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Truth Tables

Construct truth tables for the following statements:

L ~(pAr)<(gdr)

pla|r|pAr|~({@Ar)|qgor|~(pAT)< (@)
TIT|\T| T ja ja T
T|T|\F| F T T T
TIF|T| T ja T ja
T|\F|\F| F T ja F
FlT|T| F T F F
F|T|F| F T T T
F|F|T| F T T T
F|F|F| F T F F
2. ~(gVvr) = (p@(rng)
plalr|gVri~(@Vr)|rAglp@(rAg) |~(qgVr)— (po(rAg)
T|T|T| T Ia T F T
T|T|\F| T Ia ja T T
TIF|IT| T F F T T
T|F|\F| F T Ia T T
FlT|T| T ia T T T
FIT|\F| T F F F T
FIF|T| T Ia Ia F T
F|F|\F| F T ja F Ia
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3. (pAg) = 1) = (~qV~r)

ripAg|(pANg) =1 |~qg|l~r|~qgV~r| (pAg =)= (~gV~r)

plq

T|\T\|\T| T

T7|\T|F| T

T F|\T| F

T|F|F| F

FiT\T) F

FIT|F| F

FIF\|\T| F

FIF|F| F

4. (qV(rep) < (@Areq)

(qV(r@p) < (Areq)

r@ep|lgVirdp) | req|pArdq)

r

q

p

T\T\|\T| F

T|T|F| T

T F\|\T| F

T | F|F| T

T\, T

F|T|F| F

FIF\|\T| T

FIF|F| F
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5 (p—=a)N(@—71) < (@—7)

plalr|ip=ajg=r|p=aNlg=r)|p=ri((p=2gN(g—=r)e(p—r)
T|\T|T| T T T T T
T\T|F| T F F F T
T|\F|T| F T F T F
T|\F|F| F T F F T
F\T|T| T T T T T
F|\T|F| T F F T F
F|\F|T| T T T T T
F|\F|F| T T T T T
Deduction Rules
Determine if the following deduction rules are valid:
1. p—q
~T =P
RAVA S
plqg|r|p—q|~r|~r—=pljqVr
T|\T|T| T F T T
T|\T|F| T T T T
T|\F|T| F F F
T|\F|F| F T T
F\T|T| T F T T
F|\T|F| T T F
F|\F|T| T F T T
F|\F|F| T T F

Therefore, it is valid.

3
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2. p&rq

~gNAN~T

rip&rql~ql~r|~qgNAN~T |~

T

F

T

F

T

F

T

F

T

T

F

F

T

T

F

F

P4

T

T

T

T

F

F

F

F

Therefore, it is valid.

“PAQAT

3. (p@q) =1, (p®r) = q, (q®7T) = p,.

rip@q|(p®q) =1 |p®r| (pBr)—=q|qDr|(@DT) =P |PAGAT

pPlgq

T \T\T| F

T|T|F| F

T|\F\|\T| T

T|F|\F| T

T\ T

F\T|\F| T

FIF\|\T| F

FIF|\F| F

Therefore, it is invalid.



CSE 215 Practice Questions

Nicholas Smirnov

Logical Language

Rewrite the following sentences into two logically equivalent statements:

1. P is a necessary condition for Q. ’N P—-~Q=Q— P‘

2. P is a sufficient condition for Q. ’P - Q=~Q —~ P‘

3. Pifandonly if Q. [P+ Q = (P — Q) A

(@ = P)

4. A necessary condition for R is P and Q.

~(PANQ)—w>~R=R— (PANQ)

5. R and T are both necessary and sufficient conditions for P or Q.

~(RAT) =~ (PVvQ)=(PVQ)— (RAT)

Logical Rules and Fallacies

Deduce if the statements are valid. If so, state which rule. If not, state which fallacy.

1. If you study math, you are smart.

I do not study math.

. T am not smart. |Invalid: Inverse Error

2. If you get above an 80 on this final, you get a B+.

I got above an 80 on this final.

.1 get a B+. | Valid: Modus Ponens |

3. If you are a good person, you pay taxes.

I pay taxes.

.. Tam a good person. ’Invalid: Converse Error‘

4. If you like cats, you like furry animals.

I do not like furry animals.

.1 do not like cats. | Valid: Modus Tollens]
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Logical Deduction (Many Premises)

Use the valid arguments forms to deduce the conclusion from the premises.

l.a—~f
aVb
(bAf)—d
f
e—n~d
e
a—~ f(P1),f (P4) ~ a (Modus Tollens)
aVb (P2), ~a (S1) b (Elimination)
b (S2), f (P4) b A f (Conjunction)
(bAf)—d (P3),bA f (S3) | d (Modus Ponens)
d (S4),e — ~ d (P5) ~ e (Modus Tollens)
2. ~h—f
c—=~(fAg)
g
h—f
cVyq
o q
~h— f (P1),h — f (P4) / (Division into Cases)
f (S1),g (P3) f A g (Conjunction)

c—~(fAg)(P2), fAg(S2) |~ c(Modus Tollens)

cVq (P5),~ ¢ (S3) ¢ (Elimination)
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Logic with Quantifiers

Find negations for the following statements:

1. There exists a student such that they have a higher grade than all other students.

‘For every student, there is a student who has a grade that is > than theirs. ‘

2. For all animals, if you are a pet, then you have an owner.

’There exists an animal such that they are a pet but do not have an owner. ‘

w

VreR,dyeZ,xzy >0.|dx e R,Vy € Z,zy < 0.

4. Passing both midterms is a sufficient condition to do well in this class.

One passed both midterms and didn’t do well in this class.

ot

. If you get a 100% on the final or 100% on both midterms, you are going to get an A.

One got a 100% on the final or 100% on both midterms and didn’t get an A.

=)

. Va,Vy,Vz,3a,3B,3C, o + (> ayz > a’ — ¢

3z, Jy, I2,Va, VB, Y, (&P + ¢ < ayz) vV (o — ¢ > xyz)

Quantifiers

Deduce if the following statements are true or false:

1.VeeR, dJyeZ,zy > 0. ’True. Let y = 0.
2. Ve e R,Vy € Z,xy > 0. ’False. Let z = —1 and y = 1.
3. Vz,y € Z%,(2* > %) — (z > y). ’True because the domain is Z*.

