Discrete Mathematics (Functions)

Pramod Ganapathi

Department of Computer Science State University of New York at Stony Brook

January 24, 2021

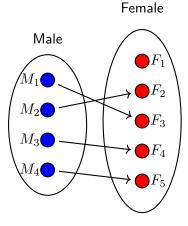
Contents

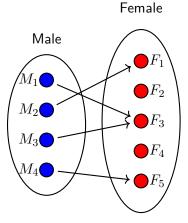
- One-to-One, Onto, One-to-One Correspondences, Inverse Functions
- Composition of Functions
- Infinite Sets

One-to-One, Onto, One-to-One Correspondences, Inverse Functions

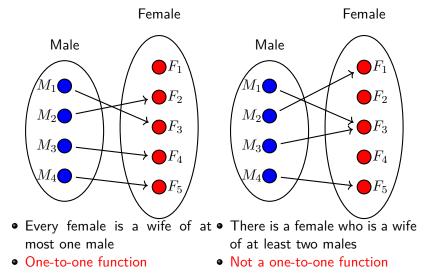
One-to-one functions

• What is the difference between the two marriage functions?





• What is the difference between the two marriage functions?



Definition

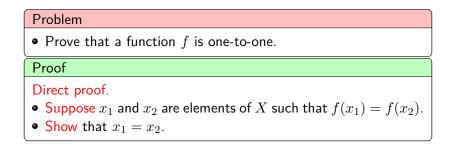
• A function $F: X \to Y$ is one-to-one (or injective) if and only if for all elements x_1 and x_2 in X,

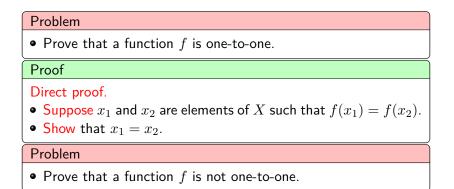
if
$$F(x_1) = F(x_2)$$
, then $x_1 = x_2$, or
if $x_1 \neq x_2$, then $F(x_1) \neq F(x_2)$.

• A function $F: X \to Y$ is one-to-one $\Leftrightarrow \forall x_1, x_2 \in X$, if $F(x_1) = F(x_2)$ then $x_1 = x_2$. A function $F: X \to Y$ is not one-to-one $\Leftrightarrow \exists x_1, x_2 \in X$, if $F(x_1) = F(x_2)$ then $x_1 \neq x_2$.

Problem

• Prove that a function *f* is one-to-one.





Problem
• Prove that a function <i>f</i> is one-to-one.
Proof
Direct proof. • Suppose x_1 and x_2 are elements of X such that $f(x_1) = f(x_2)$. • Show that $x_1 = x_2$.
Problem
• Prove that a function <i>f</i> is not one-to-one.
Proof
Counterexample. • Find elements x_1 and x_2 in X so that $f(x_1) = f(x_2)$ but $x_1 \neq x_2$.

• Define $f : \mathbb{R} \to \mathbb{R}$ by the rule f(x) = 4x - 1 for all $x \in \mathbb{R}$. Is f one-to-one? Prove or give a counterexample.

• Define $f : \mathbb{R} \to \mathbb{R}$ by the rule f(x) = 4x - 1 for all $x \in \mathbb{R}$. Is f one-to-one? Prove or give a counterexample.

Proof

Direct proof.

Suppose x₁ and x₂ are elements of X such that f(x₁) = f(x₂).
⇒ 4x₁ - 1 = 4x₂ - 1 (∵ Defn. of f)
⇒ 4x₁ = 4x₂ (∵ Add 1 on both sides)
⇒ x₁ = x₂ (∵ Divide by 4 on both sides)
Hence, f is one-to-one.

• Define $g : \mathbb{Z} \to \mathbb{Z}$ by the rule $g(n) = n^2$ for all $n \in \mathbb{Z}$. Is g one-to-one? Prove or give a counterexample.

• Define $g : \mathbb{Z} \to \mathbb{Z}$ by the rule $g(n) = n^2$ for all $n \in \mathbb{Z}$. Is g one-to-one? Prove or give a counterexample.

Proof

Direct proof.

Suppose n₁ and n₂ are elements of X such that g(n₁) = g(n₂).
 ⇒ n₁² = n₂² (∵ Defn. of g)
 ⇒ n₁ = n₂ (∵ Taking square root on both sides)
 Hence, g is one-to-one.

• Define $g : \mathbb{Z} \to \mathbb{Z}$ by the rule $g(n) = n^2$ for all $n \in \mathbb{Z}$. Is g one-to-one? Prove or give a counterexample.

Proof

Direct proof.

- Suppose n₁ and n₂ are elements of X such that g(n₁) = g(n₂).
 ⇒ n₁² = n₂² (∵ Defn. of g)
 ⇒ n₁ = n₂ (∵ Taking square root on both sides)
 Hence, g is one-to-one.
- Incorrect! What's wrong?

• Define $g : \mathbb{Z} \to \mathbb{Z}$ by the rule $g(n) = n^2$ for all $n \in \mathbb{Z}$. Is g one-to-one? Prove or give a counterexample.

Proof

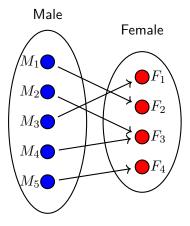
Counterexample.

