
1

Contents

GO Instagram
GO Facebook
GO Search engine
GO TinyURL
GO Paste bin
GO Twitter
GO WhatsApp
GO Youtube
GO Yelp
GO Uber
GO Ticketmaster
GO Google docs
GO Netflix
GO LinkedIn
GO Stack Overflow

2

Contents

GO Robinhood
GO Dropbox
GO ATM
GO Tinder
GO Zoom
GO Amazon

3

System design problem-solving template

Step 1. Problem

Step 2. User interface

Step 3. Requirements

Step 4. Statistics

Step 5. Block diagram

Step 6. Database schema

Step 7. Class diagram

Step 8. Service diagram

Step 9. Algorithm

Step 10. Business model

Instagram HOME

4

5

Step 1. Problem

Design a simple social networking application like Instagram,
where users can upload photos to share them with other users or
view other user’s photos.

6

Step 2. User interface

7

Step 3. Requirements

Functional requirements
Upload, download, view, like, and comment on photos
Search photos/videos
Follow users
Generate and display news feed
Support user login and authentication

Non-functional requirements
High availability
Low latency
High reliability

8

Step 4. Statistics

Feature Assumptions
Users 500M total, 1M daily active
Photos 2M/day (or 23/sec)
Photo size 200 KB
User activity 2 visits/day, 40 photos/visit
Storage 10 years

Parameter Estimation
Photo space 2M × 200 KB × 365 days × 10 years = 1425 TB
Daily upload volume 2M × 200 KB = 400 GB
Upload bandwidth 400 GB / (24 × 3600 sec) = 4.63 MB/sec
Daily download volume 1M × 40 × 2 × 200 KB = 16000 GB
Download bandwidth 16000 GB / (3600 × 24 sec) = 185 MB/sec

9

Step 5. Block diagram

10

Step 6. Database schema

Follow metadata
UserID1,UserID2(PK) int,int

User metadata
User ID (PK) int
Name varchar(20)
Email varchar(32)
DateOfBirth datetime
LastLogin datetime
Creation date datetime

Photo metadata
Photo ID(PK) int
User ID int
Photo path/Photo URL varchar(256)
Photo latitude int
Photo longitude int
Photo caption varchar(256)
Creation date datetime

11

Step 6. Database schema

Metadata

Table Storage estimation
User UserID (4 bytes) + Name (20 bytes) + Email (32 bytes) +

DateOfBirth (4 bytes) + CreationDate (4 bytes) +
LastLogin(4 bytes) = 68 bytes
500M (users) × 68 bytes = 32 GB

Photo PhotoID (4 bytes) + UserID (4 bytes) + PhotoPath (256 bytes)
+ PhotoLatitude (4 bytes) + PhotoLongitude (4 bytes) +
CreationDate (4 bytes) = 276 bytes
2M × 276 bytes × 10 years = 1.88 TB

UserFollow 500M users × 500 followers × 8 bytes = 1.82 TB

12

Step 7. Class diagram

13

Step 8. Service diagram

14

Step 8. Algorithm

createTimeLine(post, userId) B insert post in user’s friends’ newsfeed
Input: post, userId
1. Get each follower of a user
2. Append the post in the timeline hashmap for that follower

getTimeLine(user, time)B fetch timeline for a user from a particular time
Input: user, time after which timeline should be generated
Output: Returns a list of posts to be shown to the user
1. get the minimum time in timeLine hash map beyond which we need to

show the timeLine for the user into boundT ime
2. iterate through the hash map from boundT ime to the end and append

the post in a posts list
3. return the posts list to the user

15

Business Model

Advertisements and sponsored posts
Promotions

16

References

Instagram Design in Grokking the System Design Interview
System Design — Instagram by Dingding Wang
System Design Mock Interview: Design Instagram Youtube video
by Exponent
Designing Instagram: System Design of News Feed Youtube
Video by Gaurav Sen
Instagram Engineering tech blog
React-Instagram-Clone-2.0 Github repo:a basic instagram like
application in React

https://www.educative.io/courses/grokking-the-system-design-interview/m2yDVZnQ8lG
https://dingdingsherrywang.medium.com/system-design-instagram-4658eeb0423a
https://www.youtube.com/watch?v=VJpfO6KdyWE
https://www.youtube.com/watch?v=VJpfO6KdyWE
https://www.youtube.com/watch?v=QmX2NPkJTKg
https://www.youtube.com/watch?v=QmX2NPkJTKg
https://instagram-engineering.com/
https://github.com/yTakkar/React-Instagram-Clone-2.0
https://github.com/yTakkar/React-Instagram-Clone-2.0

Facebook HOME

17

18

Step 1. Problem

Design a simple online social networking application like
Facebook, where users can connect with other users to post and
read messages.

19

Step 2. User interface

20

Step 3. Requirements

Functional requirements

Add/update profile and search/connect with friends
Create posts, add pictures, and share videos
Search/create/subscribe groups
Generate newsfeed from friends’ posts and updates from groups

Non-functional requirements
High availability
Low latency
High reliability

21

Step 4. Statistics

Feature Assumptions
Users 1B total, 200M daily active
Posts 100M/day (or 1157/sec) of 800 bytes each
Multimedia frequency Every 5th post has a photo and 10th has a video
Average multimedia size 200 KB for photos and 2 MB for videos
Average number of friends 200
User activity 2 visits/day, 50 posts/visit (or 20B/day)
Storage 10 years
Parameter Estimation
Posts space 100M × 800 bytes × 365 days × 10 years = 292 TB
Photo space 20M × 200 KB × 365 days × 10 years = 14600 TB
Video space 10M × 2 MB × 365 days × 10 years = 73000 TB
Daily upload volume 80 GB + 4000 GB + 20000 GB = 24080 GB
Upload bandwidth 24080 GB / 3600 * 24 sec (or 278 MB/sec)
Download volume 20B×800 bytes + 4B×200 KB + 2B×2 MB = 4816 TB
Download bandwidth 4816 TB / 3600 * 24 sec (or 56 GB/sec)

22

Step 5. Block diagram

23

Step 6. Database schema

User metadata
User ID (PK) int
Name varchar(20)
Email varchar(32)
Password varchar(32)
DateOfBirth datetime
LastLogin datetime
Creation date datetime
Phone varchar(15)
Gender varchar(2)
Work varchar(64)
Education varchar(64)

Post metadata
Post ID (PK) varchar(64)
Author ID varchar(20)
Post path varchar(256)
Creation Date datetime
Likes int
Media ID varchar(64)

Media metadata
Media ID(PK) varchar
Type int
Media path/URL varchar(256)
Creation date datetime

24

Step 5. Database schema

Metadata

Table Storage estimation
User UserID (4 bytes) + Name (20 bytes) + Email (32 bytes) +

DateOfBirth (4 bytes) + CreationDate (4 bytes) +
LastLogin(4 bytes) + Phone(15 bytes) + Gender(2 bytes) +
Work(64 bytes) + Education(64 bytes) = 213 bytes
500M(users) * 213 bytes = 100 GB

