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One-to-one functions

What is the difference between the two marriage functions?
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Female

Every female is a wife of at
most one male
One-to-one function

There is a female who is a wife
of at least two males
Not a one-to-one function
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One-to-one functions

Definition
A function F : X → Y is one-to-one (or injective) if and only
if for all elements x1 and x2 in X,

if F (x1) = F (x2), then x1 = x2, or
if x1 6= x2, then F (x1) 6= F (x2).

A function F : X → Y is one-to-one ⇔
∀x1, x2 ∈ X, if F (x1) = F (x2) then x1 = x2.
A function F : X → Y is not one-to-one ⇔
∃x1, x2 ∈ X, if F (x1) = F (x2) then x1 6= x2.



One-to-one functions: Proof technique

Problem
Prove that a function f is one-to-one.

Proof
Direct proof.
Suppose x1 and x2 are elements of X such that f(x1) = f(x2).
Show that x1 = x2.

Problem
Prove that a function f is not one-to-one.

Proof
Counterexample.
Find elements x1 and x2 in X so that f(x1) = f(x2) but
x1 6= x2.
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One-to-one functions: Proof technique

Problem
Prove that a function f is one-to-one.

Proof
Direct proof.
Suppose x1 and x2 are elements of X such that f(x1) = f(x2).
Show that x1 = x2.

Problem
Prove that a function f is not one-to-one.

Proof
Counterexample.
Find elements x1 and x2 in X so that f(x1) = f(x2) but
x1 6= x2.



One-to-one functions: Example 1

Problem
Define f : R → R by the rule f(x) = 4x− 1 for all x ∈ R. Is
f one-to-one? Prove or give a counterexample.

Proof
Direct proof.
Suppose x1 and x2 are elements of X such that f(x1) = f(x2).
=⇒ 4x1 − 1 = 4x2 − 1 (∵ Defn. of f)
=⇒ 4x1 = 4x2 (∵ Add 1 on both sides)
=⇒ x1 = x2 (∵ Divide by 4 on both sides)
Hence, f is one-to-one.
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=⇒ 4x1 − 1 = 4x2 − 1 (∵ Defn. of f)
=⇒ 4x1 = 4x2 (∵ Add 1 on both sides)
=⇒ x1 = x2 (∵ Divide by 4 on both sides)
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One-to-one functions: Example 2

Problem
Define g : Z → Z by the rule g(n) = n2 for all n ∈ Z. Is g
one-to-one? Prove or give a counterexample.

Proof
Direct proof.
Suppose n1 and n2 are elements of X such that g(n1) = g(n2).
=⇒ n2

1 = n2
2 (∵ Defn. of g)

=⇒ n1 = n2 (∵ Taking square root on both sides)
Hence, g is one-to-one.

Incorrect! What’s wrong?
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One-to-one functions: Example 2

Problem
Define g : Z → Z by the rule g(n) = n2 for all n ∈ Z. Is g
one-to-one? Prove or give a counterexample.

Proof
Counterexample.
Let n1 = −1 and n2 = 1.
=⇒ g(n1) = (−1)2 = 1 and g(n2) = 12 = 1
=⇒ g(n1) = g(n2) but, n1 6= n2
Hence, g is not one-to-one.



Onto functions

What is the difference between the two marriage functions?
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wife
Not an onto function
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Onto functions

Definition
A function F : X → Y is onto (or surjective) if and only if
given any element y in Y , it is possible to find an element x in
X with the property that y = F (x).
A function F : X → Y is onto ⇔
∀y ∈ Y, ∃x ∈ X such that F (x) = y.
A function F : X → Y is not onto ⇔
∃y ∈ Y, ∀x ∈ X such that F (x) 6= y.



Onto functions: Proof technique

Problem
Prove that a function f is onto.

Proof
Direct proof.
Suppose that y is any element of Y
Show that there is an element x of X with F (x) = y

Problem
Prove that a function f is not onto.

Proof
Counterexample.
Find an element y of Y such that y 6= F (x) for any x in X.
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Onto functions: Example 1

Problem
Define f : R → R by the rule f(x) = 4x− 1 for all x ∈ R. Is
f onto? Prove or give a counterexample.

