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One-to-one functions

@ What is the difference between the two marriage functions?

Female Female

Male Male
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One-to-one functions

@ What is the difference between the two marriage functions?

Female Female

Male Male
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@ Every female is a wife of at e There is a female who is a wife
most one male of at least two males
@ One-to-one function @ Not a one-to-one function



One-to-one functions

Definition

e A function F': X — Y is one-to-one (or injective) if and only
if for all elements 1 and x5 in X,

if F(l‘l) = F(xg), then 1 = x9, or
if 21 # 2, then F(x1) # F(z2).

o A function F': X — Y is one-to-one &
Vri,z0 € X, if F(J}l) = F(aj‘g) then 1 = x9.
A function ' : X — Y is not one-to-one &
dzq, 20 € X, if F(:L‘l) = F(l‘g) then xq1 # xs.




One-to-one functions: Proof technique

| Problem

@ Prove that a function f is one-to-one.




One-to-one functions: Proof technique

Problem

@ Prove that a function f is one-to-one.

Proof

Direct proof.
® Suppose x1 and x9 are elements of X such that f(x1) = f(x2).
@ Show that 21 = z3.




One-to-one functions: Proof technique

Problem

@ Prove that a function f is one-to-one.

Proof

Direct proof.
® Suppose x1 and x9 are elements of X such that f(x1) = f(x2).
@ Show that 21 = z3.

Problem

@ Prove that a function f is not one-to-one.




One-to-one functions: Proof technique

Problem

@ Prove that a function f is one-to-one.

Proof

Direct proof.
® Suppose x1 and x9 are elements of X such that f(x1) = f(x2).
@ Show that 21 = z3.

Problem

@ Prove that a function f is not one-to-one.

Proof

Counterexample.
e Find elements z; and z2 in X so that f(z1) = f(x2) but

T, # Ta.




One-to-one functions: Example 1

| Problem |

® Define f: R — R by the rule f(z) =4z — 1 for all z € R. Is
f one-to-one? Prove or give a counterexample.




One-to-one functions: Example 1

Problem

® Define f: R — R by the rule f(z) =4z — 1 for all z € R. Is
f one-to-one? Prove or give a counterexample.

Proof

Direct proof.

e Suppose x; and x5 are elements of X such that f(z;) = f(z2).
= 4x; —1=42,—1 (. Defn. of f)
= dx; = 4x9 (" Add 1 on both sides)
= I = I (. Divide by 4 on both sides)

@ Hence, f is one-to-one.




One-to-one functions: Example 2

| Problem |

o Define g : Z — Z by the rule g(n) = n? foralln € Z. Is g
one-to-one? Prove or give a counterexample.




One-to-one functions: Example 2

Problem

o Define g : Z — Z by the rule g(n) = n? foralln € Z. Is g
one-to-one? Prove or give a counterexample.

Proof

Direct proof.

® Suppose nj and ng are elements of X such that g(n1) = g(na).
= n} =n3 (.- Defn. of g)
= n1 = ng (" Taking square root on both sides)

@ Hence, g is one-to-one.




One-to-one functions: Example 2

Problem

o Define g : Z — Z by the rule g(n) = n? foralln € Z. Is g
one-to-one? Prove or give a counterexample.

Proof

Direct proof.

® Suppose nj and ng are elements of X such that g(n1) = g(na).
= n} =n3 (.- Defn. of g)
= n1 = ng (" Taking square root on both sides)

@ Hence, g is one-to-one.

o Incorrect! What's wrong?



One-to-one functions: Example 2

Problem

o Define g : Z — Z by the rule g(n) = n® foralln € Z. Is g
one-to-one? Prove or give a counterexample.

Proof
Counterexample.
@ Let ngy = —1 and ny = 1.

= g(m) =(-1)>=1and g(ns) =1 =1
= ¢g(n1) = g(na) but, n; # ny
@ Hence, g is not one-to-one.




Onto functions

@ What is the difference between the two marriage functions?

Male Male

Female Female
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Onto functions

@ What is the difference between the two marriage functions?

