Algorithms (Decrease-and-Conquer)

Pramod Ganapathi

Department of Computer Science State University of New York at Stony Brook

October 19, 2021

- 1. Decrease by constant
 - Topological sorting
- 2. Decrease by constant factor
 - Lighter ball
 - Josephus problem
- 3. Variable size decrease
 - Selection problem

Decrease-and-conquer

- Decrease by constant. n' = n c for some constant c
- Decrease by constant factor. n' = n/c for some constant c
- Variable size decrease. n' = n c for some variable c

- Size of instance is reduced by the same constant in each iteration of the algorithm
- Decrease by 1 is common
- Examples:
 - Array sum
 - Array search
 - Find maximum/minimum element
 - Integer product
 - Exponentiation
 - Topological sorting

- Size of instance is reduced by the same constant factor in each iteration of the algorithm
- Decrease by factor 2 is common
- Examples:
 - Binary search
 - Search/insert/delete in balanced search tree
 - Fake coin problem
 - Josephus problem

- Size of instance is reduced by a variable in each iteration of the algorithm
- Examples:
 - Selection problem
 - Quicksort
 - Search/insert/delete in binary search tree
 - Interpolation search

Decrease by Constant (HOME)

Problem

• Topological sorting of vertices of a directed acyclic graph is an ordering of the vertices v_1, v_2, \ldots, v_n in such a way that there is an edge directed towards vertex v_j from vertex v_i , then v_i comes before v_j .

Example

DFS algorithm

Topological sort = Reversal of the order in which the vertices become dead ends in the DFS algorithm.

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
1. Topological sort $T \leftarrow \emptyset$
2. Mark each vertex in V as unvisited
3. for each vertex v in V do
4. if v is unvisited then
5. $DFS(v)$
6. return T
OFS(v)
1. Mark v as visited
2. for each vertex w in V adjacent to v do
3. if w is unvisited then
4. $DFS(w)$
5. $T.AddFirst(v)$

Topological sort = Order in which those vertices are removed that have 0 indegrees.

TOPOLOGICALSORT(G)

- 1. Topological sort $T \leftarrow \emptyset$
- 2. Mark each vertex in \boldsymbol{V} as unvisited
- 3. Find indegree[v] for each vertex v in V
- 4. for each vertex $v\ {\rm in}\ V$ do
- 5. if indegree[v] = 0 then
- 6. Q.ENQUEUE(v)
- 7. Mark v as visited
- 8. while Q is not empty do
- 9. $u \leftarrow Q.\text{DEQUEUE}()$
- 10. T.ADDLAST(u)
- 11. for each vertex w in V adjacent to u do
- 12. **if** w is unvisited **then**
- 13. $indegree[w] \leftarrow indegree[w] 1$
- 14. **if** indegree[w] = 0 **then**
- 15. Q.ENQUEUE(w)
- 16. Mark w as visited

17. return T

Decrease by Constant Factor HOME

Problem

• There are $n \ge 1$ identical-looking balls, but, one of the balls is lighter than the other balls. Design an efficient algorithm to detect the lighter ball using a weighing scale/balance.

Lighter ball among 9 balls: Divide by 2

LIGHTERBALL($[\ell, \ell+1, \ell+2, \ldots, h]$) Input: Set of $(h - \ell + 1)$ balls: $\ell, \ell + 1, \ell + 2, \ldots, h$ **Output:** Index number of the lighter ball **Require:** Invocation is LIGHTERBALL([0..n-1]) such that $n \ge 2$ 1. if $\ell = h$ then 2 return l 3. $half \leftarrow |(h - \ell + 1)/2|$ 4. $A \leftarrow \text{first } half \text{ number of balls i.e., } [\ell, \ell+1, \dots, \ell+half-1]$ 5. $B \leftarrow$ second half number of balls i.e., $[\ell + half, \dots, \ell + 2 \cdot half]$ 6. $C \leftarrow$ remaining ball [h] if total balls is odd 7. weigh sets A and B8. if weight(A) < weight(B) then 9. return LIGHTERBALL(A)10. else if weight(A) > weight(B) then **return** LIGHTERBALL(B)11. 12. else if weight(A) = weight(B) then 13. **return** LIGHTERBALL(C)

• Weighings.

$$W(n) = \begin{cases} 0 & \text{if } n = 1, \\ W(\lfloor n/2 \rfloor) + 1 & \text{if } n \ge 2. \end{cases}$$

Solving, $W(n) = \lfloor \log_2 n \rfloor$

• Time complexity.

