
1

Algorithms
(Hash Tables)

Pramod Ganapathi
Department of Computer Science

State University of New York at Stony Brook

September 19, 2021



2

Contents

Hash Functions
Hash Tables
Collision-Avoiding Techniques
Separate Chaining
Open Addressing

Applications



Hash Functions HOME

3



4

Hash function

Definition
A hash function is a function that maps arbitrary size data to
fixed size data.

Hash function

Fixed size data

HashKey

Arbitrary size data



5

Cryptographic hash function

Source: Wikipedia



6

Properties of an ideal cryptographic hash function

Deterministic and fast
Computing message from hash value is infeasible
Computing two messages having same hash value is infeasible
Tiny change in message must change the hash value drastically



7

Applications of hashing

Web page search using URLs
Password verification
Symbol tables in compilers
Filename-filepath linking in operating systems
Plagiarism detection using Rabin-Karp string matching algorithm
English dictionary search
Used as part of the following concepts:
finding distinct elements
counting frequencies of items
finding duplicates
message digests
commitment
Bloom filters



8

Password authentication

Username Charles

Password Darwin

Hashing algorithm

Charles : HRFDNMD

Login

Database of
encrypted passwordsPassword login



Hash Tables HOME

9



10

Hash table

A hash table is a data structure to implement dictionary ADT
A hash table is an efficient implementation of a
set/multiset/map/multimap.
A hash table performs insert, delete, and search operations in
constant expected time.



11

Balanced search trees vs. Hash tables

Balanced search tree is ideal for sorted collection
Hash table is ideal for unsorted collection

Balanced tree Hash table
Operations (worst) (avg.) (worst)

Sorting-unrelated
operations

Insert O (logn) O (1) O (n)
Delete O (logn) O (1) O (n)
Search O (logn) O (1) O (n)

Sorting-related
operations

Sort O (n) 7

Minimum O (logn) 7

Maximum O (logn) 7

Predecessor O (logn) 7

Successor O (logn) 7

Range-Minimum O (logn) 7

Range-Maximum O (logn) 7

Range-Sum O (n) 7



12

Hash table

Arbitrary key k
0

1

2

H(k)

N − 1

...

...

(k, v)

Key space

Hash space



13

Hash table

Arbitrary key k
0

1

2

H(k)

N − 1

...

...

(k, v)

Key space

Hash space

A hash function is a mapping from arbitrary objects
to the set of indices [0, N − 1].
The key-value pair (k, v) in stored at A[H(k)] in the hash table.



14

Hash table

Questions
1. How can keys of arbitrary objects be mapped to array indices

that are whole numbers?
2. How can an infinite number of keys be mapped to a finite

number of indices?
3. What are the pros/cons of hash tables w.r.t. balanced trees?
4. What are the properties of an ideal hash function?
5. Is there one practical hash function that is best for all input?
6. What is the hash function used in Java?
7. Will there be collisions during hashing?

If yes, how can we avoid collisions?
8. Is there a relation between table size and the number of items?
9. Why (key, value) pairs? Why not tuples?



15

Encoding of information

Problem
How can keys of arbitrary objects be mapped to array indices
that are whole numbers?

Key space String space

StringEncoding

Bits

Number

or

or



15

Encoding of information

Problem
How can keys of arbitrary objects be mapped to array indices
that are whole numbers?

Key space String space

StringEncoding

Bits

Number

or

or



16

Two stages of hash function

Problem
How can an infinite number of keys be mapped to a finite
number of indices?

Arbitrary key k
0

1

2

4

N − 1

3

...

Key space

Indices

−∞
...

−1

1

∞

0

...

Integers

Stage 1

Hash code

Stage 2

Compression



16

Two stages of hash function

Problem
How can an infinite number of keys be mapped to a finite
number of indices?

Arbitrary key k
0

1

2

4

N − 1

3

...

Key space

Indices

−∞
...

−1

1

∞

0

...

Integers

Stage 1

Hash code

Stage 2

Compression



17

Stage 1 of hash function: Hash code

Consider bits as integer.
Hashcode(byte | short | char) = 32-bit int B upscaling
Hashcode(float) = 32-bit int B change representation
Hashcode(double) = 32-bit int B downscaling
Hashcode(x0, x1, . . . , xn−1) = x0 + x1 + · · ·+ xn−1 B sum
Hashcode(x0, x1, . . . , xn−1) = x0 ⊕ x1 ⊕ · · · ⊕ xn−1 B xor
Polynomial hash codes.
Hashcode(x0, x1, . . . , xn−1) =
x0a

n−1 + x1a
n−2 + · · ·+ xn−2a+ xn−1 B polynomial

Cyclic-shift hash codes.
Hashcodek(x) =Rotate(x, k bits) B cyclic-shift
e.g.: Hashcode2(111000) = 100011



18

Stage 2 of hash function: Compression function

A good compression function minimizes the number of collisions
for a given set of distinct hash codes.
Division method.
Compression(i) = i % N B remainder
N ≥ 1 is the size of the bucket array.
Often, N being prime “spreads out” the distribution of primes.
Ex. 1: Insert codes {200, 205, . . . , 600} into N -sized array.
Which is better: N = 100 or N = 101?
Ex. 2: Insert multiple codes {aN + b} into N -sized array.
Which is better: N = prime or N = non-prime?
Multiply-Add-and-Divide (MAD) method.
Compression(i) = ((ai+ b) % p) % N B remainder
N ≥ 1 is the size of the bucket array.
p is a prime number larger than N .
a, b are random integers from the range [0, p− 1] with a > 0.
Usually eliminates repeated patterns in the set of hash codes.