Proof
Direct proof.
Let y ∈ R. We need to show that ∃x such that f(x) = y.
Let x = y+1

4 . Then
f
(

y+1
4

)
= 4

(
y+1

4

)
− 1 (∵ Defn. of f)

= y (∵ Simplify)
Hence, f is onto.
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Onto functions: Example 2

Problem
Define g : Z→ Z by the rule g(n) = 4n− 1 for all n ∈ Z. Is g
onto? Prove or give a counterexample.

Proof
Direct proof.
Let m ∈ Z. We need to show that ∃n such that g(n) = m.
Let n = m+1

4 . Then
g
(

m+1
4
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= 4

(
m+1

4

)
− 1 (∵ Defn. of g)

= m (∵ Simplify)
Hence, g is onto.

Incorrect! What’s wrong?
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Onto functions: Example 2

Problem
Define g : Z→ Z by the rule g(n) = 4n− 1 for all n ∈ Z. Is g
onto? Prove or give a counterexample.

Proof
Counterexample.
We know that 0 ∈ Z.
Let g(n) = 0 for some integer n.
=⇒ 4n− 1 = 0 (∵ Defn. of g)
=⇒ n = 1

4 (∵ Simplify)
But 1

4 6∈ Z.
So, g(n) 6= 0 for any integer n.
Hence, g is not onto.



One-to-one correspondences

What is the difference between the three marriage functions?
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One-to-one correspondences

Definition
A one-to-one correspondence (or bijection) from a set X to a
set Y is a function F : X → Y that is both one-to-one and
onto.
Intuition:
One-to-one correspondence = One-to-one + Onto



One-to-one correspondences: Example 1

Subset of {a, b, c, d} 4-tuple of {0, 1}
{} (0, 0, 0, 0)
{a} (1, 0, 0, 0)
{b} (0, 1, 0, 0)
{c} (0, 0, 1, 0)
{d} (0, 0, 0, 1)
{a, b} (1, 1, 0, 0)
{a, c} (1, 0, 1, 0)
{a, d} (1, 0, 0, 1)
{b, c} (0, 1, 1, 0)
{b, d} (0, 1, 0, 1)
{c, d} (0, 0, 1, 1)
{a, b, c} (1, 1, 1, 0)
{a, b, d} (1, 1, 0, 1)
{a, c, d} (1, 0, 1, 1)
{b, c, d} (0, 1, 1, 1)
{a, b, c, d} (1, 1, 1, 1)



One-to-one correspondences: Example 2

Problem
Define F : R×R→ R×R by the rule F (x, y) = (x+y, x−y)
for all (x, y) ∈ R × R. Is F a one-to-one correspondence?
Prove or give a counterexample.

Proof
To show that F is a one-to-one correspondence, we need to show
that:
1. F is one-to-one.
2. F is onto.
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One-to-one correspondences: Example 2

Proof (continued)

Proof that F is one-to-one.
Suppose that (x1, y1) and (x2, y2) are any ordered pairs in R×R
such that F (x1, y1) = F (x2, y2).
=⇒ (x1 + y1, x1 − y1) = (x2 + y2, x2 − y2)
(∵ Defn. of F )
=⇒ x1 + y1 = x2 + y2 and x1 − y1 = x2 − y2
(∵ Defn. of equality of ordered pairs)
=⇒ x1 = x2 and y1 = y2
(∵ Solve the two simultaneous equations)
=⇒ (x1, y1) = (x2, y2)
(∵ Defn. of equality of ordered pairs)
Hence, F is one-to-one.



One-to-one correspondences: Example 2

Proof (continued)

Proof that F is onto.
Suppose (u, v) is any ordered pair in the co-domain of F . We
will show that there is an ordered pair in the domain of F that
is sent to (u, v) by F .
Let r = u+v

2 and s = u−v
2 . The ordered pair (r, s) belongs to

R× R. Also,
F (r, s)
= F (u+v

2 , u−v
2 ) (∵ Defn. of F )

=
(

u+v
2 + u−v

2 , u+v
2 −

u−v
2
)

(∵ Substitution)
= (u, v) (∵ Simplify)
Hence, F is onto.



Inverse functions
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Inverse functions

Definition
Suppose F : X → Y is a one-to-one correspondence.
Then, the inverse function F−1 : Y → X is defined as follows:
Given any element y in Y ,
F−1(y) = that unique element x in X such that F (x) = y.
F−1(y) = x⇔ y = F (x).