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ T(n/2) + \Theta(1) & \text{if } n \ge 2. \end{cases}$$

Solving, $T(n) \in \Theta(\log n)$

Lighter ball among 9 balls: Divide by 3

Decrease-by-third algorithm

LIGHTERBALL($[\ell, \ell+1, \ell+2, \ldots, h]$) Input: Set of $(h - \ell + 1)$ balls: $\ell, \ell + 1, \ell + 2, \ldots, h$ **Output:** Index number of the lighter ball **Require:** Invocation is LIGHTERBALL([0..n-1]) such that $n \ge 3$ 1. if $\ell = h$ then \triangleright 1 ball 2. return ℓ 3. else if $\ell = h - 1$ then \triangleright 2 balls 4. return lighter ball among ℓ and h 5. third $\leftarrow |(h - \ell + 1)/3|$ 6. $A \leftarrow \text{first } third \text{ number of balls i.e., } [\ell, \ell+1, \dots, \ell+third-1]$ 7. $B \leftarrow$ second *third* number of balls i.e., $[\ell + third, \dots, \ell + 2 \cdot third - 1]$ 8. $C \leftarrow$ remaining balls, i.e., $[\ell + 2 \cdot third, \ldots, h]$ 9. weigh sets A and B10. if weight(A) < weight(B) then return LIGHTERBALL(A)11. 12. else if weight(A) > weight(B) then 13. **return** LIGHTERBALL(B)14. else if weight(A) = weight(B) then 15. return LIGHTERBALL(C)

• Weighings.

$$W(n) = \begin{cases} 0 & \text{if } n = 1, \\ 1 & \text{if } n = 2, \\ W(\lceil n/3 \rceil) + 1 & \text{if } n \ge 3. \end{cases}$$
 Solving, $W(n) = \lceil \log_3 n \rceil$

• Time complexity.

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \text{ or } 2, \\ T(n/3) + \Theta(1) & \text{if } n \ge 3. \end{cases}$$

Solving, $T(n) \in \Theta(\log n)$

Problem

• There are *n* people numbered from 1 to *n* in a circle. Starting from person 1, we eliminate every second person until only survivor is left. Design an efficient algorithm to find the survivor's number *J*(*n*).

Example: J(6) = 5

- Create a circular linked list (CLL) of size n.
- Node at location *i* stores item *i*.
- Delete alternate nodes until only one node is left.
- Time is $\Theta(n)$, space is $\Theta(n)$
- Is there a more efficient algorithm?

Decrease-by-half algorithm

$$J(n) = \left\{ \begin{array}{ll} 1 & \text{if } n = 1, \\ 2J(n/2) - 1 & \text{if } n \geq 2 \text{ and } n \text{ is even}, \\ 2J(n/2) + 1 & \text{if } n \geq 2 \text{ and } n \text{ is odd}. \end{array} \right\}$$

JOSEPHUS(n)

Input: Whole number *n*

Output: Josephus number J(n)

- 1. if n = 1 then
- 2. return 1
- 3. else if n is even then
- 4. return $2 \times \text{JOSEPHUS}(n/2) 1$
- 5. else if n is odd then
- 6. return $2 \times \text{JOSEPHUS}(n/2) + 1$

Case: *n* is even (n = 2k)

Case: *n* **is odd**
$$(n = 2k + 1)$$

• Time complexity.

$$\begin{split} T(n) &= \begin{cases} \Theta\left(1\right) & \text{if } n = 1, \\ T(n/2) + \Theta\left(1\right) & \text{if } n > 1. \end{cases} \\ \text{Solving, } T(n) \in \Theta\left(\log n\right) \end{split}$$

• Space complexity.

$$\begin{split} S(n) &= \begin{cases} \Theta\left(1\right) & \text{if } n = 1, \\ S(n/2) + \Theta\left(1\right) & \text{if } n > 1. \end{cases} \\ \text{Solving, } S(n) \in \Theta\left(\log n\right) \text{ stack space} \end{split}$$

Variable Size Decrease (HOME)

Problem

• Find the kth smallest element (or kth order statistic) in a given array A[0..n-1].

