
1

Algorithms
(Trees)

Pramod Ganapathi
Department of Computer Science

State University of New York at Stony Brook

September 21, 2021

2

Contents

Dictionary ADT
General Trees and Binary Trees
Binary Search Trees
Balanced Search Trees
(2,4)-Trees
B Trees

Tries and Suffix Trees

3

Dictionary ADT

Dictionary ADT represents a collection of items, where,
each item can be a key or a (key, value) pair.

ADT Item Ordered? Duplicates? Implementation
Set key 7 7 Hash table
Sorted set key 3 7 Balanced tree
Multiset key 7 3 Hash table
Sorted multiset key 3 3 Balanced tree
Map (key, value) 7 7 Hash table
Sorted map (key, value) 3 7 Balanced tree
Multimap (key, value) 7 3 Hash table
Sorted multimap (key, value) 3 3 Balanced tree

4

Map

A map is a collection of key-value pairs (k, v), where,
keys are unique.

Key Value
Dictionary word Word meaning
User ID User record
Employee ID Employee record
Student ID Student record
Patient ID Patient record
Profile ID Person details
Order ID Order details
Transaction ID Transaction details
URL Web page
Full file name File

5

Set ADT (java.util.Set interface)

Method Functionality
add(e) Adds the element e to S (if not already present).
remove(e) Removes the element e from S (if it is present).
contains(e) Returns whether e is an element of S.
iterator() Returns an iterator of the elements of S.
addAll(T) Updates S to also include all elements of set T ,

effectively replacing S by S ∪ T .
retainAll(T) Updates S so that it only keeps those elements

that are also elements of set T , effectively replac-
ing S by S ∩ T .

removeAll(T) Updates S by removing any of its elements that
also occur in set T , effectively replacing S by S−T .

Set = unordered set; Map = unordered map.
java.util.HashSet is an implementation of the set ADT.
java.util.HashMap is an implementation of the map ADT.

6

Sorted set ADT (java.util.SortedSet interface)

Method Functionality
first() Returns the smallest element in S.
last() Returns the largest element in S.
ceiling(e) Returns the smallest element ≥ e.
floor(e) Returns the largest element ≤ e.
lower(e) Returns the largest element < e.
higher(e) Returns the smallest element > e.
subSet(e1,e2) Returns an iteration of all elements greater than

or equal to e1, but strictly less than e2.
pollFirst() Returns and removes the smallest element in S.
pollLast() Returns and removes the largest element in S.

java.util.TreeSet is an implementation of the sorted set ADT.
java.util.TreeMap is an implementation of the sorted map ADT.
TreeSet and TreeMap use balanced search tree

7

Multiset ADT

Method Functionality
add(e) Adds a single occurrences of e to the multiset.
contains(e) Returns true if the multiset contains an element = e.
count(e) Returns the number of occurrences of e in the multiset.
remove(e) Removes a single occurrence of e from the multiset.
remove(e, n) Removes n occurrences of e from the multiset.
size() Returns the number of elements of the multiset

(including duplicates).
iterator() Returns an iteration of all elements of the multiset

(repeating those with multiplicity greater than one).

Java does not include any form of a multiset.
Guava = Google Core Libraries for Java.
Guava’s Multiset is an implementation of the multiset ADT.
Guava’s Multimap is an implementation of the multimap ADT.
Similarly, one can define sorted multiset ADT

8

Dictionary operations (for unique keys)

Worst case Average case
Data structure Search Insert Delete Search Insert Delete
Sorted array O (log n) O (n) O (n) O (log n) O (n) O (n)
Unsorted list O (n) O (1) O (n) O (n) O (1) O (n)
Hashing O (n) O (n) O (n) O (1)∗ O (1)∗ O (1)∗

BST O (n) O (n) O (n) O (log n) O (log n) O (log n)
Splay tree O (log n)∗ O (log n)∗ O (log n)∗ O (log n)∗ O (log n)∗ O (log n)∗

