Algorithms

(Decrease-and-Conquer)

Pramod Ganapathi
Department of Computer Science
State University of New York at Stony Brook

October 19, 2021

B
Y B2

% A,

FERS

PN
T3

S
2



Contents

1. Decrease by constant
@ Topological sorting
2. Decrease by constant factor
e Lighter ball
@ Josephus problem
3. Variable size decrease
@ Selection problem



Decrease-and-conquer

Problem(n)

/

Subproblem(n')

Subsolution

AN

Solution

[Step 1. Decrease]

[Step 2. Conquer]

[Step 3. Combine]



Types of decrease-and-conquer

@ Decrease by constant. n’ = n — ¢ for some constant ¢
o Decrease by constant factor. n’ = n/c for some constant ¢
o Variable size decrease. n’ = n — ¢ for some variable ¢



Decrease by constant

@ Size of instance is reduced by the same constant in each
iteration of the algorithm

@ Decrease by 1 is common

e Examples:
@ Array sum
@ Array search

Find maximum/minimum element

Integer product

Exponentiation

Topological sorting



Decrease by constant factor

@ Size of instance is reduced by the same constant factor in each
iteration of the algorithm
@ Decrease by factor 2 is common
o Examples:
@ Binary search
@ Search/insert/delete in balanced search tree
@ Fake coin problem
@ Josephus problem



Variable size decrease

@ Size of instance is reduced by a variable in each iteration of the
algorithm
@ Examples:
@ Selection problem
@ Quicksort
@ Search/insert/delete in binary search tree
@ Interpolation search



Decrease by Constant



Topological sorting

Problem

@ Topological sorting of vertices of a directed acyclic graph is an
ordering of the vertices vy, v2, ..., v, in such a way that there
is an edge directed towards vertex v; from vertex v;, then v;
comes before v;.




Example

Graph Topological sort

@

[A,B,C, D, E|

(0) =D (B, A,C, D, E|

(D)
B) &)
@ (D)
@ :[> Does not exist

B) (®)



DFS algorithm

Topological sort = Reversal of the order in which the vertices
become dead ends in the DFS algorithm.

TOPOLOGICALSORT(G)

1. Topological sort T «+

2. Mark each vertex in V' as unvisited
3. for each vertex v in V do

4. if v is unvisited then

5 DFS(v)

6. return T’

DFS(v)

Mark v as visited
for each vertex w in V' adjacent to v do
if w is unvisited then
DFS(w)
T.ADDFIRST(v)

a0




Source removal algorithm

Topological sort = Order in which those vertices are removed that
have 0 indegrees.

.>‘<I DeleteA ./'.<I DeleteB

Delete C' @ Delete D Delete F
®) ®



Source-removal algorithm

TOPOLOGICALSORT(G)

Topological sort T < ()
Mark each vertex in V' as unvisited
Find indegree[v] for each vertex v in V
for each vertex v in V do
if indegree[v] = 0 then
Q.ENQUEUE(v)
Mark v as visited
while @ is not empty do
u < Q.DEQUEUE()
10. T.ADDLAST(u)
11. for each vertex w in V adjacent to u do
12.  if w is unvisited then

LCoNO WD

13. indegree[w] < indegree[w] — 1
14, if indegree[w] = 0 then

15. Q.ENQUEUE(w)

16. Mark w as visited

17. return T




Decrease by Constant Factor



Lighter ball

| Problem |

® There are n > 1 identical-looking balls, but, one of the balls
is lighter than the other balls. Design an efficient algorithm to
detect the lighter ball using a weighing scale/balance.




Lighter ball among 9 balls: Divide by 2

| s

@ C

; J )
8 Q‘Q ﬁ*&
A.B " e




Decrease-by-half algorithm

LIGHTERBALL([¢,£ + 1,4+ 2,...,h])

Input: Set of (h — £+ 1) balls: £,£+1,0+2,...,h
Output: Index number of the lighter ball
Require: Invocation is LIGHTERBALL([0..n — 1]) such that n > 2

if { = h then
return /¢
half < |(h—€+1)/2]
A «+ first half number of balls i.e., [¢,0+1,...,£+ half — 1]
B < second half number of balls i.e., [ + half,..., £+ 2 - half]
C' + remaining ball [h] if total balls is odd

weigh sets A and B

if weight(A) < weight(B) then
return LIGHTERBALL(A)

else if weight(A) > weight(B) then
return LIGHTERBALL(B)

. else if weight(A) = weight(B) then

return LIGHTERBALL(C)




Complexity

o Weighings.