Male Male

Female Female

WAV

[

o Every female is a wife
@ Onto function

@ There is a female who is not a
wife
@ Not an onto function



Onto functions

Definition

e A function F' : X — Y is onto (or surjective) if and only if
given any element y in Y, it is possible to find an element x in
X with the property that y = F(x).

@ A function F': X — Y is onto &

Yy € Y, 3z € X such that F(z) =y.
A function F': X — Y is not onto <
Jy € Y,Vz € X such that F(z) # v.




Onto functions: Proof technique

| Problem

@ Prove that a function f is onto.




Onto functions: Proof technique

Problem

@ Prove that a function f is onto.

Proof

Direct proof.
@ Suppose that y is any element of Y
@ Show that there is an element z of X with F(z) =y




Onto functions: Proof technique

Problem

@ Prove that a function f is onto.

Proof

Direct proof.
@ Suppose that y is any element of Y
@ Show that there is an element z of X with F(z) =y

Problem

@ Prove that a function f is not onto.




Onto functions: Proof technique

Problem

@ Prove that a function f is onto.

Proof

Direct proof.
@ Suppose that y is any element of Y
@ Show that there is an element z of X with F(z) =y

Problem

@ Prove that a function f is not onto.

Proof

Counterexample.
e Find an element y of Y such that y # F(z) for any z in X.




Onto functions: Example 1

| Problem |

o Define f: R — R by the rule f(z) =4z — 1 for all z € R. Is
f onto? Prove or give a counterexample.




Onto functions: Example 1

Problem

o Define f: R — R by the rule f(z) =4z — 1 for all z € R. Is
f onto? Prove or give a counterexample.

Proof

Direct proof.

o Let y € R. We need to show that 3x such that f(z) = y.
Let x = %1. Then
F(E) =4(2) =1 (. Defn. of f)
=y (.- Simplify)

@ Hence, f is onto.




Onto functions: Example 2

| Problem

o Define g:Z — Z by therule g(n) =4dn—1foralln € Z. Is g
onto? Prove or give a counterexample.




Onto functions: Example 2

Problem

o Define g:Z — Z by therule g(n) =4dn—1foralln € Z. Is g
onto? Prove or give a counterexample.

Proof

Direct proof.

o Let m € Z. We need to show that 3n such that g(n) = m.
Let n = mTH. Then
g (mTH> =4 (mTH) -1 (. Defn. of g)
=m (.- Simplify)

® Hence, g is onto.




Onto functions: Example 2

Problem

o Define g:Z — Z by therule g(n) =4dn—1foralln € Z. Is g
onto? Prove or give a counterexample.

Proof

Direct proof.

o Let m € Z. We need to show that 3n such that g(n) = m.
Let n = mTH. Then
g (mTH> =4 (mTH) -1 (. Defn. of g)
=m (.- Simplify)

® Hence, g is onto.

@ [ncorrect! What's wrong?



Onto functions: Example 2

Problem

® Define g:Z — Z by therule g(n) =4dn—1foralln € Z. Is g
onto? Prove or give a counterexample.

Proof

Counterexample.

@ We know that 0 € Z.

o Let g(n) = 0 for some integer n.
= 4n—-1=0 (" Defn. of g)
= n=1 (.- Simplify)

But % ¢ 7.
So, g(n) # 0 for any integer n.

@ Hence, g is not onto.




One-to-one correspondences

e What is the difference between the three marriage functions?
Female Male Male Female

Female
Male

. 4 <
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One-to-one correspondences

e What is the difference between the three marriage functions?

Female Male Male Female
Female

Male

o Every female is a wife
of at most one male

o Every female is a wife
of exactly one male

o Every female is a wife

e Onto
@ One-to-one @ One-to-one
o Not one-to-one
@ Not onto e Onto



One-to-one correspondences

Definition

e A one-to-one correspondence (or bijection) from a set X to a
set Y is a function F' : X — Y that is both one-to-one and
onto.