Scapegoat tree O (log n) O (log n)∗ O (log n)∗ O (log n) O (log n) O (log n)
AVL tree O (log n) O (log n) O (log n) O (log n) O (log n) O (log n)
Red-black tree O (log n) O (log n) O (log n) O (log n) O (log n) O (log n)
AA tree O (log n) O (log n) O (log n) O (log n) O (log n) O (log n)
(a, b)-tree O (log n) O (log n) O (log n) O (log n) O (log n) O (log n)
B-tree O (log n) O (log n) O (log n) O (log n) O (log n) O (log n)

* = Amortized

General Trees and Binary Trees HOME

9

10

Family tree

E
ld

aa
h

N
eb

ai
o
th

K
ed

ar
A

d
b
ee

l
M

ib
sa

m
M

is
h
m

a
D

u
m

ah
M

as
sa

H
ad

ad
T

em
a

Je
tu

r
N

ap
h
is

h
K

ed
em

ah

Is
h
m

ae
l

G
ad

N
ap

h
ta

li
D

an
Ju

d
ah

L
ev

i
S

im
eo

n

A
sh

er
Is

sa
ch

ar
Z

eb
u
lu

n
D

in
ah

Jo
se

p
h

B
en

ja
m

in

E
li

p
h
az

R
eu

el
Je

u
sh

Ja
la

m

R
eu

b
en

K
o
ra

h

Ja
co

b
(I

sr
ae

l)

E
sa

u

Is
aa

c

Z
im

ra
n

Jo
k
sh

an

M
ed

an

M
id

ia
n

Is
h
b
ak

S
h
u
ah

A
b
ra

h
am

S
h
eb

a
D

ed
an

E
p
h
ah

E
p
h
er

H
an

o
ch

A
b
id

a

11

Company organization tree

Europe AsiaAfrica Australia

Canada OverseasS. America

Domestic International TV CD Tuner

Sales Purchasing ManufacturingR&D

Electronics R’Us

12

File system tree

/user/rt/courses/

cs016/ cs252/

programs/homeworks/ projects/

papers/ demos/
hw1 hw2 hw3 pr1 pr2 pr3

grades

marketbuylow sellhigh

grades

13

Book organization tree

...... ¶¶...¶ ¶

Book

Part A Part B ReferencesPreface

...Ch. 1 Ch. 5 Ch. 6 Ch. 9¶ ¶ ¶ ¶

...§ 1.4§ 1.1 § 5.7§ 5.1 § 9.6§ 9.1§ 6.5§ 6.1

14

Terminology

Term Meaning
Tree ADT that stores elements hierarchically
Parent node Immediate previous-level node
Child nodes Immediate next-level nodes
Root node Top node of the tree
Sibling nodes Nodes that are children of the same parent
External nodes Nodes without children
Internal nodes Nodes with one or more children
Ancestor node Parent node or ancestor of parent node
Descendent node Child node or descendent of child node
Subtree Tree consisting of the node and its descendants
Edge Pair of nodes denoting a parent-child relation
Path Pair of nodes denoting an ancestor-descendant relation
Ordered tree Tree with a meaningful linear order among child nodes

15

Terminology

16

Binary tree

A binary tree is an ordered tree with the following properties:
1. Every node has at most two children.
2. Each child node is labeled as a left child or a right child.
3. A left child precedes a right child in the order of children.
A recursive definition of the binary tree:
An empty tree.
A nonempty tree having a root node r, which stores an element,
and two binary trees that are respectively the left and right
subtrees of r.

17

Decision tree

Yes

Yes

Yes No

No

No

Are you nervous?

Will you need to access most of the

money within the next 5 years?

Are you willing to accept risks in

exchange for higher expected returns?
Money market fund.

Stock portfolio.

Savings account.

Diversified portfolio with stocks,

bonds, and short-term instruments.

