# Algorithms (Hash Tables)

### **Pramod Ganapathi**

#### Department of Computer Science State University of New York at Stony Brook

September 19, 2021



- Hash Functions
- Hash Tables
- Collision-Avoiding Techniques
  - Separate Chaining
  - Open Addressing
- Applications

### Hash Functions (HOME)

#### Definition

• A hash function is a function that maps arbitrary size data to fixed size data.



# Cryptographic hash function



Source: Wikipedia

# Properties of an ideal cryptographic hash function



- Deterministic and fast
- Computing message from hash value is infeasible
- Computing two messages having same hash value is infeasible
- Tiny change in message must change the hash value drastically

# **Applications of hashing**

- Web page search using URLs
- Password verification
- Symbol tables in compilers
- Filename-filepath linking in operating systems
- Plagiarism detection using Rabin-Karp string matching algorithm
- English dictionary search
- Used as part of the following concepts:
  - finding distinct elements
  - counting frequencies of items
  - finding duplicates
  - message digests
  - commitment
  - Bloom filters

### **Password authentication**



### Hash Tables HOME

- A hash table is a data structure to implement dictionary ADT
- A hash table is an efficient implementation of a set/multiset/map/multimap.
- A hash table performs insert, delete, and search operations in constant expected time.

### Balanced search trees vs. Hash tables

- Balanced search tree is ideal for sorted collection
- Hash table is ideal for unsorted collection

|                   |               | Balanced tree Hash table         |                            |                            |  |
|-------------------|---------------|----------------------------------|----------------------------|----------------------------|--|
| Operations        |               | (worst)                          | (avg.)                     | (worst)                    |  |
| Sorting-unrelated | Insert        | $\mathcal{O}\left(\log n\right)$ | $\mathcal{O}\left(1 ight)$ | $\mathcal{O}\left(n ight)$ |  |
| operations        | Delete        | $\mathcal{O}\left(\log n\right)$ | $\mathcal{O}\left(1 ight)$ | $\mathcal{O}\left(n ight)$ |  |
| operations        | Search        | $\mathcal{O}\left(\log n\right)$ | $\mathcal{O}\left(1 ight)$ | $\mathcal{O}\left(n ight)$ |  |
|                   | Sort          | $\mathcal{O}\left(n ight)$       |                            | X                          |  |
|                   | Minimum       | $\mathcal{O}\left(\log n\right)$ |                            | X                          |  |
|                   | Maximum       | $\mathcal{O}\left(\log n\right)$ |                            | X                          |  |
| Sorting-related   | Predecessor   | $\mathcal{O}\left(\log n\right)$ |                            | X                          |  |
| operations        | Successor     | $\mathcal{O}\left(\log n\right)$ |                            | X                          |  |
|                   | Range-Minimum | $\mathcal{O}\left(\log n\right)$ | ×                          |                            |  |
|                   | Range-Maximum | $\mathcal{O}\left(\log n\right)$ |                            | X                          |  |
|                   | Range-Sum     | $\mathcal{O}\left(n ight)$       |                            | ×                          |  |

### Hash table



Key space

### Hash table



- A hash function is a mapping from arbitrary objects to the set of indices [0, N-1].
- The key-value pair (k, v) in stored at  $A[\mathcal{H}(k)]$  in the hash table.

#### Questions

- 1. How can keys of arbitrary objects be mapped to array indices that are whole numbers?
- 2. How can an infinite number of keys be mapped to a finite number of indices?
- 3. What are the pros/cons of hash tables w.r.t. balanced trees?
- 4. What are the properties of an ideal hash function?
- 5. Is there one practical hash function that is best for all input?
- 6. What is the hash function used in Java?
- 7. Will there be collisions during hashing? If yes, how can we avoid collisions?
- 8. Is there a relation between table size and the number of items?
- 9. Why (key, value) pairs? Why not tuples?

# **Encoding of information**

#### Problem

• How can keys of arbitrary objects be mapped to array indices that are whole numbers?

# **Encoding of information**

#### Problem

• How can keys of arbitrary objects be mapped to array indices that are whole numbers?



Key space

String space

### Two stages of hash function

#### Problem

• How can an infinite number of keys be mapped to a finite number of indices?

### Two stages of hash function

#### Problem

• How can an infinite number of keys be mapped to a finite number of indices?



Key space

### Stage 1 of hash function: Hash code

#### • Consider bits as integer.

 $\begin{array}{lll} \mbox{Hashcode(byte | short | char)} = 32\mbox{-bit int} & \rhd \mbox{ upscaling} \\ \mbox{Hashcode(float)} = 32\mbox{-bit int} & \rhd \mbox{ change representation} \\ \mbox{Hashcode(double)} = 32\mbox{-bit int} & \rhd \mbox{ downscaling} \\ \mbox{Hashcode}(x_0, x_1, \dots, x_{n-1}) = x_0 + x_1 + \dots + x_{n-1} & \rhd \mbox{ sum} \\ \mbox{Hashcode}(x_0, x_1, \dots, x_{n-1}) = x_0 \oplus x_1 \oplus \dots \oplus x_{n-1} & \rhd \mbox{ xor} \end{array}$ 

Polynomial hash codes.