Inverse functions: Example 1

Subset of {a, b, c, d} 4-tuple of {0, 1}
{} (0, 0, 0, 0)
{a} (1, 0, 0, 0)
{b} (0, 1, 0, 0)
{c} (0, 0, 1, 0)
{d} (0, 0, 0, 1)
{a, b} (1, 1, 0, 0)
{a, c} (1, 0, 1, 0)
{a, d} (1, 0, 0, 1)
{b, c} (0, 1, 1, 0)
{b, d} (0, 1, 0, 1)
{c, d} (0, 0, 1, 1)
{a, b, c} (1, 1, 1, 0)
{a, b, d} (1, 1, 0, 1)
{a, c, d} (1, 0, 1, 1)
{b, c, d} (0, 1, 1, 1)
{a, b, c, d} (1, 1, 1, 1)



Inverse functions: Example 2

Problem
Define f : R → R by the rule f(x) = 4x − 1 for all x ∈ R.
Find its inverse function.

Proof
For any y in R, by definition of f−1

f−1 = unique number x such that f(x) = y
Consider f(x) = y
=⇒ 4x− 1 = y (∵ Defn. of f)
=⇒ x = y+1

4 (∵ Simplify)
Hence, f−1(y) = y+1

4 is the inverse function.



Inverse functions: Example 2

Problem
Define f : R → R by the rule f(x) = 4x − 1 for all x ∈ R.
Find its inverse function.

Proof
For any y in R, by definition of f−1

f−1 = unique number x such that f(x) = y
Consider f(x) = y
=⇒ 4x− 1 = y (∵ Defn. of f)
=⇒ x = y+1

4 (∵ Simplify)
Hence, f−1(y) = y+1

4 is the inverse function.



Inverse functions
Theorem
If X and Y are sets and F : X → Y is a one-to-one correspon-
dence, then F−1 : Y → X is also a one-to-one correspondence.

Proof
F−1 is one-to-one.
Suppose F−1(y1) = F−1(y2) for some y1, y2 ∈ Y .
We must show that y1 = y2.
Let F−1(y1) = F−1(y2) = x ∈ X. Then
y1 = F (x) since F−1(y1) = x and
y2 = F (x) since F−1(y2) = x.
So, y1 = y2.
F−1 is onto.
We must show that for any x ∈ X, there exists an element y
in Y such that F−1(y) = x.
For any x ∈ X, we consider y = F (x).
We see that y ∈ Y and F−1(y) = x.
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Composition of functions

Definition
Let f : X → Y and g : Y → Z. Let the range of f is a subset
of the domain of g.
Define a new composition function g ◦ f : X → Z as follows:

(g ◦ f)(x) = g(f(x)) for all x ∈ X,

where g ◦ f is read “g circle f” and
g(f(x)) is read “g of f of x.”



Composition of functions: Example 1

Problem
Let f : Z→ Z be the successor function and let g : Z→ Z be
the squaring function. Then f(n) = n + 1 for all n ∈ Z and
g(n) = n2 for all n ∈ Z. Find g◦f . Find f ◦g. Is g◦f = f ◦g?

Solution
g ◦ f .
(g ◦ f)(n) = g(f(n)) = g(n+ 1) = (n+ 1)2 for all n ∈ Z.
f ◦ g.
(f ◦ g)(n) = f(g(n)) = f(n2) = n2 + 1 for all n ∈ Z.
g ◦ f 6= f ◦ g.
E.g. (g ◦ f)(1) = 4 and (f ◦ g)(1) = 2
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Problem
Let f : Z→ Z be the successor function and let g : Z→ Z be
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Composition of functions: Example 2
Problem
Draw the arrow diagram for g ◦ f . What is the range of g ◦ f?

Solution
Range of g ◦ f = {y, z}.



Composition of functions: Example 2
Problem
Draw the arrow diagram for g ◦ f . What is the range of g ◦ f?

Solution
Range of g ◦ f = {y, z}.



Composition of functions: Example 3
Problem
Find f ◦ IX and IY ◦ f .

Solution
f ◦ IX = f .