Photo PhotoID (4 bytes) + UserID (4 bytes) + PhotoPath (256bytes)
+ PhotoLatitude (4 bytes) + PhotoLongitude(4 bytes) +
CreationDate (4 bytes) + Likes (4 bytes) +
Media ID (64 bytes) = 344 bytes
2M * 344 * 10 years = 2.34 TB height

25

Step 6. Class diagram

26

Step 7. Service Diagram

27

Step 8. Algorithm

createTimeLine(post, userId) B insert post in user’s friends’ newsfeed
Input: post, userId
1. Get each friend of a user
2. Append the post in the timeline hashmap for that friend

getTimeLine(user, time)B fetch timeline for a user from a particular time
Input: user, time after which timeline should be generated
Output: Returns a list of posts to be shown to the user
1. get the minimum time in timeLine hash map beyond which we need to

show the timeLine for the user into boundT ime
2. iterate through the hash map from boundT ime to the end and append

the post in a posts list
3. return the posts list to the user

28

Business Model

Advertisements and sponsored posts
Promotions

29

References

Facebook Newsfeed Design in Grokking the System Design
Interview
Facebook System Design youtube video by Codekarle
Design Facebook Messenger Youtube Video by Exponent
Facebook Engineering tech blog

https://www.educative.io/courses/grokking-the-system-design-interview/gxpWJ3ZKYwl
https://www.educative.io/courses/grokking-the-system-design-interview/gxpWJ3ZKYwl
https://www.youtube.com/watch?v=9-hjBGxuiEs
https://www.youtube.com/watch?v=uzeJb7ZjoQ4
https://engineering.fb.com/

Search Engine HOME

30

31

Step 1. Problem

Design a simple search engine to store, organize billions of web
pages available on the internet, find and present the most
relevant suggestions to the queries that the users type into the
search bar

32

Step 2. User interface

33

Step 3. Requirements

Functional requirements
Find pages from a search box
Rank search results based on relevance
Provide a short summary with links to actual pages

Non-functional requirements
High scalability
Low latency
High availability
High extensibility

34

Step 4. Statistics

Feature Assumptions
Websites to crawl 1B
web pages in a website 15
Average page size with text 100 KB
Page metadata 500 bytes
english words and nouns 300000 words + 200000 nouns
to be indexed = 500000 words
Indexed word length 5 characters (5 bytes)
Document ID. 64 bytes
indexed words in each doc 400

Parameter Estimation
pages to be crawled 1B × 15 = 15B pages
Document storage 15B × (100 KB + 500 bytes) = 1.5 PB
Document ID storage 15B × 64 bytes = 960 GB
Key storage in index 500000 words × 5 bytes = 2.5 MB
Value/DocIDs storage in index 90 GB × 400 words = 36 TB

35

Step 5. Block diagram

36

Step 6. Database schema

Document
Doc ID (PK) varchar(30)
Doc size int
Creation date datetime
Author varchar(60)
DocURL varchar(1000)
Doc title varchar(200)
Doc content varchar(2000)
Meta tags varchar(300)

37

Step 7. Class diagram

38

Step 8. Service diagram

39

Step 9. Algorithm

Crawl(seed URLs list) B Crawl billions of documents on the internet
Input: seed URLs list
1. Get initial seed URLs and store them in the unvisited URLs list
2. Pick a URL from the unvisited URL list
3. Determine the IP address of its host-name
4. Establish a connection with the host to download the document
5. Parse the document contents to look for new URLs
6. Add the new URLs to the list of unvisited URLs
7. Parse and store/index the document
8. Go back to step 2

Index(document) B Index the crawled document to search it later
Input: document to be indexed
1. For every crawled document, tokenize the document
2. Remove stop words and retrieve the key words
3. Iterate through the key words
4. For every key word, store the current document ID against that key word

in the index

40

Step 10. Business model

Advertisements

41

References

Design a search engine medium article
Design a mini google search medium article
Google search architecture and components
Google search indexing and searching youtube video
Google search engine system design
Google search engine high level system design
Google search engine youtube video

https://medium.com/double-pointer/system-design-interview-search-engine-edb66b64fd5e
https://eileen-code4fun.medium.com/system-design-interview-mini-google-search-6fd319cd66ca
https://github.com/jguamie/system-design/blob/master/notes/google-search-engine.md
https://www.youtube.com/watch?v=CeGtqouT8eA
https://iq.opengenus.org/system-design-of-google-search/
https://www.learnbay.io/google-search-engine-high-level-system-design-online-training/
https://www.youtube.com/watch?v=xedyeLlOwio

TinyURL HOME

42

43

Step 1. Problem

Design a URL shortening service like TinyURL. This will provide
a short aliases redirecting to long URLs.

44

Step 2. User interface

45

Step 3. Requirements

Functional requirements
Generate short, unique aliases of long URLs
Redirection to long URL on accessing short alias
Customize short link
Link expiry according to time specified by user

Non-functional requirements
High availability
Low latency
Short links should be unpredictable

46

Step 4. Statistics

Feature Assumptions
Shortenings 500 million requests per month = 200 URL/sec
Redirections 50 billion requests per month = 20000 redirections/sec
Storage time 5 years
Total URLs 500 million × 5 years × 12 months = 30 billion URLs
Parameter Estimation
URL storage space 30 billion × 500 bytes = 15 TB
Bandwidth 20K × 500 bytes = 10 MB/s
Redirection requests per day 20K × 3600 seconds × 24 hours = 1.7 billion
Cache memory 0.2 × 1.7 billion × 500 B = 170 GB

47

Step 5. Block diagram

48

Step 6. Database schema

URL
Hash (PK) varchar(16)
Original URL varchar(512)
Creation Date datetime
Expiration Date datetime
User ID int

User
User ID (PK) int
Name varchar(20)
Email varchar(32)
Creation Date datetime
Last Login datetime

49

Step 7. Class diagram

50

Step 8. Service diagram

51

Step 9. Algorithm

TinyURLGenerator(url, user) B Encode actual URL
Input: URL, user ID
Output: Generate a tiny URL for the given URL
(#Unique tiny URLs with 6 letters, 64-bit encoding = 664 = 68.7 billion)
1. Hash (URL + user ID) using a hashing algorithm, e.g. SHA256/MD5
2. Compress the generated hash to 6 letters using a compression algorithm
3. Return the tiny url consisting of 6 letters
TinyURLGenerator(url, user) B Key Generation Service
Input: URL, user ID
Output: Generate a tiny URL for the given URL
(Key DB size - 6 characters × 68.7 billion unique keys = 412 GB)
1. Fetch available key (tiny url) from Key table and assign to URL
2. Move unique key to Used-Key table
3. Return the tiny url consisting of 6 letters

52

Step 10. Business Model

Advertisements
Freemium model

Paste bin HOME

53

54

Step 1. Problem

Design a simple Pastebin where users can store plain text over
the internet and generate unique URLs to access that data.

