+ 1) = (2k)(2k + 1)

= 2k(2k + 1).

Since 2k is a multiple of 2, the product n(n+ 1) is divisible by 2, and hence even.

Case 2: n is odd.

If n is odd, we can write n = 2k + 1 for some integer k. Then,

n(n+ 1) = (2k + 1)(2k + 2)

= (2k + 1)(2(k + 1))

= 2(2k + 1)(k + 1).

Here, 2(2k + 1)(k + 1) is divisible by 2, so the product n(n+ 1) is even.

In both cases, the product of two consecutive integers is divisible by 2.

∴ The product of any two consecutive integers is even.

4. If a|p and p|q, then a|q

Given: a|p and p|q. By def. of divisibility, there exist integers k and m such that:

p = ak and q = pm.

Substitute p = ak into q = pm:

q = (ak)m

q = a(km).

Since k and m are integers, km is also an integer. Thus, q is divisible by a.

∴ a|q.
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Proofs by Contrapositive

Prove each of the following using the contrapositive method:

1. If pq is even, then p or q is even.

We prove the contrapositive: If p and q are odd, then pq is odd.

Let p and q be odd integers. By definition, we can write:

p = 2k + 1 and q = 2m+ 1, where k and m are integers.

The product of p and q is:

pq = (2k + 1)(2m+ 1)

= 4km+ 2k + 2m+ 1

= 2(2km+ k +m) + 1.

Since 2km+ k +m is an integer, pq is of the form 2n+ 1, where n is an integer.

Thus, pq is odd.

∴ The contrapositive is true, so the original statement is true.

2. If n2 − 6n+ 5 is even, then n is odd.

We prove the contrapositive: If n is even, then n2 − 6n+ 5 is odd.

Let n be an even integer. By definition, n = 2k for some integer k. Then,

n2 − 6n+ 5 = (2k)2 − 6(2k) + 5

= 4k2 − 12k + 5.

Factor out 2 from the terms:

n2 − 6n+ 5 = 2(2k2 − 6k + 2) + 1.

Since 2k2 − 6k + 2 is an integer, the expression is of the form 2m+ 1, where m is an integer.

Thus, n2 − 6n+ 5 is odd.

∴ The contrapositive is true, so the original statement is true.
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3. If x2 + 5x+ 6 ̸= 0, then x /∈ {−3,−2}.

We prove the contrapositive: If x ∈ {−3,−2}, then x2 + 5x+ 6 = 0.

Case 1: Let x = −3. Substitute x = −3 into x2 + 5x+ 6:

x2 + 5x+ 6 = (−3)2 + 5(−3) + 6

= 9− 15 + 6

= 0.

Case 2: Let x = −2. Substitute x = −2 into x2 + 5x+ 6:

x2 + 5x+ 6 = (−2)2 + 5(−2) + 6

= 4− 10 + 6

= 0.

In both cases, x2 + 5x+ 6 = 0. Thus, the contrapositive is true.

∴ If x2 + 5x+ 6 ̸= 0, then x /∈ {−3,−2}.

4. If 3 doesn’t divide xy, then 3 doesn’t divide x and y.

We prove the contrapositive: If 3 divides x or y, then 3 divides xy.

Case 1: Suppose 3 divides x.

This means x = 3k for some integer k. Then, xy = (3k)y = 3(ky).

Since ky is an integer, 3 divides xy.

Case 2: Suppose 3 divides y.

This means y = 3m for some integer m. Then, xy = x(3m) = 3(xm).

Since xm is an integer, 3 divides xy.

In both cases, if 3 divides x or y, then 3 divides xy. Thus, the contrapositive is true.

∴ If 3 doesn’t divide xy, then 3 doesn’t divide x and y.
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Proofs by Contradiction

1. If x2 is irrational, then x is irrational.

We prove by contradiction: Assume x2 is irrational, but x is rational.

Since x is rational, we can write x =
p

q
, where p, q ∈ Z and q ̸= 0, and gcd(p, q) = 1.

Then, x2 can be expressed as:

x2 =

(
p

q

)2

=
p2

q2
.

Since p2 and q2 are integers,
p2

q2
is rational.

This contradicts the assumption that x2 is irrational.

∴ If x2 is irrational, then x must be irrational.

2.
√
2 is irrational.

We prove by contradiction: Assume
√
2 is rational.

Then,
√
2 =

p

q
, where p, q ∈ Z, q ̸= 0, and gcd(p, q) = 1.

Squaring both sides, we have:

2 =
p2

q2
.

Rewriting, p2 = 2q2.

This implies p2 is even, so p must also be even.

Let p = 2k, where k ∈ Z. Then:

p2 = (2k)2 = 4k2.

Substituting, 4k2 = 2q2, or q2 = 2k2.

This implies q2 is even, so q must also be even.

Thus, both p and q are even, contradicting the assumption that gcd(p, q) = 1.

∴
√
2 is irrational.
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3. If ab is irrational and a is rational, then b is irrational.

We prove by contradiction: Assume ab is irrational, a is rational, and b is rational.

Since a and b are rational, we can write a =
p

q
and b =

r

s
, where:

p, q, r, s ∈ Z, q ̸= 0, s ̸= 0.

Then, the product ab is:

ab =
p

q
· r
s
=

pr

qs
.

Since pr and qs are integers,
pr

qs
is rational.

This contradicts the assumption that ab is irrational.

∴ If ab is irrational and a is rational, then b must be irrational.

4. There doesn’t exist a largest number.

We prove by contradiction: Assume there exists a largest number, say M .

By definition of a largest number, M is such that for any x ∈ R, x ≤ M .

Consider the number M + 1. Clearly, M + 1 > M .

This contradicts the assumption that M is the largest number.

∴ There doesn’t exist a largest number.

5. There is no smallest positive real number.

We prove by contradiction: Assume there exists a smallest positive real number, say ϵ.

