Sample Problems and Solutions

Data Structures

State University of New York at Stony Brook
Instructor: Prof. Pramod Ganapathi

[Algorithm analysis.]

1. [15 points] What is the order of complexity of the following block(s) of code? Show
detailed steps to prove your answer.

CODEBLOCK-1(n)

count < 0

for i< n;i > 0;i < i/4do
for j < 0;7<i;j+ j+1do
‘ count < count + 1

AN o=

CODEBLOCK-2(n)

count < 0;7 + 1
while : < n do
Jn
while j > 1 do
| count < count 4+ 1; j < j/3
14 1X2

S ok Wb

Solution:
Time for CODEBLOCK-1:
N Zie{ﬂ non #} Zje{0,1,27...,¢} 1

200419420 4llogg n]

40741942 4llogyg n]

ic no__n
Z, n n n n Z Z n n n n 1
16{4*074*1747 vvvvv W} Z6{4 Talrg30mm W}

0
=(H+E+5++) +loggn
=0 (n)+ 06O (logn) (using geometric series sum)
=6 (n)

Time for CODEBLOCK-2:
= Zi€{20,21,227...,2L1°g"J} Z]E nm o n on n } 1

30731732 gllogg n]

— Zie{20721,227...,2U°g"J} 1 x Z,e{l . ., } 1 (independent sums)
J€\ 3003132 3logz n]
1

= (llogy | 4 1) x ([logzn| + 1)
=0 (logn) x © (logn)
=06 (log2 n)

2. [10 points] Write the following functions f(n) in the form f(n) € © (¢g(n)), where

g(n) is the simplified function. (i) f(n) = n'/18" (ii) f(n) = log V4", (iii) f(n) =
2l8am (1) f(n) = T°8wx1" and (v) f(n) = (loglogn)!/legloglogn

Solution:

Please add the reasoning for individual steps

1. f(n) = n!/losn = (2n)l/logn — 9 (because n = 2'°&2")
=0(1)

2. f(n) =log V4" =log4: = log(2%)2 = log2"
=06 (n)

log

3. f(n) — 210g4n _ 2% —9 2" — (210gn)1/2 — n1/2 — \/ﬁ
=0 (vn)

logz 7 logy 7 1
4. f(n) — 710g49x49n — 7log74n — nlog74 T _ niogr ¥ — pTler? — pi
=0 (n1/4>
1/logloglogn
5. f(n) = (10g log n)l/logloglogn — (210g10g10gn) /logloglog —9
=0(1)

. [10 points] Rank the following functions by order of growth. That is, arrange the
functions in asymptotically nondecreasing order using < and = relations. Give
reasons for your answers. Assume that the log function has base 2 unless explic-
itly mentioned otherwise.

oVl (logn)l, log?n, (logn)™®", log(n!)

. [20 points] Assume that you want to implement the following ADT using sev-
eral different data structures. Simply mention the worst-case time complexity
for different methods using different data structures given in an empty table.
Provide the complexities using © () notation wherever feasible and use O nota-
tion in the remaining places. Give the amortized complexity for dynamic array
implementations and average case complexity for hash table implementations
assuming that the load factor is small and the hash function distributes keys
uniformly. The symbols x represents amortized case complexity and } represents
average/expected case complexity.

Solution: See Tables[Iland

Operation AdjacencyList | AdjacencyMatrix
CheckEdgeExistence(u,v) | O (degree(u)) O (1))
GetNeighbors(v) O (degree(u)) o (V)
Degree(v) ©(1) o(V])
Traversal (BFS/DFS) O (VI]+|E]) o (V)
ListAllEdges e (V|+IE]) o ([V*)
Space o (V] +IE]) e (V%)

Table 1: Time complexities for different operations on graphs.

Page 2

Data Structure | Operation 1 | Operation 2 | Operation 3 | Operation 4
Basic Data Structures AddFirst AddLast | RemoveFirst | RemoveLast
DynamicArray O (n) o (1)” O (n) o (1)”
SinglyLinkedList O (1) O (1) O (1) O (n)
CircularlySinglyLinkedList O (1) O (1) O (1) O (n)
DoublyLinkedList (1) O(1) O (1) O (1)
Stack ADT Push Pop Top

DynamicArray O (1)" O (1)" O (1)

SinglyLinkedList O (1) O(1) O (1)
CircularlySinglyLinkedList O (1) O (1) O (1)
DoublyLinkedList O (1) O(1) O (1)

Queue ADT Enqueue Dequeue Front
CircularDynamicArray O (1)" O (1)" O (1)

SinglyLinkedList O (1) O(1) O (1)
CircularlySinglyLinkedList O (1) O(1) O (1)

DoublyLinkedList O (1) O (1) O (1)

Deque ADT AddFirst AddLast | RemoveFirst | RemoveLast
CircularDynamicArray O (1)" O (1)" O (1)" O (1)"
SinglyLinkedList O (1) O(1) o (1) O (n)
CircularlySinglyLinkedList O (1) O (1) O (1) O (n)
DoublyLinkedList O (1) O(1) O (1) O (1)
Sorted Set ADT Add Remove Search SortedOrder
DynamicArray O (n) O (n) O (n) O (nlogn)
SortedDynamicArray O (n) O (n) O (logn) O (n)
BinarySearchTree O (n) O (n) O (n) O (n)
(2-4)-Tree O (logn) O (logn) O (logn) O (n)
B-Tree O (logn) O (logn) O (logn) O (n)
RedBlack-Tree O (logn) O (logn) O (logn) O (n)
AVL-Tree O (logn) O (logn) O (logn) O (n)
Set ADT Add Remove Search

DynamicArray O (n) O (n) O (n)
SortedDynamicArray O (n) O (n) O (n)
HashTable-Chaining-List o) o) o)
HashTable-LinearProbing o) o) o)
HashTable-QuadraticProbing o) o) o)

PriorityQueue ADT Add RemoveMin | Minimum
SinglyLinkedList (1) O (n) O (n)
SortedSinglyLinkedList O (n) O(1) o (1)
MinHeap-DynamicArray O (logn) O (logn)* O (1)
MinHeap-LinkedTree O (logn) O (logn) (1)

Table 2: Time complexities for different operations on various data structures.