@ [ntuition:

One-to-one correspondence = One-to-one + Onto




One-to-one correspondences: Example 1

’4—tup|e of {0,1} ‘

| Subset of {a,b, c,d} |
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One-to-one correspondences: Example 2

| Problem

o Define F: RxR — R xR by the rule F(z,y) = (z+y,z—y)
for all (x,y) € R x R. Is F' a one-to-one correspondence?
Prove or give a counterexample.




One-to-one correspondences: Example 2

Problem

o Define FF: RxR — R xR by the rule F(z,y) = (z+y,z—y)
for all (x,y) € R x R. Is F' a one-to-one correspondence?
Prove or give a counterexample.

Proof

To show that F' is a one-to-one correspondence, we need to show
that:

1. F'is one-to-one.

2. F is onto.




One-to-one correspondences: Example 2

Proof (continued)

® Proof that F' is one-to-one.
Suppose that (z1,y1) and (22, y2) are any ordered pairs in RxR
such that F(Qﬁ‘l,yl) = F(I’Q, yQ).
= (21 +y1, 21 —y1) = (22 + 2,22 — Y2)
(" Defn. of F)
= w1 +y1 =x2+y2and 11 — Yy = T2 — Yo
(".- Defn. of equality of ordered pairs)
= x1 =9 and y; = Yo
(". Solve the two simultaneous equations)
= (v1,51) = (22, 92)
(".- Defn. of equality of ordered pairs)
Hence, F' is one-to-one.




One-to-one correspondences: Example 2

Proof (continued)

@ Proof that F' is onto.
Suppose (u,v) is any ordered pair in the co-domain of F. We
will show that there is an ordered pair in the domain of F' that
is sent to (u,v) by F.
Let r = “I¥ and s = “5%. The ordered pair (r,s) belongs to

R x R. Also,

F(r,s)

— F(u;rv’ usv) (" Defn. of F)

— (W un uby _ uv) (.- Substitution)

= (u,v) (. Simplify)
Hence, F' is onto.




Inverse functions

e What is the difference between the two marriage functions?

Male Female Male Female

AV
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Inverse functions

e What is the difference between the two marriage functions?

Male Female Male Female

A

E,

AV

>

@ Input: male. Qutput: female. o Input: female. Output: male.
o [ o 1



Inverse functions

Definition

@ Suppose F': X — Y is a one-to-one correspondence.
Then, the inverse function F~1:Y — X is defined as follows:
Given any element y in Y,
F~Y(y) = that unique element x in X such that F(z) = y.

o Iy =z y=F(2).




Inverse functions: Example 1

’4—tup|e of {0,1} ‘

| Subset of {a,b, c,d} |
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Inverse functions: Example 2

| Problem )

® Define f : R — R by the rule f(x) = 4x — 1 for all z € R.
Find its inverse function.




Inverse functions: Example 2

Problem

® Define f : R — R by the rule f(x) = 4x — 1 for all z € R.
Find its inverse function.

Proof

For any y in R, by definition of f~*

o f~! = unique number x such that f(z) =y
Consider f(x) =y
= dr—-1=y (". Defn. of f)
— =4 (.- Simplify)

® Hence, f~'(y) = L= is the inverse function.




Inverse functions

| Theorem )

o If X and Y aresetsand F': X — Y is a one-to-one correspon-
dence, then F~1: Y — X is also a one-to-one correspondence.




Inverse functions

Theorem

o If X and Y aresetsand F': X — Y is a one-to-one correspon-
dence, then F~1: Y — X is also a one-to-one correspondence.

Proof

e F~!is one-to-one.
Suppose F'~1(y1) = F~1(y2) for some y1,942 € Y.
We must show that y; = ys.
Let F~1(y1) = F~1(y2) = 2 € X. Then
y1 = F(z) since F~1(y;) = x and
yo = F(x) since F~1(y) = .
So, y1 = yo.
e F~!is onto.
We must show that for any = € X, there exists an element y
in Y such that F~1(y) = z.
For any z € X, we consider y = F'(z).
We see that y € Y and F~1(y) = x.