W(n) = {0
A w2 +1
Solving, W(n) = |logy n|

@ Time complexity.

T — {@(1)
T(n/2)+© (1)

Solving, T'(n) € O (logn)

ifn=1,
if n > 2.

ifn=1,
if n>2.

}
}



Lighter ball among 9 balls: Divide by 3




Decrease-by-third algorithm

LIGHTERBALL([¢,£ + 1,4+ 2,...,h])

2
3
4.
5.
6
7
8

Input: Set of (h — £+ 1) balls: £,£+1,0+2,...,h

Output: Index number of the lighter ball

Require: Invocation is LIGHTERBALL([0..n — 1]) such that n >3
1.

if { = h then > 1 ball
return /
. else if { = h —1 then > 2 balls

return lighter ball among ¢ and h
third < [(h—£€+1)/3]

. A « first third number of balls i.e., [(,£+ 1,...,¢+ third — 1]
. B« second third number of balls i.e., [{ 4 third, ..., 0+ 2 third — 1]
. C < remaining balls, i.e., [{ + 2 - third, ..., h]

9.
10.
11.
12.
13.
14.
15.

weigh sets A and B

if weight(A) < weight(B) then
return LIGHTERBALL(A)

else if weight(A) > weight(B) then
return LIGHTERBALL(B)

else if weight(A) = weight(B) then
return LIGHTERBALL(C')




Complexity

e Weighings.

0 ifn=1,
Wmn)=<1 if n=2,
W([n/3])+1 ifn>3.
Solving, W (n) = [logg n]
@ Time complexity.
T(n) = O (1) if n=1or 2,
VTN T3 +0(1) ifn> 3.
Solving, T'(n) € O (logn)



Josephus problem

Problem

@ There are n people numbered from 1 to n in a circle. Starting
from person 1, we eliminate every second person until only sur-
vivor is left. Design an efficient algorithm to find the survivor's
number J(n).




Example: J(6) =5




CLL algorithm

Create a circular linked list (CLL) of size n.
Node at location ¢ stores item .

Delete alternate nodes until only one node is left.
Time is © (n), space is © (n)

Is there a more efficient algorithm?



Decrease-by-half algorithm

1 ifn =1,
J(n) =< 2J(n/2)—1 ifn>2and nis even,
2J(n/2)+1 ifn>2andnis odd.

JOSEPHUS(n)

Input: Whole number n

Output: Josephus number J(n)

1. if n =1 then

2. returnl

3. else if n is even then

4. return 2 x JOSEPHUS(n/2) — 1
5. else if n is odd then

6. return 2 x JOSEPHUS(n/2) + 1







Case: n is odd (n =2k + 1)

J(7) = 2J(3) +1

T2k +1) =2J(k) +1]




Complexity

@ Time complexity.
T(n) = O (1) ifn=1,
"=\ T2 +00) a1
Solving, T'(n) € O (logn)

@ Space complexity.
S(n) = ©(1) !fnzl,
S(n/2)+06 (1) ifn>1.
Solving, S(n) € © (logn) stack space



Variable Size Decrease



Selection problem

[ Problem )

e Find the kth smallest element (or kth order statistic) in a given
array A[0..n — 1].

o Easiest cases. Minimum (k = 1), maximum (k = n)
o Hardest case. Median (k = [n/2])



Selection algorithms

Algorithm Time k-smallest items? Sorted?
Sorting O (nlogn) ./
Partial selection sort | © (kn) 4
Partial heapsort O (n + klogn) /. X
Online selection O (nlogk) v, X
Rand. quickselect O (n?) (O (n) avg.) v, X
Linear-time algorithm | © (n) X X




Partial selection sort

PARTIALSELECTIONSORT(A0..(n — 1)])