18

Arithmetic expression tree

∗

+

−

+ 3

9 5

+

2− 3 −

6

3 1 7 4

/

∗

Tree represents ((((3 + 1) ∗ 3)/((9− 5) + 2))− ((3 ∗ (7− 4)) + 6)).

19

Terminology

Term Meaning
Left subtree Subtree rooted at the left child of an internal node
Right subtree Subtree rooted at the right child of an internal node
Proper/full tree A tree in which every node has either 0 or 2 children
Complete tree Tree in which all except possibly the last level is com-

pletely filled and the nodes in the last level are as far left
as possible

Perfect tree Complete tree in which the last level is completely filled

20

Tree example

Binary 3, Proper 7, Complete 7, Perfect 7

21

Tree example

Binary 3, Proper 3, Complete 7, Perfect 7

22

Tree example

Binary 3, Proper 3, Complete 7, Perfect 7

23

Tree example

Binary 3, Proper 7, Complete 3, Perfect 7

24

Tree example

Binary 3, Proper 3, Complete 3, Perfect 7

25

Tree example

Binary 3, Proper 3, Complete 3, Perfect 3

26

Levels and maximum number of nodes

...

0

..
. ...

1

2

3

1

..
.

2

4

8

Level Nodes

27

Properties of binary tree

Let
T = nonempty binary tree
nexternal = number of external nodes
ninternal = number of internal nodes
n = nexternal + ninternal
dmax = maximum depth of the tree

Then
dmax + 1 ≤ n ≤ 2dmax+1 − 1
1 ≤ nexternal ≤ 2dmax

dmax ≤ ninternal ≤ 2dmax − 1
log(n + 1)− 1 ≤ dmax ≤ n− 1

28

Properties of proper binary tree

If T is a proper nonempty binary tree,
2dmax + 1 ≤ n ≤ 2dmax+1 − 1
dmax + 1 ≤ nexternal ≤ 2dmax

dmax ≤ ninternal ≤ 2dmax − 1
log(n + 1)− 1 ≤ dmax ≤ (n− 1)/2
nexternal = ninternal + 1

29

Implementing a binary tree using linked structure

parent

element

rightleft

root

∅

∅

∅∅ ∅

∅

∅

Baltimore Chicago New York Providence Seattle

size

5

30

Implementing a binary tree using array

.

4

10 11 12 13 1487

0

2

65

1

3

9

15

+

−

+

∗

3

9 5

+

2−

∗

3 −

6

3 1 7 4

/

0

1 2

543 6

121110

25 2620

9

19

7 8

16

31

Implementing a binary tree using array

/

4 2

0

21

3 4 5 6

121187

3 1

+

∗

9 5

−

+

0 6 121 2 3 4 5 7 8 9 10 11 13 14

5∗ + + 4 − 2 3 1 9/

32

Implementing a binary tree using array

Level numbering or level ordering
For every node p of T , let f(p) be the whole number defined as:

f(p) =

0 if p is the root,
2f(q) + 1 if p is the left child of position q,

2f(q) + 2 if p is the right child of position q.

Then, node p will be stored at index f(p) in the array.
0 ≤ f(p) ≤ 2n − 1, where n = number of nodes in T

33

Implementing a general tree using linked structure

element

parent

children

Baltimore Chicago

New York

Providence Seattle

34

Tree traversals

A traversal of a tree T is a systematic way of accessing or
visiting all the nodes of T .