By definition, ϵ is such that for all positive real numbers x, x ≥ ϵ.

Consider the number
ϵ

2
. Clearly,

ϵ

2
is a positive real number and

ϵ

2
< ϵ.

This contradicts the assumption that ϵ is the smallest positive real number.

∴ There is no smallest positive real number.
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Proofs by Induction

Prove each of the following through induction:

1. The sum of the first n odd numbers is n2.

Let P (n) :
n−1∑
i=0

(2i+ 1) = n2 for integers n ≥ 1.

Base Case: P (1)

P (1) LHS:
0∑

i=0

(2i+ 1) = 1.

P (1) RHS: (1)2 = 1.

∴ P (1) is true because LHS = RHS.

Inductive Step: Suppose P (k) is true for some k ≥ 1. Prove P (k + 1).

Inductive Hypothesis: Assume
k−1∑
i=0

(2i+ 1) = k2.

P (k + 1) LHS:
k∑

i=0

(2i+ 1) =
k−1∑
i=0

(2i+ 1) + (2k + 1).

By the inductive hypothesis:
k−1∑
i=0

(2i+ 1) = k2.

Substitute:
k∑

i=0

(2i+ 1) = k2 + (2k + 1).

Simplify: k2 + (2k + 1) = k2 + 2k + 1 = (k + 1)2.

Thus,
k∑

i=0

(2i+ 1) = (k + 1)2.

∴ P (k + 1) is true.

Conclusion: By the principle of mathematical induction, P (n) is true for all n ≥ 1.
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2. For all n ≥ 1,

1 + x+ x2 + ...+ xn =
xn+1 − 1

x− 1
where x ̸= 1

Let P (n) : 1 + x+ x2 + · · ·+ xn =
xn+1 − 1

x− 1
for integers n ≥ 1 and x ̸= 1.

Base Case: P (1)

P (1) LHS: 1 + x =
x1+1 − 1

x− 1
.

RHS: Expand
x2 − 1

x− 1
=

(x− 1)(x+ 1)

x− 1
= x+ 1.

∴ P (1) is true because LHS = RHS.

Inductive Step: Suppose P (k) is true for some k ≥ 1. Prove P (k + 1).

Inductive Hypothesis: Assume 1 + x+ x2 + · · ·+ xk =
xk+1 − 1

x− 1
.

P (k + 1) LHS: 1 + x+ x2 + · · ·+ xk + xk+1.

Using the inductive hypothesis:

1 + x+ x2 + · · ·+ xk + xk+1 =
xk+1 − 1

x− 1
+ xk+1.

Rewrite the second term with a common denominator:

xk+1 − 1

x− 1
+ xk+1 =

xk+1 − 1 + xk+1(x− 1)

x− 1
.

Simplify the numerator:

xk+1 − 1 + xk+2 − xk+1 = xk+2 − 1.

Thus,
xk+1 − 1

x− 1
+ xk+1 =

xk+2 − 1

x− 1
.

This matches the RHS of P (k + 1).

∴ P (k + 1) is true.

Conclusion: By the principle of mathematical induction, P (n) is true for all n ≥ 1.
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3. For all n ≥ 1,
n∑

i=1

i(i+ 1) =
n(n+ 1)(n+ 2)

3

Let P (n) :
n∑

i=1

i(i+ 1) =
n(n+ 1)(n+ 2)

3
for integers n ≥ 1.

Base Case: P (1)

P (1) LHS:
1∑

i=1

i(i+ 1) = 1(1 + 1) = 2.

P (1) RHS:
1(1 + 1)(1 + 2)

3
=

1 · 2 · 3
3

= 2.

∴ P (1) is true because LHS = RHS.

Inductive Step: Suppose P (k) is true for some k ≥ 1. Prove P (k + 1).

Inductive Hypothesis: Assume
k∑

i=1

i(i+ 1) =
k(k + 1)(k + 2)

3
.

P (k + 1) LHS:
k+1∑
i=1

i(i+ 1) =
k∑

i=1

i(i+ 1) + (k + 1)((k + 1) + 1).

Using the inductive hypothesis:

k+1∑
i=1

i(i+ 1) =
k(k + 1)(k + 2)

3
+ (k + 1)(k + 2).

Factor (k + 1)(k + 2) :

k+1∑
i=1

i(i+ 1) =
k(k + 1)(k + 2)

3
+

3(k + 1)(k + 2)

3
.

k+1∑
i=1

i(i+ 1) =
k(k + 1)(k + 2) + 3(k + 1)(k + 2)

3
.

Factor out (k + 1)(k + 2) :

k+1∑
i=1

i(i+ 1) =
(k + 1)(k + 2)(k + 3)

3
. = RHS of P (k + 1).

∴ P (k + 1) is true.

Conclusion: By the principle of mathematical induction, P (n) is true for all n ≥ 1.
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4. For all n ≥ 2,
n∑

i=2

i2(i− 1) =
n(n2 − 1)(3n+ 2)

12

Let P (n) :
n∑

i=2

i2(i− 1) =
n(n2 − 1)(3n+ 2)

12
for integers n ≥ 2.

Base Case: P (2)

P (2) LHS:
2∑

i=2

i2(i− 1) = 22(2− 1) = 4.

P (2) RHS:
2(22 − 1)(3 · 2 + 2)

12
=

2(4− 1)(8)

12
=

2 · 3 · 8
12

= 4.

∴ P (2) is true because LHS = RHS.

Inductive Step: Suppose P (k) is true for some k ≥ 2. Prove P (k + 1).

Inductive Hypothesis: Assume
k∑

i=2

i2(i− 1) =
k(k2 − 1)(3k + 2)

12
.

P (k + 1) LHS:
k+1∑
i=2

i2(i− 1) =
k∑

i=2

i2(i− 1) + (k + 1)2(k + 1− 1).

