
1

Algorithms
(Decrease-and-Conquer)

Pramod Ganapathi
Department of Computer Science

State University of New York at Stony Brook

October 19, 2021



2

Contents

1. Decrease by constant
Topological sorting

2. Decrease by constant factor
Lighter ball
Josephus problem

3. Variable size decrease
Selection problem



3

Decrease-and-conquer

Problem(n)

Subproblem(n′)

Subsolution

Solution

[Step 1. Decrease]

[Step 2. Conquer]

[Step 3. Combine]



4

Types of decrease-and-conquer

Decrease by constant. n′ = n− c for some constant c
Decrease by constant factor. n′ = n/c for some constant c
Variable size decrease. n′ = n− c for some variable c



5

Decrease by constant

Size of instance is reduced by the same constant in each
iteration of the algorithm
Decrease by 1 is common
Examples:
Array sum
Array search
Find maximum/minimum element
Integer product
Exponentiation
Topological sorting



6

Decrease by constant factor

Size of instance is reduced by the same constant factor in each
iteration of the algorithm
Decrease by factor 2 is common
Examples:
Binary search
Search/insert/delete in balanced search tree
Fake coin problem
Josephus problem



7

Variable size decrease

Size of instance is reduced by a variable in each iteration of the
algorithm
Examples:
Selection problem
Quicksort
Search/insert/delete in binary search tree
Interpolation search



Decrease by Constant HOME

8



9

Topological sorting

Problem
Topological sorting of vertices of a directed acyclic graph is an
ordering of the vertices v1, v2, . . . , vn in such a way that there
is an edge directed towards vertex vj from vertex vi, then vi

comes before vj .



10

Example

A

B

C

D

E

Graph

[A,B,C,D,E]

[B,A,C,D,E]

Topological sort

A

B

C

D

E

Does not exist



11

DFS algorithm

Topological sort = Reversal of the order in which the vertices
become dead ends in the DFS algorithm.

TopologicalSort(G)
1. Topological sort T ← ∅
2. Mark each vertex in V as unvisited
3. for each vertex v in V do
4. if v is unvisited then
5. DFS(v)
6. return T

DFS(v)
1. Mark v as visited
2. for each vertex w in V adjacent to v do
3. if w is unvisited then
4. DFS(w)
5. T.AddFirst(v)



12

Source removal algorithm

Topological sort = Order in which those vertices are removed that
have 0 indegrees.

A

B

C

D

E

Delete A

B

C

D

E

C

D

E

Delete B

D

E

Delete C

E

Delete D Delete E



13

Source-removal algorithm

TopologicalSort(G)
1. Topological sort T ← ∅
2. Mark each vertex in V as unvisited
3. Find indegree[v] for each vertex v in V
4. for each vertex v in V do
5. if indegree[v] = 0 then
6. Q.Enqueue(v)
7. Mark v as visited
8. while Q is not empty do
9. u← Q.Dequeue()

10. T.AddLast(u)
11. for each vertex w in V adjacent to u do
12. if w is unvisited then
13. indegree[w]← indegree[w]− 1
14. if indegree[w] = 0 then
15. Q.Enqueue(w)
16. Mark w as visited
17. return T



Decrease by Constant Factor HOME

14



15

Lighter ball

Problem
There are n ≥ 1 identical-looking balls, but, one of the balls
is lighter than the other balls. Design an efficient algorithm to
detect the lighter ball using a weighing scale/balance.



16

Lighter ball among 9 balls: Divide by 2

A B

C

A

A

AB

B

B

C C C



17

Decrease-by-half algorithm

LighterBall([`, ` + 1, ` + 2, . . . , h])
Input: Set of (h− ` + 1) balls: `, ` + 1, ` + 2, . . . , h
Output: Index number of the lighter ball
Require: Invocation is LighterBall([0..n− 1]) such that n ≥ 2
1. if ` = h then
2. return `

3. half ← b(h− ` + 1)/2c
4. A← first half number of balls i.e., [`, ` + 1, . . . , ` + half − 1]
5. B ← second half number of balls i.e., [` + half, . . . , ` + 2 · half ]
6. C ← remaining ball [h] if total balls is odd
7. weigh sets A and B
8. if weight(A) < weight(B) then
9. return LighterBall(A)

10. else if weight(A) > weight(B) then
11. return LighterBall(B)
12. else if weight(A) = weight(B) then
13. return LighterBall(C)



18

Complexity

Weighings.