Traversal Binary tree? General tree?
Preorder traversal 3 3

Inorder traversal 3 7

Postorder traversal 3 3

Breadth-first traversal 3 3

35

Preorder/inorder/postorder traversals

PreorderTraversal(root)
1. if root 6= null then
2. Visit(root)
3. PreorderTraversal(root.left)
4. PreorderTraversal(root.right)

InorderTraversal(root)
1. if root 6= null then
2. InorderTraversal(root.left)
3. Visit(root)
4. InorderTraversal(root.right)

PostorderTraversal(root)
1. if root 6= null then
2. PostorderTraversal(root.left)
3. PostorderTraversal(root.right)
4. Visit(root)

36

Preorder/inorder/postorder traversals

Preorder traversal = A B C
Inorder traversal = B A C
Postorder traversal = B C A

37

Preorder/inorder/postorder traversals

Preorder traversal = A [left] [right] = A B D E C F G
Inorder traversal = [left] A [right] = D B E A F C G
Postorder traversal = [left] [right] A = D E B F G C A

38

Preorder traversal

Paper

Title Abstract § 1 References§ 2 § 3

§ 1.1 § 1.2 § 2.1 § 2.2 § 2.3 § 3.1 § 3.2

39

Preorder traversal: Table of contents

40

Postorder traversal

Paper

Title Abstract § 1 References§ 2 § 3

§ 1.1 § 1.2 § 2.1 § 2.2 § 2.3 § 3.1 § 3.2

41

Postorder traversal: Compute disk space

ComputeDiskSpace(root)
1. space← root.value
2. for each child child of root node do
3. space← space + ComputeDiskSpace(root.child)
4. return space

42

Inorder traversal: Arithmetic expression

3 1 9 5 47

+ 3 2− 3 −

× + × 6

/ +

−

(((3 + 1)× 3)/((9− 5) + 2))− ((3× (7− 4)) + 6)

43

Breadth-first traversal

General tree.
BreadthFirstTraversal()
1. Q.enqueue(root)
2. while Q is not empty do
3. curr ← Q.dequeue()
4. Visit(curr)
5. for each child child of curr node do
6. Q.enqueue(curr.child)

Binary tree.
BreadthFirstTraversal()
1. Q.enqueue(root)
2. while Q is not empty do
3. curr ← Q.dequeue()
4. Visit(curr)
5. if left child exists then Q.enqueue(curr.left)
6. if right child exists then Q.enqueue(curr.right)

44

Breadth-first traversal: Game trees

X

X

X

O

X

O

X

O

X

O

O XX

O

X

O

X

O

X OX OO

X

O

X

X

16

32 4

1

5 6 87 9 10 11 12 13 14 15

Binary Search Trees (BST) HOME

45

46

Binary search tree (BST)

A binary search tree is a proper binary tree T such that, for each
internal node p of T :
Node p stores an element, say p.key.
Keys stored in the left subtree of p are less than p.key.
Keys stored in the right subtree of p are greater than p.key.

17 88

65

54

29

8

44

76

80

97

93

21

32

28 82

47

Binary search tree node

1. class Node<T>
2. {
3. T key;
4. Node<T> left;
5. Node<T> right;
6.
7. Node(T item, Node<T> lchild, Node<T> rchild)
8. { key = item; left = lchild; right = rchild; }
9.

10. Node(T item)
11. { this(item, null, null); }
12. }

48

Search: 65 exists

28

21 29

82

88

65

54

44

32

17

8

93

97

76

80

49

Search: 68 does not exist

28

29

80

82

88

65

54

44

32

17

8

93

97

7621

50

Search: Recursive algorithm

Search(curr, target)
1. if curr = null then
2. return curr B unsuccessful search
3. else if target < curr.key then
4. return Search(curr.left, target) B recur on left subtree
5. else if target > curr.key then
6. return Search(curr.right, target) B recur on right subtree
7. else if target = curr.key then
8. return curr B successful search

51

Search: Iterative algorithm

Search(curr, target)
1. while curr 6= null do
2. if target < curr.key then
3. curr ← curr.left B recur on left subtree
4. else if target > curr.key then
5. curr ← curr.right B recur on right subtree
6. else if target = curr.key then
7. return curr B successful search
8. return null B unsuccessful search

52

Search: Analysis

Tree T:

Time per level

Total time:

Height

h

O(h)

O(1)

O(1)

O(1)

Runtime ∈ Θ (h) ∈ O (n)