4. Vx,y € Z, (5 >4 = (x#y). ’True. Use the previous question in the proof.

T

(@34

 Vaz,ye{c,t}, 3z e {c,t}, (x Ay) = 2=t |True. Let z = t.
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Direct Proofs

Prove each of the following using a direct proof method:

1. The sum of any two odd integers is even.

Let two odd integers be a and b. By definition, an odd integer can be written as:
a=2m+1 and b=2n+ 1, where m and n are integers.
The sum of a and b is:
at+b=02m+1)+ (2n+1)
=2m +2n + 2
=2(m+n+1).
Since m 4+ n + 1 is an integer, a + b is divisible by 2 and hence is even.

.. The sum of any two odd integers is even.

2. If n and m are odd, then nm is also odd.

Let n and m be odd integers. By definition, an odd integer can be written as:
n=2a+1 and m = 2b+ 1, where a and b are integers.
The product of n and m is:
nm = (2a+1)(20+ 1)
=4ab+ 2a+ 20+ 1
= 2(2ab+ a +b) + 1.
Since 2ab + a + b is an integer, nm is of the form 2k + 1, where k is an integer.

.nm is odd.
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3. The product of any two consecutive integers is even.

Let the two consecutive integers be n and n + 1. Consider the two cases for n:
Case 1: n is even.

If n is even, we can write n = 2k for some integer k. Then,

n(n+1) = (2k)(2k + 1)

=2k(2k +1).

Since 2k is a multiple of 2, the product n(n + 1) is divisible by 2, and hence even.
Case 2: n is odd.

If n is odd, we can write n = 2k 4+ 1 for some integer k. Then,

n(n+1)=(2k+1)(2k +2)

=2k+1)(2(k+1))

=22k+1)(k+1).

Here, 2(2k + 1)(k + 1) is divisible by 2, so the product n(n + 1) is even.
In both cases, the product of two consecutive integers is divisible by 2.

.. The product of any two consecutive integers is even.

4. If a|p and p|q, then alq

Given: a|p and plq. By def. of divisibility, there exist integers k and m such that:
p=ak and ¢q=pm.

Substitute p = ak into ¢ = pm:

q = (ak)m

q = a(km).

Since k and m are integers, km is also an integer. Thus, q is divisible by a.

c.alq.
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Proofs by Contrapositive

Prove each of the following using the contrapositive method:

1. If pq is even, then p or g is even.

We prove the contrapositive: If p and ¢ are odd, then pq is odd.
Let p and ¢ be odd integers. By definition, we can write:
p=2k+1 and ¢g=2m+1, where k and m are integers.
The product of p and ¢ is:
pg = (2k+1)(2m+1)
=4km+ 2k +2m+ 1
=2(2km+k+m)+ 1.
Since 2km + k + m is an integer, pq is of the form 2n + 1, where n is an integer.

Thus, pq is odd.

.. The contrapositive is true, so the original statement is true.

2. If n? — 6n + 5 is even, then n is odd.

We prove the contrapositive: If n is even, then n? — 6n + 5 is odd.
Let n be an even integer. By definition, n = 2k for some integer k. Then,
n? —6n+5=(2k)* —6(2k) +5
=4k — 12k + 5.
Factor out 2 from the terms:
n® —6n+5 = 2(2k* — 6k +2) + 1.
Since 2k? — 6k + 2 is an integer, the expression is of the form 2m + 1, where m is an integer.
Thus, n? — 6n + 5 is odd.

.. The contrapositive is true, so the original statement is true.

10
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3. If 22 + 52 4+ 6 # 0, then = ¢ {—3,—2}.

We prove the contrapositive: If z € {—3, =2}, then 2 + 52 + 6 = 0.
Case 1: Let x = —3. Substitute z = —3 into 2 4 5z + 6:
2?4+ 52+ 6 = (—3)* +5(—3) +6
=9—-15+6
=0.
Case 2: Let x = —2. Substitute z = —2 into 2 + 5z + 6:
2? + 52+ 6 = (—2)*+5(-2) +6
=4—-10+6
=0.
In both cases, 2* + 5z + 6 = 0. Thus, the contrapositive is true.

S If 2?5246 # 0, then o ¢ {3, —2}.

4. If 3 doesn’t divide xy, then 3 doesn’t divide x and y.

We prove the contrapositive: If 3 divides x or y, then 3 divides zy.
Case 1: Suppose 3 divides .
This means « = 3k for some integer k. Then, xy = (3k)y = 3(ky).
Since ky is an integer, 3 divides xy.
Case 2: Suppose 3 divides y.
This means y = 3m for some integer m. Then, xy = x(3m) = 3(zm).
Since xm is an integer, 3 divides xy.

In both cases, if 3 divides x or y, then 3 divides xy. Thus, the contrapositive is true.

- If 3 doesn’t divide xy, then 3 doesn’t divide x and y.

11
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Proofs by Contradiction

1. If 22 is irrational, then z is irrational.

We prove by contradiction: Assume z? is irrational, but  is rational.

Since x is rational, we can write x = ]—?, where p,q € Z and ¢ # 0, and ged(p, q) = 1.
q
Then, z? can be expressed as:
P
Since p* and ¢* are integers, — 1s rational.
q

This contradicts the assumption that 22 is irrational.

. If 2% is irrational, then  must be irrational.

2. /2 is irrational.

We prove by contradiction: Assume V/2 is rational.

Then, v2 = E, where p,q € Z, ¢ # 0, and ged(p, q) = 1.
q

Squaring both sides, we have:

2= 2

Rewriting, p* = 2¢°.

This implies p? is even, so p must also be even.
Let p = 2k, where k € Z. Then:

p? = (2k)? = 4k*.

Substituting, 4k? = 2¢°, or ¢* = 2k>.

This implies ¢* is even, so ¢ must also be even.

Thus, both p and ¢ are even, contradicting the assumption that ged(p, ¢) = 1.