 $\mathsf{Hashcode}(x_0, x_1, \dots, x_{n-1}) =$ 

$$x_0 a^{n-1} + x_1 a^{n-2} + \dots + x_{n-2} a + x_{n-1}$$

⊳ polynomial

• Cyclic-shift hash codes.

Hashcode<sub>k</sub>(x) =Rotate(x, k bits)e.g.: Hashcode<sub>2</sub>(111000) = 100011  $\triangleright$  cyclic-shift

# Stage 2 of hash function: Compression function

A good compression function minimizes the number of collisions for a given set of distinct hash codes.

• Division method.

 $\mathsf{Compression}(i) = i \% N$ 

 $\triangleright$  remainder

 $\overline{N \ge 1}$  is the size of the bucket array.

Often, N being prime "spreads out" the distribution of primes.

Ex. 1: Insert codes  $\{200, 205, \dots, 600\}$  into N-sized array.

Which is better: N = 100 or N = 101?

Ex. 2: Insert multiple codes  $\{aN+b\}$  into N-sized array.

Which is better: N = prime or N = non-prime?

• Multiply-Add-and-Divide (MAD) method.

 $\mathsf{Compression}(i) = ((ai+b) \% p) \% N$ 

 $\triangleright$  remainder

 $N \ge 1$  is the size of the bucket array.

p is a prime number larger than N.

a, b are random integers from the range [0, p-1] with a > 0. Usually eliminates repeated patterns in the set of hash codes.

# **English dictionary**

#### Problem

• How do you implement the English dictionary search such that searching for a word takes  $\mathcal{O}\left(1\right)$  time on an average?



### Hash table of English dictionary



Key space

Hash space

### Collisions



There are two major collision-handling schemes or collision-resolution strategies.

| Collision-handling scheme | Features                                                              |
|---------------------------|-----------------------------------------------------------------------|
| Separate chaining         | Extra space (for secondary data structures)<br>Simpler implementation |
| Open addressing           | No extra space                                                        |
|                           | More complicated implementation                                       |

# Separate chaining

- Have each bucket A[j] store its own secondary container.
- We use secondary data structures (e.g. array list, linked list, balanced search trees, etc) for each bucket.



# Separate chaining (via arraylist/linkedlist)

| Put((key, value))                                                     |                                    |
|-----------------------------------------------------------------------|------------------------------------|
| 1. $hash \leftarrow HASH(key)$ 2. $A[hash].ADDLAST((key, value))$     | ightarrow A[hash] is a linked list |
| Get(key)                                                              |                                    |
| 1. $hash \leftarrow HASH(key)$ 2. return $A[hash].GET(key)$           | ⊳ returns value                    |
| Remove(key)                                                           |                                    |
| 1. $hash \leftarrow HASH(key)$<br>2. return $A[hash]$ .REMOVE $(key)$ | ▷ returns removed value            |

# **Open addressing**

- All entries are stored in the bucket array itself.
- Strict requirement: Load factor must be at most 1.
- Useful in applications where there are space constraints, e.g.: smartphones and other small devices.
- Iteratively search the bucket A[(HASH(key) + f(i)) % N] for i = 0, 1, 2, 3, ... until finding an empty bucket.

| Scheme            | Function                                                                                    |
|-------------------|---------------------------------------------------------------------------------------------|
| Linear probing    | f(i) = i                                                                                    |
| Quadratic probing | $f(i) = i^2$                                                                                |
| Double hashing    | $f(i) = i \cdot \text{Hash2}(key)$                                                          |
|                   | e.g. $HASH2(key) = p - (key \% p)$ for prime $p < N$ .                                      |
|                   | e.g. $HASH2(key) = p - (key \% p)$ for prime $p < N$ .<br>Here, N should be a prime number. |
| Random generator  | f(i) = Random(i, Hash(key))                                                                 |