53

Insert 68

28

29

80

82

88

65

54

44

32

17

8

93

97

7621

54

Insert 68

21

8068

82

88

65

54

44

32

17

8

93

97

76

28

29

55

Insert: Recursive algorithm

Insert(curr, item)
Input: Root of tree and item to be inserted
Output: New root after item insertion
1. if curr = null then
2. curr ← Node(item) B item does not exist

. .
3. else if curr 6= null then
4. if item < curr.key then
5. curr.left← Insert(curr.left, item) B recur on left subtree
6. else if item > curr.key then
7. curr.right← Insert(curr.right, item) B recur on right subtree
8. else if item = curr.key then
9. do nothing B item exists

. .
10. return curr

56

Insert: Iterative algorithm

Insert(curr, item)
Input: Root of tree and item to be inserted
Output: Inserted node
1. prev ← null
2. while curr 6= null do
3. prev ← curr
4. if item < curr.key then
5. curr ← curr.left B recur on left subtree
6. else if item > curr.key then
7. curr ← curr.right B recur on right subtree
8. else if item = curr.key then
9. return curr B item exists

. .
10. curr ← Node(item) B item does not exist
11. if prev 6= null then
12. if item < prev.key then prev.left← curr
13. if item > prev.key then prev.right← curr
14. return curr

57

Insert: Analysis

Tree T:

Time per level

Total time:

Height

h

O(h)

O(1)

O(1)

O(1)

Runtime ∈ Θ (h) ∈ O (n)

58

Delete 32: Node 32 has one child

21

p

76

82

88

65

54

44

32

17

8

93

97

8068

r

28

29

59

Delete 32: Node 32 has one child

28

29

68

r

82

88

65

54

44

17

93

97

76

80

8

21

60

Delete 88: Node 88 has two children

p

21 29

8

82

88

65

54

44

93

97

76

8068

r

17

28

61

Delete 88: Node 88 has two children

97

r

93

17

29

8068

76

658

p

82

28

21 54

44

62

Delete

Deleting a node (with a particular key) has four cases:
1. Node is not found.

Do nothing.
2. Node is found and it has 0 nonempty children.

Delete the node.
3. Node is found and it has 1 nonempty child.

Delete the node.
Its nonempty child will take the location of the node.

4. Node is found and it has 2 nonempty children.
Locate the predecessor of the node.
Predecessor = curr.left.right.right........right
Predecessor will take the location of the node.
Predecessor’s left child will take the location of the predecessor.
(Can we use successor instead of predecessor?)

63

Delete: Recursive algorithm

Delete(curr, item)
Input: Root of tree and item to be deleted
Output: New root after item deletion
1. if curr = null then
2. do nothing B item does not exist
3. else if item < curr.key then
4. curr.left← Delete(curr.left, item) B recur on left
5. else if item > curr.key then
6. curr.right← Delete(curr.right, item) B recur on right
7. else if item = curr.key then B item exists

. .
8. if curr.left = null then B 0 or 1 child
9. curr ← curr.right

10. else if curr.right = null then B 1 child
11. curr ← curr.left
12. else B 2 children
13. curr.key ← FindMax(curr.left).key B find predecessor
14. curr.left← Delete(curr.left, curr.key) B delete predecessor

. .
15. return curr

64

Delete: Iterative algorithm

Problem
How do you write an iterative algorithm for deleting an item?

65

Delete: Analysis

Tree T:

Time per level

Total time:

Height

h

O(h)

O(1)

O(1)

O(1)

Runtime ∈ Θ (h) ∈ O (n)

Balanced Search Trees HOME

66

67

Balanced search trees: Motivation

Data structure Search Insert Delete
Binary search tree O (n) O (n) O (n)
Balanced search tree O (log n) O (log n) O (log n)

68

(2,4)-trees

A (2,4)-tree or 2-3-4 tree is a balanced search tree.
A (2,4)-tree satisfies two properties:
1. Size property. Every non-empty node has 2, 3, or 4 children.
2. Depth property. All empty nodes have the same depth.