. V/2 is irrational.

12
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3. If ab is irrational and a is rational, then b is irrational.

We prove by contradiction: Assume ab is irrational, a is rational, and b is rational.

) . . p r
Since a and b are rational, we can write a = = and b = —, where:
q s

p,q,T,SEZ, q#o, S7é0
Then, the product ab is:

p r pr
ab="L.1 ="
q S qs

,
Since pr and ¢s are integers, br is rational.
qs

This contradicts the assumption that ab is irrational.

. If ab is irrational and a is rational, then b must be irrational.

4. There doesn’t exist a largest number.

We prove by contradiction: Assume there exists a largest number, say M.
By definition of a largest number, M is such that for any x € R, x < M.
Consider the number M + 1. Clearly, M +1 > M.

This contradicts the assumption that M is the largest number.

.. There doesn’t exist a largest number.

5. There is no smallest positive real number.

We prove by contradiction: Assume there exists a smallest positive real number, say e.
By definition, € is such that for all positive real numbers z, x > €.
€ €
Consider the number 3 Clearly, 3 is a positive real number and
‘ <
— <.
2

This contradicts the assumption that € is the smallest positive real number.

.. There is no smallest positive real number.

13
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Proofs by Induction

Prove each of the following through induction:

1. The sum of the first n odd numbers is n2.

—_

Let P(n): Y (2i+1)=n* for integers n > 1.

%

Il
=)

Base Case: P(1)
0
) LHS: Z (2i+1)
=0
P(1) RHS: (1)* = 1.
.. P(1) is true because LHS = RHS.

Inductive Step: Suppose P(k) is true for some k& > 1. Prove P(k+ 1).

k-1
Inductive Hypothesis: Assume 2(22 +1) = k2
i=0
k k-1
P(k+1)LHS: » (2i+1)=> (2i+1)+ (2k+1).
i= i=0
k-1
By the inductive hypothesis: 2(21 +1) = k>
i=0
k
Substitute: Y (2i+ 1) =k + (2k + 1).
i=0

Simplify: &%+ (2k +1) =k* +2k +1 = (k +1)2
k
Thus, Z (20 +1) = (k+1)>

=0

oo P(k+1) is true.

Conclusion: By the principle of mathematical induction, P(n) is true for all n > 1.

14
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2. Foralln >1,
n+1

1+x+x2+...+x”:x—_1 where x # 1
x_
$n+1—1
LetP(n):1+x+z2+--~+$”:—1 for integers n > 1 and z # 1.
.1'_
Base Case: P(1)
x1+1_1
P(1) LHS: 1 =
(1) tr=——
21 —1 1
RHS: Expandx :(:c )@+ ):ar—i—l.
r—1 x—1

. P(1) is true because LHS = RHS.

Inductive Step: Suppose P(k) is true for some k > 1. Prove P(k + 1).

k41

it —1
Inductive Hypothesis: Assume 1 +z + 22 4+ --- + 2% = ]
x —_—

P(k+1)LHS: 1+ 2+ 2>+ 4+ 2" + 2

Using the inductive hypothesis:

J;k-i-l -1

I+z+a®+ - +af + 2" = + ML

r—1
Rewrite the second term with a common denominator:

N xk—i—l _ xk—i—l -1 +xk+1(x _ 1)

r—1 r—1

.Cljk_H -1

Simplify the numerator:

k+1 1 4 xk+2 P = R xk‘+2 - 1

T T =

B _q M2 _ g
Thus, SIS R .
r—1 r—1

This matches the RHS of P(k + 1).
o P(k+1) is true.

Conclusion: By the principle of mathematical induction, P(n) is true for all n > 1.

15
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3. Foralln >1,

n

izli(i‘f'l) _ n(n—l—l§(n+2)

n

Let P(n): > i(i+1) =

=1

1 2
n(n+1D(n+2) for integers n > 1.

Base Case: P(1)
1
P(1)LHS: > i(i+1)=1(1+1)=2.
=1
1+1)(1+2) 1-2-3
=——=

.. P(1) is true because LHS = RHS.

2.

P(1) RHS: 1

Inductive Step: Suppose P(k) is true for some k > 1. Prove P(k + 1).

i k(k + 1)(k + 2)

Inductive Hypothesis: A (14+1) = .
nductive Hypothesis: Assume ;l(z—i— ) 3
k1 k
P(k+1) LHS: Y i(i+1) = i(i+1)+ (k+1)((k+1)+1).
i=1 i=1

Using the inductive hypothesis:

k+1
D i(i+1) = hk + 1§(k+ 2 4 (k+1)(k+2).

Factor (k+ 1)(k + 2) :

S i+ 1) = k(k+1?))(k+2) L 3k + 1;(k:+2)

S ifi+ 1) = HEH DD £ )k 2)

=1

Factor out (k +1)(k+2) :

%i(z’ﬂ) - (kH)(k?)(k“LS). — RHS of P(k + 1).

i=1

o P(k+1) is true.

Conclusion: By the principle of mathematical induction, P(n) is true for all n > 1.

16
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4. For all n > 2,

& 2-1D)(3n+2
: 12
=2
& 2-1)(3n+2
Let P(n) : ZZQ(Z —-1)= n(n 1>2< n+?) for integers n > 2.
i=2

Base Case: P(2)

) LHS: Zz 22(2—1) = 4.

2(22—1)(3~2+2)_2(4—1)(8)_2-3~8_4
12 N 12 12T

P(2) RHS:
.. P(2) is true because LHS = RHS.

Inductive Step: Suppose P(k) is true for some k > 2. Prove P(k + 1).

k
. . 9. k(k* —1)(3k + 2)
Inductive Hypothesis: A 2(i—1) = :
nductive Hypothesis: Assume ;z (1—1) 15
k+1 k
P(k+1)LHS: Y (i —1) =Y (i — 1)+ (k+1)*(k+1-1).
=2 =2
Using the inductive hypothesis:
k+1 2
-1 2
» iP(i-1) = bk 1)2(% 2, (k +1)°k.

i=2
Combine terms with a common denominator:
das k(K = 1)(3k +2) + 12k(k + 1)

Zz (1—1) B

Factorize the numerator:

E(k* —1)(3k +2) + 12k(k + 1) = (k + 1)((k + 1)*)(3k + 2).
am (k4 Dk +1° = DEE+1) +2)

LY iR(i-1) = 5

=2
E+D)((k+1)2-1)3(k+1)+2
This is precisely (k+ D((k+1) 5 )B(k+1)+2)

, proving P(k +1).

