Discrete Mathematics

(Functions)

Pramod Ganapathi
Department of Computer Science
State University of New York at Stony Brook

January 24, 2021

Contents

Contents

- One-to-One, Onto, One-to-One Correspondences, Inverse Functions
- Composition of Functions
- Infinite Sets

One-to-One, Onto, One-to-One
 Correspondences, Inverse Functions

One-to-one functions

- What is the difference between the two marriage functions?

Female
Female

One-to-one functions

- What is the difference between the two marriage functions?

Female

- Every female is a wife of at - There is a female who is a wife most one male
- One-to-one function

Female

- Not a one-to-one function

One-to-one functions

Definition

- A function $F: X \rightarrow Y$ is one-to-one (or injective) if and only if for all elements x_{1} and x_{2} in X,

$$
\begin{aligned}
& \text { if } F\left(x_{1}\right)=F\left(x_{2}\right) \text {, then } x_{1}=x_{2} \text {, or } \\
& \text { if } x_{1} \neq x_{2} \text {, then } F\left(x_{1}\right) \neq F\left(x_{2}\right) \text {. }
\end{aligned}
$$

- A function $F: X \rightarrow Y$ is one-to-one \Leftrightarrow $\forall x_{1}, x_{2} \in X$, if $F\left(x_{1}\right)=F\left(x_{2}\right)$ then $x_{1}=x_{2}$.
A function $F: X \rightarrow Y$ is not one-to-one \Leftrightarrow
$\exists x_{1}, x_{2} \in X$, if $F\left(x_{1}\right)=F\left(x_{2}\right)$ then $x_{1} \neq x_{2}$.

One-to-one functions: Proof technique

Problem

- Prove that a function f is one-to-one.

One-to-one functions: Proof technique

Problem

- Prove that a function f is one-to-one.

Proof
Direct proof.

- Suppose x_{1} and x_{2} are elements of X such that $f\left(x_{1}\right)=f\left(x_{2}\right)$.
- Show that $x_{1}=x_{2}$.

One-to-one functions: Proof technique

Problem

- Prove that a function f is one-to-one.
Proof

Direct proof.

- Suppose x_{1} and x_{2} are elements of X such that $f\left(x_{1}\right)=f\left(x_{2}\right)$.
- Show that $x_{1}=x_{2}$.

Problem

- Prove that a function f is not one-to-one.

One-to-one functions: Proof technique

Problem

- Prove that a function f is one-to-one.

Proof

Direct proof.

- Suppose x_{1} and x_{2} are elements of X such that $f\left(x_{1}\right)=f\left(x_{2}\right)$.
- Show that $x_{1}=x_{2}$.

Problem

- Prove that a function f is not one-to-one.

Proof

Counterexample.

- Find elements x_{1} and x_{2} in X so that $f\left(x_{1}\right)=f\left(x_{2}\right)$ but $x_{1} \neq x_{2}$.

One-to-one functions: Example 1

Problem

- Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by the rule $f(x)=4 x-1$ for all $x \in \mathbb{R}$. Is f one-to-one? Prove or give a counterexample.

One-to-one functions: Example 1

Problem

- Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by the rule $f(x)=4 x-1$ for all $x \in \mathbb{R}$. Is f one-to-one? Prove or give a counterexample.

Proof

Direct proof.

- Suppose x_{1} and x_{2} are elements of X such that $f\left(x_{1}\right)=f\left(x_{2}\right)$.
$\Longrightarrow 4 x_{1}-1=4 x_{2}-1 \quad(\because$ Defn. of $f)$
$\Longrightarrow 4 x_{1}=4 x_{2} \quad(\because$ Add 1 on both sides)
$\Longrightarrow x_{1}=x_{2} \quad(\because$ Divide by 4 on both sides)
- Hence, f is one-to-one.

One-to-one functions: Example 2

Problem

- Define $g: \mathbb{Z} \rightarrow \mathbb{Z}$ by the rule $g(n)=n^{2}$ for all $n \in \mathbb{Z}$. Is g one-to-one? Prove or give a counterexample.

One-to-one functions: Example 2

Problem

- Define $g: \mathbb{Z} \rightarrow \mathbb{Z}$ by the rule $g(n)=n^{2}$ for all $n \in \mathbb{Z}$. Is g one-to-one? Prove or give a counterexample.

Proof

Direct proof.

- Suppose n_{1} and n_{2} are elements of X such that $g\left(n_{1}\right)=g\left(n_{2}\right)$. $\Longrightarrow n_{1}^{2}=n_{2}^{2} \quad(\because$ Defn. of $g)$
$\Longrightarrow n_{1}=n_{2} \quad(\because$ Taking square root on both sides $)$
- Hence, g is one-to-one.

One-to-one functions: Example 2

Problem

- Define $g: \mathbb{Z} \rightarrow \mathbb{Z}$ by the rule $g(n)=n^{2}$ for all $n \in \mathbb{Z}$. Is g one-to-one? Prove or give a counterexample.

Proof

Direct proof.

- Suppose n_{1} and n_{2} are elements of X such that $g\left(n_{1}\right)=g\left(n_{2}\right)$. $\Longrightarrow n_{1}^{2}=n_{2}^{2} \quad(\because$ Defn. of $g)$
$\Longrightarrow n_{1}=n_{2} \quad(\because$ Taking square root on both sides $)$
- Hence, g is one-to-one.
- Incorrect! What's wrong?