Using the inductive hypothesis:

k+1∑
i=2

i2(i− 1) =
k(k2 − 1)(3k + 2)

12
+ (k + 1)2k.

Combine terms with a common denominator:

k+1∑
i=2

i2(i− 1) =
k(k2 − 1)(3k + 2) + 12k(k + 1)2

12
.

Factorize the numerator:

k(k2 − 1)(3k + 2) + 12k(k + 1)2 = (k + 1)((k + 1)2)(3k + 2).

∴
k+1∑
i=2

i2(i− 1) =
(k + 1)((k + 1)2 − 1)(3(k + 1) + 2)

12
.

This is precisely
(k + 1)((k + 1)2 − 1)(3(k + 1) + 2)

12
, proving P (k + 1).

Conclusion: By induction, P (n) holds for all n ≥ 2.
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5. For all n ≥ 1, 5n + 3 is divisible by 4.

Let P (n) : 5n + 3 is divisible by 4.

Base Case: P (1)

P (1) LHS: 51 + 3 = 8 is divisible by 4 → P (1) is true.

Inductive Step: Suppose P (k) is true for some k ≥ 1. Prove P (k + 1).

P (k + 1) LHS: 5k+1 + 3 = 5 · 5k + 3.

Rewrite: 5k+1 + 3 = 4 · 5k + 5k + 3.

Substitute the inductive hypothesis: 5k + 3 = 4m.

Thus, 5k+1 + 3 = 4 · 5k + 4m = 4(5k +m).

Since 5k +m is an integer, 5k+1 + 3 is divisible by 4.

Conclusion: By induction, P (n) is true for all n ≥ 1.

6. For all n ≥ 1, 42n − 1 is divisible by 15.

Let P (n) : 42n − 1 is divisible by 15.

Base Case: P (1)

P (1) LHS: 42·1 − 1 = 16− 1 = 15 is divisible by 15 → P (1) is true.

Inductive Step: Suppose P (k) is true for some k ≥ 1. Prove, P (k + 1).

P (k + 1) LHS: 42(k+1) − 1 = 42k+2 − 1.

Rewrite: 42k+2 − 1 = (42) · 42k − 1 = 16 · 42k − 1 = 15 · 42k + 42k − 1

Substitute the inductive hypothesis: 42k − 1 = 15m.

Thus, (42k − 1)(16) + 15 = (15m)(16) + 15 = 15(16m+ 1).

Since 16m+ 1 is an integer, 42(k+1) − 1 is divisible by 15.

Conclusion: By induction, P (n) is true for all n ≥ 1.
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7. For all n ≥ 1, 4n + 6n− 1 is divisible by 3.

Let P (n) : 4n + 6n− 1 is divisible by 3.

Base Case: P (1)

P (1) LHS: 41 + 6(1)− 1 = 4 + 6− 1 = 9, which is divisible by 3.

Thus, P (1) is true.

Inductive Step: Suppose P (k) is true for some k ≥ 1. Prove P (k + 1).

P (k + 1) LHS: 4k+1 + 6(k + 1)− 1

= 4 · 4k + 6k + 6− 1

= 4 · 4k + 6k + 5.

We can rewrite this as: 4 · 4k + (6k + 5)

= (4 · 4k + 6k − 1) + 6

By the inductive hypothesis, we know that 4k + 6k − 1 is divisible by 3.

Thus, (4 · 4k + 6k − 1) is divisible by 3.

Therefore, 4k+1 + 6(k + 1)− 1 = (4 · 4k + 6k − 1) + 6 is divisible by 3.

Conclusion: By induction, P (n) is true for all n ≥ 1.
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Proofs by Strong Induction

Prove each of the following using strong induction:

1. For all n ≥ 1, the n-th term of the sequence defined by

an =


n if n = 1 or n = 2,

an−1 + 2an−2 if n ≥ 3,

is given by an = 2n−1.

Let P (n) : an = 2n−1 for all n ≥ 1.

Base Case: P (1) and P (2).

For n = 1, a1 = 1 (given), 21−1 = 20 = 1.

For n = 2, a2 = 2 (given), 22−1 = 21 = 2.

Inductive Step: Assume P (i) is true for all i ∈ [1, k] for some k ≥ 2. Prove P (k + 1).

We need to show that P (k + 1) is true, i.e., ak+1 = 2k.

By the recurrence relation, we have:

ak+1 = ak + 2ak−1.

Using the inductive hypothesis, ak = 2k−1 and ak−1 = 2k−2.

Substitute these into the recurrence:

ak+1 = 2k−1 + 2(2k−2).

ak+1 = 2k−1 + 2k−1 = 2 · 2k−1 = 2k.

Conclusion: By induction, P (n) is true for all n ≥ 1.
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2. For the Fibonacci sequence defined as

F1 = 1, F2 = 1, Fn = Fn−1 + Fn−2 for n ≥ 3,

prove that Fn < 2n for all n ≥ 1.

Let P (n) : Fn < 2n for all n ≥ 1.

Base Case: P (1) and P (2).

For n = 1, F1 = 1 and 21 = 2, F1 < 21.

For n = 2, F2 = 1 and 22 = 4, F2 < 22.

Thus, P (1) and P (2) hold true.

Inductive Step: Assume P (k) is true for all i ∈ [1, k] for some k ≥ 2. Prove P (k + 1).

We need to show that P (k + 1) is true, i.e., Fk+1 < 2k+1.

From the recurrence relation, we have:

Fk+1 = Fk + Fk−1.

By the inductive hypothesis, we know that Fk < 2k and Fk−1 < 2k−1.

Thus,

Fk+1 = Fk + Fk−1 < 2k + 2k−1 = 2k−1(2 + 1) = 2k−1 · 3.

Now observe that 2k−1 · 3 < 2k+1 for all k ≥ 2.

Therefore, Fk+1 < 2k+1.