- Easiest cases. Minimum (k = 1), maximum (k = n)
- Hardest case. Median $(k = \lfloor n/2 \rfloor)$

Algorithm	Time	k-smallest items? Sorted?
Sorting	$\Theta\left(n\log n\right)$	✓, ✓
Partial selection sort	$\Theta\left(kn\right)$	J , J
Partial heapsort	$\Theta\left(n+k\log n\right)$	✓, ×
Online selection	$\Theta\left(n\log k\right)$	✓, ×
Rand. quickselect	$\Theta\left(n^{2} ight)$ ($\Theta\left(n ight)$ avg.)	√, X
Linear-time algorithm	$\Theta\left(n ight)$	X , X

PARTIALSELECTIONSORT(A[0..(n-1)])

- 1. Run SelectionSort on A[0..(n-1)] for k iterations to find the k smallest elements in sorted order
- 2. return kth smallest element

Time is $\Theta(kn)$

PARTIALHEAPSORT(A[0..(n-1)])

1. $H \leftarrow \text{Construct}$ a min-heap from A[0..(n-1)] in-place $\triangleright \Theta(k \log n)$

2. H.DELETEMIN() k times

3. return kth smallest element

Time is $\Theta(n + k \log n)$

 $\triangleright \Theta(n)$

 ONLINESELECTION (A[0..(n-1)])

 1. $H \leftarrow \text{Construct a } k\text{-sized max-heap from } A[0..(k-1)]$ $\triangleright \Theta(k)$

 2. for $i \leftarrow k$ to (n-1) times do
 $\triangleright \Theta(n \log k)$

 3. if A[i] is not more than the heap's maximum then
 $\triangleright \Theta(n \log k)$

 4. H.INSERT(A[i]) $\bullet \Theta(\log k)$

 5. H.DELETEMAX() $\bullet \Theta(\log k)$

 6. kth smallest element $\leftarrow H.\text{DELETEMAX}()$ $\triangleright \Theta(\log k)$

Time is $\Theta(n \log k)$

RANDOMIZEDQUICKSELECT $(A[\ell..h], k)$

- 1. if $\ell = h$ then
- 2. return $A[\ell]$
- **3**. $s \leftarrow \text{RandomizedPartition}(A[\ell..h])$
- 4. $size \leftarrow s \ell + 1$
- 5. if k = size then
- 6. return A[s]
- 7. else if k < size then
- 8. return RANDOMIZEDQUICKSELECT $(A[\ell...s-1], k)$
- 9. else if k > size then
- 10. return RANDOMIZEDQUICKSELECT(A[s+1..h], k-size)

Randomized partition

RANDOMIZEDPARTITION $(A[\ellh])$	
1. $i \leftarrow \text{RANDOM}(\{\ell, \ell+1, \dots, h\})$ 2. $\text{SWAP}(A[\ell], A[i])$ 3. $\text{LOMUTOPARTITION}(A[\ellh])$	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	
1. $pivot \leftarrow A[\ell]$	\triangleright first element is the pivot
2. $i \leftarrow \ell$ 3. for $j \leftarrow \ell + 1$ to h do	
4. if $A[j] \le pivot$ then 5. $i \leftarrow i+1$	
6. $\operatorname{SWAP}(A[i], A[j])$	
7. $SWAP(pivot, A[i])$ 8. return i	

Lomuto partition

Randomized partition (using Hoare partition)

RANDOMIZEDPARTITION $(A[\ellh])$	
1. $i \leftarrow \text{RANDOM}(\{\ell, \ell+1, \dots, h\})$ 2. $\text{SWAP}(A[\ell], A[i])$ 3. HOAREPARTITION $(A[\ellh])$	
HOAREPARTITION $(A[\ellh])$	
1. $pivot \leftarrow A[\ell]$ 2. $i \leftarrow \ell; j \leftarrow h + 1$ 3. while true do4. {5. while $A[++i] < pivot$ do6. if $i = h$ then break7. while $pivot < A[j]$ do8. if $j = \ell$ then break9. if $i \ge j$ then break10. else SWAP(A[i], A[j])11. }12. SWAP(pivot, A[j])13. return j	▷ first element is the pivot

Hoare partition

Initially, $i \leftarrow \ell$ and $j \leftarrow h + 1$. Incr. i and decr. j until $A[i] \ge pivot \ge A[j]$. Swap A[i] and A[j].

Incr. i and decr. j until $A[i] \ge pivot \ge A[j]$.

Swap A[i] and A[j].

Incr. i and decr. j until $A[i] \ge pivot \ge A[j]$.

Break loop because $j \leq i$.

Swap *pivot* and A[j]. Return *j*.