55

Step 2. User Interface

56

Step 3. Requirements

Functional requirements

Upload/paste text data
Get unique URL for accessing the uploaded data
Data and links expiry after a specified time
Custom alias chosen by the user

Non-functional requirements
High reliability
Low latency
High availability
Links should not be guessable

57

Step 4. Statistics

Feature Assumptions
New pastes 1M per day (or 12/sec)
Paste reads 5M per day (or 58/sec)
Paste size 10 KB average
Storage time 10 years

Parameter Estimation
Data space 1M × 10 KB × 365 days × 10 years = 36.5 TB
Unique strings base64 encoding- 6 letter strings (646 = 68.7B)
Key storage 3.6 TB × 10 years × 6 = 22 GB
Daily upload volume 1M × 10 KB = 10 GB
Upload bandwidth 10 GB / 3600 × 24 secs = 115.7 KB/sec
Daily download volume 5M × 10 KB = 50 GB
Download bandwidth 50 GB / 3600 × 24 secs = 0.58 MB/sec

58

Step 5. Block diagram

59

Step 6. Database schema

Paste
urlHash (PK) varchar(16)
contentKey varchar(512)
expirationDate datetime
userID int
creationDate datetime

User
userID (PK) int
name varchar(20)
email varchar(32)
password int
creationDate datetime
lastLogin datetime

60

Step 6. Database schema

Metadata

Table Storage estimation
User userID (4 bytes) + name (20 bytes) + email (32 bytes) +

password (8 bytes) + creationDate (4 bytes) +
lastLogin (4 bytes) = 68 bytes
5M (users) × 68 bytes = 0.32 GB

Paste urlHash (16 bytes) + userID (4 bytes) + contentKey (512 bytes)
+ expirationDate (4 bytes) + creationDate (4 bytes) = 540 bytes
1M × 540 × 10 years = 1.9 TB

61

Step 7. Class diagram

62

Step 8. Algorithm - Key Generation

Randomkeygenerator(paste, user) B Generate key for a paste
Input: paste, userID
Output: Generate a key for the given paste
(#Possible unique keys with base64 encoding = 664 = 68.7 B)
1. Generate a 6-letter random string upon receiving write request
2. Store the contents of paste and generated key in database if no collision
3. Regenerate the random string if collision occurs
4. Return error if user’s custom key is already in the database

Keygenerationservice(paste, user) B Generate key for a Paste
Input: paste, userID
Output: Generate a key for the given Paste
(#Possible unique 6-letter keys with base64 encoding = 664 = 68.7 B)
(These unique keys are generated beforehand and stored on key-DB)
1. Provide a key from the key-DB for the given paste
2. Move the provided key to used key database
3. Return the provided key

63

Step 8. Service diagram

64

Step 9. Business Model

Revenue generated from donations and advertisements
Freemium model

65

References

Paste bin Design in Grokking the System Design Interview
Designing Paste bin by CrackFAANG
System Design Primer- Paste bin

https://www.educative.io/courses/grokking-the-system-design-interview/3jyvQ3pg6KO
https://medium.com/codex/designing-pastebin-77e6e86172eb
https://github.com/donnemartin/system-design-primer/blob/master/solutions/system_design/pastebin/README.md

Twitter HOME

66

67

Step 1. Problem

Design an online social networking service where users post and
read short 140-character messages called "tweets."

68

Step 2. User interface

69

Step 3. Requirements

Functional requirements

Post new tweets (includes photos and videos)
Follow other users and/or topics
Mark tweets as favorites
Display user timeline with top tweets

Non-functional requirements

High availability (over consistency)
Acceptable latency of 200 ms

70

Step 4. Statistics

Feature Assumptions
Favourites 200 million Users × 5 favorites = 1 billion favorites/day
Tweet views 200 million Users × ((2 + 5) × 20 tweets) = 28 billion/day
Parameter Estimation
Tweet space 100 million × (280 + 30) B = 30 GB/day
Photo space 20 million × 200KB = 4 TB/day
Video space 10 million × 2 MB = 20 TB/day
Incoming bandwidth 24 TB/day = 290 MB/s
Tweet view bandwidth 28 billion × 280 B / 86400 = 93MB/s
Photo view bandwidth 28 billion/5 × 280 B / 86400 = 13 GB/s
Video view bandwidth 28 billion/10/3 × 280 B / 86400 = 22 GB/s
Outgoing bandwidth 35 GB/s

71

Step 5. Block diagram

72

Step 6. Database schema

Tweet
Tweet ID (PK) int
User ID int
Content varchar(140)
Tweet latitude int
Tweet longitude int
User latitude int
User longitude int
Creation date datetime
Num favorites int
Top favorites varchar(1000)

User
User ID (PK) int
Name varchar(20)
Email varchar(32)
Date of birth datetime
Creation date datetime
Last login datetime

User follow
User ID1 (PK) int
User ID2 int

73

Step 7. Class diagram

74

Step 8. Service diagram

75

Step 9. Algorithm

PostTweet(user,tweet)
Input: User and a tweet
Output: Post a new tweet and update feed of user’s followers
1. for each follower of the user do
2. add tweet to the follower’s feed
3. add tweet to user’s tweet list
GetFeed(user,time)
Input: User and time
Output: List of tweets to be shown to the user posted after the given time
1. for each tweet in user’s feed do
2. output tweet posted after given time

76

Step 10. Business model

Advertisements
Promotions
Data licensing

Whatsapp HOME

77

78

Step 1. Problem

WhatsApp is an instant messaging service that supports
one-on-one and group chats between users through mobile and
web interfaces.

79

Step 2. User interface

80

Step 3. Requirements

Functional requirements
One-on-one and group conversations
Track of online/offline status
Send text, pictures, audios, videos and other files
Sent/delivered/read notifications
Audio/video calls

Non-functional requirements
Minimum latency
High availability
High consistency
Persistent storage

81

Step 4. Statistics

Feature Assumptions
Daily users 250 million users
Daily messages 40 messages/user = 10 billion messages/day

Parameter Estimation
Message space 10 billion messages × 140 bytes = 1.4 TB/day
Photo space 1 billion photos × 200 KB bytes = 200 TB/day
Video space 500 million videos × 2 MB = 1000 TB/day
File space 500 million files × 140 bytes = 0.1 TB/day
Total storage 1200 TB × 365 days × 10 years = 4285 PB
Bandwidth 1200 TB/day = 15 GB/s
Voice call bandwidth 16 KB/second for 4G
Video call bandwidth 80 KB/second for 4G

82

Step 5. Block diagram

83

Step 6. Database schema

User
User ID (PK) int
Status varchar(140)
Number int
Display name varchar(140)
About varchar(140)
Phone type varchar(140)
Phone label varchar(140)
Unseen messages int
Profile photo blob

Message
Message ID (PK) int
Sender ID int
Group ID int
Timestamp datetime
Media blob
Upload timestamp datetime
Delivered timestamp datetime
Seen timestamp datetime

84

Step 7. Class diagram

85

Step 8. Service diagram

86

Step 9. Algorithm

EncryptMessage(sender,message,recipient)
Input: User,message and a recipient
Output: Encrypt message sent from user to recipient
1. Sender encrypts message using public key from server
2. Encrypted message is sent to recipient
3. Recipient decrypts message using private key and public key from server
MessageDelivery(sender,message,recipient)
Input: User,message and a recipient
Output: Send message from user to recipient
1. User sends a message to recipient
2. If user is online, message is sent to server. Message status is sent
3. If recipient is online, send from server. Message status is delivered.
4. If recipient reads message, message status as read.