19

English dictionary

Problem
How do you implement the English dictionary search such that
searching for a word takes O (1) time on an average?



20

Hash table of English dictionary

(word, meaning)

0

1

2

H(word)

499999

...

...

(word, meaning)

Key space Hash space



21

Collisions

(k1, v1)

0

1H(k1)

N − 2

...

...

Entries Hashes

N − 1

(k2, v2)

Collision

H(k2)

k1 6= k2



22

Collision-handling schemes

There are two major collision-handling schemes or
collision-resolution strategies.
Collision-handling scheme Features
Separate chaining Extra space (for secondary data structures)

Simpler implementation
Open addressing No extra space

More complicated implementation



23

Separate chaining

Have each bucket A[j] store its own secondary container.
We use secondary data structures (e.g. array list, linked list,
balanced search trees, etc) for each bucket.

A

1 2 3 4 5 6 7 8 9 100 11 12

12

38

25

90

54

28

41

36

18 10



24

Separate chaining (via arraylist/linkedlist)

Put((key, value))
1. hash← Hash(key)
2. A[hash].AddLast((key, value)) B A[hash] is a linked list
Get(key)
1. hash← Hash(key)
2. return A[hash].Get(key) B returns value
Remove(key)
1. hash← Hash(key)
2. return A[hash].Remove(key) B returns removed value



25

Open addressing

All entries are stored in the bucket array itself.
Strict requirement: Load factor must be at most 1.
Useful in applications where there are space constraints,
e.g.: smartphones and other small devices.
Iteratively search the bucket A[(Hash(key) + f(i)) % N ]
for i = 0, 1, 2, 3, . . . until finding an empty bucket.

Scheme Function
Linear probing f(i) = i

Quadratic probing f(i) = i2

Double hashing f(i) = i ·Hash2(key)
e.g. Hash2(key) = p− (key % p) for prime p < N .
Here, N should be a prime number.

Random generator f(i) = Random(i,Hash(key))



26

Open addressing: Linear probing: Put

Suppose Hash(key) = key % 10

Put Array
Key → Hash 0 1 2 3 4 5 6 7 8 9
18 → 8 18
41 → 1 41 18
22 → 2 41 22 18
32 → 2 41 22 18
(2 probes) 41 22 32 18

98 → 8 41 22 32 18
(2 probes) 41 22 32 18 98

58 → 8 41 22 32 18 98
41 22 32 18 98

(3 probes) 58 41 22 32 18 98
78 → 8 How many probes are required to insert 78?



27

Open addressing: Linear probing: Remove
Suppose Hash(key) = key % 10

Remove Array
Key 0 1 2 3 4 5 6 7 8 9
− 58 41 22 32 78 19 18 98
58 58 41 22 32 78 19 18 98

41 22 32 78 19 18 98
19 41 22 32 78 19 18 98

Hence, we cannot simply remove a found entry.

Remove Array
Key 0 1 2 3 4 5 6 7 8 9
− 58 41 22 32 78 19 18 98
58 58 41 22 32 78 19 18 98

58 41 22 32 78 19 18 98
19 58 41 22 32 78 19 18 98

58 41 22 32 78 19 18 98
Replace the deleted entry with the defunct object.



28

Open addressing: Linear probing

Put((key, value))
1. hash← Hash(key); i← 0
2. while (hash + i) % N 6= null and i < N do i← i + 1
3. if i = N then throw Bucket array is full
4. else A[(hash + i) % N ]← (key, value)

Get(key)
1. hash← Hash(key); i← 0
2. while (hash + i) % N 6= null and i < N do
3. index← (hash + i) % N
4. if A[index].key = key then return A[index].value
5. i← i + 1
6. return null

Remove(key)
1. index← FindSlotForRemoval(key)
2. if index < 0 then return null
3. value← A[index].value; A[index]← defunct; n← n− 1
4. return value



29

Complexity

Suppose N = bucket array size and n = number of entries.
Ratio λ = n/N is called the load factor of the hash table.
If λ > 1, rehash. Make sure λ < 1.
Assuming good hash function, expected size of bucket is O (dλe).
Separate chaining: Maintain λ < 0.75
Open addressing: Maintain λ < 0.5
Assuming good hash function and λ ∈ O (1),
complexity of put, get, and remove is O (1) expected time.



Applications HOME

30



31

Symbol tables in compilers

1. double foo(int count)
2. {
3. double sum = 0.0;
4. for (int i = 1; i <= count; i++)
5. sum += i;
6. return sum;
7. }

Symbol Type Scope
foo function, double global
count int function parameter
sum double block local
i int for-loop statement