W (n) =
{

0 if n = 1,

W (bn/2c) + 1 if n ≥ 2.

}
Solving, W (n) = blog2 nc

Time complexity.

T (n) =
{

Θ (1) if n = 1,

T (n/2) + Θ (1) if n ≥ 2.

}
Solving, T (n) ∈ Θ (log n)



19

Lighter ball among 9 balls: Divide by 3

A B

C

A

A

AB

B

B

C C C



20

Decrease-by-third algorithm

LighterBall([`, ` + 1, ` + 2, . . . , h])
Input: Set of (h− ` + 1) balls: `, ` + 1, ` + 2, . . . , h
Output: Index number of the lighter ball
Require: Invocation is LighterBall([0..n− 1]) such that n ≥ 3
1. if ` = h then B 1 ball
2. return `
3. else if ` = h− 1 then B 2 balls
4. return lighter ball among ` and h

5. third← b(h− ` + 1)/3c
6. A← first third number of balls i.e., [`, ` + 1, . . . , ` + third− 1]
7. B ← second third number of balls i.e., [` + third, . . . , ` + 2 · third− 1]
8. C ← remaining balls, i.e., [` + 2 · third, . . . , h]
9. weigh sets A and B

10. if weight(A) < weight(B) then
11. return LighterBall(A)
12. else if weight(A) > weight(B) then
13. return LighterBall(B)
14. else if weight(A) = weight(B) then
15. return LighterBall(C)



21

Complexity

Weighings.

W (n) =


0 if n = 1,

1 if n = 2,

W (dn/3e) + 1 if n ≥ 3.


Solving, W (n) = dlog3 ne

Time complexity.

T (n) =
{

Θ (1) if n = 1 or 2,

T (n/3) + Θ (1) if n ≥ 3.

}
Solving, T (n) ∈ Θ (log n)



22

Josephus problem

Problem
There are n people numbered from 1 to n in a circle. Starting
from person 1, we eliminate every second person until only sur-
vivor is left. Design an efficient algorithm to find the survivor’s
number J(n).



23

Example: J(6) = 5

1

4

2

3

6

5

1

4

3

6

5

1

3

6

5

1

35

1

55



24

CLL algorithm

Create a circular linked list (CLL) of size n.
Node at location i stores item i.
Delete alternate nodes until only one node is left.
Time is Θ (n), space is Θ (n)
Is there a more efficient algorithm?



25

Decrease-by-half algorithm

J(n) =


1 if n = 1,

2J(n/2)− 1 if n ≥ 2 and n is even,

2J(n/2) + 1 if n ≥ 2 and n is odd.


Josephus(n)
Input: Whole number n
Output: Josephus number J(n)
1. if n = 1 then
2. return 1
3. else if n is even then
4. return 2× Josephus(n/2)− 1
5. else if n is odd then
6. return 2× Josephus(n/2) + 1



26

Case: n is even (n = 2k)

1

4

2

3

6

5

1

35

1

3 2

J(6) = 2J(3)− 1
J(2k) = 2J(k)− 1



27

Case: n is odd (n = 2k + 1)

1

3

2

1

2

3

45

6

7

3

5

7

J(7) = 2J(3) + 1
J(2k + 1) = 2J(k) + 1



28

Complexity

Time complexity.

T (n) =
{

Θ (1) if n = 1,

T (n/2) + Θ (1) if n > 1.

}
Solving, T (n) ∈ Θ (log n)

Space complexity.

S(n) =
{

Θ (1) if n = 1,

S(n/2) + Θ (1) if n > 1.

}
Solving, S(n) ∈ Θ (log n) stack space



Variable Size Decrease HOME

29



30

Selection problem

Problem
Find the kth smallest element (or kth order statistic) in a given
array A[0..n− 1].