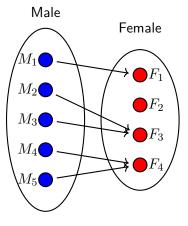
• Let
$$n_1 = -1$$
 and $n_2 = 1$.
 $\implies g(n_1) = (-1)^2 = 1$ and $g(n_2) = 1^2 = 1$
 $\implies g(n_1) = g(n_2)$ but, $n_1 \neq n_2$

• Hence, g is not one-to-one.

Onto functions

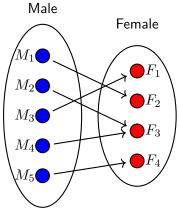
• What is the difference between the two marriage functions?



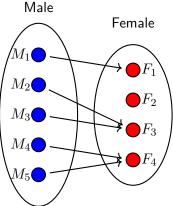


Onto functions

• What is the difference between the two marriage functions?



- Every female is a wife
- Onto function



- There is a female who is not a wife
- Not an onto function

Definition

A function F : X → Y is onto (or surjective) if and only if given any element y in Y, it is possible to find an element x in X with the property that y = F(x).

• A function
$$F: X \to Y$$
 is onto \Leftrightarrow
 $\forall y \in Y, \exists x \in X \text{ such that } F(x) = y.$
A function $F: X \to Y$ is not onto \Leftrightarrow
 $\exists y \in Y, \forall x \in X \text{ such that } F(x) \neq y.$

Problem

• Prove that a function f is onto.

Problem
• Prove that a function <i>f</i> is onto.
Proof
Direct proof. • Suppose that y is any element of Y • Show that there is an element x of X with $F(x) = y$

Problem
• Prove that a function f is onto.
Proof
Direct proof. • Suppose that y is any element of Y • Show that there is an element x of X with $F(x) = y$
Problem

• Prove that a function *f* is not onto.

Problem
• Prove that a function f is onto.
Proof
Direct proof. • Suppose that y is any element of Y • Show that there is an element x of X with $F(x) = y$
Problem
• Prove that a function f is not onto.
Proof

Counterexample.

• Find an element y of Y such that $y \neq F(x)$ for any x in X.

• Define $f : \mathbb{R} \to \mathbb{R}$ by the rule f(x) = 4x - 1 for all $x \in \mathbb{R}$. Is f onto? Prove or give a counterexample.

• Define $f : \mathbb{R} \to \mathbb{R}$ by the rule f(x) = 4x - 1 for all $x \in \mathbb{R}$. Is f onto? Prove or give a counterexample.

Proof

Direct proof.

Let y ∈ ℝ. We need to show that ∃x such that f(x) = y. Let x = ^{y+1}/₄. Then f(^{y+1}/₄) = 4(^{y+1}/₄) - 1 (∵ Defn. of f) = y (∵ Simplify)
Hence, f is onto.

• Define $g: \mathbb{Z} \to \mathbb{Z}$ by the rule g(n) = 4n - 1 for all $n \in \mathbb{Z}$. Is g onto? Prove or give a counterexample.

• Define $g: \mathbb{Z} \to \mathbb{Z}$ by the rule g(n) = 4n - 1 for all $n \in \mathbb{Z}$. Is g onto? Prove or give a counterexample.

Proof

Direct proof.

Let m ∈ Z. We need to show that ∃n such that g(n) = m. Let n = m+1/4. Then g(m+1/4) = 4(m+1/4) - 1 (∵ Defn. of g) = m (∵ Simplify)
Hence, g is onto.

• Define $g: \mathbb{Z} \to \mathbb{Z}$ by the rule g(n) = 4n - 1 for all $n \in \mathbb{Z}$. Is g onto? Prove or give a counterexample.

Proof

Direct proof.

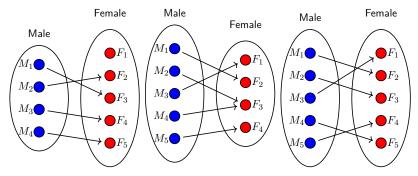
- Let m ∈ Z. We need to show that ∃n such that g(n) = m. Let n = m+1/4. Then g(m+1/4) = 4(m+1/4) - 1 (∵ Defn. of g) = m (∵ Simplify)
 Hence, g is onto.
- Incorrect! What's wrong?

• Define $g : \mathbb{Z} \to \mathbb{Z}$ by the rule g(n) = 4n - 1 for all $n \in \mathbb{Z}$. Is g onto? Prove or give a counterexample.

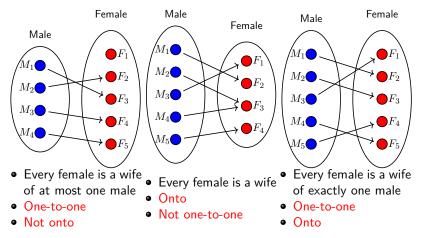
Proof

Counterexample.

• What is the difference between the three marriage functions?



• What is the difference between the three marriage functions?