One-to-one functions: Example 2

Problem

- Define $g: \mathbb{Z} \rightarrow \mathbb{Z}$ by the rule $g(n)=n^{2}$ for all $n \in \mathbb{Z}$. Is g one-to-one? Prove or give a counterexample.

Proof

Counterexample.

- Let $n_{1}=-1$ and $n_{2}=1$.
$\Longrightarrow g\left(n_{1}\right)=(-1)^{2}=1$ and $g\left(n_{2}\right)=1^{2}=1$
$\Longrightarrow g\left(n_{1}\right)=g\left(n_{2}\right)$ but, $n_{1} \neq n_{2}$
- Hence, g is not one-to-one.

Onto functions

- What is the difference between the two marriage functions?

Male

Male

Onto functions

- What is the difference between the two marriage functions?

Male

- Every female is a wife
- Onto function

Male

- There is a female who is not a wife
- Not an onto function

Onto functions

Definition

- A function $F: X \rightarrow Y$ is onto (or surjective) if and only if given any element y in Y, it is possible to find an element x in X with the property that $y=F(x)$.
- A function $F: X \rightarrow Y$ is onto \Leftrightarrow $\forall y \in Y, \exists x \in X$ such that $F(x)=y$.
A function $F: X \rightarrow Y$ is not onto \Leftrightarrow
$\exists y \in Y, \forall x \in X$ such that $F(x) \neq y$.

Onto functions: Proof technique

Problem

- Prove that a function f is onto.

Onto functions: Proof technique

Problem

- Prove that a function f is onto.

Proof
Direct proof.

- Suppose that y is any element of Y
- Show that there is an element x of X with $F(x)=y$

Onto functions: Proof technique

Problem

- Prove that a function f is onto.

Proof
Direct proof.

- Suppose that y is any element of Y
- Show that there is an element x of X with $F(x)=y$

Problem

- Prove that a function f is not onto.

Onto functions: Proof technique

Problem

- Prove that a function f is onto.

Proof

Direct proof.

- Suppose that y is any element of Y
- Show that there is an element x of X with $F(x)=y$

Problem

- Prove that a function f is not onto.

Proof
Counterexample.

- Find an element y of Y such that $y \neq F(x)$ for any x in X.

Onto functions: Example 1

Problem

- Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by the rule $f(x)=4 x-1$ for all $x \in \mathbb{R}$. Is f onto? Prove or give a counterexample.

Onto functions: Example 1

Problem

- Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by the rule $f(x)=4 x-1$ for all $x \in \mathbb{R}$. Is f onto? Prove or give a counterexample.

Proof

Direct proof.

- Let $y \in \mathbb{R}$. We need to show that $\exists x$ such that $f(x)=y$. Let $x=\frac{y+1}{4}$. Then

$$
f\left(\frac{y+1}{4}\right)=4\left(\frac{y+1}{4}\right)-1 \quad(\because \text { Defn. of } f)
$$

$=y \quad(\because$ Simplify $)$

- Hence, f is onto.

Onto functions: Example 2

Problem

- Define $g: \mathbb{Z} \rightarrow \mathbb{Z}$ by the rule $g(n)=4 n-1$ for all $n \in \mathbb{Z}$. Is g onto? Prove or give a counterexample.

Onto functions: Example 2

Problem

- Define $g: \mathbb{Z} \rightarrow \mathbb{Z}$ by the rule $g(n)=4 n-1$ for all $n \in \mathbb{Z}$. Is g onto? Prove or give a counterexample.

Proof

Direct proof.

- Let $m \in \mathbb{Z}$. We need to show that $\exists n$ such that $g(n)=m$.

Let $n=\frac{m+1}{4}$. Then
$g\left(\frac{m+1}{4}\right)=4\left(\frac{m+1}{4}\right)-1 \quad(\because$ Defn. of $g)$
$=m \quad(\because$ Simplify $)$

- Hence, g is onto.

Onto functions: Example 2

Problem

- Define $g: \mathbb{Z} \rightarrow \mathbb{Z}$ by the rule $g(n)=4 n-1$ for all $n \in \mathbb{Z}$. Is g onto? Prove or give a counterexample.

Proof

Direct proof.

- Let $m \in \mathbb{Z}$. We need to show that $\exists n$ such that $g(n)=m$.

Let $n=\frac{m+1}{4}$. Then
$g\left(\frac{m+1}{4}\right)=4\left(\frac{m+1}{4}\right)-1 \quad(\because$ Defn. of $g)$
$=m \quad(\because$ Simplify $)$

- Hence, g is onto.
- Incorrect! What's wrong?

Onto functions: Example 2

Problem

- Define $g: \mathbb{Z} \rightarrow \mathbb{Z}$ by the rule $g(n)=4 n-1$ for all $n \in \mathbb{Z}$. Is g onto? Prove or give a counterexample.

Proof

Counterexample.

- We know that $0 \in \mathbb{Z}$.
- Let $g(n)=0$ for some integer n.
$\Longrightarrow 4 n-1=0 \quad(\because$ Defn. of $g)$
$\Longrightarrow n=\frac{1}{4} \quad(\because$ Simplify $)$
But $\frac{1}{4} \notin \mathbb{Z}$.
So, $g(n) \neq 0$ for any integer n.
- Hence, g is not onto.

One-to-one correspondences

- What is the difference between the three marriage functions?

One-to-one correspondences

- What is the difference between the three marriage functions?

