Algorithms (Trees)

Pramod Ganapathi
Department of Computer Science
State University of New York at Stony Brook

September 21, 2021

Contents

- Dictionary ADT
- General Trees and Binary Trees
- Binary Search Trees
- Balanced Search Trees
- $(2,4)$-Trees
- B Trees
- Tries and Suffix Trees

Dictionary ADT

Dictionary ADT represents a collection of items, where, each item can be a key or a (key, value) pair.

ADT	Item	Ordered?	Duplicates?	Implementation
Set	key	\boldsymbol{x}	\boldsymbol{x}	Hash table
Sorted set	key	$\mathbf{\checkmark}$	\mathbf{x}	Balanced tree
Multiset	key	\mathbf{x}	$\mathbf{\checkmark}$	Hash table
Sorted multiset	key	$\mathbf{\checkmark}$	$\mathbf{\checkmark}$	Balanced tree
Map	$($ key,value $)$	\boldsymbol{x}	\mathbf{x}	Hash table
Sorted map	(key,value $)$	$\mathbf{\checkmark}$	\mathbf{x}	Balanced tree
Multimap	(key, value $)$	\mathbf{x}	$\mathbf{\checkmark}$	Hash table
Sorted multimap	(key,value)	$\mathbf{\checkmark}$	$\mathbf{\checkmark}$	Balanced tree

- A map is a collection of key-value pairs (k, v), where, keys are unique.

Key	Value
Dictionary word	Word meaning
User ID	User record
Employee ID	Employee record
Student ID	Student record
Patient ID	Patient record
Profile ID	Person details
Order ID	Order details
Transaction ID	Transaction details
URL	Web page
Full file name	File

Set ADT (java.util.Set interface)

\(\left.$$
\begin{array}{|l|l|}\hline \text { Method } & \text { Functionality } \\
\hline \text { add(e) } & \text { Adds the element } e \text { to } S \text { (if not already present). } \\
\text { remove(e) } & \begin{array}{l}\text { Removes the element } e \text { from } S \text { (if it is present). } \\
\text { contains (e) } \\
\text { iterator() }\end{array} \\
\hline \text { Returns whether } e \text { is an element of } S . \\
\text { Returns an iterator of the elements of } S .\end{array}
$$ \quad \begin{array}{l}Updates S to also include all elements of set T,

effectively replacing S by S \cup T .\end{array}\right\}\)| Updates S so that it only keeps those elements |
| :--- |
| that are also elements of set T, effectively replac- |
| ing S by $S \cap T$. |
| removeAll(T) |
| Updates S by removing any of its elements that |
| also occur in set T, effectively replacing S by $S-T$. |

- Set $=$ unordered set; Map = unordered map. java.util.HashSet is an implementation of the set ADT. java.util.HashMap is an implementation of the map ADT.

Sorted set ADT (java.util.SortedSet interface)

Method	Functionality
first()	Returns the smallest element in S.
last()	Returns the largest element in S.
ceiling(e)	Returns the smallest element $\geq e$.
floor(e)	Returns the largest element $\leq e$.
lower(e)	Returns the largest element $<e$.
higher(e)	Returns the smallest element $>e$.
subSet(e1,e2)	Returns an iteration of all elements greater than or equal to $e 1$, but strictly less than e2.
pollFirst()	Returns and removes the smallest element in S.
pollLast()	Returns and removes the largest element in S.

- java.util.TreeSet is an implementation of the sorted set ADT. java.util.TreeMap is an implementation of the sorted map ADT.
- TreeSet and TreeMap use balanced search tree

Multiset ADT

Method	Functionality
add(e)	Adds a single occurrences of e to the multiset.
contains (e)	Returns true if the multiset contains an element $=e$. count (e) remove (e) remove (e, n) size()
Returns the number of occurrences of e in the multiset. Removes a single occurrence of e from the multiset. Removes n occurrences of e from the multiset. iterator ()Returns the number of elements of the multiset (including duplicates). Returns an iteration of all elements of the multiset (repeating those with multiplicity greater than one)..	