87

Step 10. Business model

Business API
P2P payments

Youtube HOME

88

89

Step 1. Problem

Youtube is one of the most popular video sharing websites in the
world. Users of the service can upload, view, share, rate, and
report videos as well as add comments on videos.

90

Step 2. User interface

91

Step 3. Requirements

Functional requirements

Upload/view/share/like/dislike videos
Subscribe to channels
Recommend videos
Record statistics of videos

Non-functional requirements
High reliability
High availability
Minimum latency

92

Step 4. Statistics

Feature Assumptions
Daily users 800 million users
Daily views 5 views/user = 4 billion views
Average video size 50 MB
Upload view ratio 1:200
Videos uploaded 200 uploads/second
Video length uploaded 500 hours/minute

Parameter Estimation
Storage 500 hours × 60 minutes × 50 MB = 25 GB/second
Upload bandwidth 500 hours × 60 minutes × 10 MB = 5 GB/second
Download bandwidth 5 GB/second × 200 = 1 TB/second

93

Step 5. Block diagram

94

Step 6. Database schema

User
User ID (PK) int
Name varchar(30)
Email varchar(32)
Subscribers int
Creation timestamp datetime
Last login datetime
Video
Video ID (PK) int
User ID int
Channel ID int
Likes int
Dislikes int
Title varchar(140)
Description varchar(300)
Views int
Creation timestamp datetime
Video blob

95

Step 7. Class diagram

96

Step 8. Service diagram

97

Step 9. Algorithm

Recommend(user)
Input: User’s watch history, subscriptions, likes and dislikes
Output: Recommend videos personalised for the user
1. Rank videos based on the following factors
2. Personalised - User’s topic interests, watch history, channels
3. Performance - Views, average view duration, likes, dislikes, surveys
4. External - Trending topics, seasonality and competition
5. User receives top ranked videos as recommendation

98

Step 10. Business model

Premium Subscriptions
Advertisements
Channel memberships
Super chats, super stickers and merchandise

Yelp HOME

99

100

Step 1. Problem

Design a simple Yelp like service where users can search for
nearby places like restaurants, theatres, etc. for user generated
ratings, reviews and other details.

101

Step 2. User Interface

102

Step 3. Requirements

Functional requirements

Add images/text/ratings as a review for a particular place
Get all nearby places based on user’s current location
Add, update or delete places

Non-functional requirements
Heavy search load
Low latency

103

Step 4. Statistics

Feature Assumptions
Places 500M
Queries 100k /sec
Photos 200 KB
Review size 512 bytes average
Places growth 20% /year

Parameter Estimation(Assuming Quadtree)
Tree storage 500M × 8 × 3 bytes = 12 GB
Photo Space 500M × 10 × 250 KB = 1250 TB
Daily upload volume 0.5M (reviews/day)× 512 bytes

× 500 (photos) × 200 KB= 25.6 TB
Upload bandwidth 25.6 TB / 3600 × 24 seconds = 29 GB/sec
Daily download volume 2M × 2 MB = 4 TB
Download bandwidth 4 TB / 3600 × 24 seconds = 46.3 MB/sec

104

Step 5. Block diagram

105

Step 6. Database schema

Places
locationID (PK) int
name varchar(256)
latitude decimal
longitude decimal
description varchar(512)
category char

Photos
locationID (PK) int
photoURL varchar(256)

Reviews
locationID (PK) int
reviewID int
reviewText varchar(512)
rating int

106

Step 6. Database schema

Metadata

Table Storage estimation
Places locationID (8 bytes) + name (256 bytes) + latitude (8 bytes) +

longitude (8 bytes) + description (512 bytes) +
category (1 bytes) = 793 bytes
500M (places) × 793 bytes = 0.4 TB

Reviews locationID (8 bytes) + reviewID (4 bytes) + reviewText (512 bytes)
+ rating (1 byte) = 525 bytes
500M (places) × 525 bytes = 0.26 TB

Photos locationID (8 bytes) + photoURL (256 bytes) = 264 bytes
500M (places) × 264 bytes = 0.13 TB

107

Step 7. Class diagram

108

Step 8. Algorithm

QuadTreeGenerator(P laces) B Generate a quad tree for locations
Input: locationID, latitude, longitude
Output: Generate a tree for all the locations
(#Locations to start with - 500M)
1. Start with one node as a grid for entire world
2. Break down that node into four grids based on locations
3. Repeat for each child node until no nodes are left with >500 locations
GridNeighborFinder(P laces) B Find the neighboring grid
Input: locationID, latitude, longitude
Output: Find the neighboring grid for given location
1. Start from root node the contains user location and traverse down
2. Connect all the leaf nodes with a doubly linked list
3. Iterate the doubly linked list forward and backward
4. Return as you find the neighboring locations or exhaust the search

109

Step 8. Algorithm

TreePartitioning(P laces) B Partition tree based on Locations
Input: locationID, latitude, longitude
Output: Tree Partitioning in different servers
(#Locations to start with - 500M)
1. Divide the servers based on locations
2. Hash the locations and IDs and map them with different servers where

they will be stored
3. Query all servers to return nearby places for a location
4. Return the values to the user
PopularPlacesFinder(P laces) B Popular places nearby
Input: locationID, latitude, longitude
Output: Find most popular places within a given radius
(Lets assume we keep track of popularity of each place)
1. Store the popularity number in database as well as tree
2. Iterate through partitions and return top 50 places for each server
3. Return the places queried by the required server

110

Step 9. Service diagram

111

Step 10. Business model

Advertisements
Commissions from partnerships

112

References

Yelp/Nearby friends Design in Grokking the System Design
Interview
Yelp/Nearby by Astik Anand
System Design Tutorial- Yelp

https://www.educative.io/courses/grokking-the-system-design-interview/B8rpM8E16LQ
https://www.educative.io/courses/grokking-the-system-design-interview/B8rpM8E16LQ
https://astikanand.github.io/techblogs/high-level-system-design/design-yelp-or-nearby
https://www.systemdesigntutorial.com/hld/yelp

Uber HOME

113

114

Step 1. Problem

Design a simple Uber like service where drivers use their personal
cars to drive customers around. Both customers and drivers
communicate through their smartphones

115

Step 2. User Interface

116

Step 2. User Interface

117

Step 3. Requirements

Functional requirements
Customers can request a ride
Drivers can accept or reject the ride request
Once accepted, share customer’s and driver’s location with each
other until the trip is ended

Non-functional requirements
Heavy search load
Low latency
Security

118

Step 4. Statistics

Feature Assumptions
Drivers 1M, 500k/day
Passengers 300M, 1M/day
Rides 1M/day
Driver location update every 3 secs