- Every female is a wife of at most one male
- One-to-one
- Not onto
- Every female is a wife
- Onto
- Not one-to-one

Female

- Every female is a wife of exactly one male
- One-to-one
- Onto

One-to-one correspondences

Definition

- A one-to-one correspondence (or bijection) from a set X to a set Y is a function $F: X \rightarrow Y$ that is both one-to-one and onto.
- Intuition:

One-to-one correspondence $=$ One-to-one + Onto

One-to-one correspondences: Example 1

Subset of $\{a, b, c, d\}$		4-tuple of $\{0,1\}$
\{\}	\longrightarrow	(0, $0,0,0)$
$\{a\}$	\longrightarrow	(1, 0, 0, 0)
\{b\}	\longrightarrow	($0,1,0,0$)
\{c\}	\longrightarrow	(0, $0,1,0)$
$\{d\}$	\longrightarrow	(0, 0, 0, 1)
\{a, b\}	\longrightarrow	(1, 1, 0, 0)
$\{a, c\}$	\longrightarrow	(1, 0, 1, 0)
$\{a, d\}$		(1, 0, 0, 1)
$\{b, c\}$	\longrightarrow	(0, , , 1, 0)
$\{b, d\}$	\longrightarrow	(0, , , 0, 1)
$\{c, d\}$	\longrightarrow	(0, 0, , , 1)
$\{a, b, c\}$	\longrightarrow	(1, 1, 1, 0)
$\{a, b, d\}$	\longrightarrow	(1, 1, 0, 1)
$\{a, c, d\}$	\longrightarrow	(1, 0, 1, 1)
$\{b, c, d\}$	\longrightarrow	(0, , , , 1)
$\{a, b, c, d\}$	\longrightarrow	(1, 1, 1, 1)

One-to-one correspondences: Example 2

Problem

- Define $F: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}$ by the rule $F(x, y)=(x+y, x-y)$ for all $(x, y) \in \mathbb{R} \times \mathbb{R}$. Is F a one-to-one correspondence? Prove or give a counterexample.

One-to-one correspondences: Example 2

Problem

- Define $F: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}$ by the rule $F(x, y)=(x+y, x-y)$ for all $(x, y) \in \mathbb{R} \times \mathbb{R}$. Is F a one-to-one correspondence? Prove or give a counterexample.

Proof

To show that F is a one-to-one correspondence, we need to show that:

1. F is one-to-one.
2. F is onto.

One-to-one correspondences: Example 2

Proof (continued)

- Proof that F is one-to-one.

Suppose that $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are any ordered pairs in $\mathbb{R} \times \mathbb{R}$ such that $F\left(x_{1}, y_{1}\right)=F\left(x_{2}, y_{2}\right)$.
$\Longrightarrow\left(x_{1}+y_{1}, x_{1}-y_{1}\right)=\left(x_{2}+y_{2}, x_{2}-y_{2}\right)$
$(\because$ Defn. of F)
$\Longrightarrow x_{1}+y_{1}=x_{2}+y_{2}$ and $x_{1}-y_{1}=x_{2}-y_{2}$
(\because Defn. of equality of ordered pairs)
$\Longrightarrow x_{1}=x_{2}$ and $y_{1}=y_{2}$
(\because Solve the two simultaneous equations)
$\Longrightarrow\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)$
(\because Defn. of equality of ordered pairs)
Hence, F is one-to-one.

One-to-one correspondences: Example 2

Proof (continued)

- Proof that F is onto.

Suppose (u, v) is any ordered pair in the co-domain of F. We will show that there is an ordered pair in the domain of F that is sent to (u, v) by F.
Let $r=\frac{u+v}{2}$ and $s=\frac{u-v}{2}$. The ordered pair (r, s) belongs to $\mathbb{R} \times \mathbb{R}$. Also,
$F(r, s)$
$=F\left(\frac{u+v}{2}, \frac{u-v}{2}\right) \quad(\because$ Defn. of $F)$
$=\left(\frac{u+v}{2}+\frac{u-v}{2}, \frac{u+v}{2}-\frac{u-v}{2}\right) \quad(\because$ Substitution $)$
$=(u, v) \quad(\because$ Simplify $)$
Hence, F is onto.

- What is the difference between the two marriage functions?

Male
Female

- What is the difference between the two marriage functions?

- Input: male. Output: female.
- F

Male
Female

- Input: female. Output: male.
- F^{-1}

Definition

- Suppose $F: X \rightarrow Y$ is a one-to-one correspondence.

Then, the inverse function $F^{-1}: Y \rightarrow X$ is defined as follows:
Given any element y in Y,
$F^{-1}(y)=$ that unique element x in X such that $F(x)=y$.

- $F^{-1}(y)=x \Leftrightarrow y=F(x)$.

Inverse functions: Example 2

Problem

- Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by the rule $f(x)=4 x-1$ for all $x \in \mathbb{R}$. Find its inverse function.

Inverse functions: Example 2

Problem

- Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by the rule $f(x)=4 x-1$ for all $x \in \mathbb{R}$. Find its inverse function.

Proof

For any y in R, by definition of f^{-1}

- $f^{-1}=$ unique number x such that $f(x)=y$

Consider $f(x)=y$
$\Longrightarrow 4 x-1=y \quad(\because$ Defn. of $f)$
$\Longrightarrow x=\frac{y+1}{4} \quad(\because$ Simplify $)$

- Hence, $f^{-1}(y)=\frac{y+1}{4}$ is the inverse function.

Inverse functions

Theorem

- If X and Y are sets and $F: X \rightarrow Y$ is a one-to-one correspondence, then $F^{-1}: Y \rightarrow X$ is also a one-to-one correspondence.