Conclusion: By induction, P (n) is true for all n ≥ 1.
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3. Prove that the n-th Fibonacci term can be written as

Let P (n) : Fn =
1√
5

((
1 +

√
5

2

)n

−

(
1−

√
5

2

)n)
.

Base Case: P (1) and P (2).

For n = 1, F1 = 1, and the right-hand side evaluates to 1.

For n = 2, F2 = 1, and the right-hand side evaluates to 1.

Thus, P (1) and P (2) hold true.

Inductive Step: Assume P (k) is true for all i ∈ [1, k] for some k ≥ 2. Prove P (k + 1).

We need to show that Fk+1 =
1√
5

(1 +
√
5

2

)k+1

−

(
1−

√
5

2

)k+1
 .

Using the inductive hypothesis:

Fk =
1√
5

(1 +
√
5

2

)k

−

(
1−

√
5

2

)k
 ,

Fk−1 =
1√
5

(1 +
√
5

2

)k−1

−

(
1−

√
5

2

)k−1
 .

Adding these:

Fk+1 =
1√
5

(1 +
√
5

2

)k

+

(
1 +

√
5

2

)k−1
−

(1−
√
5

2

)k

+

(
1−

√
5

2

)k−1
 .

Factor out powers:(
1 +

√
5

2

)k+1

=

(
1 +

√
5

2

)k

+

(
1 +

√
5

2

)k−1

,(
1−

√
5

2

)k+1

=

(
1−

√
5

2

)k

+

(
1−

√
5

2

)k−1

.

Thus, Fk+1 =
1√
5

(1 +
√
5

2

)k+1

−

(
1−

√
5

2

)k+1
 .

Conclusion: By induction, P (n) is true for all n ≥ 1.
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Set Theory (Element Methods)

1. For all sets A, B, and C, prove that (A ∪B)− (A ∩ C) = (A− C) ∪ (B − C).

To prove: (A ∪B)− (A ∩ C) = (A− C) ∪ (B − C), show:

(1) x ∈ (A ∪B)− (A ∩ C) =⇒ x ∈ (A− C) ∪ (B − C),

(2) x ∈ (A− C) ∪ (B − C) =⇒ x ∈ (A ∪B)− (A ∩ C).

(1) Prove x ∈ (A ∪B)− (A ∩ C) =⇒ x ∈ (A− C) ∪ (B − C).

Let x ∈ (A ∪B)− (A ∩ C) =⇒ x ∈ A ∪B and x /∈ A ∩ C.

If x ∈ A ∪B, then x ∈ A or x ∈ B.

If x /∈ A ∩ C, then it is not true that x ∈ A and x ∈ C.

Case 1: If x ∈ A and x /∈ C, then x ∈ A− C.

Case 2: If x ∈ B and x /∈ C, then x ∈ B − C.

Thus, x ∈ (A− C) ∪ (B − C).

(2) Prove x ∈ (A− C) ∪ (B − C) =⇒ x ∈ (A ∪B)− (A ∩ C).

Let x ∈ (A− C) ∪ (B − C) =⇒ x ∈ A− C or x ∈ B − C.

Case 1: If x ∈ A− C, then x ∈ A and x /∈ C.

Since x ∈ A, we have x ∈ A ∪B.

Since x /∈ C, it is not true that x ∈ A ∩ C.

Thus, x ∈ (A ∪B)− (A ∩ C).

Case 2: If x ∈ B − C, then x ∈ B and x /∈ C.

Since x ∈ B, we have x ∈ A ∪B.

Since x /∈ C, it is not true that x ∈ A ∩ C.

Thus, x ∈ (A ∪B)− (A ∩ C).

Conclusion: (A ∪B)− (A ∩ C) = (A− C) ∪ (B − C).
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2. For all sets A, B, and C, prove that A− (B ∪ C) = (A−B) ∩ (A− C).

To prove: A− (B ∪ C) = (A−B) ∩ (A− C).

We will prove this using an element-based argument by showing:

(1) x ∈ A− (B ∪ C) =⇒ x ∈ (A−B) ∩ (A− C),

(2) x ∈ (A−B) ∩ (A− C) =⇒ x ∈ A− (B ∪ C).

(1) Prove x ∈ A− (B ∪ C) =⇒ x ∈ (A−B) ∩ (A− C).

Let x ∈ A− (B ∪ C).

Then x ∈ A and x /∈ B ∪ C.

If x /∈ B ∪ C, then x /∈ B and x /∈ C.

Since x ∈ A and x /∈ B, it follows that x ∈ A−B.

Since x ∈ A and x /∈ C, it follows that x ∈ A− C.

Thus, x ∈ (A−B) ∩ (A− C).

(2) Prove x ∈ (A−B) ∩ (A− C) =⇒ x ∈ A− (B ∪ C).

Let x ∈ (A−B) ∩ (A− C).

Then x ∈ A−B and x ∈ A− C.

If x ∈ A−B, then x ∈ A and x /∈ B.

If x ∈ A− C, then x ∈ A and x /∈ C.

Since x /∈ B and x /∈ C, it follows that x /∈ B ∪ C.

Thus, x ∈ A and x /∈ B ∪ C, so x ∈ A− (B ∪ C).

Conclusion: A− (B ∪ C) = (A−B) ∩ (A− C).
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3. For all sets A, B, and C, prove that A× (B − C) = (A×B)− (A× C).

To prove: A× (B − C) = (A×B)− (A× C).

We will prove this using an element-based argument by showing:

(1) (x, y) ∈ A× (B − C) =⇒ (x, y) ∈ (A×B)− (A× C),

(2) (x, y) ∈ (A×B)− (A× C) =⇒ (x, y) ∈ A× (B − C).

(1) Prove (x, y) ∈ A× (B − C) =⇒ (x, y) ∈ (A×B)− (A× C).