- Java does not include any form of a multiset. Guava $=$ Google Core Libraries for Java.
Guava's Multiset is an implementation of the multiset ADT. Guava's Multimap is an implementation of the multimap ADT.
- Similarly, one can define sorted multiset ADT

Dictionary operations (for unique keys)

	Worst case			Average case		
Data structure	Search	Insert	Delete	Search	Insert	Delete
Sorted array	$\mathcal{O}(\log n)$	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(n)$	$\mathcal{O}(n)$
Unsorted list	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(1)$	$\mathcal{O}(n)$
Hashing	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(1)^{*}$	$\mathcal{O}(1)^{*}$	$\mathcal{O}(1)^{*}$
BST	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
Splay tree	$\mathcal{O}(\log n)^{*}$					
Scapegoat tree	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)^{*}$	$\mathcal{O}(\log n)^{*}$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$
AVL tree	$\mathcal{O}(\log n)$					
Red-black tree	$\mathcal{O}(\log n)$					
AA tree	$\mathcal{O}(\log n)$					
(a,b)-tree	$\mathcal{O}(\log n)$					
B-tree	$\mathcal{O}(\log n)$					

* $=$ Amortized

General Trees and Binary Trees \quad номв

Family tree

Company organization tree

File system tree

Book organization tree

Terminology

Term	Meaning
Tree	ADT that stores elements hierarchically
Parent node	Immediate previous-level node
Child nodes	Immediate next-level nodes
Root node	Top node of the tree
Sibling nodes	Nodes that are children of the same parent
External nodes	Nodes without children
Internal nodes	Nodes with one or more children
Ancestor node	Parent node or ancestor of parent node
Descendent node	Child node or descendent of child node
Subtree	Tree consisting of the node and its descendants
Edge	Pair of nodes denoting a parent-child relation
Path	Pair of nodes denoting an ancestor-descendant relation
Ordered tree	Tree with a meaningful linear order among child nodes

Terminology

Binary tree

A binary tree is an ordered tree with the following properties:

1. Every node has at most two children.
2. Each child node is labeled as a left child or a right child.
3. A left child precedes a right child in the order of children.

A recursive definition of the binary tree:

- An empty tree.
- A nonempty tree having a root node r, which stores an element, and two binary trees that are respectively the left and right subtrees of r.

Decision tree

Arithmetic expression tree

Tree represents $((((3+1) * 3) /((9-5)+2))-((3 *(7-4))+6))$.

Terminology

Term	Meaning
Left subtree	Subtree rooted at the left child of an internal node
Right subtree	Subtree rooted at the right child of an internal node
Proper/full tree	A tree in which every node has either 0 or 2 children
Complete tree	Tree in which all except possibly the last level is com- pletely filled and the nodes in the last level are as far left as possible Complete tree in which the last level is completely filled

Tree example

Tree example

Tree example

Tree example

Tree example

Tree example

Levels and maximum number of nodes

Level
Nodes

1

2

4

8
$:$

Properties of binary tree

Let

- $T=$ nonempty binary tree
- $n_{\text {external }}=$ number of external nodes
- $n_{\text {internal }}=$ number of internal nodes
- $n=n_{\text {external }}+n_{\text {internal }}$
- $d_{\text {max }}=$ maximum depth of the tree Then
- $d \max +1 \leq n \leq 2^{d_{\max }+1}-1$
- $1 \leq n_{\text {external }} \leq 2^{d_{\text {max }}}$
- $d_{\text {max }} \leq n_{\text {internal }} \leq 2^{d_{\text {max }}}-1$
- $\log (n+1)-1 \leq d_{\text {max }} \leq n-1$