Inverse functions

Theorem

- If X and Y are sets and $F: X \rightarrow Y$ is a one-to-one correspondence, then $F^{-1}: Y \rightarrow X$ is also a one-to-one correspondence.

Proof

- F^{-1} is one-to-one.

Suppose $F^{-1}\left(y_{1}\right)=F^{-1}\left(y_{2}\right)$ for some $y_{1}, y_{2} \in Y$.
We must show that $y_{1}=y_{2}$.
Let $F^{-1}\left(y_{1}\right)=F^{-1}\left(y_{2}\right)=x \in X$. Then
$y_{1}=F(x)$ since $F^{-1}\left(y_{1}\right)=x$ and
$y_{2}=F(x)$ since $F^{-1}\left(y_{2}\right)=x$.
So, $y_{1}=y_{2}$.

- F^{-1} is onto.

We must show that for any $x \in X$, there exists an element y in Y such that $F^{-1}(y)=x$.
For any $x \in X$, we consider $y=F(x)$.
We see that $y \in Y$ and $F^{-1}(y)=x$.

Composition of Functions

Composition of functions

Composition of functions

Composition of functions

Definition

- Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$. Let the range of f is a subset of the domain of g.
- Define a new composition function $g \circ f: X \rightarrow Z$ as follows:

$$
(g \circ f)(x)=g(f(x)) \text { for all } x \in X
$$

where $g \circ f$ is read " g circle f " and $g(f(x))$ is read " g of f of x."

Composition of functions: Example 1

Problem

- Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be the successor function and let $g: \mathbb{Z} \rightarrow \mathbb{Z}$ be the squaring function. Then $f(n)=n+1$ for all $n \in \mathbb{Z}$ and $g(n)=n^{2}$ for all $n \in \mathbb{Z}$. Find $g \circ f$. Find $f \circ g$. Is $g \circ f=f \circ g$?

Composition of functions: Example 1

Problem

- Let $f: \mathbb{Z} \rightarrow \mathbb{Z}$ be the successor function and let $g: \mathbb{Z} \rightarrow \mathbb{Z}$ be the squaring function. Then $f(n)=n+1$ for all $n \in \mathbb{Z}$ and $g(n)=n^{2}$ for all $n \in \mathbb{Z}$. Find $g \circ f$. Find $f \circ g$. Is $g \circ f=f \circ g$?

Solution

- $g \circ f$.

$$
(g \circ f)(n)=g(f(n))=g(n+1)=(n+1)^{2} \text { for all } n \in \mathbb{Z}
$$

- $f \circ g$.
$(f \circ g)(n)=f(g(n))=f\left(n^{2}\right)=n^{2}+1$ for all $n \in \mathbb{Z}$.
- $g \circ f \neq f \circ g$.
E.g. $(g \circ f)(1)=4$ and $(f \circ g)(1)=2$

Composition of functions: Example 2

Problem

- Draw the arrow diagram for $g \circ f$. What is the range of $g \circ f$?

Composition of functions: Example 2

Problem

- Draw the arrow diagram for $g \circ f$. What is the range of $g \circ f$?

Solution

- Range of $g \circ f=\{y, z\}$.

Composition of functions: Example 3

Problem

- Find $f \circ I_{X}$ and $I_{Y} \circ f$.

Composition of functions: Example 3

Problem

- Find $f \circ I_{X}$ and $I_{Y} \circ f$.

Solution

- $f \circ I_{X}=f$.
- $\left(f \circ I_{X}\right)(a)=f\left(I_{X}(a)\right)$

$=f(a)=u$
- $\left(f \circ I_{X}\right)(b)=f\left(I_{X}(b)\right)$

$$
=f(b)=v
$$

- $\left(f \circ I_{X}\right)(c)=f\left(I_{X}(c)\right)$

$$
=f(c)=v
$$

- $\left(f \circ I_{X}\right)(d)=f\left(I_{X}(d)\right)$
$=f(d)=u$

Composition of functions: Example 3

Problem

- Find $f \circ I_{X}$ and $I_{Y} \circ f$.

Solution

- $I_{Y} \circ f=f$.
- $\left(I_{Y} \circ f\right)(a)=I_{Y}(f(a))$

$=I_{Y}(u)=u$
- $\left(I_{Y} \circ f\right)(b)=I_{Y}(f(b))$
$=I_{Y}(v)=v$
- $\left(I_{Y} \circ f\right)(c)=I_{Y}(f(c))$
$=I_{Y}(v)=v$
- $\left(I_{Y} \circ f\right)(d)=I_{Y}(f(d))$
$=I_{Y}(u)=u$

Composition of functions

Theorem

- If f is a function from a set X to a set Y, and I_{X} is the identity function on X, and I_{Y} is the identity function on Y, then $f \circ I_{X}=f$ and $I_{Y} \circ f=f$.

Proof

- $f \circ I_{X}=f$.
$\left(f \circ I_{X}\right)(x)=f\left(I_{X}(x)\right)=f(x)$.
- $I_{Y} \circ f=f$.
$\left(I_{Y} \circ f\right)(x)=I_{Y}(f(x))=f(x)$.

Composition of functions: Example 4

Problem

- Find $f^{-1} \circ f$ and $f \circ f^{-1}$.

Composition of functions: Example 4

Problem

- Find $f^{-1} \circ f$ and $f \circ f^{-1}$.

Solution

- $f^{-1} \circ f=I_{X}$.
$\left(f^{-1} \circ f\right)(a)=f^{-1}(f(a))=f^{-1}(z)=a=I_{X}(a)$
$\left(f^{-1} \circ f\right)(b)=f^{-1}(f(b))=f^{-1}(x)=b=I_{X}(b)$
$\left(f^{-1} \circ f\right)(c)=f^{-1}(f(c))=f^{-1}(y)=c=I_{X}(c)$.