Let (x, y) ∈ A× (B − C).

Then x ∈ A and y ∈ B − C.

Since y ∈ B − C, we know that y ∈ B and y /∈ C.

Thus, (x, y) ∈ A×B.

Since y /∈ C, it follows that (x, y) /∈ A× C.

Therefore, (x, y) ∈ (A×B)− (A× C).

(2) Prove (x, y) ∈ (A×B)− (A× C) =⇒ (x, y) ∈ A× (B − C).

Let (x, y) ∈ (A×B)− (A× C).

Then (x, y) ∈ A×B and (x, y) /∈ A× C.

Since (x, y) ∈ A×B, it follows that x ∈ A and y ∈ B.

Since (x, y) /∈ A× C, it follows that y /∈ C.

Thus, y ∈ B and y /∈ C, so y ∈ B − C.

Therefore, (x, y) ∈ A× (B − C).

Conclusion: A× (B − C) = (A×B)− (A× C).
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4. For all sets A, B, and C, prove that if A ⊆ B and C ⊆ B, then A× C ⊆ B ×B.

To prove: A× C ⊆ B ×B.

We are given that A ⊆ B and C ⊆ B.

We will prove this using an element-based argument.

Let (x, y) ∈ A× C.

Then, by the definition of Cartesian product, x ∈ A and y ∈ C.

Since A ⊆ B and x ∈ A, it follows that x ∈ B.

Since C ⊆ B and y ∈ C, it follows that y ∈ B.

Thus, (x, y) ∈ B ×B.

Therefore, A× C ⊆ B ×B.

Set Theory (Algebraic Methods)

Prove each of the following using algebraic-based method:

1. For all sets A, B, and C, prove that (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C).

We want to prove that (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C).

First, we rewrite the left-hand side using the distributive law:

(A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C).

Thus, by the distributive property, we have:

(A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C).

Therefore, the identity is proven.
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2. For all sets A, B, and C, prove that A− (B ∪ C) = (A−B) ∩ (A− C).

We want to prove that A− (B ∪ C) = (A−B) ∩ (A− C).

First, we rewrite the left-hand side using the set difference law:

A− (B ∪ C) = A ∩ (B ∪ C)c.

Now, apply De Morgan’s law:

(B ∪ C)c = Bc ∩ Cc,

so we have:

A− (B ∪ C) = A ∩ (Bc ∩ Cc).

By the distributive property, we get:

A− (B ∪ C) = (A ∩Bc) ∩ (A ∩ Cc).

This simplifies to:

(A−B) ∩ (A− C).

Thus, we have shown that:

A− (B ∪ C) = (A−B) ∩ (A− C).
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3. For all sets A, B, and C, prove that (A ∪B)− (A ∩B) = (A−B) ∪ (B − A).

We want to prove that (A ∪B)− (A ∩B) = (A−B) ∪ (B − A).

First, we rewrite the left-hand side using the set difference law:

(A ∪B)− (A ∩B) = (A ∪B) ∩ (A ∩B)c.

Now, apply De Morgan’s law:

(A ∩B)c = Ac ∪Bc,

so we have:

(A ∪B)− (A ∩B) = (A ∪B) ∩ (Ac ∪Bc).

By distributive law:

(A ∪B) ∩ (Ac ∪Bc) = (A ∩ Ac) ∪ (A ∩Bc) ∪ (B ∩ Ac) ∪ (B ∩Bc).

Now simplify:

A ∩ Ac = ∅, B ∩Bc = ∅,

so we have:

(A ∪B)− (A ∩B) = (A ∩Bc) ∪ (B ∩ Ac).

By the definition of set difference, this simplifies to:

(A−B) ∪ (B − A).

Thus, we have shown that:

(A ∪B)− (A ∩B) = (A−B) ∪ (B − A).
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4. For all sets A, B, and C, prove that (A ∩B) ∪ (A−B) = A.

We want to prove that (A ∩B) ∪ (A−B) = A.

A−B = A ∩Bc =⇒ (A ∩B) ∪ (A ∩Bc).

Now, factor out A using the distributive law:

(A ∩B) ∪ (A ∩Bc) = A ∩ (B ∪Bc).

Since B ∪Bc = U (the universal set), we have:

A ∩ (B ∪Bc) = A ∩ U = A

5. For all sets A, B, and C, prove that A− (B ∩ C) = (A−B) ∪ (A− C).

We want to prove that A− (B ∩ C) = (A−B) ∪ (A− C).

First, rewrite the left-hand side using the set difference law:

A− (B ∩ C) = A ∩ (B ∩ C)c.

Now, apply De Morgan’s law to (B ∩ C)c :

(B ∩ C)c = Bc ∪ Cc.

So, the expression becomes:

A− (B ∩ C) = A ∩ (Bc ∪ Cc).

Now, apply the distributive law to expand the intersection:

A ∩ (Bc ∪ Cc) = (A ∩Bc) ∪ (A ∩ Cc).

By the definition of set difference, we recognize:

A ∩Bc = A−B and A ∩ Cc = A− C.

Thus, we have:

A− (B ∩ C) = (A−B) ∪ (A− C).

Therefore, we have proven the identity.
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Set Theory Counterexamples

Provide a counterexample to disprove each of the following:

1. For all sets A and B, A ∪B = A−B if and only if A = B.

Let A = {1, 2} and B = {2}.

First, compute A ∪B :

A ∪B = {1, 2} ∪ {2} = {1, 2}.

Next, compute A−B :

A−B = {1, 2} − {2} = {1}.

Clearly, A ∪B = {1, 2} ≠ {1} = A−B.

2. For all sets A, B, and C, (A ∪B)− C = (A− C) ∩ (B − C).

Let A = {1, 2}, B = {2, 3}, andC = {2}.

First, compute the left-hand side:

A ∪B = {1, 2} ∪ {2, 3} = {1, 2, 3},

(A ∪B)− C = {1, 2, 3} − {2} = {1, 3}.

