Algorithms
(Trees)

Pramod Ganapathi
Department of Computer Science
State University of New York at Stony Brook

September 21, 2021

o‘m 52
%

%

2,

AN
39

<S

Contents

Dictionary ADT

General Trees and Binary Trees
Binary Search Trees

Balanced Search Trees

® (2,4)-Trees

® B Trees

Tries and Suffix Trees

Dictionary ADT

Dictionary ADT represents a collection of items, where,
each item can be a key or a (key, value) pair.

ADT Item Ordered? Duplicates? | Implementation
Set key X X Hash table
Sorted set key v X Balanced tree
Multiset key X v Hash table
Sorted multiset key v v Balanced tree
Map (key, value) X X Hash table
Sorted map (key,value) v X Balanced tree
Multimap (key, value) X v Hash table
Sorted multimap | (key,value) v v Balanced tree

Map

e A map is a collection of key-value pairs (k,v), where,
keys are unique.

[Key Value)
Dictionary word | Word meaning
User ID User record
Employee ID Employee record
Student 1D Student record
Patient 1D Patient record
Profile ID Person details
Order ID Order details
Transaction ID | Transaction details
URL Web page
Full file name File

Set ADT (java.util.Set interface)

("Method

Functionality

add (e)
remove (e)
contains(e)
iterator ()

Adds the element e to S (if not already present).
Removes the element e from S (if it is present).
Returns whether e is an element of S.

Returns an iterator of the elements of .S.

addA11(T)

retainAll(T)

removeAll (T)

Updates S to also include all elements of set T,
effectively replacing S by SUT.

Updates S so that it only keeps those elements
that are also elements of set T, effectively replac-
ing Sby SNT.

Updates S by removing any of its elements that
also occur in set T, effectively replacing S by S—T.

@ Set = unordered

set; Map = unordered map.

java.util.HashSet is an implementation of the set ADT.
java.util.HashMap is an implementation of the map ADT.

Sorted set ADT (java.util.SortedSet interface)

Method Functionality)

first() Returns the smallest element in S.

last () Returns the largest element in S.

ceiling(e) Returns the smallest element > e.

floor(e) Returns the largest element < e.

lower (e) Returns the largest element < e.

higher(e) Returns the smallest element > e.

subSet (el,e2) | Returns an iteration of all elements greater than
or equal to el, but strictly less than e2.

pollFirst() Returns and removes the smallest element in S.

polllast () Returns and removes the largest element in S.

@ java.util. TreeSet is an implementation of the sorted set ADT.
java.util. TreeMap is an implementation of the sorted map ADT.
@ TreeSet and TreeMap use balanced search tree

Multiset ADT

("Method

Functionality

add(e)
contains(e)
count (e)
remove (e)
remove(e, n)
size()

iterator()

Adds a single occurrences of e to the multiset.

Returns true if the multiset contains an element = e.
Returns the number of occurrences of e in the multiset.
Removes a single occurrence of e from the multiset.
Removes n occurrences of e from the multiset.

Returns the number of elements of the multiset
(including duplicates).

Returns an iteration of all elements of the multiset
(repeating those with multiplicity greater than one).

@ Java does not include any form of a multiset.
Guava = Google Core Libraries for Java.
Guava's Multiset is an implementation of the multiset ADT.
Guava's Multimap is an implementation of the multimap ADT.
e Similarly, one can define sorted multiset ADT

Dictionary operations (for unique keys)

Worst case Average case
Data structure Search Insert Delete Search Insert Delete
Sorted array O (logn) O (n) O (n) O (logn) O (n) O (n)
Unsorted list O (n) 0(1) O (n) O (n) O (1) O (n)
Hashing O (n) O (n) O (n) o ()" 0 (1)" o ()"
BST O (n) O (n) O (n) O(logn) O(logn) O (logn)
Splay tree O (logn)* O(logn)" O (logn)* | O(ogn)* O (logn)* O (logn)*
Scapegoat tree | O (logn) O (logn)* O (logn)* | O(ogn) O (logn) O (logn)
AVL tree O(logn) O(logn) Of(logn) | O(logn) O(logn) O (logn)
Red-black tree | O (logn) O(logn) O(logn) [O(logn) O(logn) O (logn)
AA tree O(logn) O(logn) Of(logn) | O(logn) O(logn) O (logn)
(a, b)-tree O(logn) O(logn) Of(logn) | O(logn) O(logn) O (logn)
B-tree O(logn) O(logn) Of(logn) | O(ogn) O(logn) O(logn)