Composition of functions: Example 4

Problem

- Find $f^{-1} \circ f$ and $f \circ f^{-1}$.

Solution

- $f \circ f^{-1}=I_{Y}$.

$$
\begin{aligned}
& \left(f \circ f^{-1}\right)(x)=f\left(f^{-1}(x)\right)=f(b)=x=I_{Y}(x) \\
& \left(f \circ f^{-1}\right)(y)=f\left(f^{-1}(y)\right)=f(c)=y=I_{Y}(y) \\
& \left(f \circ f^{-1}\right)(z)=f\left(f^{-1}(z)\right)=f(a)=z=I_{Y}(z) .
\end{aligned}
$$

Composition of functions

Theorem

- If $f: X \rightarrow Y$ is a one-to-one and onto function with inverse function $f^{-1}: Y \rightarrow X$, then $f^{-1} \circ f=I_{X}$ and $f \circ f^{-1}=I_{Y}$.

Proof

- $f^{-1} \circ f=I_{X}$.

To show that $f^{-1} \circ f=I_{X}$, we must show that for all $x \in X$, $\left(f^{-1} \circ f\right)(x)=x$. Let $x \in X$. Then $\left(f^{-1} \circ f\right)(x)=f^{-1}(f(x))$.

Suppose $f^{-1}(f(x))=x^{\prime}$.
$\Longrightarrow f\left(x^{\prime}\right)=f(x) \quad(\because$ Defn. of inverse function $)$
$\Longrightarrow x^{\prime}=x \quad(\because f$ is one-to-one $)$
$\Longrightarrow\left(f^{-1} \circ f\right)(x)=x$
Hence, $f^{-1} \circ f=I_{X}$.

Composition of functions

Theorem

- If $f: X \rightarrow Y$ is a one-to-one and onto function with inverse function $f^{-1}: Y \rightarrow X$, then $f^{-1} \circ f=I_{X}$ and $f \circ f^{-1}=I_{Y}$.

Proof (continued)

- $f \circ f^{-1}=I_{Y}$.

To show that $f \circ f^{-1}=I_{Y}$, we must show that for all $y \in Y$, $\left(f \circ f^{-1}\right)(y)=y$. Let $y \in Y$. Then $\left(f \circ f^{-1}\right)(x)=f\left(f^{-1}(y)\right)$.

Suppose $f\left(f^{-1}(y)\right)=y^{\prime}$.
$\Longrightarrow f^{-1}\left(y^{\prime}\right)=f^{-1}(y) \quad(\because$ Defn. of inverse function $)$
$\Longrightarrow y^{\prime}=y \quad\left(\because f^{-1}\right.$ is one-to-one, too $)$
$\Longrightarrow\left(f \circ f^{-1}\right)(y)=y$
Hence, $f \circ f^{-1}=I_{Y}$.

Composition of one-to-one functions

f is one-to-one and g is one-to-one

Composition of one-to-one functions

f is one-to-one and g is one-to-one

$$
g \circ f \text { is one-to-one }
$$

Composition of one-to-one functions

Problem

- If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are both one-to-one functions, then $g \circ f$ is one-to-one.

Composition of one-to-one functions

Problem

- If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are both one-to-one functions, then $g \circ f$ is one-to-one.

Proof

Direct proof.

- Suppose x_{1} and x_{2} are elements of X. To prove that $g \circ f$ is one-to-one we must show that:
"If $(g \circ f)\left(x_{1}\right)=(g \circ f)\left(x_{2}\right)$, then $x_{1}=x_{2}$."
Suppose $(g \circ f)\left(x_{1}\right)=(g \circ f)\left(x_{2}\right)$.
$\Longrightarrow g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right) \quad(\because$ Defn. of composition)
$\Longrightarrow f\left(x_{1}\right)=f\left(x_{2}\right) \quad(\because g$ is one-to-one $)$
$\Longrightarrow x_{1}=x_{2} \quad(\because f$ is one-toone $)$
- Hence, $g \circ f$ is one-to-one.

Composition of onto functions

f is onto and g is onto

Composition of onto functions

f is onto and g is onto

$g \circ f$ is onto

Composition of onto functions

Problem

- If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are both onto functions, then $g \circ f$ is onto.

Composition of onto functions

Problem

- If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are both onto functions, then $g \circ f$ is onto.

Proof (Core idea)

Composition of onto functions

Problem

- If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are both onto functions, then $g \circ f$ is onto.

Proof

Direct proof.

- Let z be an element of Z. To prove that $g \circ f$ is onto we must show the existence of an element x in X such that $(g \circ f)(x)=z$.

There is an element y in Y such that $g(y)=z$, because g is onto. Similarly, there is an element x in X such that $f(x)=y$. Hence there exists an element x in X such that $(g \circ f)(x)=$ $g(f(x))=g(y)=z$.

- Hence, $g \circ f$ is onto.

Infinite Sets

- Two finite sets are of the same size if there is a one-to-one correspondence between the two sets

- Two finite sets are not of the same size if there is no one-to-one correspondence between the two sets

Finite sets

Definition

- A finite set is one that has no elements at all or that can be put into one-to-one correspondence with a set of the form $\{1,2, \ldots, n\}$ for some positive integer n.

Infinite sets

Definition

- An infinite set is a nonempty set that cannot be put into one-toone correspondence with $\{1,2, \ldots, n\}$ for any positive integer n.