(f ◦ IX)(a) = f(IX(a))
= f(a) = u
(f ◦ IX)(b) = f(IX(b))
= f(b) = v
(f ◦ IX)(c) = f(IX(c))
= f(c) = v
(f ◦ IX)(d) = f(IX(d))
= f(d) = u
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Problem
Find f ◦ IX and IY ◦ f .

Solution
f ◦ IX = f .

(f ◦ IX)(a) = f(IX(a))
= f(a) = u
(f ◦ IX)(b) = f(IX(b))
= f(b) = v
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= f(c) = v
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Composition of functions: Example 3
Problem
Find f ◦ IX and IY ◦ f .

Solution
IY ◦ f = f .

(IY ◦ f)(a) = IY (f(a))
= IY (u) = u
(IY ◦ f)(b) = IY (f(b))
= IY (v) = v
(IY ◦ f)(c) = IY (f(c))
= IY (v) = v
(IY ◦ f)(d) = IY (f(d))
= IY (u) = u



Composition of functions

Theorem
If f is a function from a set X to a set Y , and IX is the
identity function on X, and IY is the identity function on Y ,
then f ◦ IX = f and IY ◦ f = f .

Proof
f ◦ IX = f .
(f ◦ IX)(x) = f(IX(x)) = f(x).
IY ◦ f = f .
(IY ◦ f)(x) = IY (f(x)) = f(x).



Composition of functions: Example 4

Problem
Find f−1 ◦ f and f ◦ f−1.

Solution
f−1 ◦ f = IX .
(f−1 ◦ f)(a) = f−1(f(a)) = f−1(z) = a = IX(a)
(f−1 ◦ f)(b) = f−1(f(b)) = f−1(x) = b = IX(b)
(f−1 ◦ f)(c) = f−1(f(c)) = f−1(y) = c = IX(c).



Composition of functions: Example 4

Problem
Find f−1 ◦ f and f ◦ f−1.

Solution
f−1 ◦ f = IX .
(f−1 ◦ f)(a) = f−1(f(a)) = f−1(z) = a = IX(a)
(f−1 ◦ f)(b) = f−1(f(b)) = f−1(x) = b = IX(b)
(f−1 ◦ f)(c) = f−1(f(c)) = f−1(y) = c = IX(c).



Composition of functions: Example 4

Problem
Find f−1 ◦ f and f ◦ f−1.

Solution
f ◦ f−1 = IY .
(f ◦ f−1)(x) = f(f−1(x)) = f(b) = x = IY (x)
(f ◦ f−1)(y) = f(f−1(y)) = f(c) = y = IY (y)
(f ◦ f−1)(z) = f(f−1(z)) = f(a) = z = IY (z).



Composition of functions

Theorem
If f : X → Y is a one-to-one and onto function with inverse
function f−1 : Y → X, then f−1 ◦ f = IX and f ◦ f−1 = IY .

Proof
f−1 ◦ f = IX .
To show that f−1 ◦ f = IX , we must show that for all x ∈ X,
(f−1 ◦ f)(x) = x. Let x ∈ X. Then
(f−1 ◦ f)(x) = f−1(f(x)).

Suppose f−1(f(x)) = x′.
=⇒ f(x′) = f(x) (∵ Defn. of inverse function)
=⇒ x′ = x (∵ f is one-to-one)
=⇒ (f−1 ◦ f)(x) = x

Hence, f−1 ◦ f = IX .



Composition of functions

Theorem
If f : X → Y is a one-to-one and onto function with inverse
function f−1 : Y → X, then f−1 ◦ f = IX and f ◦ f−1 = IY .

Proof (continued)

f ◦ f−1 = IY .
To show that f ◦ f−1 = IY , we must show that for all y ∈ Y ,
(f ◦ f−1)(y) = y. Let y ∈ Y . Then
(f ◦ f−1)(x) = f(f−1(y)).

Suppose f(f−1(y)) = y′.
=⇒ f−1(y′) = f−1(y) (∵ Defn. of inverse function)
=⇒ y′ = y (∵ f−1 is one-to-one, too)
=⇒ (f ◦ f−1)(y) = y

Hence, f ◦ f−1 = IY .