Parameter Estimation(Assuming Quadtree)
Tree storage 1M × 8 × 3 bytes = 24 MB
Driver hash table storage 1M × 35 bytes = 35 MB
Subscription storage (500k × 3 bytes) +(500k ×

5 subscribers × 8 bytes) = 21 MB
Location upload (Driver side) 5 × 500k = 2.5M
Location upload bandwidth 2.5M × (3+16) bytes
(Driver side) = 47.5 MBps

119

Step 5. Block diagram

120

Step 6. Database schema

Drivers
Driver ID(PK) int
Name varchar(256)
Old position decimal
Current position decimal
Ratings int

Passengers
Passenger ID(PK) int
Name varchar(256)
Current position int

121

Step 6. Database schema

Metadata

Table Storage estimation
Drivers DriverID (3 bytes) + Name (256 bytes) + Old position (16 bytes)

+ Current position (16 bytes) + Ratings (3 bytes) = 294 bytes
1M × 299 bytes = 0.3 GB

Passengers PassengerID (3 bytes) + Name (256 bytes) +
Current position (16 bytes) = 275 bytes
300M × 275 bytes = 82.5 GB

122

Step 7. Class diagram

123

Step 8. Algorithm

PushModel(Drivers) B Broadcast driver location from hash tree
Input: DriverID, Old position, Current position, PassengerID
Output: Refresh quad tree server as the driver location is changed and broad-
cast the location to subscribers
(#Drivers - 1M, 500k active/day)
1. Query the server to find nearby drivers as the passenger opens the app
2. Subscribe the passenger for all updates from the list of nearby drivers
3. Maintain a list of interested passengers
4. Send notification to the passengers in list every time the hash tree is

updated

124

Step 8. Algorithm

RequestRide(Drivers, P assengers) B Request a ride
Input: Driver ID, Old position, Current position, Passenger ID, Current po-
sition
Output: Return a driver for the requested ride
1. Aggregator server takes the request and asks quadtree servers to return a

list of nearby drivers
2. Collects all results and sorts them by ratings
3. Send notification to top three drivers from the list
4. Send notification for driver who accepted the ride first and cancel for all

others
5. If none of them accepts the ride, send a notification to next three drivers

from the list

125

Step 9. Service diagram

126

Step 10. Business model

Commission-based model

127

References

Uber backend Design in Grokking the System Design Interview
Uber System Design by Naren Gowda
System Design of Uber App- GeeksForGeeks
Uber System Design- codeKarle

https://www.educative.io/courses/grokking-the-system-design-interview/YQVkjp548NM
https://medium.com/@narengowda/uber-system-design-8b2bc95e2cfe
https://www.geeksforgeeks.org/system-design-of-uber-app-uber-system-architecture/
https://www.youtube.com/watch?v=Tp8kpMe-ZKw

Ticketmaster HOME

128

129

Step 1. Problem

Design an online ticketing system that sells movie tickets like
Ticketmaster or BookMyShow

130

Step 2. User Interface

131

Step 3. Requirements

Functional requirements
Location-based queries on movies, shows and theatres
Book tickets for a particular show

Non-functional requirements
High concurrency
Low latency
Security

132

Step 4. Statistics

Feature Assumptions
Page views 3 B/month
Tickets sold 10M/month
Cities 500
Theatres 10/city
Shows 2 shows per movie per theatre
Seats 2000
Seat booking 100 bytes (IDs, NumberOfSeats, ShowID, MovieID, etc)
Storage time 5 years
Parameter Estimation
Storage 500 × 10 × 2000 × 2 × (100+100) bytes

= 4 GB/day
Monthly download volume 3 B × 100 bytes = 0.1 TB
Download bandwidth 0.1 TB × 24 / 3600/ 30 secs = 22.2 MBps

133

Step 5. Block diagram

134

Step 6. Database schema

User
User ID(PK) int
Name varchar(256)
Password varchar(20)
Email varchar(256)
Phone varchar(16)

Theatre
Theatre ID(PK) int
Total seats int
City varchar(90)
State varchar(90)
Zip code int

Booking
Booking ID(PK) int
Timestamp datetime
No. of seats int
User ID int
Show ID int
Status int (enum)
Transaction ID int

Show
Show ID(PK) int
Movie ID int
Start time datetime
End time datetime
Theatre ID int

135

Step 6. Database schema

Metadata

Table Storage estimation
User UserID (3 bytes) + Name (256 bytes) + Password (20 bytes) +

Email (256 bytes) + Phone (16 bytes) = 551 bytes
1M × 551 bytes = 0.5 GB

Theatre TheatreID (3 bytes) + TotalSeats (3 bytes) +
City (90 bytes) + State (90 bytes) + ZipCode (3 bytes) +
TotalSeats (3 bytes) = 192 bytes
5000 × 192 bytes = 0.96 MB

136

Step 6. Database schema

Metadata

Table Storage estimation
Booking BookingID (3 bytes) + Timestamp (8 bytes) + NoOfSeats (3 bytes)

+ UserID (3 bytes) + ShowID (3 bytes) + status (1 byte) +
+ TransactionID (3 bytes) = 28
500k × 28 bytes = 14 MB

Show ShowID (3 bytes) + MovieID (3 bytes) + StartTime (8 bytes)
+ EndTime (8 bytes) = 22 bytes

137

Step 7. Class diagram

138

Step 8. Algorithm

ActiveReservationService(Show, Booking) B Active reservations
Input: UserID, BookingID, ShowID, Status
Output: Notify WaitingUsersService in case the booking is completed or reser-
vation expires
1. Store all reservations of a show in linked hashmap
2. Head of hashmap points to the oldest reservation due to expiry time
3. Status field will have default value 1(Reserved), which gets updated to

2(Booked) as the booking is complete
4. When time is expired, it gets marked as 3(Expired) and the Waitin-

gUsersService will get notified to serve waiting users

139

Step 9. Service diagram

140

Step 10. Business model

Commission-based model

141

References

Ticketmaster Design in Grokking the System Design Interview
Systems Design: Ticketmaster

https://www.educative.io/courses/grokking-the-system-design-interview/YQyq6mBKq4n
https://geekthanos.medium.com/systems-design-ticketmaster-cbb581808f84

Google Docs HOME

142

143

Step 1. Problem

Design a simple document collaboration tool like Google Docs,
where users who have access to a document can create, edit,
share documents online. Several users can edit the same
document simultaneously.