* — Amortized

General Trees and Binary Trees

Family tree

weyeIqy

yenys

equst
yeepry
epIQy
UBIPTIA yooueH
Ioyd:
yeydyg
uepajA

ueySYOf <—_ wmwmm

ueIwry

([orias]) qooe[

oees|

nesg

yewopay
ysiydeN

mor
BWIL,
pepeH
BSSEIN

[erwuysy qewng

BUIYSTI
wesqiy

Ylo1eqoN

urweluag
ydesor
qeurq
un[nqQaz
TRYORSS]
IoUsy
peD
1eyden
ueq
yepnf
1A
uoaurs
uaqnay

qeroy
wepef
ysnof
[ona
zeydiyg

Company organization tree

(Electronics R’Us)

A
(R&D) (Sales) (Purchasing) (Manufacturing)
o oo
(Domestic) (International) (CD)
|

(Canada) (S AmericeD (Overseas)

(AfriceD (Europe) ; Asia) (Australia)

File system tree

/user/rt/courses/

cs016/ cs252/

grades grades

projects/

homeworks/ programs/w

/TN

hwi| [hw2| |hw3| |prl | [pr2

papers/ demos/

/N

buylow | | sellhigh market

Book organization tree

Terminology

Term

Meaning

Tree

Parent node
Child nodes
Root node
Sibling nodes
External nodes
Internal nodes
Ancestor node
Descendent node
Subtree

Edge

Path

Ordered tree

ADT that stores elements hierarchically

Immediate previous-level node

Immediate next-level nodes

Top node of the tree

Nodes that are children of the same parent

Nodes without children

Nodes with one or more children

Parent node or ancestor of parent node

Child node or descendent of child node

Tree consisting of the node and its descendants

Pair of nodes denoting a parent-child relation

Pair of nodes denoting an ancestor-descendant relation
Tree with a meaningful linear order among child nodes

Terminology

Binary tree

A binary tree is an ordered tree with the following properties:
1. Every node has at most two children.

2. Each child node is labeled as a left child or a right child.
3. A left child precedes a right child in the order of children.
A recursive definition of the binary tree:

® An empty tree.
@ A nonempty tree having a root node r, which stores an element,

and two binary trees that are respectively the left and right
subtrees of r.

Decision tree

[Are you nervous?)

Yes wo

Will you need to access most of the
money within the next 5 years?

Yes \ No

Are you willing to accept risks in
exchange for higher expected returns?

Yes \N 0

Savings account.

Money market fund.

Diversified portfolio with stocks,

Stock portfolio. bonds, and short-term instruments.

Arithmetic expression tree

Tree represents ((((34+1)%3)/((9—5)4+2)) — ((3*(7—4)) +6)).

Terminology

g
Term

Meaning

Left subtree
Right subtree
Proper/full tree
Complete tree

Perfect tree

Subtree rooted at the left child of an internal node
Subtree rooted at the right child of an internal node

A tree in which every node has either 0 or 2 children
Tree in which all except possibly the last level is com-

pletely filled and the nodes in the last level are as far left
as possible

Complete tree in which the last level is completely filled

Tree example

Binary v/, Proper X, Complete X, Perfect X

Tree example

Binary v/, Proper v/, Complete X, Perfect X

Tree example

Binary v/, Proper v/, Complete X, Perfect X

Tree example

Binary v/, Proper X, Complete v/, Perfect X

Tree example

Binary v/, Proper v/, Complete v/, Perfect X

Tree example

Binary v/, Proper v/, Complete v/, Perfect v/

Levels and maximum number of nodes

Level Nodes
0 1
1 2
2 4

)

Properties of binary tree

Let

e T = nonempty binary tree

@ Texternal = Number of external nodes
® 7internal = Number of internal nodes
® N = Texternal T Ninternal

® dnax = maximum depth of the tree
Then

o dmar +1<n < 2matl _ 1

° 1 < nexternal < 2 fmax

° dmax S Ninternal S 2dmax -1

° log(n+1)—1 Sdmaxgn_l

Properties of proper binary tree

If T is a proper nonempty binary tree,
® 2dmax + 1 < < 24mactl

dmax +1< Nexternal < 2dmax

dmax < Ninternal < 2dmax |
log(n+1) —1<dmax < (n—1)/2

Texternal = Minternal + 1

Implementing a binary tree using linked structure

Implementing a binary tree using array

Implementing a binary tree using array

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Implementing a binary tree using array

Level numbering or level ordering
For every node p of T, let f(p) be the whole number defined as:

0 if p is the root,
f(p) =1 2f(q) +1 if pis the left child of position ¢,
2f(q) +2 if pis the right child of position g.