Properties of proper binary tree

If T is a proper nonempty binary tree,

- $2 d_{\text {max }}+1 \leq n \leq 2^{d_{\text {max }}+1}-1$
- $d_{\text {max }}+1 \leq n_{\text {external }} \leq 2^{d_{\text {max }}}$
- $d_{\text {max }} \leq n_{\text {internal }} \leq 2^{d_{\text {max }}}-1$
- $\log (n+1)-1 \leq d_{\max } \leq(n-1) / 2$
- $n_{\text {external }}=n_{\text {internal }}+1$

Implementing a binary tree using linked structure

Implementing a binary tree using array

Implementing a binary tree using array

Implementing a binary tree using array

- Level numbering or level ordering

For every node p of T, let $f(p)$ be the whole number defined as:

$$
f(p)= \begin{cases}0 & \text { if } p \text { is the root } \\ 2 f(q)+1 & \text { if } p \text { is the left child of position } q \\ 2 f(q)+2 & \text { if } p \text { is the right child of position } q\end{cases}
$$

- Then, node p will be stored at index $f(p)$ in the array.
- $0 \leq f(p) \leq 2^{n}-1$, where $n=$ number of nodes in T

Implementing a general tree using linked structure

children

Tree traversals

- A traversal of a tree T is a systematic way of accessing or visiting all the nodes of T.

Traversal	Binary tree?	General tree?
Preorder traversal	\checkmark	\checkmark
Inorder traversal	\checkmark	\boldsymbol{x}
Postorder traversal	\checkmark	\checkmark
Breadth-first traversal	\checkmark	\checkmark

Preorder/inorder/postorder traversals

```
PreorderTraversal(root)
    1. if root }\not=\mathrm{ null then
    2. VISIT(root)
    3. PreorderTraversal(root.left)
    4. PreorderTraversal(root.right)
    INORDERTRAVERSAL(root)
    1. if root }\not=\mathrm{ null then
    2. InORDERTRAVERSAL(root.left)
    3. Visit(root)
    4. InordERTRAVERSAL(root.right)
    PostorderTravERSAL(root)
    1. if root }\not=\mathrm{ null then
    2. PostorderTraversal(root.left)
    3. PostorderTraversal(root.right)
    4. Visit(root)
```


- Preorder traversal $=\mathrm{ABC}$
- Inorder traversal $=\mathrm{B}$ A C
- Postorder traversal $=\mathrm{BCA}$

- Preorder traversal $=\mathrm{A}[\mathrm{left}][$ right $]=\mathrm{A} \mathrm{B} \mathrm{D} \mathrm{E} \mathrm{C} \mathrm{F} \mathrm{G}$
- Inorder traversal $=[$ left $]$ A [right] $=$ D B E A F C G
- Postorder traversal $=[$ left $][$ right $] A=$ D E B F G C A

Paper
Title
Abstract
§1
§1.1
§1.2
§2
§2.1

Paper
Title
Abstract
§1
§1.1
§1.2
§2
§2.1

Postorder traversal

Postorder traversal: Compute disk space

```
ComputeDiskSpace(root)
1. space }\leftarrow\mathrm{ root.value
2. for each child child of root node do
3. space }\leftarrow\mathrm{ space + ComputeDiskSpace(root.child)
4. return space
```


Breadth-first traversal

General tree.

```
BreadthFirstTraversal()
1. \(Q\).enqueue (root)
2. while \(Q\) is not empty do
3. \(\operatorname{curr} \leftarrow Q\).dequeue()
4. Visit(curr)
5. for each child child of curr node do
6. Q.enqueue(curr.child)
```

Binary tree.

```
BreadthFirstTraversal()
1. Q.enqueue(root)
2. while Q is not empty do
3. curr }\leftarrowQ.dequeue(
4. VISIT(curr)
5. if left child exists then Q.enqueue(curr.left)
6. if right child exists then Q.enqueue(curr.right)
```


Breadth-first traversal: Game trees

Binary Search Trees (BST) номв

Binary search tree (BST)

A binary search tree is a proper binary tree T such that, for each internal node p of T :

- Node p stores an element, say p.key.
- Keys stored in the left subtree of p are less than p.key.
- Keys stored in the right subtree of p are greater than p.key.