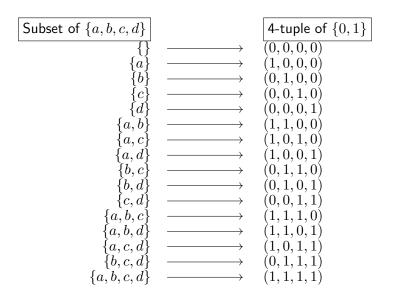


Definition

- A one-to-one correspondence (or bijection) from a set X to a set Y is a function $F: X \to Y$ that is both one-to-one and onto.
- Intuition:

 $One-to-one \ correspondence = One-to-one + Onto$

One-to-one correspondences: Example 1



• Define $F : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ by the rule F(x, y) = (x + y, x - y) for all $(x, y) \in \mathbb{R} \times \mathbb{R}$. Is F a one-to-one correspondence? Prove or give a counterexample.

• Define $F : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ by the rule F(x, y) = (x + y, x - y) for all $(x, y) \in \mathbb{R} \times \mathbb{R}$. Is F a one-to-one correspondence? Prove or give a counterexample.

Proof

To show that F is a one-to-one correspondence, we need to show that:

- 1. F is one-to-one.
- 2. F is onto.

Proof (continued)

 Proof that F is one-to-one. Suppose that (x_1, y_1) and (x_2, y_2) are any ordered pairs in $\mathbb{R} \times \mathbb{R}$ such that $F(x_1, y_1) = F(x_2, y_2)$. $\implies (x_1 + y_1, x_1 - y_1) = (x_2 + y_2, x_2 - y_2)$ (: Defn. of F) $\implies x_1 + y_1 = x_2 + y_2$ and $x_1 - y_1 = x_2 - y_2$ (: Defn. of equality of ordered pairs) $\implies x_1 = x_2$ and $y_1 = y_2$ (:: Solve the two simultaneous equations) \implies $(x_1, y_1) = (x_2, y_2)$ (: Defn. of equality of ordered pairs) Hence, F is one-to-one.

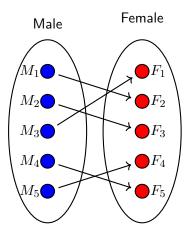
Proof (continued)

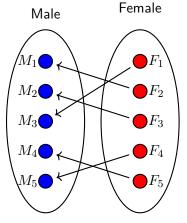
• Proof that *F* is onto.

Suppose (u, v) is any ordered pair in the co-domain of F. We will show that there is an ordered pair in the domain of F that is sent to (u, v) by F. Let $r = \frac{u+v}{2}$ and $s = \frac{u-v}{2}$. The ordered pair (r, s) belongs to $\mathbb{R} \times \mathbb{R}$. Also, $F(r, s) = F(\frac{u+v}{2}, \frac{u-v}{2})$ (: Defn. of F) $= (\frac{u+v}{2} + \frac{u-v}{2}, \frac{u+v}{2} - \frac{u-v}{2})$ (: Substitution) = (u, v) (: Simplify) Hence, F is onto.

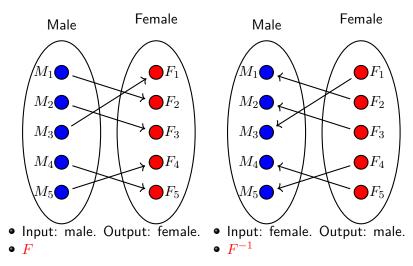
Inverse functions

• What is the difference between the two marriage functions?





• What is the difference between the two marriage functions?



Definition

Suppose F: X → Y is a one-to-one correspondence. Then, the inverse function F⁻¹: Y → X is defined as follows: Given any element y in Y, F⁻¹(y) = that unique element x in X such that F(x) = y.
F⁻¹(y) = x ⇔ y = F(x).

Inverse functions: Example 1

Subset of $\{a, b, c, d\}$ 4-tuple of $\{0, 1\}$ (0, 0, 0, 0)1, 0, 0, 0a[0, 1, 0, 0][0, 0, 1, 0][0, 0, 0, 1]d a, b1, 1, 0, 01, 0, 1, 0a, c1, 0, 0, 1a, d0, 1, 1, 0b, c0, 1, 0, 1b, d[0, 0, 1, 1] $\{c, d\}$ $\{a, b, c\}$ 1, 1, 1, 0[a, b, d]1, 1, 0, 1a, c, d1, 0, 1, 1 $\{b, c, d\}$ 0, 1, 1, 1 $\{a, b, c, d\}$ 1, 1, 1, 1)

Problem

• Define $f : \mathbb{R} \to \mathbb{R}$ by the rule f(x) = 4x - 1 for all $x \in \mathbb{R}$. Find its inverse function.

Problem

• Define $f : \mathbb{R} \to \mathbb{R}$ by the rule f(x) = 4x - 1 for all $x \in \mathbb{R}$. Find its inverse function.

Proof

For any y in R, by definition of
$$f^{-1}$$

• $f^{-1} =$ unique number x such that $f(x) = y$
Consider $f(x) = y$
 $\implies 4x - 1 = y$ (: Defn. of f)
 $\implies x = \frac{y+1}{4}$ (: Simplify)
• Hence, $f^{-1}(y) = \frac{y+1}{4}$ is the inverse function.

Inverse functions

Theorem

• If X and Y are sets and $F: X \to Y$ is a one-to-one correspondence, then $F^{-1}: Y \to X$ is also a one-to-one correspondence.