Composition of one-to-one functions

f is one-to-one and g is one-to-one

g ◦ f is one-to-one



Composition of one-to-one functions

f is one-to-one and g is one-to-one

g ◦ f is one-to-one



Composition of one-to-one functions

Problem
If f : X → Y and g : Y → Z are both one-to-one functions,
then g ◦ f is one-to-one.

Proof
Direct proof.
Suppose x1 and x2 are elements of X. To prove that g ◦ f is
one-to-one we must show that:
“If (g ◦ f)(x1) = (g ◦ f)(x2), then x1 = x2.”

Suppose (g ◦ f)(x1) = (g ◦ f)(x2).
=⇒ g(f(x1)) = g(f(x2)) (∵ Defn. of composition)
=⇒ f(x1) = f(x2) (∵ g is one-to-one)
=⇒ x1 = x2 (∵ f is one-toone)
Hence, g ◦ f is one-to-one.



Composition of one-to-one functions

Problem
If f : X → Y and g : Y → Z are both one-to-one functions,
then g ◦ f is one-to-one.

Proof
Direct proof.
Suppose x1 and x2 are elements of X. To prove that g ◦ f is
one-to-one we must show that:
“If (g ◦ f)(x1) = (g ◦ f)(x2), then x1 = x2.”

Suppose (g ◦ f)(x1) = (g ◦ f)(x2).
=⇒ g(f(x1)) = g(f(x2)) (∵ Defn. of composition)
=⇒ f(x1) = f(x2) (∵ g is one-to-one)
=⇒ x1 = x2 (∵ f is one-toone)
Hence, g ◦ f is one-to-one.



Composition of onto functions

f is onto and g is onto

g ◦ f is onto



Composition of onto functions

f is onto and g is onto

g ◦ f is onto



Composition of onto functions
Problem
If f : X → Y and g : Y → Z are both onto functions, then
g ◦ f is onto.

Proof (Core idea)



Composition of onto functions
Problem
If f : X → Y and g : Y → Z are both onto functions, then
g ◦ f is onto.

Proof (Core idea)



Composition of onto functions

Problem
If f : X → Y and g : Y → Z are both onto functions, then
g ◦ f is onto.

Proof
Direct proof.
Let z be an element of Z. To prove that g ◦ f is onto we
must show the existence of an element x in X such that
(g ◦ f)(x) = z.

There is an element y in Y such that g(y) = z, because g is
onto. Similarly, there is an element x in X such that f(x) = y.
Hence there exists an element x in X such that (g ◦ f)(x) =
g(f(x)) = g(y) = z.
Hence, g ◦ f is onto.



Infinite Sets



Finite sets

Two finite sets are of the same size if there is a one-to-one
correspondence between the two sets



Finite sets

Two finite sets are not of the same size if there is no one-to-one
correspondence between the two sets



Finite sets

1

2

3

Definition
A finite set is one that has no elements at all or that can
be put into one-to-one correspondence with a set of the form
{1, 2, . . . , n} for some positive integer n.



Infinite sets

1

2

3
...

Definition
An infinite set is a nonempty set that cannot be put into one-to-
one correspondence with {1, 2, . . . , n} for any positive integer
n.



Same cardinality

Definition
Let A and B be any sets. A has the same cardinality as B if,
and only if, there is a one-to-one correspondence from A to B.
A has the same cardinality as B if, and only if, there is a
function f from A to B that is both one-to-one and onto.



Properties of infinite sets

Properties
For all sets A, B, and C:
Reflexive property.
A has the same cardinality as A.
Symmetric property.
If A has the same cardinality as B,
then B has the same cardinality as A.
Transitive property.
If A has the same cardinality as B
and B has the same cardinality as C,
then A has the same cardinality as C.



Same cardinality

Definition
A and B have the same cardinality if, and only if, A has the
same cardinality as B or B has the same cardinality as A.



Integers and even numbers are not of the same size

Z Zeven

...
...

−4 −4
−3
−2 −2
−1
0 0
1
2 2
3
4 4
...

...

There is no one-to-one correspondence between the two sets
Cardinality of integers and even numbers are different
i.e., |Z| 6= |Zeven|
Incorrect! What’s wrong?
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Integers and even numbers are not of the same size

Z Zeven

...
...

−4 −4
−3
−2 −2
−1
0 0
1
2 2
3
4 4
...