Binary search tree node

```
class Node<T>
{
            T key;
            Node<T> left;
            Node<T> right;
            Node(T item, Node<T> lchild, Node<T> rchild)
            { key = item; left = lchild; right = rchild; }
            Node(T item)
            { this(item, null, null); }
}
```


Search: 68 does not exist

Search: Recursive algorithm

```
SEARCH(curr,target)
    1. if curr = null then
2. return curr
3. else if target < curr.key then
4. return SEARCH(curr.left,target)
5. else if target > curr.key then
6. return SEARCH(curr.right,target)
7. else if target = curr.key then
8. return curr
\triangleright unsuccessful search
 recur on left subtree
 recur on right subtree
\triangleright successful search
```


Search: Iterative algorithm

```
SEARCH(curr,target)
1. while curr }\not=\mathrm{ null do
2. if target < curr.key then
3. curr }\leftarrow\mathrm{ curr.left
4. else if target > curr.key then
5. curr }\leftarrow\mathrm{ curr.right
6. else if target = curr.key then
7. return curr }\triangleright\mathrm{ successful search
8. return null }\triangleright\mathrm{ unsuccessful search
```


Search: Analysis

Runtime $\in \Theta(h) \in \mathcal{O}(n)$

Insert: Recursive algorithm

```
InSERT(curr,item)
    Input: Root of tree and item to be inserted
    Output: New root after item insertion
    1. if curr = null then
    2. curr }\leftarrow\operatorname{NODE(item) }\triangleright\mathrm{ item does not exist
    3. else if curr }\not=\mathrm{ null then
    4. if item < curr.key then
    5. curr.left }\leftarrow\operatorname{INSERT(curr.left,item) }\triangleright\mathrm{ recur on left subtree
    6. else if item > curr.key then
    7. curr.right }\leftarrow\operatorname{INSERT(curr.right,item) }\triangleright recur on right subtree
    8. else if item = curr.key then
    9. do nothing }\triangleright\mathrm{ item exists
10. return curr
```


Insert: Iterative algorithm

```
    InSERT(curr, item)
    Input: Root of tree and item to be inserted
    Output: Inserted node
    1. prev \(\leftarrow\) null
    2. while curr \(\neq\) null do
    3. prev \(\leftarrow\) curr
    4. if item < curr.key then
    5. curr \(\leftarrow\) curr.left \(\quad \triangleright\) recur on left subtree
    6. else if item > curr.key then
    7. curr \(\leftarrow\) curr.right \(\quad \triangleright\) recur on right subtree
    8. else if item = curr.key then
    9. return curr
    \(\triangleright\) item exists
10. curr \(\leftarrow \operatorname{NODE}(\) item \()\)
    \(\triangleright\) item does not exist
11. if prev \(\neq\) null then
12. if item \(<\) prev.key then prev.left \(\leftarrow\) curr
13. if item \(>\) prev.key then prev.right \(\leftarrow\) curr
14. return curr
```


Runtime $\in \Theta(h) \in \mathcal{O}(n)$

Delete 32: Node 32 has one child

Delete 32: Node 32 has one child

Delete 88: Node 88 has two children

Delete 88: Node 88 has two children

Delete

Deleting a node (with a particular key) has four cases:

1. Node is not found.

Do nothing.
2. Node is found and it has 0 nonempty children.

Delete the node.
3. Node is found and it has 1 nonempty child.

Delete the node.
Its nonempty child will take the location of the node.
4. Node is found and it has 2 nonempty children.

Locate the predecessor of the node.
Predecessor = curr.left.right.right........right
Predecessor will take the location of the node.
Predecessor's left child will take the location of the predecessor.
(Can we use successor instead of predecessor?)