Page 3

[Arrays and lists.]

1. [10 points] Given a string S[1...n], write an algorithm code to check whether the
given string is a palindrome or not. A palindrome is a string that reads the same
backward as forward. E.g. madam, malayalam, and racecar. Give the algorithm’s
time and space complexity.

-

ISPALINDROME(S]1...n])

1. Write the pseudocode

Solution:
[ISPALINDROME(S[1...n))

[

. fori«+ 1to |n/2| do
if S[i] # S[n — i + 1] then
| return false
return true

L A

. J

This algorithm compares the characters at the beginning and end of the string,
moving towards the center. If any characters don’t match, it returns false. If it
completes the loop, the string is a palindrome.

Time = O (n), Space = O (1)

2. [10 points] Given an array a[l...n] of non-negative integers, write a recursive
algorithm code to compute the greatest common divisor GCD(all...n]) of these
n numbers. Assume that ged(z,y) computes the greatest common divisor of non-
negative integers x and y.

GCD(a[l...n])
1. Write the pseudocode
Solution:
GCD(a[l...n])

1. if n =1 then return a[l]
2. else return gcd(a[n|, GCD(a[l...(n —1)]))

The recursive algorithm computes the GCD of the last element and the GCD of
the rest of the array. The base case is when there’s only one element, in which
case the GCD is the element itself. The time complexity is O (n - log M), where
M is the maximum value in the array, due to the recursive nature of the GCD
function.

Time = O (nlog M), Space = O (n)

Page 4

[Stacks, queues, and deques.]

1. [10 points] Fill Table [3| with the contents of the data structures after executing
different operations starting from the initial configuration. Note that when you
remove an element from a data structure, you return the removed element to the
caller. You do not need to worry about the data overflow problem. The top element
in the stack, the first element in the queue, and the first element in the deque are
highlighted using a box.

Solution: See Table [4l

Operations Stack S Queue) | Deque D
Initially 1,4, 17],3,6 19],5,2
D.AddLast(S.Pop() +).Dequeue())

Q). Enqueue(D.RemoveFirst() — S.Pop())
S.Push(D.RemoveLast() — Q.Dequeue())
D.AddFirst(S.Pop() — Q.Dequeue())
D.AddFirst(D.RemoveFirst() + D.RemoveLast())

Table 3: Fill in the table with contents of the data structures.

Operations Stack S Queue) | Deque D
Initially 1,4, [7],3,6 [9],5,2
D.AddLast(S.Pop() + Q.Dequeue()) 1,4 3,6 9,5,2,15
Q.Enqueue(D.RemoveFirst() — S.Pop()) 1 3,6,5 5,2,15
S.Push(D.RemoveLast() — @.Dequeue()) 1,12 6,5 5, 2
D.AddFirst(S.Pop() — Q.Dequeue()) 1 5 6,5,2
D.AddFirst(D.RemoveFirst() + D.RemoveLast()) | 1 5 8,5

Table 4: Table filled with contents of the data structures.

[Trees and priority queues.]

1. Draw each of the following evolving data structures twice that result from the
following operations in that order into an initially empty data structure.

(a) [10 points] binary search tree
insert [100, 10, 30, 50, 70, 40, 90, 60], draw tree, delete [30], insert [20, 30],
delete [70], insert [80, 70], draw tree.
(b) [10 points] (2,4) tree
insert [100, 10, 30, 50, 70, 40], draw tree, insert [90, 60, 20, 80], draw tree.
(c) [10 points] min heap (tree representation)

insert [100, 10, 30, 50, 70, 40, 90, 60], draw tree, deletemin, deletemin, insert
[20, 80], deletemin, draw tree.

[Hash tables.]

1. Use the hash function HASHCODE (key) = (2 x key + 5) to fill a 11-entry hash ta-
ble. Insert [5, 16,20, 39, 11,94, 23, 88, 13, 44, 12], draw table, delete [20, 44, 39|, insert

Page 5

[98, 14], draw table. Assume collisions are handled by:

(a) [5 points] separate chaining — linked list

Bucket | 0 1 2 3 4 5 6 7 8 9 10
Keys
Bucket | 0 1 2 3 4 5 6 7 8 9 10
Keys

(b) [5 points] open addressing — linear probing

Bucket |0 1|2 |3|4|5]|6]|7[8]9]10
Keys
Bucket |0 1|2 |3|4|5]|6]|7[8]9]10
Keys

(c) [5 points] open addressing — quadratic probing

Bucket |0[1]|2|3|4|5]|6]|7[8]9]10
Keys
Bucket |0 1|2 |3|4|5|6]|7[8]9]10
Keys

[Graphs.]

1. Consider a directed weighted graph as shown in Figure |1l Assume that the
traversals are considered in increasing order and all adjacency lists are given

in increasing order.

Write the following graph representations:

(a) [5 points] Adjacency-matrix representation
(b) [5 points] Adjacency-list representation

Show the ordering of vertices produced by the following algorithms.

(a) [5 points] Depth-first search
(b) [5 points] Breadth-first search

Page 6

Figure 1: A directed weighted graph.

Page 7