Now, compute the right-hand side:

A− C = {1, 2} − {2} = {1},

B − C = {2, 3} − {2} = {3},

(A− C) ∩ (B − C) = {1} ∩ {3} = ∅.

In this case, we observe that the left-hand side and right-hand side are not equal:

(A ∪B)− C = {1, 3} ≠ ∅ = (A− C) ∩ (B − C).
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3. For all sets A, B, and C, A− (B ∩ C) = (A−B) ∩ (A− C).

Let A = {1, 2, 3, 4}, B = {2, 3}, C = {3, 4}.

First, calculate B ∩ C :

B ∩ C = {2, 3} ∩ {3, 4} = {3}.

Now, calculate the left-hand side A− (B ∩ C) :

A− (B ∩ C) = {1, 2, 3, 4} − {3} = {1, 2, 4}.

Next, calculate the right-hand side (A−B) ∩ (A− C) :

A−B = {1, 2, 3, 4} − {2, 3} = {1, 4},

A− C = {1, 2, 3, 4} − {3, 4} = {1, 2},

(A−B) ∩ (A− C) = {1, 4} ∩ {1, 2} = {1}.

Since {1, 2, 4} ≠ {1}, the statement is disproved.

4. For all sets A, B, and C, A× (B ∪C) = (A×B)∩ (A×C) holds for all A, B, and C.

Let A = {1}, B = {2}, C = {3}.

First, calculate B ∪ C :

B ∪ C = {2} ∪ {3} = {2, 3}.

Now, calculate the left-hand side A× (B ∪ C) :

A× (B ∪ C) = {1} × {2, 3} = {(1, 2), (1, 3)}.

Next, calculate the right-hand side (A×B) ∩ (A× C) :

A×B = {1} × {2} = {(1, 2)},

A× C = {1} × {3} = {(1, 3)},

(A×B) ∩ (A× C) = {(1, 2)} ∩ {(1, 3)} = ∅.

Finally, compare the results:

Since {(1, 2), (1, 3)} ≠ ∅, the statement is disproved.
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One-to-One Correspondence

Deduce if the following functions are one-to-one correspondences:

1. Define a function f : Z → Z by f(x) = 2x+ 1.

1. One-to-One

A function is one-to-one if f(x1) = f(x2) implies that x1 = x2.

Assume f(x1) = f(x2).

Then, 2x1 + 1 = 2x2 + 1.

Subtracting 1 from both sides: 2x1 = 2x2.

Dividing both sides by 2: x1 = x2.

Thus, the function is one-to-one.

2. Onto

A function is onto if for every y ∈ Z, there exists an x ∈ Z such that f(x) = y.

Let y ∈ Z.

We need to find x such that f(x) = y, i.e., 2x+ 1 = y.

Solving for x :

2x = y − 1,

x =
y − 1

2
.

For x to be an integer, y − 1 must be even, which means that y must be odd.

Thus, the function is not onto, because there are no x values corresponding to even y values.

3. One-to-one Correspondence

Because the function is not onto, it is not a one-to-one correspondence.
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2. Define a function f : R → R by f(x) = x3.

1. One-to-One

A function is one-to-one if f(x1) = f(x2) implies that x1 = x2.

Assume f(x1) = f(x2).

Then, x3
1 = x3

2.

Taking the cube root of both sides: x1 = x2.

Thus, the function is one-to-one.

2. Onto

A function is onto if for every y ∈ R, there exists an x ∈ R such that f(x) = y.

Let y ∈ R.

We need to find x such that f(x) = y, i.e., x3 = y.

Solving for x :

x = 3
√
y.

Since the cube root of any real number is defined and produces a real number,

the function is onto.

3. One-to-one Correspondence

Since the function is both one-to-one and onto, it is a one-to-one correspondence.
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3. Define a function f : N → N by f(x) = x2.

1. One-to-One

A function is one-to-one if f(x1) = f(x2) implies that x1 = x2.

Assume f(x1) = f(x2).

Then, x2
1 = x2

2.

This implies that x1 = x2 or x1 = −x2.

However, since x1, x2 ∈ N (the set of natural numbers),

the possibility that x1 = −x2 is not valid.

Therefore, x1 = x2 and the function is one-to-one.

2. Onto

A function is onto if for every y ∈ N, there exists an x ∈ N such that f(x) = y.

Let y ∈ N.

We need to find x such that f(x) = y, i.e., x2 = y.

Solving for x, x =
√
y.

For x ∈ N, the square root of y must also be a natural number.

Thus, the function is only onto for perfect squares in N.

Therefore, not onto, because not all elements of N have a corresponding x value.

3. One-to-one Correspondence

Since the function is one-to-one but not onto, it is not a one-to-one correspondence.
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4. Define a function f : R× R → R× R by f(x, y) = (4y, 2x).

1. One-to-One

A function f : R× R → R× R is one-to-one if f(x1, y1) = f(x2, y2) =⇒ (x1, y1) = (x2, y2).

Assume f(x1, y1) = f(x2, y2).

Then, (4y1, 2x1) = (4y2, 2x2).

From the first component: 4y1 = 4y2 =⇒ y1 = y2.

From the second component: 2x1 = 2x2 =⇒ x1 = x2.

Thus, (x1, y1) = (x2, y2) and the function is one-to-one.

2. Onto

A function f : R× R → R× R is onto if for every (a, b) ∈ R× R,

there exists (x, y) ∈ R× R such that f(x, y) = (a, b).

Let (a, b) ∈ R× R.

We need to find (x, y) where f(x, y) = (a, b), i.e., (4y, 2x) = (a, b).

From the first component: 4y = a =⇒ y =
a

4
.

From the second component: 2x = b =⇒ x =
b

2
.