Conclusion: By induction, P(n) holds for all n > 2.

17
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5. For all n > 1, 5™ + 3 is divisible by 4.

Let P(n) : 5" 4 3 is divisible by 4.
Base Case: P(1)
P(1) LHS: 5' + 3 = 8 is divisible by 4 — P(1) is true.
Inductive Step: Suppose P(k) is true for some k > 1. Prove P(k + 1).
P(k+1) LHS: 5**' 43 =55 + 3.
Rewrite: 5" +3 =45+ 5% + 3.
Substitute the inductive hypothesis: 5% + 3 = 4m.
Thus, 5" + 3 =455 +4m = 4(5* +m).
Since 5% + m is an integer, 5*™' + 3 is divisible by 4.

Conclusion: By induction, P(n) is true for all n > 1.

6. For all n > 1, 4" — 1 is divisible by 15.

Let P(n) : 4*" — 1 is divisible by 15.
Base Case: P(1)
P(1) LHS: 4*' — 1 =16 — 1 = 15 is divisible by 15 — P(1) is true.
Inductive Step: Suppose P(k) is true for some k > 1. Prove, P(k + 1).
P(k 4 1) LHS: 420+ _ ] — 42+2 _
Rewrite: 42F72 — 1= (4%)- 4% —1=16-4%% —1 =154 1 4* |
Substitute the inductive hypothesis: 4?* — 1 = 15m.
Thus, (4% — 1)(16) + 15 = (15m)(16) + 15 = 15(16m + 1).
Since 16m + 1 is an integer, 42T — 1 is divisible by 15.

Conclusion: By induction, P(n) is true for all n > 1.

18
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7. For alln > 1, 4" + 6n — 1 is divisible by 3.

Let P(n) : 4" 4+ 6n — 1 is divisible by 3.
Base Case: P(1)
P(1) LHS: 4' +6(1) =1 =4+ 6 — 1 = 9, which is divisible by 3.
Thus, P(1) is true.
Inductive Step: Suppose P(k) is true for some k > 1. Prove P(k + 1).
P(k+1) LHS: 4" +6(k+1) — 1
=4-4"+6k+6—1
=4-4" + 6k +5.
We can rewrite this as: 4 - 4% + (6k + 5)
=(4-4"4+6k—1)+6
By the inductive hypothesis, we know that 4* + 6k — 1 is divisible by 3.
Thus, (4 - 4F + 6k — 1) is divisible by 3.
Therefore, 4" + 6(k +1) — 1 = (4 - 4* + 6k — 1) + 6 is divisible by 3.

Conclusion: By induction, P(n) is true for all n > 1.

19
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Proofs by Strong Induction

Prove each of the following using strong induction:
1. For all n > 1, the n-th term of the sequence defined by
n ifn=1orn=2,

-1+ 2an—2 if n Z 37

is given by a, = 2" 1.

Let P(n) : a, = 2" for all n > 1.
Base Case: P(1) and P(2).
Forn=1, a; =1 (given), 2"1'=2"=1.
Forn =2, ay=2 (given), 2*'=2'=2.
Inductive Step: Assume P(i) is true for all i € [1, k| for some k > 2. Prove P(k + 1).
We need to show that P(k 4 1) is true, i.e., appy = 2°.
By the recurrence relation, we have:
Apy1 = A + 2a5_1.
Using the inductive hypothesis, a; = 2Pl and ap_, = 2F 2.
Substitute these into the recurrence:
aper = 2871 4 2(2872).

Qpeg = 2P 2R =2 ok — 9k

Conclusion: By induction, P(n) is true for all n > 1.

20
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2. For the Fibonacci sequence defined as

Flzl, FQZ]., Fn: n—1+Fn—2 forn23,

prove that F,, < 2" for all n > 1.

Let P(n) : F,, < 2" for all n > 1.
Base Case: P(1) and P(2).
Forn=1, F=1and2'=2 I <2
Forn=2, F,=1and2’=4, F,<?2%
Thus, P(1) and P(2) hold true.
Inductive Step: Assume P(k) is true for all i € [1, k| for some k > 2. Prove P(k + 1).
We need to show that P(k 4 1) is true, i.e., Fryy < 28
From the recurrence relation, we have:
Fiy1 = Fi + Fi1.
By the inductive hypothesis, we know that Fj, < 2% and F,_; < 2¥°1.
Thus,
Frppn=Fo+ F <2842t =212 1) =2"1.3
Now observe that 2F71 -3 < 281 for all k > 2.
Therefore, Fjyq < 27

Conclusion: By induction, P(n) is true for all n > 1.

21
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3. Prove that the n-th Fibonacci term can be written as

Let P(n): F, = % <<1+2\/5> - <1_2\/§) ) .

Base Case: P(1) and P(2).
Forn =1, F; =1, and the right-hand side evaluates to 1.
Forn =2, F,; =1, and the right-hand side evaluates to 1.
Thus, P(1) and P(2) hold true.
Inductive Step: Assume P(k) is true for all i € [1, k] for some k > 2. Prove P(k + 1).

1+\/5>k+1_<1_\/5)k+1

1
We need to show that Fj.1 = — (

V5

2 2

Using the inductive hypothesis:

oL <1+\/5>k_<1—\/5>k
b= 5 5 ;

. I 1+\/5k71 1_\/31%1
Y 5 - 5

Adding these:

L ((1+vB)" (1+vB) 1-vB)" (1-vB)"
re (05 () ) 0) - 05

Factor out powers:

v\
2
(55

I
Y
—
ol T
B
N———
=

+
VRS
—_
ol T
S

2

1
Thus, Fry1 = —
V5 (

Conclusion: By induction, P(n) is true for all n > 1.