12

17116 7 83 4

5 10 15

13 14

69

(2,4)-trees

12

17116 7 83 4

5 10 15

13 14

There are three types of non-empty nodes:
2-nodes have 2 children and 1 key. e.g.: [11], [12], [15], [17]
3-nodes have 3 children and 2 keys. e.g.: [3 4], [5 10], [13 14]
4-nodes have 4 children and 3 keys. e.g.: [6 7 8]

70

Search: 24 exists

23 24

17

273 4 6 8

25

11 13

14

5 10

22

71

Search: 12 does not exist

6 8

5 10

22

25

11 13 17

23 24 273 4 14

72

Insert 17

13

12

146 7 8 113 4

105

15

Size and depth properties are satisfied.

73

Insert 17

15 17

12

146 7 8 113 4

105

13

Overflow: Size property is violated at [13 14 15 17].

74

Insert 17

6 7 8 11 13 14 17

15
5 10 12

3 4

Size property at [13 14 15 17] will be fixed via split operation.

75

Insert 17

13 14 17116 7 83 4

5 10 12 15

Overflow: Size property is violated at [5 10 12 15].

76

Insert 17

12

13 14 17116 7 83 4

5 10 15

Size property at [5 10 12 15] will be fixed via split operation.

77

Insert 17

15

17116 7 83 4

12

5 10

13 14

Size and depth properties are satisfied.

78

Insert: Node split

h1 h2

c3c2c1 c5

u

w

k1 k2 k3 k4

c4

k3

c3c2c1 c5

w

k1 k2 k4

c4

u

h1 h2

w
′

c2c1 c4 c5

k1 k2 k4

h1 k3 h2

u

w
′′

c3

79

Insert 4, 6, 12, 15

4 4 6 64 12

6 124 15

12

4 6 15

80

Insert 3, 5

12

4 156 6 15

12

43

15

12

3 4 5 6 15

12

3 4

5

6

81

Insert 10, 8

12

1543

5

6

10

12

3 1564

5

3 15

12

104 6 8

5

82

Delete 4

6 8 1713 14

15

12

11

4

5 10

Underflow: Size property is violated is [4].

83

Delete 4

10

8

15

13 14 1711

u

w

12

5

6
s

Size property will be fixed via transfer operation.

84

Delete 12

w

11 1713 14

15106

5 8

12

s

u

85

Delete 12

13 1485

6 10

17

12

15

11

Underflow: Size property is violated is [12], which has non-empty
children. It will be fixed via swap with predecessor.

Underflow: Size property is violated is [11].

86

Delete 12

17

10

w

11

13 14

15

85

6

u

Size property will be fixed via fusion operation.

87

Delete 12

6

13 148 10

w
′

15

17

u

11

5

88

Delete 13

6

148 10

13

15

175

11

89

Delete 13

8 10

11

1714

6 15

5

90

Delete

ne = node with empty children
n 6=e = node with non-empty children
s3,4 = immediate sibling of ne is a 3-node or a 4-node
s2 = immediate sibling of ne is a 2-node
p = parent of ne

Deletion of n 6=e can always be reduced to ne

Suppose deleted node is:
1. n 6=e.

Swap with the ne predecessor
2. ne and s3,4 exists.

Transfer a child and key of s3,4 to p and a key of p to ne.
3. ne and s3,4 does not exist.

Fuse/merge ne with s2 to get n′e. Move key from p to n′e.

91

(2,4)-trees: Complexity

Method Running time
Search O (log n)
Insert O (log n)
Delete O (log n)

B Trees HOME

92

93

Computer memory

External Memory

Internal Memory

Caches

Registers

CPU

Bigger

Network Storage Faster

94

Cache-efficient algorithms: Example

Problem
How do you efficiently sort a 1 GB file of natural numbers?