Delete: Recursive algorithm

```
Delete (curr, item)
Input: Root of tree and item to be deleted
Output: New root after item deletion
1. if curr \(=\) null then
2. do nothing \(\quad \triangleright\) item does not exist
3. else if item < curr.key then
4. curr.left \(\leftarrow\) DELETE(curr.left,item)
5. else if item \(>\) curr.key then
6. curr.right \(\leftarrow\) DELETE(curr.right, item)
7. else if item \(=\) curr.key then
8. if curr.left \(=\) null then \(\quad \triangleright 0\) or 1 child
9. curr \(\leftarrow\) curr.right
10. else if curr.right \(=\) null then \(\quad \triangleright 1\) child
11. curr \(\leftarrow\) curr.left
12. else \(\quad 2\) children
13. curr.key \(\leftarrow \operatorname{FindMax}(\) curr.left).key
14. curr.left \(\leftarrow\) Delete(curr.left, curr.key)
```

\triangleright item does not exist
\triangleright recur on left
\triangleright recur on right
\triangleright item exists
$\triangleright 0$ or 1 child
$\triangleright 1$ child
$\triangleright 2$ children
\triangleright find predecessor
\triangleright delete predecessor

[^0]
Delete: Iterative algorithm

Problem
How do you write an iterative algorithm for deleting an item?

Delete: Analysis

Runtime $\in \Theta(h) \in \mathcal{O}(n)$

Balanced Search Trees номв

Balanced search trees: Motivation

Data structure	Search	Insert	Delete
Binary search tree	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(n)$
Balanced search tree	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$

(2,4)-trees

- A (2,4)-tree or 2-3-4 tree is a balanced search tree.
- A $(2,4)$-tree satisfies two properties:

1. Size property. Every non-empty node has 2, 3, or 4 children.
2. Depth property. All empty nodes have the same depth.

(2,4)-trees

There are three types of non-empty nodes:

- 2-nodes have 2 children and 1 key. e.g.: [11], [12], [15], [17]
- 3-nodes have 3 children and 2 keys. e.g.: [3 4], [5 10], [13 14]
- 4 -nodes have 4 children and 3 keys. e.g.: [6 7 8]

Search: 24 exists

Search: 12 does not exist

Size and depth properties are satisfied.

Overflow: Size property is violated at [lllllllllllllll 1415 17

Size property at $\left[\begin{array}{lll}13 & 14 & 15 \\ 17\end{array}\right]$ will be fixed via split operation.

Overflow: Size property is violated at [5 1012 15].

Size property at [$\left.\begin{array}{llll}5 & 10 & 12 & 15\end{array}\right]$ will be fixed via split operation.

Size and depth properties are satisfied.

Delete 4

Delete 4

Size property will be fixed via transfer operation.

Delete 12

Underflow: Size property is violated is [12], which has non-empty children. It will be fixed via swap with predecessor.

Underflow: Size property is violated is [11].

Delete 12

Size property will be fixed via fusion operation.

Delete 12

Delete 13

Delete 13

Delete

$n_{e}=$ node with empty children
$n_{\neq e}=$ node with non-empty children
$s_{3,4}=$ immediate sibling of n_{e} is a 3 -node or a 4 -node
$s_{2}=$ immediate sibling of n_{e} is a 2 -node
$p=$ parent of n_{e}

- Deletion of $n_{\neq e}$ can always be reduced to n_{e}
- Suppose deleted node is:

1. $n_{\neq e}$.

Swap with the n_{e} predecessor
2. n_{e} and $s_{3,4}$ exists.

Transfer a child and key of $s_{3,4}$ to p and a key of p to n_{e}.
3. n_{e} and $s_{3,4}$ does not exist.

Fuse/merge n_{e} with s_{2} to get n_{e}^{\prime}. Move key from p to n_{e}^{\prime}.

(2,4)-trees: Complexity

Method	Running time
Search	$\mathcal{O}(\log n)$
Insert	$\mathcal{O}(\log n)$
Delete	$\mathcal{O}(\log n)$

B Trees номв

Computer memory

Cache-efficient algorithms: Example

Problem
How do you efficiently sort a 1 GB file of natural numbers?