22



CSE 215 Practice Questions Nicholas Smirnov

Set Theory (Element Methods)

1. For all sets A, B, and C, prove that (AUB) — (ANC)=(A-C)U(B—-C).

To prove: (AUB) —(ANC)=(A-C)U(B—C), show:

(1) ze (AUB)—(ANC) = z€(A-C)U(B-0),
2)ze(A-C)U(B-C) = z€(AUB)—(ANnQO).

(1) Prove z € (AUB)—(ANC) = z€(A-C)U(B-C).
Let z € (AUB)—(ANC) = z€ AUBandz ¢ ANC.
Ifre AUB,thenx € Aorz € B.

If z ¢ AN C,then it is not true that z € A and z € C.
Case I: Ifr € Aand z ¢ C, then x € A — C.

Case2: Ifxr e Band z ¢ C, thenx € B—C.

Thus, z € (A—-C)U (B —-0C).

(2) Provez € (A-C)U(B—-C) = z€ (AUB)—(ANCQO).
Letz € (A-C)U(B-C) = z€A—-CorzeB-C.
Case 1: If t € A—C, thenz € A and z ¢ C.

Since x € A, we have r € AU B.

Since = ¢ C, it is not true that z € AN C.
Thus, x € (AUB) — (AN CQC).

Case 2: If t € B—C, thenz € B and z ¢ C.
Since x € B, we have x € AU B.

Since x ¢ C, it is not true that x € ANC.

Thus, z € (AUB) — (ANC).

Conclusion: (AUB)—(ANC)=(A-C)U(B-C).

23



CSE 215 Practice Questions

2. For all sets A, B, and C, prove that A— (BUC)=(A—-B)N(A-C).

To prove: A— (BUC)=(A—-B)N(A-C0C).

We will prove this using an element-based argument by showing:
(1) re A—(BUC) = z€(A-B)Nn(A-0),
(2) xe(A—-B)N(A-C) = z€ A—(BUC().

(1) Provex € A— (BUC) = z€(A-B)N(A-C).
Let z € A— (BUC).
Then x € A and x ¢ BUC.
If x ¢ BUC,then z ¢ B and z ¢ C.
Since x € A and x ¢ B, it follows that v € A — B.
Since x € A and = ¢ C, it follows that v € A — C.
Thus, z € (A—B)N(A—-C).

(2) Provezx e (A—-B)N(A—-C) = z€ A—(BUC).
Letz € (A—B)N(A-C).
Thenx € A—Bandz e A—C.
Ifre€ A— B,thenz € A and = ¢ B.
Ifx € A—C then z € Aand z ¢ C.
Since x ¢ B and z ¢ C, it follows that x ¢ B U C.
Thus, z € Aand z ¢ BUC,sox € A— (BUC).

Conclusion: A—(BUC)=(A—-B)N(A-C).
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3. For all sets A, B, and C, prove that A x (B—C) =(Ax B) —(Ax ().

To prove: Ax (B—C)=(AxB)—(AxC(C).

We will prove this using an element-based argument by showing:
(1) (z,y) e Ax (B—-C) = (z,y) € (Ax B)—(Ax(),
(2) (z,y) e (AxB)—(Ax(C) = (z,y) € Ax (B-C).

(1) Prove (z,y) e Ax(B-C) = (z,y) € (Ax B)—(AxC).
Let (z,y) € Ax (B —C).
Then r € Aandy € B — C.
Since y € B — C, we know that y € B and y ¢ C.
Thus, (z,y) € A x B.
Since y ¢ C, it follows that (x,y) ¢ A x C.
Therefore, (z,y) € (A x B) — (A x C).

(2) Prove (z,y) € (Ax B)— (Ax () = (x,y) € Ax (B-0C).
Let (z,y) € (Ax B) — (A x C).
Then (x,y) € A x B and (z,y) ¢ A x C.
Since (z,y) € A x B, it follows that z € A and y € B.
Since (x,y) ¢ A x C, it follows that y ¢ C.
Thus,y € Bandy ¢ C, soy € B—C.

Therefore, (z,y) € A x (B —C).

Conclusion: Ax (B—C)=(Ax B)—-(Ax ().
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4. For all sets A, B, and C, prove that if A C B and C C B, then A x C C B x B.

To prove: Ax C C B x B.
We are given that A C B and C C B.
We will prove this using an element-based argument.
Let (z,y) € Ax C.
Then, by the definition of Cartesian product, x € A and y € C.
Since A C B and = € A, it follows that = € B.
Since C' C B and y € (), it follows that y € B.
Thus, (z,y) € B x B.

Therefore, Ax C C B x B.

Set Theory (Algebraic Methods)

Prove each of the following using algebraic-based method:

1. For all sets A, B, and C, prove that (AUB)NC = (ANC)U(BNCQC).

We want to prove that (AU B)NC = (ANC)U(BNC).
First, we rewrite the left-hand side using the distributive law:
(AUB)NC =(ANnC)u(BNQO).

Thus, by the distributive property, we have:

(AUB)NC =(ANnC)u(BNQO).

Therefore, the identity is proven.
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2. For all sets A, B, and C, prove that A— (BUC)=(A—-B)N(A-C).

We want to prove that A — (BUC) = (A—B)N(A—-C).
First, we rewrite the left-hand side using the set difference law:
A—(BUC)=An(BUC)-.

Now, apply De Morgan’s law:

(BUC)*=B°NC-,

so we have:

A—(BUC)=AN(B°NC°).

By the distributive property, we get:
A—(BUC)=(ANnB)N(ANC°).

This simplifies to:

(A—B)N(A-=0).

Thus, we have shown that:

A—(BUC)=(A-B)n(A—C).
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3. For all sets A, B, and C, prove that (AUB) — (ANB)=(A—-B)U(B— A).

We want to prove that (AU B) — (ANB)=(A—B)U(B - A).
First, we rewrite the left-hand side using the set difference law:
(AUB)—(ANnB)=(AUB)N (AN B)°.