Inverse functions

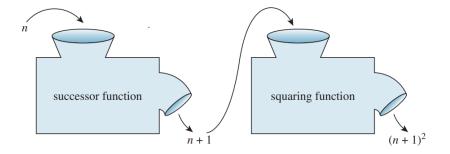
Theorem

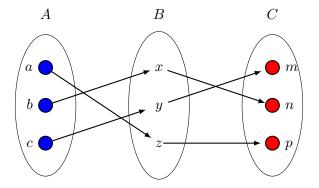
• If X and Y are sets and $F: X \to Y$ is a one-to-one correspondence, then $F^{-1}: Y \to X$ is also a one-to-one correspondence.

Proof

• F^{-1} is one-to-one. Suppose $F^{-1}(y_1) = F^{-1}(y_2)$ for some $y_1, y_2 \in Y$. We must show that $y_1 = y_2$. Let $F^{-1}(y_1) = F^{-1}(y_2) = x \in X$. Then $y_1 = F(x)$ since $F^{-1}(y_1) = x$ and $y_2 = F(x)$ since $F^{-1}(y_2) = x$. So, $y_1 = y_2$. • F^{-1} is onto. We must show that for any $x \in X$, there exists an element y in Y such that $F^{-1}(y) = x$. For any $x \in X$, we consider y = F(x). We see that $y \in Y$ and $F^{-1}(y) = x$.

Composition of Functions





Definition

- Let $f: X \to Y$ and $g: Y \to Z$. Let the range of f is a subset of the domain of g.
- Define a new composition function $g \circ f : X \to Z$ as follows:

$$(g \circ f)(x) = g(f(x))$$
 for all $x \in X$,

where $g \circ f$ is read "g circle f" and g(f(x)) is read "g of f of x."

Problem

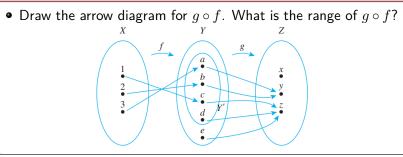
• Let $f : \mathbb{Z} \to \mathbb{Z}$ be the successor function and let $g : \mathbb{Z} \to \mathbb{Z}$ be the squaring function. Then f(n) = n + 1 for all $n \in \mathbb{Z}$ and $g(n) = n^2$ for all $n \in \mathbb{Z}$. Find $g \circ f$. Find $f \circ g$. Is $g \circ f = f \circ g$?

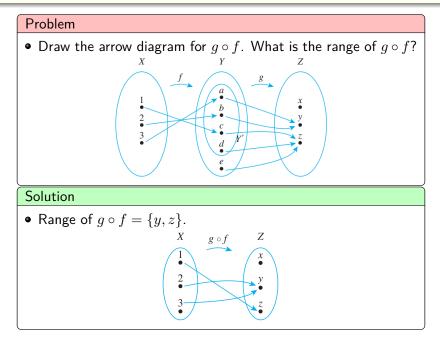
Problem

• Let $f : \mathbb{Z} \to \mathbb{Z}$ be the successor function and let $g : \mathbb{Z} \to \mathbb{Z}$ be the squaring function. Then f(n) = n + 1 for all $n \in \mathbb{Z}$ and $g(n) = n^2$ for all $n \in \mathbb{Z}$. Find $g \circ f$. Find $f \circ g$. Is $g \circ f = f \circ g$?

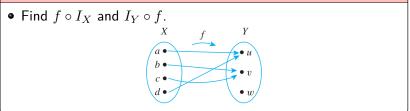
Solution

• $g \circ f$. $(g \circ f)(n) = g(f(n)) = g(n+1) = (n+1)^2$ for all $n \in \mathbb{Z}$. • $f \circ g$. $(f \circ g)(n) = f(g(n)) = f(n^2) = n^2 + 1$ for all $n \in \mathbb{Z}$. • $g \circ f \neq f \circ g$. E.g. $(g \circ f)(1) = 4$ and $(f \circ g)(1) = 2$

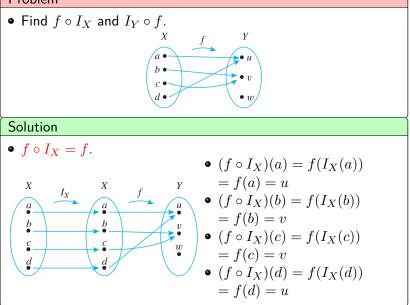




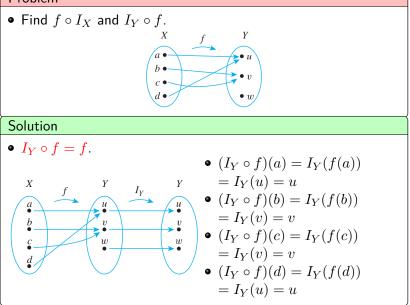
Problem



Problem



Problem



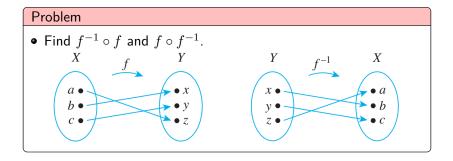
Theorem

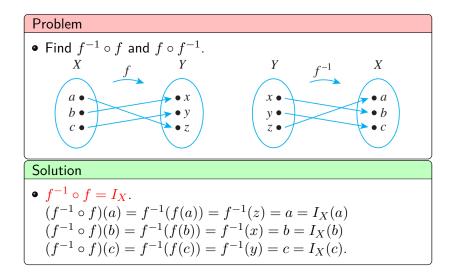
• If f is a function from a set X to a set Y, and I_X is the identity function on X, and I_Y is the identity function on Y, then $f \circ I_X = f$ and $I_Y \circ f = f$.