Then, node p will be stored at index f(p) in the array.
0 < f(p) < 2™ —1, where n = number of nodes in T

Implementing a general tree using linked structure

S

parent

(’36\

Bl p sl

children

Tree traversals

@ A traversal of a tree T is a systematic way of accessing or

visiting all the nodes of T'.

(Traversal

Binary tree?

General treeﬂ

Preorder traversal
Inorder traversal
Postorder traversal
Breadth-first traversal

ANANA YR

v

X
v
v

Preorder /inorder/postorder traversals

PREORDERTRAVERSAL(r00t)

1. if root # null then

2. VisiT(root)

3. PREORDERTRAVERSAL(root.left)
4. PREORDERTRAVERSAL(root.right)

INORDERTRAVERSAL(T00t)

1. if root # null then

2. INORDERTRAVERSAL(root.left)
3. VisiT(root)

4. INORDERTRAVERSAL(root.right)

POSTORDERTRAVERSAL(r00t)

1. if root # null then
POSTORDERTRAVERSAL(root.le ft)
POSTORDERTRAVERSAL(ro00t.right)
VIsIT(root)

poN

Preorder /inorder/postorder traversals

&)
&

@ Preorder traversal = A B C
@ |norder traversal = B A C
o Postorder traversal = B C A

Preorder /inorder/postorder traversals

o Preorder traversal = A [left] [right)f =ABDECFG
o Inorder traversal = [left] A [right) =DBEAFCG
o Postorder traversal = [left] [rightf A=DEBFGCA

Preorder traversal

References

Preorder traversal: Table of contents

Paper
Title
Abstract
g1

g1.1
8§1.2

§2

§2.1

Paper
Title
Abstract

81

Postorder traversal

References

Postorder traversal: Compute disk space

OMPUTEDISKSPACE(root)

C
1. space < root.value

2. for each child child of root node do

3. space < space + COMPUTEDISKSPACE(root.child)
4. return space

Inorder traversal: Arithmetic expression

(B+1) x3)/((9=5) +2)) = (B x (7T —4)) +6)

Breadth-first traversal

General tree.

BREADTHFIRSTTRAVERSAL()

. Q.enqueue(root)
while @ is not empty do
curr < Q.dequeue()
Visit(curr)
for each child child of curr node do
Q.enqueue(curr.child)

SO wh

Binary tree.

BREADTHFIRSTTRAVERSAL()

1. @Q.enqueue(root)

2. while @ is not empty do

3. curr < Q.dequeue()

4. VisiT(curr)

5. if left child exists then Q.enqueue(curr.left)

6. if right child exists then Q.enqueue(curr.right)

Breadth-first traversal: Game trees

Binary Search Trees (BST)

Binary search tree (BST)

A binary search tree is a proper binary tree T" such that, for each
internal node p of T"

@ Node p stores an element, say p.key.

@ Keys stored in the left subtree of p are less than p.key.

@ Keys stored in the right subtree of p are greater than p.key.

Binary search tree node

[
M=o

R N

class Node<T>

{

T key;
Node<T> left;
Node<T> right;

Node(T item, Node<T> 1lchild, Node<T> rchild)
{ key = item; left = lchild; right = rchild; }

Node(T item)
{ this(item, null, null); }

Search: 65 exists

Search: 68 does not exist

Search: Recursive algorithm

SEARCH(curr, target)

1. if curr = null then

2. return curr > unsuccessful search
3. else if target < curr.key then

4. return SEARCH(curr.left,target) > recur on left subtree
5. else if target > curr.key then

6. return SEARCH(curr.right, target) D> recur on right subtree
7. else if target = curr.key then

8. return curr > successful search

Search: Iterative algorithm

SEARCH(curr, target)

1. while curr # null do

2. if target < curr.key then

3 curr < curr.left > recur on left subtree
4. else if target > curr.key then

5. curr < curr.right D> recur on right subtree
6. else if target = curr.key then

7 return curr > successful search
8. return null > unsuccessful search

Search: Analysis

Height

Runtime € O (h) € O (n)

Time per level
o(1)

Total time: O(h)

52

Insert 68

Insert 68

Insert: Recursive algorithm

INSERT(curr, item)