Thus, for every (a, b) ∈ R× R, there exists (x, y) =

(
b

2
,
a

4

)
∈ R× R where f(x, y) = (a, b).

Therefore, the function is onto.

3. One-to-one Correspondence

Since the function is both one-to-one and onto, it is a one-to-one correspondence.
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5. Define a function f : N× N → N× N by f(x, y) = (2y, 3x).

1. One-to-One

A function f : N× N → N× N is one-to-one if f(x1, y1) = f(x2, y2) =⇒ (x1, y1) = (x2, y2).

Assume f(x1, y1) = f(x2, y2).

Then, (2y1, 3x1) = (2y2, 3x2).

From the first component: 2y1 = 2y2 =⇒ y1 = y2.

From the second component: 3x1 = 3x2 =⇒ x1 = x2.

Thus, (x1, y1) = (x2, y2) and the function is one-to-one.

2. Onto

A function f : N× N → N× N is onto if for every (a, b) ∈ N× N,

there exists (x, y) ∈ N× N such that f(x, y) = (a, b).

Let (a, b) ∈ N× N.

We need to find (x, y) such that f(x, y) = (a, b), i.e., (2y, 3x) = (a, b).

From the first component: 2y = a =⇒ y =
a

2
.

From the second component: 3x = b =⇒ x =
b

3
.

For y and x to be natural numbers, a must be even and b must be divisible by 3.

If a is odd or b is not divisible by 3, there are no such x, y in N.

Thus, the function is not onto.

3. One-to-one Correspondence

Since the function is not onto, it is not a one-to-one correspondence.
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Infinite Sets

Prove or disprove the following statements regarding infinite sets:

1. |N| = |N− {2, 4, 6, 8, ...}|.

1. Define a Bijection

To prove |N| = |N− {2, 4, 6, 8, . . . }|, construct a bijection f : N → N− {2, 4, 6, 8, . . . }.

Define f(n) = 2n− 1.

2. One-to-One

A function is one-to-one if f(n1) = f(n2) implies that n1 = n2.

Assume f(n1) = f(n2).

Then, 2n1 − 1 = 2n2 − 1.

Adding 1 to both sides: 2n1 = 2n2.

Dividing both sides by 2: n1 = n2. =⇒ Thus, the function is one-to-one.

3. Onto

A function is onto if for every y ∈ N− {2, 4, 6, 8, . . . },∃n ∈ N such that f(n) = y.

Let y ∈ N− {2, 4, 6, 8, . . . }, so y is odd.

We need to find n such that f(n) = y, i.e., 2n− 1 = y.

Solving for n :

2n = y + 1,

n =
y + 1

2
.

Since y is odd, y + 1 is even, and
y + 1

2
∈ N. =⇒ Thus, the function is onto.

4. Conclusion

Since f is both one-to-one and onto, it is a bijection.

Therefore, |N| = |N− {2, 4, 6, 8, . . . }|.
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2. |{0, 2, 4, 6, 8, ...}| = |{1, 3, 5, 7, 9, ...}|

1. Define a Bijection

To prove |{0, 2, 4, 6, 8, . . . }| = |{1, 3, 5, 7, 9, . . . }|, construct a bijection.

Define f(n) = n+ 1.

2. One-to-One

A function is one-to-one if f(n1) = f(n2) implies that n1 = n2.

Assume f(n1) = f(n2).

Then, n1 + 1 = n2 + 1.

Subtracting 1 from both sides: n1 = n2.

Thus, the function is one-to-one.

3. Onto

A function is onto if for every y ∈ {1, 3, 5, 7, 9, . . . },∃n ∈ {0, 2, 4, 6, 8, . . . }, f(n) = y.

Let y ∈ {1, 3, 5, 7, 9, . . . }.

We need to find n such that f(n) = y, i.e., n+ 1 = y.

Solving for n :

n = y − 1.

Since y is odd, y − 1 is even, and n ∈ {0, 2, 4, 6, 8, . . . }.

Thus, the function is onto.

4. Conclusion

Since f is both one-to-one and onto, it is a bijection.

Therefore, |{0, 2, 4, 6, 8, . . . }| = |{1, 3, 5, 7, 9, . . . }|.
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3. |N| < |R|

1. Cantor’s Diagonal Argument:

To show |N| < |R|, we prove that no bijection exists between N and R.

Assume for contradiction that such a bijection exists, f : N → R.

Construct the decimal expansion of each real number in [0, 1) as follows:

f(1) = 0.a11a12a13 . . .

f(2) = 0.a21a22a23 . . .

f(3) = 0.a31a32a33 . . .

...

Construct a new number x = 0.b1b2b3 . . . such that bi ̸= aii.

By construction, x differs from f(i) at the ith digit, for all i.

Thus, x is not in the range of f, contradicting the assumption that f is a bijection.

2. Conclusion:

No bijection exists between N and R. Therefore, |N| < |R|.
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4. |N| < |P(N)|

1. Cantor’s Theorem:

To show |N| < |P(N)|, we prove that no bijection exists between N and P(N).

Assume for contradiction that such a bijection exists, f : N → P(N).

Define a set S ⊆ N as follows: S = {n ∈ N : n /∈ f(n)}.

Since S ⊆ N, it must be in the codomain of f, so there ∃k ∈ N such that f(k) = S.

Now, consider whether k ∈ S :

If k ∈ S, then by definition of S, we must have k /∈ f(k).

But f(k) = S, so k /∈ S. This is a contradiction.

If k /∈ S, then by definition of S, we must have k ∈ f(k).

But f(k) = S, so k ∈ S. This is also a contradiction.

Thus, no such k can exist, and f cannot be a bijection.

2. Conclusion:

No bijection exists between N and P(N). Therefore, |N| < |P(N)|.
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Equivalence Relations

Prove or disprove the following statements about equivalence relations:

1. Let R be a relation on the set of integers Z defined by aR b if and only if a−b is divisible

by 3. Prove that R is an equivalence relation on Z, and describe the equivalence classes

of R.