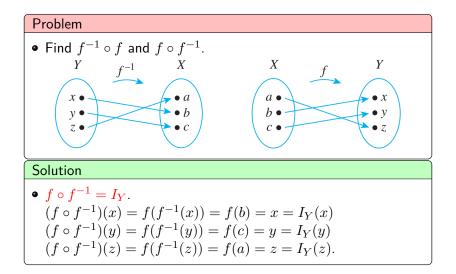
Proof

•
$$f \circ I_X = f$$
.
 $(f \circ I_X)(x) = f(I_X(x)) = f(x)$.

•
$$I_Y \circ f = f$$
.
 $(I_Y \circ f)(x) = I_Y(f(x)) = f(x)$.







Theorem

• If $f: X \to Y$ is a one-to-one and onto function with inverse function $f^{-1}: Y \to X$, then $f^{-1} \circ f = I_X$ and $f \circ f^{-1} = I_Y$.

Proof

• $f^{-1} \circ f = I_X$. To show that $f^{-1} \circ f = I_X$, we must show that for all $x \in X$, $(f^{-1} \circ f)(x) = x$. Let $x \in X$. Then $(f^{-1} \circ f)(x) = f^{-1}(f(x))$.

Suppose
$$f^{-1}(f(x)) = x'$$
.
 $\implies f(x') = f(x)$ (: Defn. of inverse function)
 $\implies x' = x$ (: f is one-to-one)
 $\implies (f^{-1} \circ f)(x) = x$

Hence, $f^{-1} \circ f = I_X$.

Theorem

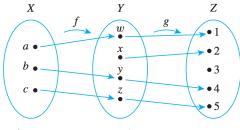
• If $f: X \to Y$ is a one-to-one and onto function with inverse function $f^{-1}: Y \to X$, then $f^{-1} \circ f = I_X$ and $f \circ f^{-1} = I_Y$.

Proof (continued)

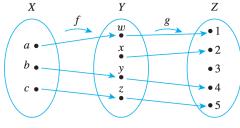
• $f \circ f^{-1} = I_Y$. To show that $f \circ f^{-1} = I_Y$, we must show that for all $y \in Y$, $(f \circ f^{-1})(y) = y$. Let $y \in Y$. Then $(f \circ f^{-1})(x) = f(f^{-1}(y))$.

$$\begin{split} & \text{Suppose } f(f^{-1}(y)) = y'. \\ & \implies f^{-1}(y') = f^{-1}(y) \quad (\because \text{ Defn. of inverse function}) \\ & \implies y' = y \quad (\because f^{-1} \text{ is one-to-one, too}) \\ & \implies (f \circ f^{-1})(y) = y \end{split}$$

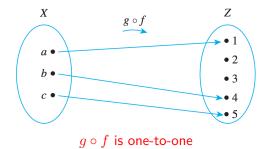
Hence, $f \circ f^{-1} = I_Y$.



 \boldsymbol{f} is one-to-one and \boldsymbol{g} is one-to-one



 \boldsymbol{f} is one-to-one and \boldsymbol{g} is one-to-one



Problem

• If $f: X \to Y$ and $g: Y \to Z$ are both one-to-one functions, then $g \circ f$ is one-to-one.

Problem

• If $f: X \to Y$ and $g: Y \to Z$ are both one-to-one functions, then $g \circ f$ is one-to-one.

Proof

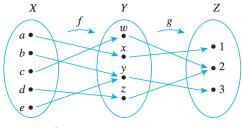
Direct proof.

Suppose x₁ and x₂ are elements of X. To prove that g ∘ f is one-to-one we must show that:
 "If (a ∘ f)(m) = (a ∘ f)(m), then m = m."

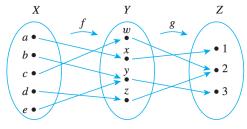
"If
$$(g \circ f)(x_1) = (g \circ f)(x_2)$$
, then $x_1 = x_2$."

Suppose
$$(g \circ f)(x_1) = (g \circ f)(x_2)$$
.
 $\implies g(f(x_1)) = g(f(x_2))$ (: Defn. of composition)
 $\implies f(x_1) = f(x_2)$ (: g is one-to-one)
 $\implies x_1 = x_2$ (: f is one-toone)

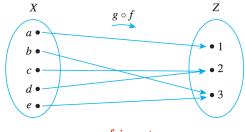
• Hence, $g \circ f$ is one-to-one.



 $f \ensuremath{\text{ is onto}}$ and $g \ensuremath{\text{ is onto}}$ and



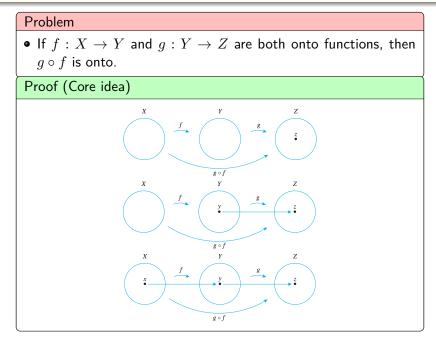
 $f \ensuremath{\text{ is onto}}$ and $g \ensuremath{\text{ is onto}}$



 $g \circ f$ is onto

Problem

• If $f:X \to Y$ and $g:Y \to Z$ are both onto functions, then $g \circ f$ is onto.