Input: Root of tree and item to be inserted
Output: New root after item insertion
1. if curr = null then

2. curr < NODE(item) > item does not exist
3. else if curr # null then

4. if item < curr.key then

5. curr.left < INSERT(curr.left,item) > recur on left subtree
6. else if item > curr.key then

7. curr.right < INSERT(curr.right, item) > recur on right subtree
8. else if item = curr.key then

9. do nothing > item exists

10. return curr

Insert: Iterative algorithm

INSERT(curr, item)

Input: Root of tree and item to be inserted
Output: Inserted node
1. prev < null
while curr # null do
prev <— curr
if item < curr.key then
curr < curr.left > recur on left subtree
else if item > curr.key then
curr <— curr.right > recur on right subtree
else if item = curr.key then
return curr > item exists

CONG WD

10. curr < NODE(item) > item does not exist
11. if prev # null then

12. if item < prev.key then prev.left < curr

13. if item > prev.key then prev.right < curr

14. return curr

Insert: Analysis

Height

Runtime € O (h) € O (n)

Time per level
o(1)

Total time: O(h)

57

Delete 32: Node 32 has one child

Delete 32: Node 32 has one child

Delete 88: Node 88 has two children

Delete 88: Node 88 has two children

Delete

Deleting a node (with a particular key) has four cases:

1.

Node is not found.

Do nothing.

Node is found and it has 0 nonempty children.
Delete the node.

Node is found and it has 1 nonempty child.

Delete the node.

Its nonempty child will take the location of the node.
Node is found and it has 2 nonempty children.
Locate the predecessor of the node.

Predecessor = curr.left.right.right........ right
Predecessor will take the location of the node.
Predecessor’s left child will take the location of the predecessor.
(Can we use successor instead of predecessor?)

Delete: Recursive algorithm

DELETE(curr, item)

Input: Root of tree and item to be deleted

Output: New root after item deletion

1. if curr = null then

2. do nothing > item does not exist
3. else if item < curr.key then

4. curr.left < DELETE(curr.left,item) > recur on left
5. else if item > curr.key then

6. curr.right < DELETE(curr.right,item) > recur on right
7. else if item = curr.key then > item exists
8. if curr.left = null then > 0 or 1 child
9. curr — curr.right
10. else if curr.right = null then > 1 child
11. curr < curr.left
12. else > 2 children
13. curr.key + FINDMaX(curr.left).key > find predecessor
14. curr.left + DELETE(curr.left, curr.key) > delete predecessor
15. return curr

Delete: lterative algorithm

[Problem)

‘ How do you write an iterative algorithm for deleting an item? ’

Delete: Analysis

Height

Runtime € O (h) € O (n)

Time per level
o(1)

Total time: O(h)

65

Balanced Search Trees

Balanced search trees: Motivation

| Data structure Search Insert Delete |
Binary search tree O (n) O (n) O (n)
Balanced search tree | O (logn) | O (logn) | O (logn)

(2,4)-trees

o A (2,4)-tree or 2-3-4 tree is a balanced search tree.

o A (2,4)-tree satisfies two properties:
1. Size property. Every non-empty node has 2, 3, or 4 children.
2. Depth property. All empty nodes have the same depth.

(2,4)-trees

There are three types of non-empty nodes:

o 2-nodes have 2 children and 1 key. e.g.: [11], [12], [15], [17]
® 3-nodes have 3 children and 2 keys. e.g.: [3 4], [5 10], [13 14]
@ 4-nodes have 4 children and 3 keys. e.g.: [6 7 8]

Search: 24 exists

Search: 12 does not exist

Insert 17

Size and depth properties are satisfied.

Insert 17

Overflow: Size property is violated at [13 14 15 17].

Insert 17

Size property at [13 14 15 17] will be fixed via split operation.

Insert 17

Overflow: Size property is violated at [5 10 12 15].

Insert 17

Size property at [5 10 12 15] will be fixed via split operation.

Insert 17

Size and depth properties are satisfied.

Insert: Node split

u

u

v

w

C1 2

c3

¢4 Cs c

w
1 2 c3 C4 Cs5 C

1 2

c

C4

Cs

Insert 4, 6, 12, 15

2§23 Sas
@

N 12

SR

Insert 3, 5

Insert 10, 8

Delete 4

Underflow: Size property is violated is [4].

Delete 4

Size property will be fixed via transfer operation.