Same cardinality

Definition

- Let A and B be any sets. A has the same cardinality as B if, and only if, there is a one-to-one correspondence from A to B.
- A has the same cardinality as B if, and only if, there is a function f from A to B that is both one-to-one and onto.

Properties of infinite sets

Properties
For all sets A, B, and C :

- Reflexive property.
A has the same cardinality as A.
- Symmetric property.

If A has the same cardinality as B, then B has the same cardinality as A.

- Transitive property.

If A has the same cardinality as B and B has the same cardinality as C, then A has the same cardinality as C.

Same cardinality

Definition

- A and B have the same cardinality if, and only if, A has the same cardinality as B or B has the same cardinality as A.
$\left|\begin{array}{c|c|c|}\mathbb{Z} \\ \vdots \\ -4 \\ -3 \\ -2 \\ -1 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ \vdots\end{array}\right| \longrightarrow\left|\begin{array}{c}\mathbb{Z}^{\text {even }} \\ \vdots \\ -4 \\ -2 \\ \\ 0 \\ \\ 2 \\ 4 \\ \vdots\end{array}\right|$
\(\left|\begin{array}{c}\mid \mathbb{Z}

\vdots

-4

-3

-2

-1

0

1

2

3

4

\vdots\end{array}\right| \longrightarrow |\)| $\mathbb{Z}^{\text {even }}$
 \vdots
 -4
 -2

 0

 2
 4
 $\vdots$$\|$ |
| :---: |

- There is no one-to-one correspondence between the two sets
- Cardinality of integers and even numbers are different i.e., $|\mathbb{Z}| \neq\left|\mathbb{Z}^{\text {even }}\right|$

| \mathbb{Z} |
| :---: | :---: |
| \vdots |
| -4 |
| -3 |
| -2 |
| -1 |
| 0 |
| 1 |
| 2 |
| 3 |
| 4 |
| \vdots |$|\longrightarrow|$| $\mathbb{Z}^{\text {even }}$
 \vdots
 -4
 -2

 0

 2
 4
 $\vdots$$\|$ |
| :---: |

- There is no one-to-one correspondence between the two sets
- Cardinality of integers and even numbers are different i.e., $|\mathbb{Z}| \neq\left|\mathbb{Z}^{\text {even }}\right|$
- Incorrect! What's wrong?

Integers and even numbers are of the same size

\mathbb{Z}		
\vdots		
-4		
-3		
-2		
-1		
0		
1	\longrightarrow	$\mathbb{Z}^{\text {even }}$
\vdots		
3		
4	\longrightarrow	-8
-6		
\vdots	\longrightarrow	-2
-	0	
2		
4		

- Take-home lesson: If we fail to identify a one-to-one correspondence, it does not mean that there is no one-to-one correspondence

Integers and even numbers are of the same size

\mathbb{Z}		
\vdots		
-4		
-3		
-2		
-1		
0		
1	\longrightarrow	$\mathbb{Z}^{\text {even }}$
\vdots		
3		
4	\longrightarrow	-8
-6		
\vdots	\longrightarrow	-2
-	0	
2		
4		

- Take-home lesson: If we fail to identify a one-to-one correspondence, it does not mean that there is no one-to-one correspondence
- There is a one-to-one correspondence between the two sets
- Cardinality of integers and even numbers are the same i.e., $|\mathbb{Z}|=\left|\mathbb{Z}^{\text {even }}\right|$

Integers and even numbers are of the same size

Problem

- Prove that the cardinality of integers and even numbers are the same.

Integers and even numbers are of the same size

Problem

- Prove that the cardinality of integers and even numbers are the same.

Solution

- To prove that $|\mathbb{Z}|=\left|\mathbb{Z}^{\text {even }}\right|$, we need to prove that there is a one-to-one correspondence, say f, between \mathbb{Z} and $\mathbb{Z}^{\text {even }}$. Suppose $f=2 n$ for all integers $n \in \mathbb{Z}$.
- Prove that f is one-to-one.

Suppose $f\left(n_{1}\right)=f\left(n_{2}\right)$.
$\Longrightarrow 2 n_{1}=2 n_{2} \quad(\because$ Defn. of $f)$
$\Longrightarrow n_{1}=n_{2} \quad(\because$ Simplify $)$

- Prove that f is onto.

Suppose $m \in \mathbb{Z}^{\text {even }}$.
$\Longrightarrow m$ is even $\quad\left(\because\right.$ Defn. of $\left.\mathbb{Z}^{\text {even }}\right)$
$\Longrightarrow m=2 k$ for $k \in \mathbb{Z} \quad(\because$ Defn. of even $)$
$\Longrightarrow f(k)=m \quad(\because$ Defn. of $f)$

An infinite set and its proper subset can have the same size!

Countable sets

$|$| \mathbb{N} | | |
| :---: | :---: | :---: |
| 1 | | |
| 2 | | |
| 3 | | |
| 4 | | |
| 5 | | |
| \vdots | \longrightarrow | $\longrightarrow A$ |
| "First" element of A | | |
| "Second" element of A | | |
| "Third" element of A | | |
| "Fourth" element of A | | |
| "Fifth" element of A | | |
| \vdots | | |

Definition

- A set is called countably infinite if, and only if, it has the same cardinality as the set of positive integers.
- A set is called countable if, and only if, it is finite or countably infinite. A set that is not countable is called uncountable.

Integers are countable

Problem

- Prove that the set of integers is countably infinite.