Now, apply De Morgan’s law:

(AN B)°= A°U B,

so we have:

(AUB)—(ANB)=(AUB)N(A°U B°).

By distributive law:

(AUB)N(A°UB) =(ANA YU (AN B°)U(BNA°)U (BN B°).
Now simplify:

ANA°=(, BNB° =0,

so we have:

(AUB)—(ANB)=(ANB°) U (BN A°).

By the definition of set difference, this simplifies to:
(A-—B)U(B—A).

Thus, we have shown that:

(AUB)— (ANB) = (A— B)U (B — A).
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4. For all sets A, B, and C, prove that (AN B)U (A — B) = A.

We want to prove that (AN B)U (A — B) = A.
A—-B=ANB° = (ANB)U(ANB°).
Now, factor out A using the distributive law:
(ANB)U(ANB°) = AN (BUB°).

Since BU B = U (the universal set), we have:

AN(BUB)=ANnU=A

5. For all sets A, B, and C, prove that A— (BNC)=(A—-B)U(A—-C).

We want to prove that A — (BNC)=(A—B)U((A-C).
First, rewrite the left-hand side using the set difference law:
A—(BNnC)=An(BNC)-.

Now, apply De Morgan’s law to (BN C)°:
(BNC)*=B°UC"

So, the expression becomes:

A—(BNC)=AnNn(B°UC").

Now, apply the distributive law to expand the intersection:
AN(BUC®) =(ANB)U(ANC).

By the definition of set difference, we recognize:
ANB°=A—-B and ANC‘=A-C.

Thus, we have:

A-(BNnC)=(A-B)U(A-20C).

Therefore, we have proven the identity.
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Set Theory Counterexamples

Provide a counterexample to disprove each of the following:

1. For all sets A and B, AU B = A — B if and only if A = B.

Let A= {1,2} and B = {2}.
First, compute AU B :
AUB={1,2}yU{2} = {1,2}.
Next, compute A — B :
A—B={1,2} — {2} = {1}.

Clearly, AUB = {1,2} # {1} = A - B.

2. For all sets A, B,and C, (AUB)-C=(A-C)Nn(B—-C).

Let A={1,2}, B={2,3}, andC = {2}.
First, compute the left-hand side:
AUB=1{1,2}U{2,3} ={1,2,3},
(AUB)—C={1,2,3} — {2} = {1,3}.
Now, compute the right-hand side:
A—C={1,2} {2} = {1},

B —C={2,3} - {2} = {3},
(A-C)N(B-C)={1}n{3} =0.

In this case, we observe that the left-hand side and right-hand side are not equal:

(AUB)—C ={1,3} #£0=(A—C)N (B -C).
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3. Forall sets A, B,and C, A— (BNC)=(A—-B)N(A-C).

Let A={1,2,3,4}, B ={2,3}, C = {3,4}.

First, calculate BN C' :

BNnC={2,3}n{3,4} = {3}.

Now, calculate the left-hand side A — (BNC) :
A—(BNnC)=1{1,2,3,4} — {3} ={1,2,4}.

Next, calculate the right-hand side (A — B)N (A —-C):
A—B={1,23,4} — {2,3} = {1,4},
A—C=1{1,2,3,4} — {3,4} = {1,2},

(A-B)N(A—0C) ={1,4}n{1,2} = {1}.

Since {1,2,4} # {1}, the statement is disproved.

4. For all sets A, B, and C, Ax (BUC) = (A x B)N(A x C) holds for all A, B, and C.

Let A= {1}, B = {2}, C = {3}.

First, calculate BUC :

BUC = {2} u{3} ={2,3}.

Now, calculate the left-hand side A x (BUC) :

Ax (BUC) = {1} x {2,3} = {(1,2),(1,3)}.

Next, calculate the right-hand side (4 x B) N (A x C) :
Ax B ={1} x{2} ={(1,2)},

Ax O = {1} x{3} ={(1,3)},

(Ax B)N(AxC)={(1,2)} n{(1,3)} = 0.

Finally, compare the results:

Since {(1,2),(1,3)} # 0, the statement is disproved.
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One-to-One Correspondence

Deduce if the following functions are one-to-one correspondences:

1. Define a function f:Z — Z by f(x) =2z + 1.

1. One-to-One
A function is one-to-one if f(x1) = f(x2) implies that z; = xs.
Assume f(x1) = f(z2).
Then, 221 + 1 = 225 + 1.
Subtracting 1 from both sides: 2z; = 2.
Dividing both sides by 2: z; = x».
Thus, the function is one-to-one.
2. Onto
A function is onto if for every y € Z, there exists an x € Z such that f(x) = y.
Let y € Z.
We need to find z such that f(x) =y, ie,20+1=y.
Solving for z :

20 =y — 1,

U

5

For x to be an integer, y — 1 must be even, which means that y must be odd.
Thus, the function is not onto, because there are no x values corresponding to even y values.

3. One-to-one Correspondence

Because the function is not onto, it is not a one-to-one correspondence.
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2. Define a function f: R — R by f(z) = 3.

1. One-to-One
A function is one-to-one if f(x1) = f(x2) implies that z; = xs.
Assume f(z1) = f(x2).
Then, 2% = 3.
Taking the cube root of both sides: xy = 5.
Thus, the function is one-to-one.
2. Onto
A function is onto if for every y € R, there exists an z € R such that f(z) =y.
Let y € R.
We need to find z such that f(z) =y, ie., 2° =y.
Solving for z :
r =Y.
Since the cube root of any real number is defined and produces a real number,
the function is onto.
3. One-to-one Correspondence

Since the function is both one-to-one and onto, it is a one-to-one correspondence.
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3. Define a function f: N — N by f(z) = 2%

1. One-to-One

A function is one-to-one if f(x1) = f(z2) implies that z; = x.

Assume f(z1) = f(x2).

Then, 2% = 3.

This implies that x; = x5 or 1 = —xs.

However, since x1,x2 € N (the set of natural numbers),

the possibility that z; = —x5 is not valid.

Therefore, 1 = x5 and the function is one-to-one.