Delete 12

Delete 12

Underflow: Size property is violated is [12], which has non-empty
children. It will be fixed via swap with predecessor.
Underflow: Size property is violated is [11].

Delete 12

Size property will be fixed via fusion operation.

Delete 12

Delete 13

Delete 13

Delete

ne = node with empty children

N+, = node with non-empty children

53,4 = immediate sibling of n. is a 3-node or a 4-node
$9 = immediate sibling of n. is a 2-node

p = parent of n,

o Deletion of n.. can always be reduced to 7.
@ Suppose deleted node is:
1. ne.
Swap with the n. predecessor
2. n and s34 exists.
Transfer a child and key of s34 to p and a key of p to n..
3. ne and s34 does not exist.
Fuse/merge n. with so to get n.. Move key from p to n..

(2,4)-trees: Complexity

(Method Running timew
Search O (logn)

Insert O (logn)
Delete O (logn)

B Trees

Computer memory

Network Storage

External Memory

Internal Memory

'

Caches

Bigger

[0)c]

CpU

Cache-efficient algorithms: Example

| Problem

‘ How do you efficiently sort a 1 GB file of natural numbers?

Cache-efficient algorithms: Example

Problem

How do you efficiently sort a 1 GB file of natural numbers?

Workout

Do you want to use quicksort or merge sort, usually implemented
in a standard library's sorting algorithm? Your computer pro-
gram might still take hours to run. Reason? Your algorithm is
computation-efficient but not communication-efficient and
communication is more expensive than computation.

Reducing communication (via good use of cache) leads to reduced
running time. An algorithm that makes good use of cache is
called cache-efficient. A cache-efficient sorting algorithm might
take just a few minutes to sort a 1 GB file of numbers.
Example: External-memory merge sort.

Cache data locality

An algorithm must have the following two features in order to
make good use of cache.

1. Spatial data locality

2. Temporal data locality

Spatial data locality

@ Meaning?
Whenever a cache block is brought into the cache, it contains as
much useful data as possible.

e How to exploit?
Group data in blocks (or pages). Move data in blocks.

Temporal data locality

e Meaning?
Whenever a cache block is brought into the cache, as much
useful work as possible is performed on this data before removing
the block from the cache.

@ Necessary condition?
Total computations is asymptotically greater than space
i.e.,, T(n) € w(S(n))

@ How to exploit?
Design recursive divide-and-conquer algorithms

Cache complexity

@ Cache complexity is the asymptotic number of cache misses or
page faults incurred by an algorithm.

@ Cache-efficient algorithms incur fewer cache misses.

e Cache-efficient algorithms try to exploit both spatial and
temporal data locality.

@ Terminology: B = data block size, M = cache size

-
RAM Disk
—

Cache-efficient algorithms

Problem Cache-inefficient algo | Cache-efficient algo
Sorting Merge sort Ext-memory merge sort
N og s B

O (nlogn) (’)(Blog% B>
Balanced tree | (2,4)-tree B tree

O (logn) O (loggn)
Matrix product | lterative Recursive D&C

3 3
O (n) 0 (&)

(a,b)-trees

® (a,b)-tree is a straightforward generalization of (2,4)-tree
in which the complexities depend on a and b
@ By choosing proper values for a and b, we get a balanced search
tree that has excellent external-memory performance
° (a,b)-tree is a multiway search tree such that
each node has between a and b children and
stores between a — 1 and b — 1 entries

(a,b)-trees

® An (a,b)-tree is a balanced multiway search tree.

o An (a,b)-tree satisfies three properties:
1.2<a<(b+1)/2

Size property. Every non-empty node has children in the

range [a, b].

3. Depth property. All empty nodes have the same depth.

N

B trees

o B tree of order d is an (a,b) tree with a = [d/2] and b = d.

@ B trees are analyzed for cache complexity.

@ B trees are cache-efficient, when d = B, as they exploit
spatial data locality.

B trees: Complexity

(2,4)-tree B tree
‘ Method | Communication | Computation | Communication | Computation
Search O (logn) O (logn) O (loggn) O (logn)
Insert O (logn) O (logn) O (loggn) O (logn)
Delete O (logn) O (logn) O (loggn) O (logn)

o B trees (and variants such as B+ trees, B* trees, B# trees) are

used for file systems and databases.
Microsoft: NTFS

Mac: HFS, HFS+

Linux: BTRFS, EXT4, JFS2

Databases: Oracle, DB2, Ingres, SQL, PostgreSQL

