Graph representations

- Adjacency list
- Adjacency matrix
Adjacency list

V

- u connects to e, g
- v connects to e, f
- w connects to f, g, h
- z connects to h
Adjacency matrix

\begin{align*}
\begin{array}{ccc}
0 & 1 & 2 & 3 \\
\hline
u & e & g \\
v & e & f \\
w & g & f & h \\
z & h \\
\end{array}
\end{align*}
Graph traversals

- Depth first search (DFS)
- Breadth first search (BFS)
DFS
DFS
DFS
DFS
DepthFirstSearch(G)

1. Mark each vertex in V with 0 as a mark of being unvisited
2. $\text{count} \leftarrow 0$
3. for each vertex v in V do
 4. if v is marked with 0 then
 5. DFS(v)

DFS(v)

1. $\text{count} \leftarrow \text{count} + 1$
2. Mark v with count
3. for each vertex w in V adjacent to v do
 4. if w is marked with 0 then
 5. DFS(w)
BFS
BFS

0

1

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P
BFS
BFS
BreadthFirstSearch(G)

1. Mark each vertex in V with 0 as a mark of being unvisited
2. $count \leftarrow 0$
3. for each vertex v in V do
4. if v is marked with 0 then
5. BFS(v)

BFS(v)

1. $count \leftarrow count + 1$
2. Mark v with $count$
3. Initialize a queue with v
4. while queue is not empty do
5. for each vertex w in V adjacent to the front vertex do
6. if w is marked with 0 then
7. $count \leftarrow count + 1$
8. Mark w with $count$
9. Add w to the queue
10. Remove the front vertex from the queue