Composition of Functions



Composition of functions

TN
=

successor function

squaring function

n+ 1 (n+ 12



Composition of functions




Composition of functions

Definition

olet f: X —>Yandg:Y — Z. Let the range of f is a subset
of the domain of g.
@ Define a new composition function go f : X — Z as follows:

(9o f)(z) = g(f(z)) for all z € X,

where g o f is read “g circle f" and
g(f(z)) is read "g of f of x."




Composition of functions: Example 1

[ Problem )

o Let f:7Z — Z be the successor function and let g : Z — Z be
the squaring function. Then f(n) = n+ 1 for all n € Z and
g(n) =n?foralln € Z. Find gof. Find fog. Isgof = fog?




Composition of functions: Example 1

Problem

o Let f:7Z — Z be the successor function and let g : Z — Z be
the squaring function. Then f(n) = n+ 1 for all n € Z and
g(n) =n?foralln € Z. Find gof. Find fog. Isgof = fog?

Solution

® gof.

(go f)(n) =g(f(n)) =gn+1)=(n+1)%forall ncZ.
° fog.

(fog)(n) = f(g(n)) = f(n?) =n?+1forallncZ.
® gof#fog.

Eg (9o f)(1)=4and (fog)(l)=2




Composition of functions: Example 2

Problem

@ Draw the arrow diagram for g o f. What is the range of go f?




Composition of functions: Example 2

Problem

@ Draw the arrow diagram for g o f. What is the range of go f?

Solution
e Range of go f ={y, z}.
X gof zZ
— A
™

[ ]




Composition of functions: Example 3

[ Problem

@ Find folx and Iy o f.




Composition of functions: Example 3

[ Problem
e Find folIx and Iy o f.
X /L; Y
Solution
o folyxy =f.
o (folx)(a)= f(Ix(a))
¥ . x ; Y =fla)=u
; X ; » ° (foIX)(b):f(IX(b))
; ’ ; =f(b)=v
: . ; o (folx)(c)= f(Ix(c))
: y . =fle)=v
4 . ° (folx)(d)= f(Ix(d))
= f(d)=u




Composition of functions: Example 3

[ Problem
@ Find folx and Iy o f.
X ' Y
Solution
°o Iyof=/.
° (Iy o f)(a )—IY( (a))
X ; ooy Y =Iy(u) =
g @ Iy o )b )—IY( (0))
: | mh@=
¢ w (IYOf)()—fY( (c))
d : _IY( )
° (Iy o f)(d )—IY( (d))
=Iy(u) =




Composition of functions

Theorem

o If f is a function from a set X to a set Y, and Ix is the
identity function on X, and Iy is the identity function on Y,
then folx = fand Iy o f = f.

Proof
° folx=f.

(f o Ix) (@) = f(Ix () = f(x).
o [yof=Ff.

(Iy o f)(z) = Iy (f(x)) = f(x).




Composition of functions: Example 4
Problem
e Find f~'o fand fo f~L.
X Y Y -1
f
— —
D 1
T~ L —




Composition of functions:

Example 4

Problem
e Find f~'o fand fo f~L.
X f Y Y f—l
Solution
o flof=1Ix.
(frof)la) = f(fla)) = f1(2) =a=Ix(a)
(fLoH)0) = F7Hf(b) = fH(z) = b= Ix(b)
(F o f)le) = F7H(f(e) = [ (y) = ¢ = Ix(c).




Composition of functions: Example 4

Problem
e Find f~'o fand fo f~L.
Y f—l X X f
Solution
o foft=1Iy
(fof @) =f(f ) = f(b) =z = Iy(x)
(fof W =ff"')=fle)=y=1Ir(y)
(fof ™M) =f'(2) = fla) = 2= Iy(2).




Composition of functions

Theorem

o If f: X — Y is a one-to-one and onto function with inverse
function f~1:Y — X, then flof=1Ixand fof !=1Iy.

Proof

o flof—1Iy.
To show that f~'o f = Iy, we must show that for all z € X,
(frof)(z)==z. Let x € X. Then

(f~o @) = f1(f(=)).