...
There is no one-to-one correspondence between the two sets
Cardinality of integers and even numbers are different
i.e., |Z| 6= |Zeven|
Incorrect! What’s wrong?



Integers and even numbers are of the same size

Z Zeven

...
...

−4 −8
−3 −6
−2 −4
−1 −2
0 0
1 2
2 4
3 6
4 8
...

...
Take-home lesson: If we fail to identify a one-to-one
correspondence, it does not mean that there is no one-to-one
correspondence

There is a one-to-one correspondence between the two sets
Cardinality of integers and even numbers are the same
i.e., |Z| = |Zeven|



Integers and even numbers are of the same size

Z Zeven

...
...

−4 −8
−3 −6
−2 −4
−1 −2
0 0
1 2
2 4
3 6
4 8
...

...
Take-home lesson: If we fail to identify a one-to-one
correspondence, it does not mean that there is no one-to-one
correspondence
There is a one-to-one correspondence between the two sets
Cardinality of integers and even numbers are the same
i.e., |Z| = |Zeven|



Integers and even numbers are of the same size

Problem
Prove that the cardinality of integers and even numbers are the
same.

Solution
To prove that |Z| = |Zeven|, we need to prove that there is a
one-to-one correspondence, say f , between Z and Zeven. Sup-
pose f = 2n for all integers n ∈ Z.
Prove that f is one-to-one.
Suppose f(n1) = f(n2).
=⇒ 2n1 = 2n2 (∵ Defn. of f)
=⇒ n1 = n2 (∵ Simplify)
Prove that f is onto.
Suppose m ∈ Zeven.
=⇒ m is even (∵ Defn. of Zeven)
=⇒ m = 2k for k ∈ Z (∵ Defn. of even)
=⇒ f(k) = m (∵ Defn. of f)



Integers and even numbers are of the same size

Problem
Prove that the cardinality of integers and even numbers are the
same.

Solution
To prove that |Z| = |Zeven|, we need to prove that there is a
one-to-one correspondence, say f , between Z and Zeven. Sup-
pose f = 2n for all integers n ∈ Z.
Prove that f is one-to-one.
Suppose f(n1) = f(n2).
=⇒ 2n1 = 2n2 (∵ Defn. of f)
=⇒ n1 = n2 (∵ Simplify)
Prove that f is onto.
Suppose m ∈ Zeven.
=⇒ m is even (∵ Defn. of Zeven)
=⇒ m = 2k for k ∈ Z (∵ Defn. of even)
=⇒ f(k) = m (∵ Defn. of f)



An infinite set and its proper
subset can have the same size!



Countable sets

N A

1 “First” element of A
2 “Second” element of A
3 “Third” element of A
4 “Fourth” element of A
5 “Fifth” element of A
...

...

Definition
A set is called countably infinite if, and only if, it has the same
cardinality as the set of positive integers.
A set is called countable if, and only if, it is finite or countably
infinite. A set that is not countable is called uncountable.



Integers are countable

Problem
Prove that the set of integers is countably infinite.

Solution



Integers are countable

Problem
Prove that the set of integers is countably infinite.

Solution



Integers are countable

Solution (continued)

N Z

1 0
2 1
3 -1
4 2
5 -2
...

...
n f(n)
...

...
Define a function f(n) : N→ Z such that

f(n) =


n
2 if n is an even natural number,
−
(

n−1
2

)
if n is an odd natural number.

As f is a one-to-one correspondence between N and Z, the set
of integers is countably infinite.



Consequences of same cardinality

Consequences

Suppose A and B be two sets such that |A| = |B|.
Let f : A→ B be the mapping function between the two sets.

A and B are finite.
f is one-to-one ⇔ f is onto
A and B are infinite.
f is one-to-one 6⇔ f is onto



Set of positive rationals is uncountable

N Q+

...
1 1

1...
2 2

1...
3 3

1...
...

There is no one-to-one correspondence between the two sets
Cardinality of natural numbers and positive rationals are different
i.e., |N| 6= |Q+|
Incorrect! What’s wrong?
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Set of positive rationals is uncountable

N Q+

...
1 1

1...
2 2

1...
3 3

1...
...

There is no one-to-one correspondence between the two sets
Cardinality of natural numbers and positive rationals are different
i.e., |N| 6= |Q+|
Incorrect! What’s wrong?