Workout
Do you want to use quicksort or merge sort, usually implemented
in a standard library’s sorting algorithm? Your computer pro-
gram might still take hours to run. Reason? Your algorithm is
computation-efficient but not communication-efficient and
communication is more expensive than computation.
Reducing communication (via good use of cache) leads to reduced
running time. An algorithm that makes good use of cache is
called cache-efficient. A cache-efficient sorting algorithm might
take just a few minutes to sort a 1 GB file of numbers.
Example: External-memory merge sort.

94

Cache-efficient algorithms: Example

Problem
How do you efficiently sort a 1 GB file of natural numbers?

Workout
Do you want to use quicksort or merge sort, usually implemented
in a standard library’s sorting algorithm? Your computer pro-
gram might still take hours to run. Reason? Your algorithm is
computation-efficient but not communication-efficient and
communication is more expensive than computation.
Reducing communication (via good use of cache) leads to reduced
running time. An algorithm that makes good use of cache is
called cache-efficient. A cache-efficient sorting algorithm might
take just a few minutes to sort a 1 GB file of numbers.
Example: External-memory merge sort.

95

Cache data locality

An algorithm must have the following two features in order to
make good use of cache.
1. Spatial data locality
2. Temporal data locality

96

Spatial data locality

Meaning?
Whenever a cache block is brought into the cache, it contains as
much useful data as possible.
How to exploit?
Group data in blocks (or pages). Move data in blocks.

97

Temporal data locality

Meaning?
Whenever a cache block is brought into the cache, as much
useful work as possible is performed on this data before removing
the block from the cache.
Necessary condition?
Total computations is asymptotically greater than space
i.e., T (n) ∈ ω (S(n))
How to exploit?
Design recursive divide-and-conquer algorithms

98

Cache complexity

Cache complexity is the asymptotic number of cache misses or
page faults incurred by an algorithm.
Cache-efficient algorithms incur fewer cache misses.
Cache-efficient algorithms try to exploit both spatial and
temporal data locality.
Terminology: B = data block size, M = cache size

99

Cache-efficient algorithms

Problem Cache-inefficient algo Cache-efficient algo
Sorting Merge sort Ext-memory merge sort

O (n log n) O
(

n
B log M

B

n
B

)
Balanced tree (2,4)-tree B tree

O (log n) O (logB n)
Matrix product Iterative Recursive D&C

O
(
n3) O

(
n3

B
√

M

)

100

(a, b)-trees

(a, b)-tree is a straightforward generalization of (2,4)-tree
in which the complexities depend on a and b
By choosing proper values for a and b, we get a balanced search
tree that has excellent external-memory performance
(a, b)-tree is a multiway search tree such that
each node has between a and b children and
stores between a− 1 and b− 1 entries

101

(a, b)-trees

An (a, b)-tree is a balanced multiway search tree.
An (a, b)-tree satisfies three properties:
1. 2 ≤ a ≤ (b + 1)/2
2. Size property. Every non-empty node has children in the

range [a, b].
3. Depth property. All empty nodes have the same depth.

102

B trees

B tree of order d is an (a, b) tree with a = dd/2e and b = d.
B trees are analyzed for cache complexity.
B trees are cache-efficient, when d = B, as they exploit
spatial data locality.

7066 989575744543 635929241211 8583 864038 41 5048 51 53 56

3722 5846 8072 93

6542

103

B trees: Complexity

(2,4)-tree B tree
Method Communication Computation Communication Computation
Search O (log n) O (log n) O (logB n) O (log n)
Insert O (log n) O (log n) O (logB n) O (log n)
Delete O (log n) O (log n) O (logB n) O (log n)

B trees (and variants such as B+ trees, B* trees, B# trees) are
used for file systems and databases.
Microsoft: NTFS
Mac: HFS, HFS+
Linux: BTRFS, EXT4, JFS2
Databases: Oracle, DB2, Ingres, SQL, PostgreSQL