Integers are countable

Problem

- Prove that the set of integers is countably infinite.

Solution

Integers are countable

Solution (continued)

$$
\left.\begin{array}{|c|c|c}
\mathbb{N} \\
1 \\
2 \\
3 \\
4 \\
5 & \longrightarrow & \mathbb{Z} \\
\vdots \\
n & \longrightarrow & \left.\begin{array}{c}
\longrightarrow \\
0 \\
1 \\
-1 \\
2 \\
-2 \\
\vdots \\
f(n) \\
\vdots
\end{array} \right\rvert\,
\end{array} \right\rvert\,
$$

- Define a function $f(n): \mathbb{N} \rightarrow \mathbb{Z}$ such that $f(n)= \begin{cases}\frac{n}{2} & \text { if } n \text { is an even natural number, } \\ -\left(\frac{n-1}{2}\right) & \text { if } n \text { is an odd natural number. }\end{cases}$
- As f is a one-to-one correspondence between \mathbb{N} and \mathbb{Z}, the set of integers is countably infinite.

Consequences of same cardinality

Consequences

Suppose A and B be two sets such that $|A|=|B|$.
Let $f: A \rightarrow B$ be the mapping function between the two sets.

- A and B are finite.
f is one-to-one $\Leftrightarrow f$ is onto
- A and B are infinite.
f is one-to-one $\nLeftarrow f$ is onto

Set of positive rationals is uncountable

$\left|\begin{array}{c}\mathbb{N} \\ 1 \\ 2 \\ 2 \\ 3 \\ \vdots\end{array}\right| \longrightarrow\left|\begin{array}{c}\mathbb{Q}^{+} \\ \vdots \\ \frac{1}{1} \\ \vdots \\ \frac{2}{1} \\ \vdots \\ \vdots \\ \frac{3}{1} \\ \vdots\end{array}\right|$

Set of positive rationals is uncountable

- There is no one-to-one correspondence between the two sets
- Cardinality of natural numbers and positive rationals are different i.e., $|\mathbb{N}| \neq\left|\mathbb{Q}^{+}\right|$

Set of positive rationals is uncountable

- There is no one-to-one correspondence between the two sets
- Cardinality of natural numbers and positive rationals are different i.e., $|\mathbb{N}| \neq\left|\mathbb{Q}^{+}\right|$
- Incorrect! What's wrong?

Set of positive rationals is uncountable

- Take-home lesson: If we fail to identify a one-to-one correspondence, it does not mean that there is no one-to-one correspondence

Set of positive rationals is countable

Problem

- Prove that the set of positive rational numbers are countable.

Set of positive rationals is countable

Problem

- Prove that the set of positive rational numbers are countable.

Solution

N		\mathbb{Q}^{+}
1	\longrightarrow	1/1
2	\longrightarrow	1/2
3	\longrightarrow	2/1
4	\longrightarrow	$3 / 1$
5	\longrightarrow	$1 / 3$
6	\longrightarrow	1/4
7	\longrightarrow	2/3
8	\longrightarrow	$3 / 2$
9	\longrightarrow	4/1
10	\longrightarrow	$5 / 1$

Set of positive rational numbers is countable

Problem

- Prove that the set of positive rational numbers are countable.

Solution (continued)

- To prove that $|\mathbb{N}|=\left|\mathbb{Q}^{+}\right|$, we need to prove that there is a one-to-one correspondence, say f, between \mathbb{N} and \mathbb{Q}^{+}.
- Prove that f is onto.

Every positive rational number appears somewhere in the grid. Every point in the grid is reached eventually.

- Prove that f is one-to-one.

Skipping numbers that have already been counted ensures that no number is counted twice.

Set of real numbers in $[0,1]$ is uncountable

Problem

- Prove that the set of all real numbers between 0 and 1 is uncountable.

Set of real numbers in $[0,1]$ is uncountable

Problem

- Prove that the set of all real numbers between 0 and 1 is uncountable.

Solution

- To prove that $|\mathbb{N}| \neq|[0 . .1]|$, we need to prove that there is no one-to-one correspondence between \mathbb{N} and [0..1].
- A powerful approach to prove the theorem is: proof by contradiction.

Set of real numbers in $[0,1]$ is uncountable

Problem

- Prove that the set of all real numbers between 0 and 1 is uncountable.

Solution

Proof by contradiction.

- Suppose [0..1] is countable.
- We will derive a contradiction by showing that there is a number in [0..1] that does not appear on this list.

\mathbb{N}		
1		
2		
3	\longrightarrow	$[0 . .1]$
\vdots		
n	\vdots	
\vdots	\vdots	$0 . a_{11} a_{12} a_{13} \ldots a_{1 n} \ldots$
$0 . a_{21} a_{22} a_{23} \ldots a_{2 n} \ldots$		
$0 . a_{31} a_{32} a_{33} \ldots a_{3 n} \ldots$		
\vdots		
$0 . a_{n 1} a_{n 2} a_{n 3} \ldots a_{n n} \ldots$		
\vdots		

Set of real numbers in $[0,1]$ is uncountable

Solution (continued)

- Suppose the list of reals starts out as follows:

| 0. | 9 | 0 | 1 | 4 | 8 | \ldots |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0. | 1 | 1 | 6 | 6 | 6 | \ldots |
| 0. | 0 | 3 | 3 | 5 | 3 | \ldots |
| 0. | 9 | 6 | 7 | 2 | 6 | \ldots |
| 0. | 0 | 0 | 0 | 3 | 1 | \ldots |

- Construct a new number $d=0 . d_{1} d_{2} d_{3} \ldots d_{n} \ldots$ as follows:

$$
d_{n}= \begin{cases}1 & a_{n n} \neq 1 \\ 2 & a_{n n}=1\end{cases}
$$

- We have $d=0.12112 \ldots$, i.e.,

$$
\text { 0. } 1 \begin{array}{llllll}
1 & 2 & 1 & 2 & \ldots
\end{array}
$$

Set of real numbers in $[0,1]$ is uncountable

Solution (continued)

- Observation:

For each natural number n, the constructed real number d differs in the nth decimal position from the nth number on the list.