Set of positive rationals is uncountable

Take-home lesson: If we fail to identify a one-to-one
correspondence, it does not mean that there is no one-to-one
correspondence



Set of positive rationals is countable

Problem
Prove that the set of positive rational numbers are countable.

Solution

N Q+

1 1/1
2 1/2
3 2/1
4 3/1
5 1/3
6 1/4
7 2/3
8 3/2
9 4/1
10 5/1
...

...



Set of positive rationals is countable

Problem
Prove that the set of positive rational numbers are countable.

Solution

N Q+

1 1/1
2 1/2
3 2/1
4 3/1
5 1/3
6 1/4
7 2/3
8 3/2
9 4/1
10 5/1
...

...



Set of positive rational numbers is countable

Problem
Prove that the set of positive rational numbers are countable.

Solution (continued)

To prove that |N| = |Q+|, we need to prove that there is a
one-to-one correspondence, say f , between N and Q+.
Prove that f is onto.
Every positive rational number appears somewhere in the grid.
Every point in the grid is reached eventually.
Prove that f is one-to-one.
Skipping numbers that have already been counted ensures that
no number is counted twice.



Set of real numbers in [0, 1] is uncountable

Problem
Prove that the set of all real numbers between 0 and 1 is un-
countable.

Solution
To prove that |N| 6= |[0..1]|, we need to prove that there is no
one-to-one correspondence between N and [0..1].
A powerful approach to prove the theorem is:
proof by contradiction.



Set of real numbers in [0, 1] is uncountable

Problem
Prove that the set of all real numbers between 0 and 1 is un-
countable.

Solution
To prove that |N| 6= |[0..1]|, we need to prove that there is no
one-to-one correspondence between N and [0..1].
A powerful approach to prove the theorem is:
proof by contradiction.



Set of real numbers in [0, 1] is uncountable

Problem
Prove that the set of all real numbers between 0 and 1 is un-
countable.

Solution
Proof by contradiction.
Suppose [0..1] is countable.
We will derive a contradiction by showing that there is a number
in [0..1] that does not appear on this list.

N [0..1]

1 0.a11a12a13 . . . a1n . . .
2 0.a21a22a23 . . . a2n . . .
3 0.a31a32a33 . . . a3n . . .
...

...
...

n 0.an1an2an3 . . . ann . . .
...

...
...



Set of real numbers in [0, 1] is uncountable

Solution (continued)

Suppose the list of reals starts out as follows:
0. 9 0 1 4 8 . . .

0. 1 1 6 6 6 . . .

0. 0 3 3 5 3 . . .

0. 9 6 7 2 6 . . .

0. 0 0 0 3 1 . . .
...

...
...

...
...

... . . .
Construct a new number d = 0.d1d2d3 . . . dn . . . as follows:

dn =
{

1 ann 6= 1,
2 ann = 1.

We have d = 0.12112 . . ., i.e.,
0. 1 2 1 1 2 . . .



Set of real numbers in [0, 1] is uncountable

Solution (continued)

Observation:
For each natural number n, the constructed real number d dif-
fers in the nth decimal position from the nth number on the list.

1 0. 9 0 1 4 8 . . .

2 0. 1 1 6 6 6 . . .

3 0. 0 3 3 5 3 . . .

4 0. 9 6 7 2 6 . . .

5 0. 0 0 0 3 1 . . .
...

...
...

...
...

...
...

... . . .
d 0. 1 2 1 1 2 . . .

This implies that d is not on the list. But, d ∈ [0, 1].
Contradiction! So, our supposition is false.
Set of real numbers in [0, 1] is uncountable.



There are different types of ∞!



More theorems

Theorems
A subset of a countable set is countable.
A set with an uncountable subset is uncountable.



R and [0, 1] have the same size

Problem
Prove that the set of all real numbers has the same cardinality
as the set of real numbers between 0 and 1.

Solution
Let S = {x ∈ R | 0 < x < 1}
Bend S to create a circle as shown in the diagram.
Define F : S → R as follows.
F (x) is called the projection of x onto the number line.



R and [0, 1] have the same size

Problem
Prove that the set of all real numbers has the same cardinality
as the set of real numbers between 0 and 1.