144

Step 2. User interface

145

Step 3. Requirements

Functional requirements
Change a document at the same time without any conflict
Give appropriate permission(view, editor) for a document
Import/export/comment/annotate document

Non-functional requirements
High concurrency
High consistency
Low latency
High availability

146

Step 4. Statistics

Feature Assumptions
Users 200M total, 20M daily active
#Documents/user 30
Average document size 200 KB
User activity 2 documents/day
Storage 5 years

Parameter Estimation
Document space 200M × 30 × 200 KB = 1200 TB
Daily upload volume 20M × 100 KB = 2 TB
Upload bandwidth 2 TB / (24 × 3600 sec) = 23.15 MB/sec
Daily download volume 20M × 2 × 200 KB = 8000 GB
Download bandwidth 8000 GB / (3600 × 24 sec) = 92.5 MB/sec

147

Step 5. Block diagram

148

Step 6. Database schema

User
User ID (PK) int
Name varchar(20)
Email varchar(32)
LastActive datetime

Document
Document ID(PK) int
Author ID int
Creation time datetime
Updation time datetime
Document URL varchar(256)
Title varchar(256)

AccessControl
Document ID int
User ID int
Access/Control type varchar(20)

149

Step 6. Database schema

Metadata

Table Storage estimation
User UserID (4 bytes) + Name (20 bytes) + Email (32 bytes) +

LastActive (4 bytes) = 60 bytes
200M (users) × 60 bytes = 12 GB

Document Document ID (4 bytes) + Author ID (4 bytes)
+ Creation timestamp (4 bytes) + Last modification (4 bytes)
+ Document URL (256 bytes) + Title (256 bytes) = 528 bytes
200M × 30 × 528 bytes = 3168 GB

AccessControl Document ID (4 bytes) + User ID (4 bytes)
+ Access type (1 byte) = 9 bytes

150

Step 7. Class diagram

151

Step 8. Service diagram

152

Step 9. Algorithm

editLocally(change, position) B apply local changes to the document at
that character position
Input: change(insert/delete/modify)
1. Iterate through the list of local changes
2. Apply each change to the document at given position
3. Save new version at client side
4. Send changes with new version number to the server to be synced by other

clients

syncChanges() B Sync changes from all other clients through the server
1. Fetch the new changes from the server
2. Iterate through this list of changes
3. Apply Operational Transformation on each change and apply the change
4. Save the new version locally

153

Step 10. Business Model

Subscription fee

154

References

Google Docs High-Level System design on LinkedIn
Operational Transformation Youtube video by Tech Dummies
Design Google Docs blog
How Does Google Sheets work? Medium article
Designing Google Docs by gainlo
System design Google Docs on AlgoDaily

https://www.linkedin.com/pulse/google-docs-high-level-system-design-murat-atak/
https://www.youtube.com/watch?v=2auwirNBvGg
https://www.enjoyalgorithms.com/blog/design-google-docs
https://medium.com/google-cloud/system-designing-google-sheet-bdf12321b99c
http://blog.gainlo.co/index.php/2016/03/22/system-design-interview-question-how-to-design-google-docs/
https://algodaily.com/lessons/system-design-google-docs

Dropbox HOME

155

156

Step 1. Problem

Design a cloud file storage service like Dropbox or Google Drive
which enable users to store their data on remote servers.

157

Step 2. User interface

158

Step 3. Requirements

Functional requirements

Upload and download their files/photos from any device
Share files and folders with others
Support automatic synchronization between devices
Add,delete and modify files while offline

Non-functional requirements
High scalability
High availability
ACID-ity is required. Atomicity, Consistency, Isolation and
Durability of all file operations should be guaranteed.

159

Step 4. Statistics

Feature Assumptions
Users 200M total, 20M daily active
#Documents/user 30
Average document size 200 KB
User activity 2 documents/day
Storage 5 years

Parameter Estimation
Document space 200M × 30 × 200 KB = 1200 TB
Daily upload volume 20M × 100 KB = 2 TB
Upload bandwidth 2 TB / (24 × 3600 sec) = 23.15 MB/sec
Daily download volume 20M × 2 × 200 KB = 8000 GB
Download bandwidth 8000 GB / (3600 × 24 sec) = 92.5 MB/sec

160

Step 5. Block diagram

161

Step 6. Database schema

User
User ID (PK) int
Name varchar(20)
Email varchar(32)
Password varchar(32)
Creation time datetime
Update time datetime
Last login datetime

Devices
Device ID (PK) int
User ID int
Creation time datetime
Update time datetime

Objects
Object ID (PK) int
User ID (PK,FK) int
Object type varchar(32)
Parent Object ID int
Name varchar(20)
Creation time datetime
Update time datetime

162

Step 7. Class diagram

163

Step 8. Service diagram

164

Step 9. Algorithm

editLocally(change, position) B apply local changes to the document at
that character position
Input: change(insert/delete/modify)
1. Iterate through the list of local changes
2. Apply each change to the document at given position
3. Save new version at client side
4. Send changes with new version number to the server to be synced by other

clients

syncChanges() B Sync changes from all other clients through the server
1. Fetch the new changes from the server
2. Iterate through this list of changes
3. Apply Operational Transformation on each change and apply the change
4. Save the new version locally

165

Step 10. Business model

Freemium

ATM HOME

166

167

Step 1. Problem

Design an automated teller machine (ATM) that allows clients
to access to financial transactions in a public space without the
need for a cashier.

168

Step 2. User interface

169

Step 3. Requirements

Functional requirements

Dispense/Deposit cash
Display current balance

Non-functional requirements
High reliability
ACID-ity is required. Atomicity, Consistency, Isolation and
Durability of all file operations should be guaranteed.

170

Step 4. Statistics

Feature Assumptions
Daily average users 1000
Daily transactions 2000
Max cash capacity 2000000
Max withdrawal amount per user 1000
Parameter Estimation
Daily average withdrawal amount 1000000
Size of one transaction 20 KB
Average network bandwidth 10 MB/sec
Latency 5 sec

171

Step 5. Block diagram

172

Step 6. Database schema

Account
Account ID (PK) int
Card Number (PK) int
Name varchar(20)
Email varchar(32)
PIN int
Status varchar(20)
Balance double
Transaction
Transaction ID (PK) varchar(32)
Account ID (FK) int
ATM ID (PK) int
Transaction Status varchar(32)
Amount double
Transaction time datetime

173

Step 7. Class diagram

174

Step 8. Service diagram

175

Step 9. Algorithm

AuthenticateUser(card,PIN)
Input: card and PIN
Output: Check if the user is valid or not
1. Use card reader service to get account information of the user
2. Provide transaction options
3. Eject card

WithdrawCash(account,cash)
Input: account and cash
Output: Cash
1. If entered amount is less than balance
2. dispense cash and update balance
3. Display message if transaction was successful or not

DepositCash(account,cash)
Input: account and cash
Output: Update message
1. Calculate cash deposited
2. Update account balance and ATM balance
3. Display message if transaction was successful or not

176

Step 10. Business model

Transaction charges
Reduction in interest rates

Tinder HOME

177

178

Step 1. Problem

Design an online dating application which allow users to use a
swiping motion to like (swipe right) or dislike (swipe left) and
match and chat with other users .