Suppose f~'(f(z)) = 2.

x
— f( "= f(x) (". Defn. of inverse function)
= 2=z (" f is one-to-one)

= (fTlof)@) =

Hence, f~'o f = Ix.




Composition of functions

Theorem

o If f: X — Y is a one-to-one and onto function with inverse
function f~1:Y — X then f~lof=1Ixand fof~!=1Iy.

Proof (continued)

o fofl=1y
To show that f o f~! = Iy, we must show that for all y € Y,
(fof Hy)=y. Lety €Y. Then

(fo [ D)= F(f~(y).

Suppose f( (y))

= f W) =f" ( (" Defn. of inverse function)
Y (. f~1is one-to-one, too)
= (fof =y

Hence, fo f~1 = Iy.




Composition of one-to-one functions

f is one-to-one and ¢ is one-to-one



Composition of one-to-one functions

f is one-to-one and ¢ is one-to-one

X VA

g o f is one-to-one



Composition of one-to-one functions

| Problem

olf f: X Y and g:Y — Z are both one-to-one functions,
then g o f is one-to-one.




Composition of one-to-one functions

Problem

olf f: X Y and g:Y — Z are both one-to-one functions,
then g o f is one-to-one.

Proof

Direct proof.
@ Suppose x1 and x5 are elements of X. To prove that go f is
one-to-one we must show that:

“If (go f)(x1) = (g o f)(x2), then z, = x2."

Suppose (g o f)(z1) = (g f)(x2).
= g(f(z1)) = g(f(x2)) (".- Defn. of composition)
= f(z1) = f(x2) ("." g is one-to-one)
= I = I (". f is one-toone)
® Hence, g o f is one-to-one.




Composition of onto functions

f is onto and g is onto



Composition of onto functions

go f is onto



Composition of onto functions

| Problem |

olf f: X Y and g:Y — Z are both onto functions, then
go f is onto.




Composition of onto functions

Problem

olf f: X Y and g:Y — Z are both onto functions, then
go f is onto.

Proof (Core idea)

X Y z
f e g
> S
Z
.
/ o y N\
gof
X Y z
f g
N N
y
. S
-
gof
X Y z




Composition of onto functions

Problem

olf f: X Y and g:Y — Z are both onto functions, then
go f is onto.

Proof

Direct proof.
@ Let z be an element of Z. To prove that g o f is onto we
must show the existence of an element z in X such that

(o f)(x) = 2.

There is an element y in Y such that g(y) = 2, because g is
onto. Similarly, there is an element z in X such that f(z) = v.
Hence there exists an element z in X such that (g o f)(z) =

g(f(x)) =g(y) = 2.

@ Hence, go f is onto.




Infinite Sets



Finite sets

_—

@ Two finite sets are of the same size if there is a one-to-one
correspondence between the two sets



Finite sets

@ Two finite sets are not of the same size if there is no one-to-one
correspondence between the two sets



Finite sets

| Definition |
@ A finite set is one that has no elements at all or that can

be put into one-to-one correspondence with a set of the form
{1,2,...,n} for some positive integer n.




Infinite sets

%%é

| Definition |
@ An infinite set is a nonempty set that cannot be put into one-to-
one correspondence with {1,2,...,n} for any positive integer

n.




Same cardinality

Definition

o Let A and B be any sets. A has the same cardinality as B if,
and only if, there is a one-to-one correspondence from A to B.

@ A has the same cardinality as B if, and only if, there is a
function f from A to B that is both one-to-one and onto.




Properties of infinite sets

Properties

For all sets A, B, and C:
@ Reflexive property.
A has the same cardinality as A.
@ Symmetric property.
If A has the same cardinality as B,
then B has the same cardinality as A.
® Transitive property.
If A has the same cardinality as B
and B has the same cardinality as C,
then A has the same cardinality as C.




Same cardinality

| Definition |

@ A and B have the same cardinality if, and only if, A has the
same cardinality as B or B has the same cardinality as A.