Solution
Let S = {x ∈ R | 0 < x < 1}
Bend S to create a circle as shown in the diagram.
Define F : S → R as follows.
F (x) is called the projection of x onto the number line.



R and [0, 1] have the same size
Solution (continued)

We show that S and R have the same cardinality by showing that
F is a one-to-one correspondence.
F is one-to-one. Distinct points on the circle go to distinct
points on the number line.
F is onto. Given any point y on the number line, a line can
be drawn through y and the circle’s topmost point. This line
must intersect the circle at some point x, and, by definition,
y = F (x).



Set of bit strings is countable

Problem
Prove that the set of all bit strings (strings of 0’s and 1’s) is
countable.

Solution
Define a function f(n) : N→ B such that

f(n) =
{
ε if n = 1,
k-bit binary repr. of n− 2k if n > 1 & blognc = k.



Set of bit strings is countable

Problem
Prove that the set of all bit strings (strings of 0’s and 1’s) is
countable.

Solution
Define a function f(n) : N→ B such that

f(n) =
{
ε if n = 1,
k-bit binary repr. of n− 2k if n > 1 & blognc = k.



Set of bit strings is countable

Solution (continued)

N B

1 ε
2 0
3 1
4 00
5 01
6 10
7 11
...

...
n f(n)
...

...
As f is a one-to-one correspondence between N and B, the set
of bit strings is countably infinite.
Generalizing, the set of strings from an alphabet consisting of
a finite number of symbols is countably infinite.



Set of computer programs is countable

Problem
Prove that the set of all computer programs in a given computer
language is countable.

Solution
Let P denote the set of all computer programs in the given
computer language.
Any computer program in any computer language is a finite set
of symbols from a finite alphabet.
[Encoding] Translate the symbols of each program to binary
string using the ASCII code.
Sort the strings by length.
Sort the strings of a particular length in ascending order.
Define a function f(n) : N→ P such that
f(n) = nth program in P



Set of computer programs is countable

Problem
Prove that the set of all computer programs in a given computer
language is countable.

Solution
Let P denote the set of all computer programs in the given
computer language.
Any computer program in any computer language is a finite set
of symbols from a finite alphabet.
[Encoding] Translate the symbols of each program to binary
string using the ASCII code.
Sort the strings by length.
Sort the strings of a particular length in ascending order.
Define a function f(n) : N→ P such that
f(n) = nth program in P



Set of computer programs is countable
Solution (continued)

Suppose the following are all programs in P that translate to
bit strings of length less than or equal to 5.

N P

1 01
2 11
3 0010
4 1010
5 1011
6 00010
7 00100
8 10111
...

...
n f(n)
...

...
As f is a one-to-one correspondence between N and P, the set
of bit strings is countably infinite.



Set of all functions N→ {0, 1} is uncountable

Problem
Prove that the set of all functions N→ {0, 1} is uncountable

Solution
Let S be the set of all real numbers in [0, 1] represented in the
form 0.a1a2a3 . . . an . . ., where ai ∈ {0, 1}.
This representation is unique if the bit sequences that end with
all 1’s are omitted. B Why?
Let L be the set of all functions N→ {0, 1}
We will show a 1-to-1 correspondence between S and a subset
of L by showing we can map an element of S to a unique
element of L.



Set of all functions N→ {0, 1} is uncountable

Problem
Prove that the set of all functions N→ {0, 1} is uncountable

Solution
Let S be the set of all real numbers in [0, 1] represented in the
form 0.a1a2a3 . . . an . . ., where ai ∈ {0, 1}.
This representation is unique if the bit sequences that end with
all 1’s are omitted. B Why?
Let L be the set of all functions N→ {0, 1}
We will show a 1-to-1 correspondence between S and a subset
of L by showing we can map an element of S to a unique
element of L.



Set of all functions N→ {0, 1} is uncountable

Solution (continued)

S Subset of L

0.a1a2a3 . . . an . . .

N {0, 1}

1 a1
2 a2
3 a3
...

...
n an
...

...
As f is a one-to-one correspondence between S and a subset
of L, the set of functions N→ {0, 1} is uncountably infinite.
Using this result, we can show that the set of languages (or
decision problems or computable functions) is uncountable.



There is an infinite sequence of
larger and larger infinities!