1. Run SELECTIONSORT on A[0..(n — 1)] for k iterations
to find the k£ smallest elements in sorted order
2. return kth smallest element

Time is © (kn)



Partial heapsort

| PARTIALHEAPSORT(A0..(n — 1)]) 1
1. H < Construct a min-heap from A[0..(n — 1)] in-place > O (n)
2. H.DELETEMIN() k times > © (klogn)

3. return kth smallest element

Time is © (n + klogn)



Online selection

ONLINESELECTION(A[0..(n — 1)])

1. H <« Construct a k-sized max-heap from A[0..(k — 1)] > © (k)
2. for i < k to (n — 1) times do > © (nlogk)
3. if A[i] is not more than the heap’s maximum then

4. H.INSeRT(A[i])

5 H.DELETEMAX()

6. kth smallest element <+ H.DELETEMAX() > O (logk)
7. return kth smallest element

Time is © (nlogk)



Randomized quickselect

RANDOMIZEDQUICKSELECT(A[L..h], k)

1. if { = h then

2. return A[{]

3. s + RANDOMIZEDPARTITION(A[{..h])

4. size<—s—L0+1

5. if kK = size then

6. return A[s]

7. else if k < size then

8. return RANDOMIZEDQUICKSELECT(A[{..s — 1], k)
9. else if £ > size then

10.

return RANDOMIZEDQUICKSELECT (A[s + 1..h], k — size)




Randomized partition




Randomized partition (using Lomuto partition)

RANDOMIZEDPARTITION(A[(..h])

1. i+ RanpoMm({{, ¢+ 1,...,h})
2. SwaPp(A[¢], A[i])
3. LOMUTOPARTITION(A[£..h])

LOMUTOPARTITION(A{..h])

pivot < A[{] > first element is the pivot
i< 4
for j <~ {4+ 1to h do
if A[j] < pivot then

t+i+1

Swap(Ail, Alj)
SwAP(pivot, Ali])
return 7

NSO R WM




Lomuto partition

pivot >3 [ 86 [7]1][5]2[4] i+ Landjei+1 Afj]> pivot.

i
‘3‘8|6|7|1|5‘2‘4‘ Increment j until Afj] < pivot.
i J
‘3‘8|6|7|1 5 2‘4‘ Increment 7.
i J
[3[1]6]7[8]5]2]4] SwapAl]andAaf).
i J
‘3‘1|6|7|8|5|2|4‘ Increment j until Afj] < pivot.
i J
[3[1]6][7[8]5]2]4] Incrementi.
i J
[3[1]2]7[8]5]6]4] SwapAl]andAaf).
i j
‘3‘1|2|7|8|5|6|4‘ Increment j until j = h + 1.
i J

‘2|1|3‘7|8|5|6|4‘ Swap pivot and A[i]. Return .
1 j




Randomized partition (using Hoare partition)

RANDOMIZEDPARTITION(A[(..h])

1. i < RaNnpoM({(,£+1,...,h})
2. Swap(A[/], A[i])
3. HOAREPARTITION(A{..h])

HOAREPARTITION(A[{..h])

pivot + A[{]
14 j+—h+1
while true do

while A[+ + 4] < pivot do
if i = h then break
while pivot < A[— — j] do
if 7 = ¢ then break
9. if i > j then break
10. else Swap(A[i], Alj])

©ONOOTR WM

12. SwaAP(pivot, A[j])
13. return j

> first element is the pivot




Hoare partition

pzvot#€\8\6\7\1\5\2\2\

IEIIIEEH

\MMM

Ilﬂﬂ!ﬂﬂl

WUWMHHM
i J
sl2]1]7]e]5]8]4]
7
[3[2]1]7]e[s]s[4]
J 1
[1]2]s]7]e[s]s[4]
i i

Initially, i + ¢ and j + h + 1.

Incr. ¢ and decr. j until Afi] > pivot > Alj].

Swap A[i] and A[j].

Incr. 7 and decr. j until A[i] > pivot > Alj].

Swap A[i] and A[j].

Incr. ¢ and decr. j until A[i] > pivot > Alj].

Break loop because j < i.

Swap pivot and A[j]. Return j.