Integers and even numbers are not of the same size

4| 4
-3
ol | 2




Integers and even numbers are not of the same size

4 — —4
:g _— -2
_01 _ 0
% —_— 2
i _— 4

@ There is no one-to-one correspondence between the two sets
@ Cardinality of integers and even numbers are different
ie., |Z| # |Zeve"|



Integers and even numbers are not of the same size

4 — —4
:g _— -2
_01 _ 0
% —_— 2
i _— 4

@ There is no one-to-one correspondence between the two sets
@ Cardinality of integers and even numbers are different

ie., |Z| # |Zeve"|
@ [ncorrect! What's wrong?



Integers and even numbers are of the same size

A — | =8
B3—— | -6
-2 — —4
1| —F7 -2
0O |—— 0
1 | —— 2
2 | ——— 4
3 | —m— 6
4 | —— 8

@ Take-home lesson: If we fail to identify a one-to-one
correspondence, it does not mean that there is no one-to-one
correspondence



Integers and even numbers are of the same size

A — | =8
B3—— | -6
-2 — —4
1| —F7 -2
0O |—— 0
1 | —— 2
2 | ——— 4
3 | —m— 6
4 | —— 8

@ Take-home lesson: If we fail to identify a one-to-one
correspondence, it does not mean that there is no one-to-one
correspondence

@ There is a one-to-one correspondence between the two sets

@ Cardinality of integers and even numbers are the same
i.e., |Z| = |Z%ve"|



Integers and even numbers are of the same size

| Problem

@ Prove that the cardinality of integers and even numbers are the
same.




Integers and even numbers are of the same size

Problem

@ Prove that the cardinality of integers and even numbers are the
same.

Solution

® To prove that |Z| = |Z**"|, we need to prove that there is a
one-to-one correspondence, say f, between Z and Z*". Sup-
pose f = 2n for all integers n € Z.

@ Prove that f is one-to-one.

Suppose f(n1) = f(n2).
= 2n1 = 2ny (. Defn. of f)
= nj; =ng (" Simplify)
® Prove that f is onto.
Suppose m € Z&e".
= m is even (.- Defn. of ZeveM)
= m=2kforkeZ (".- Defn. of even)
= f(k)=m (. Defn. of f)




An infinite set and its proper
subset can have the same size!




Countable sets

1 — s | “First” element of A4
2 —— | “Second” element of A
3 | ——— | “Third” element of A
4 | —— | “Fourth” element of A
5 | —— | “Fifth” element of 4
| Definition )

@ A set is called countably infinite if, and only if, it has the same
cardinality as the set of positive integers.

@ A set is called countable if, and only if, it is finite or countably
infinite. A set that is not countable is called uncountable.




Integers are countable

( Problem

@ Prove that the set of integers is countably infinite.




Integers are countable

Problem

@ Prove that the set of integers is countably infinite.

Solution

1 9 7 5 3 1 2 4 6 8 10

-5 -4 3 -2 -1 0 1 2 3 4 5




Integers are countable

Solution (continued)

1 | — 0
2 | ——— 1
3| —F— -1
4 | —— 2
5 | ——m -2

n | ———— | fn)

o Define a function f(n): N — Z such that

5 if n is an even natural number,
2
@ As f is a one-to-one correspondence between N and Z, the set

of integers is countably infinite.

) if n is an odd natural number.




Consequences of same cardinality

Consequences

Suppose A and B be two sets such that |A| = |B].
Let f: A — B be the mapping function between the two sets.

® A and B are finite.

f is one-to-one < f is onto
® A and B are infinite.

f is one-to-one <& f is onto




Set of positive rationals is uncountable

1 | — 1

NI

VI C I




Set of positive rationals is uncountable
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@ There is no one-to-one correspondence between the two sets
o Cardinality of natural numbers and positive rationals are different

ie., [N| # |QF|



Set of positive rationals is uncountable

NI

VI C I

@ There is no one-to-one correspondence between the two sets
o Cardinality of natural numbers and positive rationals are different

e, [N| # |QF|

@ Incorrect! What's wrong?