2. Onto

A function is onto if for every y € N, there exists an « € N such that f(x) =y.
Let y € N.

We need to find z such that f(z) =y, ie., 2° =y.

Solving for z, x = ./y.

For x € N, the square root of y must also be a natural number.

Thus, the function is only onto for perfect squares in N.

Therefore, not onto, because not all elements of N have a corresponding x value.
3. One-to-one Correspondence

Since the function is one-to-one but not onto, it is not a one-to-one correspondence.
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4. Define a function f: R xR — R x R by f(z,y) = (4y, 2z).

1. One-to-One

A function f: R xR — R x R is one-to-one if f(x1,y1) = f(z2,y2) = (21,11) = (22, y2).
Assume f(z1,y1) = f(22,92).

Then, (4y1,2z1) = (4ya, 222).

From the first component: 4y; = 4y, = y1 = yo.

From the second component: 2x; = 229 = 1 = 9.

Thus, (x1,41) = (22, y2) and the function is one-to-one.

2. Onto

A function f: R xR — R x R is onto if for every (a,b) € R x R,
there exists (z,y) € R x R such that f(x,y) = (a,b).

Let (a,b) € R x R.

We need to find (z,y) where f(z,y) = (a,b), ie., (4y,2z) = (a,b).

a
From the first component: 4y =a — y = —.

=~

b
From the second component: 20 =b — x = 7

b a

Thus, for every (a,b) € R x R, there exists (z,y) = (5, Z) € R x R where f(z,y) = (a,b).

Therefore, the function is onto.
3. One-to-one Correspondence

Since the function is both one-to-one and onto, it is a one-to-one correspondence.
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5. Define a function f: N x N — N x N by f(z,y) = (2y, 3z).

1. One-to-One

A function f: N x N — N x N is one-to-one if f(x1,11) = f(z2,y2) = (21,11) = (22, y2).

Assume f(z1,y1) = f(22,y2)-

Then, (2y1,3z1) = (2y2, 3x2).

From the first component: 2y; = 2y, = y; = yo.

From the second component: 3z; = 3zy = 1 = 9.

Thus, (x1,41) = (22, y2) and the function is one-to-one.

2. Onto

A function f: N x N — N x N is onto if for every (a,b) € N x N,

there exists (z,y) € N x N such that f(x,y) = (a,b).

Let (a,b) € N x N.

We need to find (z,y) such that f(z,y) = (a,b), ie., (2y,3z) = (a,b).
a

From the first component: 2y =a — y = 5

From the second component: 3xr =b — x = g

For y and x to be natural numbers, a must be even and b must be divisible by 3.
If a is odd or b is not divisible by 3, there are no such z,y in N.

Thus, the function is not onto.

3. One-to-one Correspondence

Since the function is not onto, it is not a one-to-one correspondence.
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Infinite Sets

Prove or disprove the following statements regarding infinite sets:

1. |N| = [N = {2,4,6,8,..}|.

1. Define a Bijection

To prove |N| = [N —{2,4,6,8,...}|, construct a bijection f: N — N —{2,4,6,8,...}.
Define f(n) =2n — 1.

2. One-to-One

A function is one-to-one if f(ny) = f(ng) implies that n; = ns.

Assume f(ny) = f(ng).

Then, 2n; — 1 = 2ny — 1.

Adding 1 to both sides: 2n; = 2ns.

Dividing both sides by 2: ny = ny. = Thus, the function is one-to-one.

3. Onto

A function is onto if for every y € N —{2,4,6,8,...},3In € N such that f(n) =y.
Let y e N—{2,4,6,8,...}, soyis odd.

We need to find n such that f(n) =y, ie, 2n—1=y.

Solving for n :

2n =y +1,
n_y+1
=5

1
Since y is odd, y + 1 is even, and % € N. = Thus, the function is onto.

4. Conclusion
Since f is both one-to-one and onto, it is a bijection.

Therefore, [N| = [N —{2,4,6,8,...}|.
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2. 10,2,4,6,8,..}| = |{1,3,5,7,9,...}]

1. Define a Bijection

To prove [{0,2,4,6,8,...} = |{1,3,5,7,9,... }|, construct a bijection.
Define f(n) =n+ 1.

2. One-to-One

A function is one-to-one if f(n;) = f(ns) implies that n; = ns.
Assume f(ng) = f(ng).

Then, ny +1=mno + 1.

Subtracting 1 from both sides: n; = n».

Thus, the function is one-to-one.

3. Onto

Let y € {1,3,5,7,9,...}.
We need to find n such that f(n) =y, ie,n+1=y.
Solving for n :

n=y—1.
Since y is odd, y — 1 is even, and n € {0,2,4,6,8,... }.
Thus, the function is onto.
4. Conclusion

Since f is both one-to-one and onto, it is a bijection.

Therefore, [{0,2,4,6,8,...} ={1,3,5,7,9,... }].

A function is onto if for every y € {1,3,5,7,9,...},3n € {0,2,4,6,8, ...
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3. |IN| < |R]

1. Cantor’s Diagonal Argument:
To show |N| < |R|, we prove that no bijection exists between N and R.
Assume for contradiction that such a bijection exists, f : N — R.
Construct the decimal expansion of each real number in [0, 1) as follows:
f(1) = 0.a11a12a13 - - .
f(2) = 0.az1a92a93 . . .

f(3) = 0.&31&320,33 e

Construct a new number x = 0.b1b3b3 ... such that b; # a;;.

By construction, x differs from f(7) at the ith digit, for all 1.

Thus, z is not in the range of f, contradicting the assumption that f is a bijection.
2. Conclusion:

No bijection exists between N and R. Therefore, |N| < |R].
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4. INJ < |P(N)]

1. Cantor’s Theorem:
To show |N| < |P(N)|, we prove that no bijection exists between N and P(N).
Assume for contradiction that such a bijection exists, f : N — P(N).
Define a set S C N as follows: S={neN:n ¢ f(n)}.
Since S C N, it must be in the codomain of f, so there 3k € N such that f(k) = S.
Now, consider whether k£ € S :
If k € S, then by definition of S, we must have k ¢ f(k).
But f(k) =S, so k ¢ S. This is a contradiction.
If k ¢ S, then by definition of S, we must have k € f(k).
But f(k) =S, so k € S. This is also a contradiction.
Thus, no such k can exist, and f cannot be a bijection.