Problem

• If $f: X \to Y$ and $g: Y \to Z$ are both onto functions, then $g \circ f$ is onto.

Proof

Direct proof.

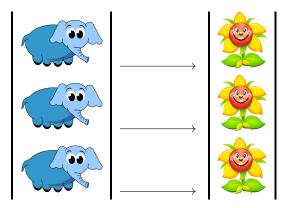
• Let z be an element of Z. To prove that $g \circ f$ is onto we must show the existence of an element x in X such that $(g \circ f)(x) = z$.

There is an element y in Y such that g(y) = z, because g is onto. Similarly, there is an element x in X such that f(x) = y. Hence there exists an element x in X such that $(g \circ f)(x) = g(f(x)) = g(y) = z$.

• Hence, $g \circ f$ is onto.

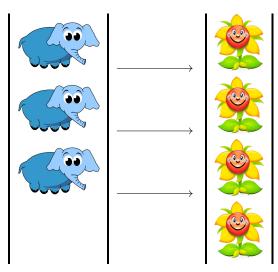
Infinite Sets

Finite sets

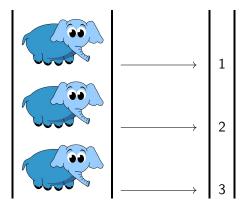


• Two finite sets are of the same size if there is a one-to-one correspondence between the two sets

Finite sets



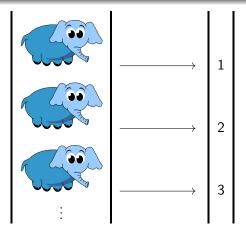
• Two finite sets are not of the same size if there is no one-to-one correspondence between the two sets



Definition

• A finite set is one that has no elements at all or that can be put into one-to-one correspondence with a set of the form $\{1, 2, \ldots, n\}$ for some positive integer n.

Infinite sets



Definition

• An infinite set is a nonempty set that cannot be put into one-toone correspondence with $\{1, 2, \ldots, n\}$ for any positive integer n.

Definition

- Let A and B be any sets. A has the same cardinality as B if, and only if, there is a one-to-one correspondence from A to B.
- A has the same cardinality as B if, and only if, there is a function f from A to B that is both one-to-one and onto.

Properties

For all sets A, B, and C:

• Reflexive property.

A has the same cardinality as A.

• Symmetric property.

If A has the same cardinality as B, then B has the same cardinality as A.

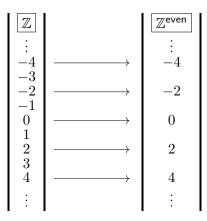
• Transitive property.

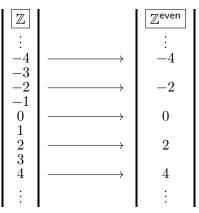
If A has the same cardinality as Band B has the same cardinality as C, then A has the same cardinality as C.

Same cardinality

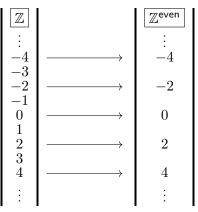
Definition

• A and B have the same cardinality if, and only if, A has the same cardinality as B or B has the same cardinality as A.

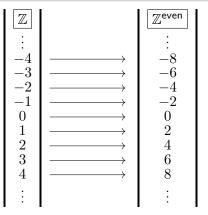




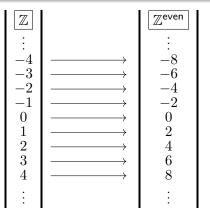
- There is no one-to-one correspondence between the two sets
- Cardinality of integers and even numbers are different i.e., $|\mathbb{Z}| \neq |\mathbb{Z}^{even}|$



- There is no one-to-one correspondence between the two sets
- Cardinality of integers and even numbers are different i.e., $|\mathbb{Z}| \neq |\mathbb{Z}^{even}|$
- Incorrect! What's wrong?



• Take-home lesson: If we fail to identify a one-to-one correspondence, it does not mean that there is no one-to-one correspondence



- Take-home lesson: If we fail to identify a one-to-one correspondence, it does not mean that there is no one-to-one correspondence
- There is a one-to-one correspondence between the two sets
- Cardinality of integers and even numbers are the same i.e., $|\mathbb{Z}|=|\mathbb{Z}^{even}|$

Problem

• Prove that the cardinality of integers and even numbers are the same.

Problem

• Prove that the cardinality of integers and even numbers are the same.

Solution

- To prove that $|\mathbb{Z}| = |\mathbb{Z}^{\text{even}}|$, we need to prove that there is a one-to-one correspondence, say f, between \mathbb{Z} and \mathbb{Z}^{even} . Suppose f = 2n for all integers $n \in \mathbb{Z}$.
- Prove that *f* is one-to-one.
 - Suppose $f(n_1) = f(n_2)$. $\implies 2n_1 = 2n_2$ (: Defn. of f)
 - $\implies n_1 = n_2 \qquad (\because \mathsf{Simplify})$
- Prove that f is onto.

Suppose $m \in \mathbb{Z}^{\text{even}}$.