- This implies that d is not on the list. But, $d \in[0,1]$.
- Contradiction! So, our supposition is false.
- Set of real numbers in $[0,1]$ is uncountable.

There are different types of ∞ !

More theorems

Theorems

- A subset of a countable set is countable.
- A set with an uncountable subset is uncountable.

\mathbb{R} and $[0,1]$ have the same size

Problem

- Prove that the set of all real numbers has the same cardinality as the set of real numbers between 0 and 1 .

\mathbb{R} and $[0,1]$ have the same size

Problem

- Prove that the set of all real numbers has the same cardinality as the set of real numbers between 0 and 1 .

Solution

- Let $S=\{x \in \mathbb{R} \mid 0<x<1\}$
- Bend S to create a circle as shown in the diagram.
- Define $F: S \rightarrow \mathbb{R}$ as follows.
- $F(x)$ is called the projection of x onto the number line.

\mathbb{R} and $[0,1]$ have the same size

Solution (continued)

We show that S and \mathbb{R} have the same cardinality by showing that F is a one-to-one correspondence.

- F is one-to-one. Distinct points on the circle go to distinct points on the number line.
- F is onto. Given any point y on the number line, a line can be drawn through y and the circle's topmost point. This line must intersect the circle at some point x, and, by definition, $y=F(x)$.

Set of bit strings is countable

Problem

- Prove that the set of all bit strings (strings of 0's and 1 's) is countable.

Set of bit strings is countable

Problem

- Prove that the set of all bit strings (strings of 0's and 1 's) is countable.

Solution

- Define a function $f(n): \mathbb{N} \rightarrow \mathbb{B}$ such that

$$
f(n)= \begin{cases}\epsilon & \text { if } n=1 \\ k \text {-bit binary repr. of } n-2^{k} & \text { if } n>1 \&\lfloor\log n\rfloor=k\end{cases}
$$

Set of bit strings is countable

Solution (continued)

$$
\left|\begin{array}{c|c|c}
\mathbb{N} \\
1 \\
1 & \longrightarrow & \mathbb{B} \\
2 \\
3 \\
4 \\
5 & \longrightarrow & \epsilon \\
6 \\
7 & \longrightarrow & 1 \\
0 \\
\vdots & \longrightarrow & 01 \\
n & \longrightarrow & 11 \\
\vdots & & \\
\vdots(n) \\
\vdots
\end{array}\right|
$$

- As f is a one-to-one correspondence between \mathbb{N} and \mathbb{B}, the set of bit strings is countably infinite.
- Generalizing, the set of strings from an alphabet consisting of a finite number of symbols is countably infinite.

Set of computer programs is countable

Problem

- Prove that the set of all computer programs in a given computer language is countable.

Set of computer programs is countable

Problem

- Prove that the set of all computer programs in a given computer language is countable.

Solution

- Let \mathbb{P} denote the set of all computer programs in the given computer language.
- Any computer program in any computer language is a finite set of symbols from a finite alphabet.
- [Encoding] Translate the symbols of each program to binary string using the ASCII code.
- Sort the strings by length.
- Sort the strings of a particular length in ascending order.
- Define a function $f(n): \mathbb{N} \rightarrow \mathbb{P}$ such that $f(n)=n$th program in \mathbb{P}

Set of computer programs is countable

Solution (continued)

- Suppose the following are all programs in \mathbb{P} that translate to bit strings of length less than or equal to 5 .

- As f is a one-to-one correspondence between \mathbb{N} and \mathbb{P}, the set of bit strings is countably infinite.

Set of all functions $\mathbb{N} \rightarrow\{0,1\}$ is uncountable

Problem

- Prove that the set of all functions $\mathbb{N} \rightarrow\{0,1\}$ is uncountable

Set of all functions $\mathbb{N} \rightarrow\{0,1\}$ is uncountable

Problem

- Prove that the set of all functions $\mathbb{N} \rightarrow\{0,1\}$ is uncountable

Solution

- Let \mathbb{S} be the set of all real numbers in $[0,1]$ represented in the form $0 . a_{1} a_{2} a_{3} \ldots a_{n} \ldots$, where $a_{i} \in\{0,1\}$.
- This representation is unique if the bit sequences that end with all 1's are omitted.
- Let \mathbb{L} be the set of all functions $\mathbb{N} \rightarrow\{0,1\}$
- We will show a 1-to-1 correspondence between \mathbb{S} and a subset of \mathbb{L} by showing we can map an element of \mathbb{S} to a unique element of \mathbb{L}.

Set of all functions $\mathbb{N} \rightarrow\{0,1\}$ is uncountable

Solution (continued)

- As f is a one-to-one correspondence between \mathbb{S} and a subset of \mathbb{L}, the set of functions $\mathbb{N} \rightarrow\{0,1\}$ is uncountably infinite.
- Using this result, we can show that the set of languages (or decision problems or computable functions) is uncountable.

There is an infinite sequence of larger and larger infinities!