2. Conclusion:

No bijection exists between N and P(N). Therefore, [N| < |P(N)|.
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Equivalence Relations

Prove or disprove the following statements about equivalence relations:

1. Let R be a relation on the set of integers Z defined by a R b if and only if a—b is divisible
by 3. Prove that R is an equivalence relation on Z, and describe the equivalence classes

of R.

1. Reflexive:

For any a € Z, a — a = 0 is divisible by 3, so a R a holds.

2. Symmetric:

If a Rb, then a — b = 3k for some k € Z.

Thus, b — a = —3k is divisible by 3, so b Ra holds.

3. Transitive:

IfaRband bRc, then a — b= 3k and b — ¢ = 3m for some k,m € Z.
Adding these gives a — ¢ = 3(k + m), which is divisible by 3, so a Rc.

4. Equivalence Classes:

The equivalence classes are the sets of integers that differ by multiples of 3:

0 ={..,-3,036,...}% []={.,-2147...}

2={..,-1,2,5,8,...}.
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2. Let R be a relation on the set of all strings over the alphabet {a, b} defined by = Ry if
and only if x and y have the same length. Prove that R is an equivalence relation and

describe the equivalence classes of R.

1. Reflexive:

For any string =, we have |z| = |z|, so x Rx holds.

2. Symmetric:

If x Ry, then |z| = |y|.

Thus, |y| = |z|, so y Rz holds.

3. Transitive:

If x Ry and y Rz, then |z| = |y| and |y| = |z|.

Thus, |z| = |z|, so z R z holds.

4. Equivalence Classes:

The equivalence classes are the sets of strings with the same length.
For any non-negative integer n, the equivalence class of strings of length n is:

[n] = {z | = is a string over {a, b} with length n}.
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3. Let R be a relation on R defined by a Rb if and only if a®> = b%. Prove that R is an

equivalence relation, and describe the equivalence classes of R.

1. Reflexive:

For any a € R, we have a® = ¢?, so a Ra holds.

2. Symmetric:

If  Rb, then a® = b2

Thus, b* = a?, so b Ra holds.

3. Transitive:

If a Rb and b Re, then a®> = b* and b* = 2.

Thus, a* = ¢*, so a R ¢ holds.

4. Equivalence Classes:

The equivalence classes are the sets of real numbers with the same absolute value.

For any non-negative real number r, the equivalence class of r is:

rl={z eR||z|=7r}={-rr} (if r #0), and [0] = {0}.
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4. Let R be a relation on the set of all people, where a Rb if and only if a and b have the
same birth year. Prove that R is an equivalence relation on the set of all people and

describe the equivalence classes of R.

1. Reflexive:

For any person a, the relation holds because a has the same birth year as a.
Thus, a R a holds.

2. Symmetric:

If a Rb, then a and b have the same birth year.

Since having the same birth year is a mutual property, b R a also holds.

3. Transitive:

If a Rb and b Rc, then a and b have the same year, and b and ¢ have the same year.
Thus, a and ¢ must also have the same birth year, so a R ¢ holds.

4. Equivalence Classes:

The equivalence classes of R are the sets of people born in the same year.

For any year y, the equivalence class of people born in year y is:

ly] = {a | a is born in year y}.
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5. Let R be a relation on the set of all points in the plane R? defined by (z1,v1) R (22, y2)
if and only if 21 = x5 or y; = y2. Prove that R is an equivalence relation and describe

the equivalence classes of R.

1. Reflexive:

For any point (x1,%1), we have (z1,y1) R (z1,y1) since 1 = 27 and y; = y;.
Thus, the relation is reflexive.

2. Symmetric:

If (z1,y1) R (x2,y2), then either x; = x5 or y; = ys.

If 1 = x9, then clearly xy = z;.

If y; = yo, then clearly yo = ;.

Thus, the relation is symmetric.

3. Transitive:

If (21, 91) R (22, y2) and (22, y2) R (23, y3),

then either x; = x5 or y; = yo, and either xy = x3 or ys = ys.

If x1 = 29 and x5 = x3, then z1 = x3.

If y1 = yo and yp = y3, then y; = y3.

Thus, the relation is transitive.

4. Equivalence Classes:

The equivalence classes of R are the points where either the xz-value y-value are equal.

For a given point (z,y), the equivalence class of (x,y) is:

(2, )] ={(",¢) [ 2" =z vy =y}
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Units Digit

Solve the following problems related to units digits:

1. Find the units digit of 710,

To find the units digit of 7'%°, observe the cycle in the units digits of powers of 7:
7,9,3,1 (cycle length is 4).

Since 100 <+ 4 = 25 remainder 0, the units digit of 7' is the same as that of 7*.
The units digit of 7% is 1.

Thus, the units digit of 7'% is .

2. Find the units digit of 3°.

To find the units digit of 3°°, observe the cycle in the units digits of powers of 3:
3,9,7,1 (cycle length is 4).

Since 50 = 4 = 12 remainder 2, the units digit of 3° matches that of 3%

The units digit of 3% is 9.

Thus, the units digit of 3% is @

3. Find the units digit of 121234,

The units digits of powers of 12 repeat in a cycle: 2,4, 8, 6.
To find the units digit of 12'***, calculate 1234 = 4 which gives remainder 2.

Thus, the units digit of 12'%3* is the same as that of 122, which is .

4. Find the units digit of 2%,

The units digits of powers of 2 repeat in a cycle: 2,4, 8,6.
To find the units digit of 2%7, calculate 987 < 4 which gives remainder 3.

Thus, the units digit of 27 is the same as that of 23, which is .
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5. Find the units digit of 99%.

The units digits of powers of 9 repeat in a cycle of length 2: 9, 1.
To find the units digit of 9%, calculate 999 <+ 2 which gives remainder 1.

Thus, the units digit of 9% is the same as that of 9', which is @
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