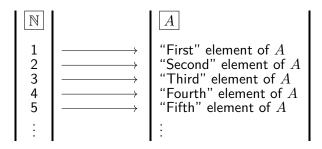
 $\implies m \text{ is even} \quad (:: \text{Defn. of } \mathbb{Z}^{\text{even}})$

$$\implies m = 2k$$
 for $k \in \mathbb{Z}$ (:: Defn. of even)

$$\implies f(k) = m$$
 (:: Defn. of f)

An infinite set and its proper subset can have the same size!

Countable sets



Definition

- A set is called countably infinite if, and only if, it has the same cardinality as the set of positive integers.
- A set is called countable if, and only if, it is finite or countably infinite. A set that is not countable is called uncountable.

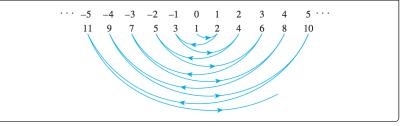
Problem

• Prove that the set of integers is countably infinite.

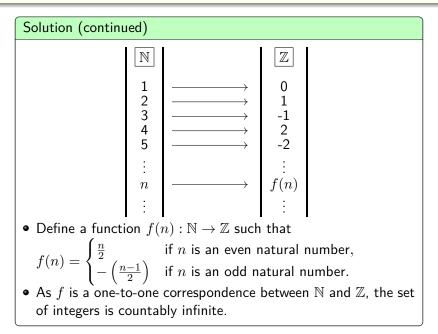
Problem

• Prove that the set of integers is countably infinite.

Solution



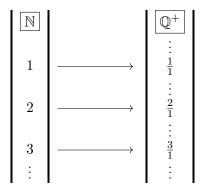
Integers are countable

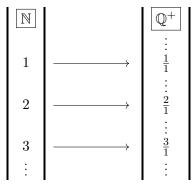


Consequences

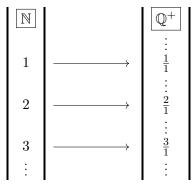
Suppose A and B be two sets such that |A| = |B|. Let $f : A \to B$ be the mapping function between the two sets.

- A and B are finite.
 - f is one-to-one $\Leftrightarrow f$ is onto
- A and B are infinite.
 - f is one-to-one $\not\Leftrightarrow f$ is onto

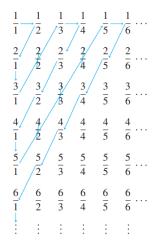




- There is no one-to-one correspondence between the two sets
- Cardinality of natural numbers and positive rationals are different i.e., $|\mathbb{N}|\neq |\mathbb{Q}^+|$



- There is no one-to-one correspondence between the two sets
- Cardinality of natural numbers and positive rationals are different i.e., $|\mathbb{N}|\neq |\mathbb{Q}^+|$
- Incorrect! What's wrong?



• Take-home lesson: If we fail to identify a one-to-one correspondence, it does not mean that there is no one-to-one correspondence

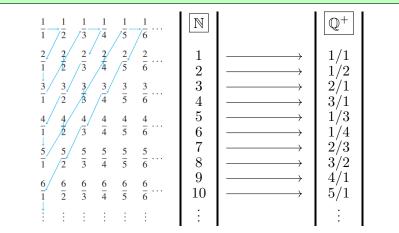
Problem

• Prove that the set of positive rational numbers are countable.

Problem

• Prove that the set of positive rational numbers are countable.

Solution



Problem

• Prove that the set of positive rational numbers are countable.

Solution (continued)

- To prove that $|\mathbb{N}| = |\mathbb{Q}^+|$, we need to prove that there is a one-to-one correspondence, say f, between \mathbb{N} and \mathbb{Q}^+ .
- Prove that f is onto.

Every positive rational number appears somewhere in the grid. Every point in the grid is reached eventually.

• Prove that *f* is one-to-one.

Skipping numbers that have already been counted ensures that no number is counted twice.

Problem

• Prove that the set of all real numbers between 0 and 1 is uncountable.

Problem

• Prove that the set of all real numbers between 0 and 1 is uncountable.

Solution

- To prove that $|\mathbb{N}| \neq |[0..1]|$, we need to prove that there is no one-to-one correspondence between \mathbb{N} and [0..1].
- A powerful approach to prove the theorem is: proof by contradiction.

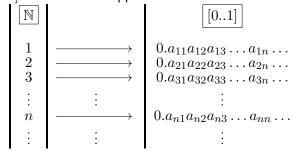
Problem

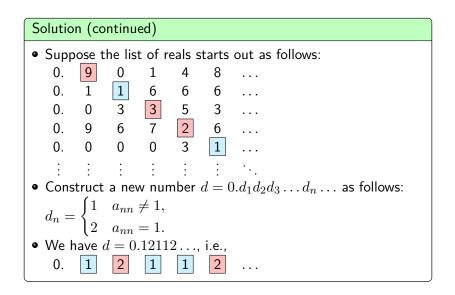
• Prove that the set of all real numbers between 0 and 1 is uncountable.

Solution

Proof by contradiction.

- Suppose [0..1] is countable.
- We will derive a contradiction by showing that there is a number in [0..1] that does not appear on this list.

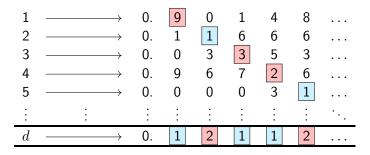




Solution (continued)

• Observation:

For each natural number n, the constructed real number d differs in the nth decimal position from the nth number on the list.