179

Step 2. User interface

180

Step 3. Requirements

Functional requirements

Swipe left (dislike) and right (like)
If both account like each other, match profiles
Add user profile
Chat option
Super likes

Non-functional requirements
Minimum latency
High availability
High scalability
High consistency
High reliability

181

Step 4. Statistics

Feature Assumptions
Users 50M
Daily matches 1M
Daily users 10M
Daily swipes 50M
Number of images per user 5

Parameter Estimation
Image space 200 KB
Description space 140 KB
Total storage 50M × (5 × 200KB + 150KB) = 53 PB

182

Step 5. Block diagram

183

Step 6. Database schema

User
User ID (PK) int
User name varchar(32)
Gender varchar(32)
Email varchar(32)
About varchar(140)
Profile photo blob
Match radius int
Last login datetime

Message
Message ID (PK) int
Sender ID int
Receiver ID int
Timestamp datetime

184

Step 7. Class diagram

185

Step 8. Service diagram

186

Step 9. Algorithm

Recommend Potential Matches(user)
Input: User preferences like location, gender, age and match radius
Output: Recommend potential matches to swipe based on user’s preference
1. Divide the world map into boxes using geosharding
2. Size of each box is dependent on user count and active user count
3. Based on location preference, assign a box to user
4. Based on match radius preference determine potential matches from user

and neighbour boxes
5. for each neighbor in neighbor boxes do
6. if user is within match radius
7. add neighbor to user recommendation
8. Sort recommendation based on user preferences
9. User receives top recommended people from neighborhood as a result

187

Step 10. Business model

Premium Subscriptions

188

Video Streaming

Video quality and resolution directly affect the bitrate and data
used in streaming.
Video quality is defined by the resolution (no. of pixels). Eg.
144p video has 256 × 144 pixels.
Each pixel has a size of 3 bits. Therefore size of 1 frame s is
given by :

s = 3× h× w bits

Given video quality, i.e, the resolution in height h and width w
the rate to transfer 30 frames in 1 second (in Kbps) is :

bitrate = (3× h× w × 30)/1024 Kbps

189

Video Streaming (Contd.)

Given actual bitrate, we can calculate frames transimted per
second (f):

f = actual bitrate

required bitrate
× 30

Time to transmit 30 frames (t) is given by

t = 30
f

seconds

Delay is given by

delay = 1− t

190

Video Streaming (Contd.)

Eg for 144p resolution video height h = 144 and width w = 256.
Required bitrate is

bitrate = (3× h× w × 30)/1024 = 3240 Kbps

If actual bitrate is 3000 Kbps, then frames transmitted per
second (f) is given by

f = 3000
3240 × 30 = 27.77 fps

Time to transmit 30 frames (t) is given by

t = 30
f

= 1.08 seconds

Delay is given by

delay = 1− t = 0.08 seconds

Netflix HOME

191

192

Step 1. Problem

Netflix a video streaming service over the internet that allows
users to stream and watch videos which are available on its
platform.

193

Step 2. User interface

194

Step 3. Requirements

Functional requirements
Create account and subscribe for a plan
Search/play video
Recommend videos

Non-functional requirements
High reliability
High availability
Minimal latency

195

Step 4. Statistics

Feature Assumptions
Daily users 100M users
Daily views 5 videos/user = 500M views/day
Average video size 500 MB
Average number of uploads size 1000/day
Parameter Estimation
Outgoing bandwidth 500M × 500 MB = 250 PB/day
Incoming bandwidth 1000 × 500 MB = 500 GB/day
Storage 500 GB × 5 years × 365 days = 913 TB

196

Step 5. Block diagram

197

Step 6. Database schema

User
User ID (PK) int
Name varchar(140)
Email varchar(140)
Password varchar(30)
Created datetime
Last login datetime
Subscription ID int

Video
Video ID (PK) int
Title varchar(140)
Summary varchar(140)
URL varchar(140)
Length int
Censor rating datetime
Created datetime

Subscription
Subscription ID (PK) int
User ID (FK) int
Plan ID (FK) int
Email varchar(140)
Valid till datetime
Created datetime

198

Step 7. Class diagram

199

Step 8. Service diagram

200

Step 9. Algorithm

Recommend(user)
Input: User’s watch history, subscriptions, likes and dislikes
Output: Recommend videos personalised for the user
1. Rank videos based on the satisfaction metrics
2. View history data (change over time)
3. Popularity, likes, dislikes
4. Trending shows, seasonality and competition
5. User receives top ranked videos as recommendation

201

Step 10. Business model

Paid Subscriptions

LinkedIn HOME

202

203

Step 1. Problem

LinkedIn is a professional social network that allows users to
connect and explore new opportunities for their careers.

204

Step 2. User interface

205

Step 3. Requirements

Functional requirements
Create profile
Connect with other users
Create/Apply to job postings

Non-functional requirements
High availability
Partition tolerant
Eventual consistency

206

Step 4. Statistics

Feature Assumptions
Daily users 100M users
Daily job postings 5M
Daily job applications 2M
Average job posting size 2 KB
Total companies 57M

Parameter Estimation
Job posting space 5M × 2 KB = 10 GB/day
Total bandwidth 10 GB/day
Storage 10 GB × 5 years × 365 days = 18 TB

207

Step 5. Block diagram

208

Step 6. Database schema

User
User ID (PK) int
Name varchar(140)
Description varchar(140)
Photo blob
Email varchar(140)
Password varchar(30)
Created datetime
Last login datetime
Applications varchar(1000)

Company
Company ID (PK) int
Name varchar(140)
Description varchar(450)
Type varchar(140)
Size int
Jobs varchar(1000)

Job
Job ID (PK) int
Date of posting datetine
Description varchar(140)
Location varchar(140)
Applicants vacrchar(1000)
Fulfilled bool

209

Step 7. Class diagram

210

Step 8. Service diagram

211

Step 9. Algorithm

JobRecommendation(user)
Input: Candidate’s profile
Output: Recommend job postings personalised for the candidate
1. Use decision trees and deep learning to recommend jobs based on :
2. Work similarity
3. Experience/Skills
4. Location
5. Likelihood of response
6. User receives top ranked job postings as recommendation

212

Step 10. Business model

Premium Subscriptions

Stack Overflow HOME

213

214

Step 1. Problem

Stack Overflow is one of the largest online communities for
developers to learn and share their knowledge. The website
provides a platform for its users to ask and answer questions.

215

Step 2. User interface

216

Step 3. Requirements

Functional requirements

Search/Post/Answer questions
Add comments to questions or answers
Upvote/Downvote anwsers

Non-functional requirements
Minimum latency
High availability

217

Step 4. Statistics

Feature Assumptions
Daily users 10M users
Daily questions 7600
Daily questions answered 5320
Average number of answers for each question 5
Average size of question/answer 30 KB
Parameter Estimation
Question space (1 + 5) × 7600 × 30 KB = 1.3 GB/day
Total bandwidth 1.3 GB/day

218

Step 5. Block diagram

219

Step 6. Database schema

User
User ID (PK) int
Password varchar(140)
Name varchar(140)
Email blob
Reputation varchar(140)
Created datetime
Last login datetime

Question
Question ID (PK) int
Title varchar(140)
Description varchar(450)
View count int
Vote count int
Creation time datetime
Update time datetime
Status varchar(140)

Answer
Answer ID (PK) int
Answer text varchar(500)
Accepted bool
Vote count int
Create time datetime

220

Step 7. Class diagram

221

Step 8. Service diagram

222

Step 9. Algorithm

Search(query)
Input: User query intended search similar questions
Output: Retrieve existing questions that closely resembles user’s query
1. Tag prediction - Predict which tag the query best belongs to
2. Tag classifier is trained using an LSTM model to get word embeddings
3. Information Retrieval - Use word embedding and cosine distance to retrieve

similar existing questions
4. User receives top ranked questions as a search result

223

Step 10. Business model

Advertisements
Job listings
CV search

Robinhood HOME

224

225

Step 1. Problem

An Online Stock Brokerage System like Robinhood facilitates its
users the trade (i.e. buying and selling) of stocks online. It
allows clients to keep track of and execute their transactions,
and shows performance charts of the different stocks in their
portfolios.