Set of positive rationals is uncountable

S TS TS TS B
12 /3 /4 /5 /6
/) Yo
2/ 2/ 2/ 2 2/ 2
ﬁ A3k /56
3/3/ 3/ 3/ 3 3
1 /2 B /a 5 6
4/ 4/ 4/ 4 4 4
ﬁ E /3 4 5 6
5/ 5/ 5 5 5
1 /2 i 5 6

/
6/ 6 6 6 6 6
| 2 03 4 5 6

o Take-home lesson: If we fail to identify a one-to-one
correspondence, it does not mean that there is no one-to-one
correspondence



Set of positive rationals is countable

[ Problem |

@ Prove that the set of positive rational numbers are countable. ’




Set of positive rationals is countable

Problem

@ Prove that the set of positive rational numbers are countable.

Solution
NN R TS S B N +
U2 5 5 R
2/ Y 2/ Y 2 2 1 | —— | 11
{ A3 A /5 6 92 1/2
3/ 3/ 3/ 3/ 3 3 3 | — 2/1
1 _i 5 __Z 5 6 4 - 3/1
4/ 4/ 4/ 4 4 4 5 | ——— | 1/3
1 5 3 4 5 6 6 _— 1/4
s/s/s s 5 s T | —— | 2/3
1,2 3 45 6° 8§ | — | 3/2
6/ 6 6 6 6 6 9 — | 4/1
RN 10| — | 51




Set of positive rational numbers is countable

Problem

@ Prove that the set of positive rational numbers are countable.

Solution (continued)

® To prove that |[N| = |Q%|, we need to prove that there is a
one-to-one correspondence, say f, between N and Q.

@ Prove that f is onto.
Every positive rational number appears somewhere in the grid.
Every point in the grid is reached eventually.

® Prove that f is one-to-one.
Skipping numbers that have already been counted ensures that
no number is counted twice.




Set of real numbers in [0, 1] is uncountable

| Problem

@ Prove that the set of all real numbers between 0 and 1 is un-
countable.




Set of real numbers in [0, 1] is uncountable

Problem

@ Prove that the set of all real numbers between 0 and 1 is un-
countable.

Solution

e To prove that |N| # |[0..1]|, we need to prove that there is no
one-to-one correspondence between N and [0..1].

@ A powerful approach to prove the theorem is:
proof by contradiction.




Set of real numbers in [0, 1] is uncountable

Problem

@ Prove that the set of all real numbers between 0 and 1 is un-
countable.

Solution

Proof by contradiction.

e Suppose [0..1] is countable.

@ We will derive a contradiction by showing that there is a number
in [0..1] that does not appear on this list.

[0..1]

1 E——4 0.a11a12a13 . QIp e
2 E——4 0.@21&220,23 . Qop ..
3 E——4 0.a31a32a33 ...Q3n .-

n | ———— | O.apiapn2ap3...00n ...




Set of real numbers in [0, 1] is uncountable

Solution (continued)

0. 9] o 1 4 8
0. 1 6 6 6
0. 0 3 5 3
0. 9 6 7 6
0. 0 0 0 3

° CC.)nStI’L.JCt a Inew ﬁumbér d = 0.dydsods . . . dy,

dn:{l ann 7 1,

2 ap, = 1.
® We have d = 0.12112.. ., i.e.,

o DB EEE -

@ Suppose the list of reals starts out as follows:

... as follows:




Set of real numbers in [0, 1] is uncountable

Solution (continued)

@ QObservation:
For each natural number n, the constructed real number d dif-
fers in the nth decimal position from the nth number on the list.

1 —— 0 [9] o 1 4 8
2 —— 0 1 [1] 6 6 6
3 — 0 0 3 [3 5 3
4 —— 0. 9 6 7 [2] 6
5 — 0 0 0 o0 3 [1]
d — 0. [1] [2] [1] [1] [2] ...