Easiest cases. Minimum (k = 1), maximum (k = n)
Hardest case. Median (k = bn/2c)



31

Selection algorithms

Algorithm Time k-smallest items? Sorted?
Sorting Θ (n log n) 3, 3

Partial selection sort Θ (kn) 3, 3

Partial heapsort Θ (n + k log n) 3, 7

Online selection Θ (n log k) 3, 7

Rand. quickselect Θ
(
n2) (Θ (n) avg.) 3, 7

Linear-time algorithm Θ (n) 7, 7



32

Partial selection sort

PartialSelectionSort(A[0..(n− 1)])
1. Run SelectionSort on A[0..(n− 1)] for k iterations

to find the k smallest elements in sorted order
2. return kth smallest element

Time is Θ (kn)



33

Partial heapsort

PartialHeapsort(A[0..(n− 1)])
1. H ← Construct a min-heap from A[0..(n− 1)] in-place B Θ (n)
2. H.DeleteMin() k times B Θ (k log n)
3. return kth smallest element

Time is Θ (n + k log n)



34

Online selection

OnlineSelection(A[0..(n− 1)])
1. H ← Construct a k-sized max-heap from A[0..(k − 1)] B Θ (k)
2. for i← k to (n− 1) times do B Θ (n log k)
3. if A[i] is not more than the heap’s maximum then
4. H.Insert(A[i])
5. H.DeleteMax()
6. kth smallest element ← H.DeleteMax() B Θ (log k)
7. return kth smallest element

Time is Θ (n log k)



35

Randomized quickselect

RandomizedQuickSelect(A[`..h], k)
1. if ` = h then
2. return A[`]
3. s← RandomizedPartition(A[`..h])
4. size← s− ` + 1
5. if k = size then
6. return A[s]
7. else if k < size then
8. return RandomizedQuickSelect(A[`..s− 1], k)
9. else if k > size then

10. return RandomizedQuickSelect(A[s + 1..h], k − size)



36

Randomized partition

pivot

pivot

≤ pivot > pivot



37

Randomized partition (using Lomuto partition)

RandomizedPartition(A[`..h])
1. i← Random({`, ` + 1, . . . , h})
2. Swap(A[`], A[i])
3. LomutoPartition(A[`..h])

LomutoPartition(A[`..h])
1. pivot← A[`] B first element is the pivot
2. i← `
3. for j ← ` + 1 to h do
4. if A[j] ≤ pivot then
5. i← i + 1
6. Swap(A[i], A[j])
7. Swap(pivot, A[i])
8. return i



38

Lomuto partition

3 8 6 7 1 5 2 4

i j

pivot i← ` and j ← i+ 1. A[j] > pivot.

3 8 6 7 1 5 2 4

i j

Increment j until A[j] ≤ pivot.

3 8 6 7 1 5 2 4

i j

Increment i.

3 1 6 7 8 5 2 4

i j

Swap A[i] and A[j].

3 1 6 7 8 5 2 4

i j

Increment j until A[j] ≤ pivot.

3 1 6 7 8 5 2 4

i j

Increment i.

3 1 2 7 8 5 6 4

i j

Swap A[i] and A[j].

3 1 2 7 8 5 6 4

i j

Increment j until j = h+ 1.

2 1 3 7 8 5 6 4

i j

Swap pivot and A[i]. Return i.

` h



39

Randomized partition (using Hoare partition)

RandomizedPartition(A[`..h])
1. i← Random({`, ` + 1, . . . , h})
2. Swap(A[`], A[i])
3. HoarePartition(A[`..h])

HoarePartition(A[`..h])
1. pivot← A[`] B first element is the pivot
2. i← `; j ← h + 1
3. while true do
4. {
5. while A[+ + i] < pivot do
6. if i = h then break
7. while pivot < A[−− j] do
8. if j = ` then break
9. if i ≥ j then break

10. else Swap(A[i], A[j])
11. }
12. Swap(pivot, A[j])
13. return j



40

Hoare partition

3 8 6 7 1 5 2 4

i j

i j

pivot Initially, i← ` and j ← h+ 1.

Incr. i and decr. j until A[i] ≥ pivot ≥ A[j].3 8 6 7 1 5 2 4

i j

Swap A[i] and A[j].3 2 6 7 1 5 8 4

i j

3 2 6 7 5 8 4

i j

Swap A[i] and A[j].3 2 1 7 6 5 8 4

ij

3 2 1 7 6 5 8 4

ij

3 2 1 7 6 5 8 4 Break loop because j ≤ i.

ij

1 2 3 7 6 5 8 4

1

Swap pivot and A[j]. Return j.

Incr. i and decr. j until A[i] ≥ pivot ≥ A[j].

Incr. i and decr. j until A[i] ≥ pivot ≥ A[j].

` h