1. Reflexive:

For any a ∈ Z, a− a = 0 is divisible by 3, so aR a holds.

2. Symmetric:

If aR b, then a− b = 3k for some k ∈ Z.

Thus, b− a = −3k is divisible by 3, so bR a holds.

3. Transitive:

If aR b and bR c, then a− b = 3k and b− c = 3m for some k,m ∈ Z.

Adding these gives a− c = 3(k +m), which is divisible by 3, so aR c.

4. Equivalence Classes:

The equivalence classes are the sets of integers that differ by multiples of 3:

[0] = {. . . ,−3, 0, 3, 6, . . . }, [1] = {. . . ,−2, 1, 4, 7, . . . },

[2] = {. . . ,−1, 2, 5, 8, . . . }.

41



CSE 215 Practice Questions

2. Let R be a relation on the set of all strings over the alphabet {a, b} defined by xR y if

and only if x and y have the same length. Prove that R is an equivalence relation and

describe the equivalence classes of R.

1. Reflexive:

For any string x, we have |x| = |x|, so xRx holds.

2. Symmetric:

If xR y, then |x| = |y|.

Thus, |y| = |x|, so y Rx holds.

3. Transitive:

If xR y and y R z, then |x| = |y| and |y| = |z|.

Thus, |x| = |z|, so xR z holds.

4. Equivalence Classes:

The equivalence classes are the sets of strings with the same length.

For any non-negative integer n, the equivalence class of strings of length n is:

[n] = {x | x is a string over {a, b} with length n}.
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3. Let R be a relation on R defined by aR b if and only if a2 = b2. Prove that R is an

equivalence relation, and describe the equivalence classes of R.

1. Reflexive:

For any a ∈ R, we have a2 = a2, so aR a holds.

2. Symmetric:

If aR b, then a2 = b2.

Thus, b2 = a2, so bR a holds.

3. Transitive:

If aR b and bR c, then a2 = b2 and b2 = c2.

Thus, a2 = c2, so aR c holds.

4. Equivalence Classes:

The equivalence classes are the sets of real numbers with the same absolute value.

For any non-negative real number r, the equivalence class of r is:

[r] = {x ∈ R | |x| = r} = {−r, r} (if r ̸= 0), and [0] = {0}.
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4. Let R be a relation on the set of all people, where aR b if and only if a and b have the

same birth year. Prove that R is an equivalence relation on the set of all people and

describe the equivalence classes of R.

1. Reflexive:

For any person a, the relation holds because a has the same birth year as a.

Thus, aR a holds.

2. Symmetric:

If aR b, then a and b have the same birth year.

Since having the same birth year is a mutual property, bR a also holds.

3. Transitive:

If aR b and bR c, then a and b have the same year, and b and c have the same year.

Thus, a and c must also have the same birth year, so aR c holds.

4. Equivalence Classes:

The equivalence classes of R are the sets of people born in the same year.

For any year y, the equivalence class of people born in year y is:

[y] = {a | a is born in year y}.
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5. Let R be a relation on the set of all points in the plane R2 defined by (x1, y1)R (x2, y2)

if and only if x1 = x2 or y1 = y2. Prove that R is an equivalence relation and describe

the equivalence classes of R.

1. Reflexive:

For any point (x1, y1), we have (x1, y1)R (x1, y1) since x1 = x1 and y1 = y1.

Thus, the relation is reflexive.

2. Symmetric:

If (x1, y1)R (x2, y2), then either x1 = x2 or y1 = y2.

If x1 = x2, then clearly x2 = x1.

If y1 = y2, then clearly y2 = y1.

Thus, the relation is symmetric.

3. Transitive:

If (x1, y1)R (x2, y2) and (x2, y2)R (x3, y3),

then either x1 = x2 or y1 = y2, and either x2 = x3 or y2 = y3.

If x1 = x2 and x2 = x3, then x1 = x3.

If y1 = y2 and y2 = y3, then y1 = y3.

Thus, the relation is transitive.

4. Equivalence Classes:

The equivalence classes of R are the points where either the x-value y-value are equal.

For a given point (x, y), the equivalence class of (x, y) is:

[(x, y)] = {(x′, y′) | x′ = x ∨ y′ = y}.
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Units Digit

Solve the following problems related to units digits:

1. Find the units digit of 7100.

To find the units digit of 7100, observe the cycle in the units digits of powers of 7:

7, 9, 3, 1 (cycle length is 4).

Since 100÷ 4 = 25 remainder 0, the units digit of 7100 is the same as that of 74.

The units digit of 74 is 1.

Thus, the units digit of 7100 is 1 .

2. Find the units digit of 350.

To find the units digit of 350, observe the cycle in the units digits of powers of 3:

3, 9, 7, 1 (cycle length is 4).

Since 50÷ 4 = 12 remainder 2, the units digit of 350 matches that of 32.

The units digit of 32 is 9.

Thus, the units digit of 350 is 9 .

3. Find the units digit of 121234.

The units digits of powers of 12 repeat in a cycle: 2, 4, 8, 6.

To find the units digit of 121234, calculate 1234÷ 4 which gives remainder 2.

Thus, the units digit of 121234 is the same as that of 122, which is 4 .

4. Find the units digit of 2987.

The units digits of powers of 2 repeat in a cycle: 2, 4, 8, 6.

To find the units digit of 2987, calculate 987÷ 4 which gives remainder 3.

Thus, the units digit of 2987 is the same as that of 23, which is 8 .
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5. Find the units digit of 9999.

The units digits of powers of 9 repeat in a cycle of length 2: 9, 1.

To find the units digit of 9999, calculate 999÷ 2 which gives remainder 1.

Thus, the units digit of 9999 is the same as that of 91, which is 9 .
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