- This implies that d is not on the list. But, $d \in [0, 1]$.
- Contradiction! So, our supposition is false.
- Set of real numbers in [0,1] is uncountable.

There are different types of ∞ !

Theorems

- A subset of a countable set is countable.
- A set with an uncountable subset is uncountable.

\mathbb{R} and [0,1] have the same size

Problem

• Prove that the set of all real numbers has the same cardinality as the set of real numbers between 0 and 1.

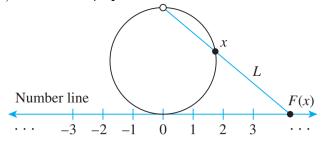
\mathbb{R} and [0,1] have the same size

Problem

• Prove that the set of all real numbers has the same cardinality as the set of real numbers between 0 and 1.

Solution

- Let $S = \{ x \in \mathbb{R} \mid 0 < x < 1 \}$
- $\bullet\,$ Bend S to create a circle as shown in the diagram.
- Define $F: S \to \mathbb{R}$ as follows.
- F(x) is called the projection of x onto the number line.

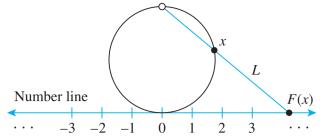


\mathbb{R} and [0,1] have the same size

Solution (continued)

We show that S and \mathbb{R} have the same cardinality by showing that F is a one-to-one correspondence.

- *F* is one-to-one. Distinct points on the circle go to distinct points on the number line.
- F is onto. Given any point y on the number line, a line can be drawn through y and the circle's topmost point. This line must intersect the circle at some point x, and, by definition, y = F(x).



Problem

• Prove that the set of all bit strings (strings of 0's and 1's) is countable.

Problem

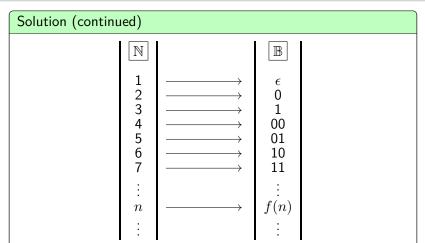
• Prove that the set of all bit strings (strings of 0's and 1's) is countable.

Solution

• Define a function
$$f(n): \mathbb{N} \to \mathbb{B}$$
 such that

$$f(n) = \begin{cases} \epsilon & \text{if } n = 1, \\ k \text{-bit binary repr. of } n - 2^k & \text{if } n > 1 \& \lfloor \log n \rfloor = k. \end{cases}$$

Set of bit strings is countable



- As f is a one-to-one correspondence between \mathbb{N} and \mathbb{B} , the set of bit strings is countably infinite.
- Generalizing, the set of strings from an alphabet consisting of a finite number of symbols is countably infinite.

Set of computer programs is countable

Problem

• Prove that the set of all computer programs in a given computer language is countable.

Set of computer programs is countable

Problem

• Prove that the set of all computer programs in a given computer language is countable.

Solution

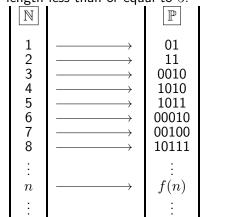
- Let ${\mathbb P}$ denote the set of all computer programs in the given computer language.
- Any computer program in any computer language is a finite set of symbols from a finite alphabet.
- [Encoding] Translate the symbols of each program to binary string using the ASCII code.
- Sort the strings by length.
- Sort the strings of a particular length in ascending order.

• Define a function
$$f(n): \mathbb{N} \to \mathbb{P}$$
 such that $f(n) = n$ th program in \mathbb{P}

Set of computer programs is countable

Solution (continued)

• Suppose the following are all programs in \mathbb{P} that translate to bit strings of length less than or equal to 5.



• As f is a one-to-one correspondence between \mathbb{N} and \mathbb{P} , the set of bit strings is countably infinite.

Set of all functions $\mathbb{N} \to \{0, 1\}$ is uncountable

Problem

• Prove that the set of all functions $\mathbb{N} \to \{0,1\}$ is uncountable

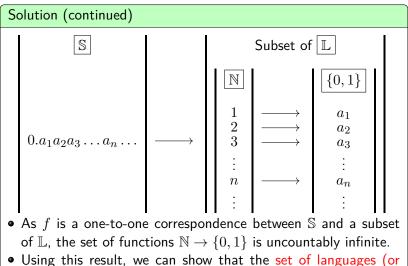
Problem

• Prove that the set of all functions $\mathbb{N} \to \{0,1\}$ is uncountable

Solution

- Let S be the set of all real numbers in [0,1] represented in the form $0.a_1a_2a_3...a_n...$, where $a_i \in \{0,1\}$.
- This representation is unique if the bit sequences that end with all 1's are omitted.
 Why?
- Let $\mathbb L$ be the set of all functions $\mathbb N\to\{0,1\}$
- We will show a 1-to-1 correspondence between $\mathbb S$ and a subset of $\mathbb L$ by showing we can map an element of $\mathbb S$ to a unique element of $\mathbb L.$

Set of all functions $\mathbb{N} \to \{0, 1\}$ is uncountable



decision problems or computable functions) is uncountable.

There is an infinite sequence of larger and larger infinities!