226

Step 2. User interface

227

Step 3. Requirements

Functional requirements

Buy/sell stocks
Add stocks to watchlist
View real time and historic view on stock price reports

Non-functional requirements
Minimum latency
High availability
High reliability

228

Step 4. Statistics

Feature Assumptions
Daily bids 100M bids
Daily clients 10M
Number of tickers shown per client 10
Number of clients at a time 100k

Parameter Estimation
Number of bids per second 100M / (8 × 60 × 60) = 3240 queries/sec
Bidding bandwidth 3420 × 200 bytes = 0.6
Ticker bandwidth 100k × 10 × 200 bytes = 190 MB/sec
Total bandwidth 191 MB/sec

229

Step 5. Block diagram

230

Step 6. Database schema

User
User ID (PK) int
Password varchar(140)
Name varchar(140)
Status varchar(140)
Email varchar(140)
Watchlist varchar(1000)
Stocks varchar(1000)
Total value int

Question
Question ID (PK) int
Title varchar(140)
Description varchar(450)
View count int
Vote count int
Creation time datetime
Update time datetime
Status varchar(140)

Answer
Answer ID (PK) int
Answer text varchar(500)
Accepted bool
Vote count int
Create time datetime

231

Step 7. Class diagram

232

Step 8. Service diagram

233

Step 9. Algorithm

Search(query)
Input: User query intended search similar questions
Output: Retrieve existing questions that closely resembles user’s query
1. Tag prediction - Predict which tag the query best belongs to
2. Tag classifier is trained using an LSTM model to get word embeddings
3. Information Retrieval - Use word embedding and cosine distance to retrieve

similar existing questions
4. User receives top ranked questions as a search result

234

Step 10. Business model

Transaction-based revenues

Zoom HOME

235

236

Step 1. Problem

Design an online video conferencing platform like Zoom

237

Step 2. User Interface

238

Step 3. Requirements

Functional requirements
Supports 1-on-1 calls and group calls
Calls can be audio, video or screen sharing and can be recorded

Non-functional requirements
Super fast
Highly available
Data loss is OK

239

Step 4. Statistics

Feature Assumptions
Meetings 10M/day
Participants 300M/day
Participants per meeting 50-100
No. of Data centers 20

Parameter Estimation
High quality download and upload bandwidth 100+100= 200 MBph

240

Step 5. Block diagram

241

Step 6. Database schema

User
User ID(PK) int
Name varchar(256)
Password varchar(20)
Email varchar(256)
IsMuted bool
VideoStatus bool
IsPresenting bool

Scheduled Meetings
Meeting ID(PK) int
Participants varchar(1024)
HostUserID int
StartTime datetime
EndTime datetime
Password varchar(20)
IsScreenshareEnabled bool
BreakoutRooms int
ChatMessage varchar(1024)
IsScreenRecording bool

242

Step 7. Class diagram

243

Step 8. Algorithm

Streaming packets(User) B Stream audio and video
Input: User ID, packets, Meeting ID, Participants, IPs
Output: Encoding audio and video stream and sending to the endpoint
1. If it is a one-on-one call, use peer to peer
2. Encode single stream with multiple layers
3. Perform video processing at client side and use UDP, TCP, TLS and HTTP

for network layer
4. Divide participants based on their IP and the data center they fall in
5. At server side, determine optimal path to connect to participants with

multimedia router
6. Perform video and audio processing at endpoint to enhance quality

244

Step 9. Service diagram

245

Step 10. Business model

Freemium model
Advertising

246

References

How Zoom works
Zoom System Design by codeKarle
A Study of Zoom’s Video Conferencing Architecture & System
Design

https://www.lavivienpost.com/how-zoom-works/
https://www.youtube.com/watch?v=G32ThJakeHk
https://www.cometchat.com/blog/zoom-video-technology-architecture
https://www.cometchat.com/blog/zoom-video-technology-architecture

Amazon HOME

247

248

Step 1. Problem

Design an e-commerce website like Ebay/Amazon

249

Step 2. User Interface

250

Step 3. Requirements

Functional requirements
Buyers can search products by name, keyword or category
Buyers can add, update or delete products from their cart
Sellers can add, modify or delete the products they want to sell
Buyers can review and rate purchased products

Non-functional requirements
Highly available
Low latency
Highly consistent

251

Step 4. Statistics

Feature Assumptions
Visits 2.3 B/month
Sellers 9M
Items sold 1.6M/day

252

Step 5. Block diagram

253

Step 6. Database schema

Buyer
Buyer ID(PK) int
Name varchar(256)
Password varchar(20)
Email varchar(256)
Order History varchar(1024)
Address varchar(512)

Seller
Seller ID(PK) int
Name varchar(256)
Email varchar(256)
Password varchar(20)
Products varchar(1024)
Ratings float
Reviews varchar(256)
no. of Orders int

Item
Item ID(PK) int
Name varchar(256)
IsAvailable bool
Ratings float
Reviews varchar(256)

Order
Order ID(PK) int
Buyer ID varchar(256)
Delivery Status bool
Amount float

254

Step 7. Class diagram

255

Step 8. Algorithm

WarehouseService(User) B Manage inventory
Input: Item ID, Available items, order ID
Output: Maintain inventory as the items are selling
1. Maintain indices of all the products available in all warehouses
2. Decrement item count as the item sells
3. Increment item count if returned

OrderPlacementService(User) B Order Placing
Input: Item ID, Available items, order ID
Output: Maintain data for order
1. Record orders by buyer in relational database- MySQL
2. Reflect the change to inventory database as soon as the item is ordered

256

Step 8. Algorithm

RecommendationService(User) B Recommend products
Input: orderHistory, sellerID, ratings
Output: Recommend related items to the buyer
1. Normalize other buyer ratings for a particular product
2. Perform user-user collaborative filtering to recommend products
3. Perform item-item collaborative filtering to recommend more products
4. Recommend other items sold by the same seller the buyer has shopped

with before

257

Step 9. Service diagram

258

Step 9. Service diagram

259

Step 10. Business model

Commission-based model

260

References

E-commerce website system design
Amazon System Design by codeKarle

https://medium.com/double-pointer/system-design-interview-amazon-flipkart-ebay-or-similar-e-commerce-applications-35a0bc764421
https://www.youtube.com/watch?v=EpASu_1dUdE