® This implies that d is not on the list. But, d € [0, 1].
e Contradiction! So, our supposition is false.
o Set of real numbers in [0, 1] is uncountable.




There are different types of oo!

By



More theorems

| Theorems

@ A subset of a countable set is countable.
@ A set with an uncountable subset is uncountable.




R and [0, 1] have the same size

| Problem |

@ Prove that the set of all real numbers has the same cardinality
as the set of real numbers between 0 and 1.




R and [0, 1] have the same size

Problem

@ Prove that the set of all real numbers has the same cardinality
as the set of real numbers between 0 and 1.

Solution

Let S={zeR|0<x <1}

Bend S to create a circle as shown in the diagram.
Define F': S — R as follows.

F(x) is called the projection of = onto the number line.

Number line F(x)
| -

< | ] |
<

Ty

! !
-3 -2 -1 0 1 2 3




R and [0, 1] have the same size

Solution (continued)

We show that S and R have the same cardinality by showing that

F' is a one-to-one correspondence.

® F'is one-to-one. Distinct points on the circle go to distinct
points on the number line.

@ /' is onto. Given any point y on the number line, a line can
be drawn through 3 and the circle's topmost point. This line
must intersect the circle at some point z, and, by definition,

y = F(z).

Number line F(x)
] | ] »,

>

4

<
<

!
-3 -2 -1 0 1 2 3




Set of bit strings is countable

| Problem |

e Prove that the set of all bit strings (strings of 0's and 1's) is
countable.




Set of bit strings is countable

Problem
e Prove that the set of all bit strings (strings of 0's and 1's) is
countable.

Solution
o Define a function f(n) : N — B such that

€ ifn=1,
fm=1 o B
k-bit binary repr. of n — 2% if n > 1 & |logn| = k.




Set of bit strings is countable

Solution (continued)

=]

@ As f is a one-to-one correspondence between N and B, the set
of bit strings is countably infinite.

@ Generalizing, the set of strings from an alphabet consisting of
a finite number of symbols is countably infinite.




Set of computer programs is countable

| Problem

@ Prove that the set of all computer programs in a given computer
language is countable.




Set of computer programs is countable

Problem

@ Prove that the set of all computer programs in a given computer
language is countable.

Solution

@ Let P denote the set of all computer programs in the given
computer language.
® Any computer program in any computer language is a finite set
of symbols from a finite alphabet.
[Encoding] Translate the symbols of each program to binary
string using the ASCII code.
@ Sort the strings by length.
@ Sort the strings of a particular length in ascending order.
o Define a function f(n): N — PP such that
f(n) = nth program in P




Set of computer programs is countable

Solution (continued)

@ Suppose the following are all programs in [P that translate to
bit strings of length less than or equal to 5.

_ 01

_ 11

_— 0010
_ 1010
1011
——— | 00010
——— | 00100
— | 10111

O~NO TR WN R

n | ——— | f)

@ As f is a one-to-one correspondence between N and P, the set
of bit strings is countably infinite.




Set of all functions N — {0, 1} is uncountable

| Problem

® Prove that the set of all functions N — {0, 1} is uncountable




Set of all functions N — {0, 1} is uncountable

Problem

® Prove that the set of all functions N — {0, 1} is uncountable

Solution

o Let S be the set of all real numbers in [0, 1] represented in the
form 0.a1azas...ay ..., where a; € {0,1}.

@ This representation is unique if the bit sequences that end with
all 1's are omitted. > Why?

o Let L be the set of all functions N — {0, 1}

@ We will show a 1-to-1 correspondence between S and a subset
of L by showing we can map an element of S to a unique
element of L.




Set of all functions N — {0, 1} is uncountable

Solution (continued)

Subset of
{0.1)

1 | — ay
2 | —— as
O.a1a0a3...ap... | —— 3 | — as
n |—— an

@ As f is a one-to-one correspondence between S and a subset
of L, the set of functions N — {0, 1} is uncountably infinite.

e Using this result, we can show that the set of languages (or

decision problems or computable functions) is uncountable.




There is an infinite sequence of
larger and larger infinities!