### **Open addressing: Linear probing: Put**

• Suppose HASH
$$(key) = key \% 10$$

|     |               |      |   |                                            |    | Ar | ray |   |   |   |   |    |    |
|-----|---------------|------|---|--------------------------------------------|----|----|-----|---|---|---|---|----|----|
| Key | $\rightarrow$ | Hash | 0 |                                            | 1  | 2  | 3   | 4 | 5 | 6 | 7 | 8  | 9  |
| 18  | $\rightarrow$ | 8    |   |                                            |    |    |     |   |   |   |   | 18 |    |
| 41  | $\rightarrow$ | 1    |   |                                            | 41 |    |     |   |   |   |   | 18 |    |
| 22  | $\rightarrow$ | 2    |   |                                            | 41 | 22 |     |   |   |   |   | 18 |    |
| 32  | $\rightarrow$ | 2    |   |                                            | 41 | 22 |     |   |   |   |   | 18 |    |
| (2  | prob          | oes) |   |                                            | 41 | 22 | 32  |   |   |   |   | 18 |    |
| 98  | $\rightarrow$ | 8    |   |                                            | 41 | 22 | 32  |   |   |   |   | 18 |    |
| (2  | prob          | oes) |   |                                            | 41 | 22 | 32  |   |   |   |   | 18 | 98 |
| 58  | $\rightarrow$ | 8    |   |                                            | 41 | 22 | 32  |   |   |   |   | 18 | 98 |
|     |               |      |   |                                            | 41 | 22 | 32  |   |   |   |   | 18 | 98 |
| (3  | prob          | oes) | 5 | 8                                          | 41 | 22 | 32  |   |   |   |   | 18 | 98 |
| 78  | $\rightarrow$ | 8    |   | How many probes are required to insert 78? |    |    |     |   |   |   |   |    |    |

### **Open addressing: Linear probing: Remove**

| • | Suppose | HASH( | (key) | = key | % | 10 |
|---|---------|-------|-------|-------|---|----|
|---|---------|-------|-------|-------|---|----|

| Remove |                                               | Array |    |    |    |    |    |   |   |    |    |
|--------|-----------------------------------------------|-------|----|----|----|----|----|---|---|----|----|
| Key    |                                               | 0     | 1  | 2  | 3  | 4  | 5  | 6 | 7 | 8  | 9  |
| _      |                                               | 58    | 41 | 22 | 32 | 78 | 19 |   |   | 18 | 98 |
| 58     |                                               | 58    | 41 | 22 | 32 | 78 | 19 |   |   | 18 | 98 |
|        |                                               |       | 41 | 22 | 32 | 78 | 19 |   |   | 18 | 98 |
| 19     |                                               |       | 41 | 22 | 32 | 78 | 19 |   |   | 18 | 98 |
|        | Hence, we cannot simply remove a found entry. |       |    |    |    |    |    |   |   |    |    |

| Remove |                                                    | Array |    |    |    |    |    |   |   |    |    |
|--------|----------------------------------------------------|-------|----|----|----|----|----|---|---|----|----|
| Key    |                                                    | 0     | 1  | 2  | 3  | 4  | 5  | 6 | 7 | 8  | 9  |
| -      |                                                    | 58    | 41 | 22 | 32 | 78 | 19 |   |   | 18 | 98 |
| 58     |                                                    | 58    | 41 | 22 | 32 | 78 | 19 |   |   | 18 | 98 |
|        |                                                    | 58    | 41 | 22 | 32 | 78 | 19 |   |   | 18 | 98 |
| 19     |                                                    | 58    | 41 | 22 | 32 | 78 | 19 |   |   | 18 | 98 |
|        |                                                    | 58    | 41 | 22 | 32 | 78 | 19 |   |   | 18 | 98 |
|        | Replace the deleted entry with the defunct object. |       |    |    |    |    |    |   |   |    |    |

### Open addressing: Linear probing

#### Put((key, value))

- 1.  $hash \leftarrow HASH(key); i \leftarrow 0$
- 2. while  $(hash + i) \% N \neq null$  and i < N do  $i \leftarrow i + 1$
- 3. if i = N then throw Bucket array is full
- 4. else  $A[(hash+i) \% N] \leftarrow (key, value)$

#### Get(key)

- 1.  $hash \leftarrow HASH(key); i \leftarrow 0$
- 2. while  $(hash + i) \% N \neq null$  and i < N do
- 3.  $index \leftarrow (hash + i) \% N$
- 4. if A[index].key = key then return A[index].value
- 5.  $i \leftarrow i+1$
- 6. return null

#### $\operatorname{Remove}(key)$

- 1.  $index \leftarrow FindSlotForRemoval(key)$
- 2. if index < 0 then return null
- **3**.  $value \leftarrow A[index].value; A[index] \leftarrow defunct; n \leftarrow n 1$
- 4. return value

- Suppose N = bucket array size and n = number of entries.
- Ratio  $\lambda = n/N$  is called the load factor of the hash table.
- If  $\lambda > 1$ , rehash. Make sure  $\lambda < 1$ .
- Assuming good hash function, expected size of bucket is O ([λ]).
- Separate chaining: Maintain  $\lambda < 0.75$ Open addressing: Maintain  $\lambda < 0.5$
- Assuming good hash function and  $\lambda \in \mathcal{O}(1)$ , complexity of put, get, and remove is  $\mathcal{O}(1)$  expected time.

# Applications **HOME**

```
1. double foo(int count)
2. {
3. double sum = 0.0;
4. for (int i = 1; i <= count; i++)
5. sum += i;
6. return sum;
7. }
</pre>
```

| Symbol | Туре             | Scope              |
|--------|------------------|--------------------|
| foo    | function, double | global             |
| count  | int              | function parameter |
| sum    | double           | block local        |
| i      | int              | for-loop statement |