Cache-efficient algorithms: Example

Problem

How do you efficiently sort a 1 GB file of natural numbers?
Workout
Do you want to use quicksort or merge sort, usually implemented in a standard library's sorting algorithm? Your computer program might still take hours to run. Reason? Your algorithm is computation-efficient but not communication-efficient and communication is more expensive than computation.
Reducing communication (via good use of cache) leads to reduced running time. An algorithm that makes good use of cache is called cache-efficient. A cache-efficient sorting algorithm might take just a few minutes to sort a 1 GB file of numbers.
Example: External-memory merge sort.

Cache data locality

An algorithm must have the following two features in order to make good use of cache.

1. Spatial data locality
2. Temporal data locality

Spatial data locality

- Meaning?

Whenever a cache block is brought into the cache, it contains as much useful data as possible.

- How to exploit?

Group data in blocks (or pages). Move data in blocks.

Temporal data locality

- Meaning?

Whenever a cache block is brought into the cache, as much useful work as possible is performed on this data before removing the block from the cache.

- Necessary condition?

Total computations is asymptotically greater than space
i.e., $T(n) \in \omega(S(n))$

- How to exploit?

Design recursive divide-and-conquer algorithms

Cache complexity

- Cache complexity is the asymptotic number of cache misses or page faults incurred by an algorithm.
- Cache-efficient algorithms incur fewer cache misses.
- Cache-efficient algorithms try to exploit both spatial and temporal data locality.
- Terminology: $B=$ data block size, $M=$ cache size

Cache-efficient algorithms

Problem	Cache-inefficient algo	Cache-efficient algo
Sorting	Merge sort	Ext-memory merge sort
	$\mathcal{O}(n \log n)$	$\mathcal{O}\left(\frac{n}{B} \log _{\frac{M}{B}} \frac{n}{B}\right)$
Balanced tree	$(2,4)$-tree	B tree
	$\mathcal{O}(\log n)$	$\mathcal{O}\left(\log _{B} n\right)$
Matrix product	Iterative	Recursive D\&C
	$\mathcal{O}\left(n^{3}\right)$	$\mathcal{O}\left(\frac{n^{3}}{B \sqrt{M}}\right)$

(a, b)-trees

- (a, b)-tree is a straightforward generalization of $(2,4)$-tree in which the complexities depend on a and b
- By choosing proper values for a and b, we get a balanced search tree that has excellent external-memory performance
- (a, b)-tree is a multiway search tree such that each node has between a and b children and stores between $a-1$ and $b-1$ entries

(a, b)-trees

- An (a, b)-tree is a balanced multiway search tree.
- An (a, b)-tree satisfies three properties:

1. $2 \leq a \leq(b+1) / 2$
2. Size property. Every non-empty node has children in the range $[a, b]$.
3. Depth property. All empty nodes have the same depth.

B trees

- B tree of order d is an (a, b) tree with $a=\lceil d / 2\rceil$ and $b=d$.
- B trees are analyzed for cache complexity.
- B trees are cache-efficient, when $d=B$, as they exploit spatial data locality.

B trees: Complexity

	(2,4)-tree		B tree	
Method	Communication	Computation	Communication	Computation
Search	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}\left(\log _{B} n\right)$	$\mathcal{O}(\log n)$
Insert	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}\left(\log _{B} n\right)$	$\mathcal{O}(\log n)$
Delete	$\mathcal{O}(\log n)$	$\mathcal{O}(\log n)$	$\mathcal{O}\left(\log _{B} n\right)$	$\mathcal{O}(\log n)$

- B trees (and variants such as $B+$ trees, B^{*} trees, $B \#$ trees) are used for file systems and databases.
Microsoft: NTFS
Mac: HFS, HFS+
Linux: BTRFS, EXT4, JFS2
Databases: Oracle, DB2, Ingres, SQL, PostgreSQL

[^0]: 15. return curr
