Algorithms

(Decrease-and-Conquer)

Pramod Ganapathi
Department of Computer Science
State University of New York at Stony Brook

October 19, 2021

Contents

1. Decrease by constant

- Topological sorting

2. Decrease by constant factor

- Lighter ball
- Josephus problem

3. Variable size decrease

- Selection problem

Decrease-and-conquer

Types of decrease-and-conquer

- Decrease by constant. $n^{\prime}=n-c$ for some constant c
- Decrease by constant factor. $n^{\prime}=n / c$ for some constant c
- Variable size decrease. $n^{\prime}=n-c$ for some variable c

Decrease by constant

- Size of instance is reduced by the same constant in each iteration of the algorithm
- Decrease by 1 is common
- Examples:
- Array sum
- Array search
- Find maximum/minimum element
- Integer product
- Exponentiation
- Topological sorting

Decrease by constant factor

- Size of instance is reduced by the same constant factor in each iteration of the algorithm
- Decrease by factor 2 is common
- Examples:
- Binary search
- Search/insert/delete in balanced search tree
- Fake coin problem
- Josephus problem

Variable size decrease

- Size of instance is reduced by a variable in each iteration of the algorithm
- Examples:
- Selection problem
- Quicksort
- Search/insert/delete in binary search tree
- Interpolation search

Decrease by Constant номв

Topological sorting

Problem

- Topological sorting of vertices of a directed acyclic graph is an ordering of the vertices $v_{1}, v_{2}, \ldots, v_{n}$ in such a way that there is an edge directed towards vertex v_{j} from vertex v_{i}, then v_{i} comes before v_{j}.

Example

Graph

Topological sort

$[A, B, C, D, E]$
$[B, A, C, D, E]$

Does not exist

DFS algorithm

Topological sort $=$ Reversal of the order in which the vertices become dead ends in the DFS algorithm.

```
TOPOLOGICALSORT(G)
    1. Topological sort T\leftarrow\emptyset
    2. Mark each vertex in V as unvisited
    3. for each vertex v in V do
    4. if v}\mathrm{ is unvisited then
    5. DFS(v)
    6. return T
    DFS(v)
    1. Mark v as visited
    2. for each vertex w in V adjacent to v do
    3. if w}\mathrm{ is unvisited then
    4. }\operatorname{DFS}(w
    5. T.ADdFIRSt(v)
```


Source removal algorithm

Topological sort $=$ Order in which those vertices are removed that have 0 indegrees.

Source-removal algorithm

```
TOPOLOGICALSORT(G)
1. Topological sort T\leftarrow\emptyset
2. Mark each vertex in V as unvisited
3. Find indegree[v] for each vertex v in V
4. for each vertex v}\mathrm{ in }V\mathrm{ do
5. if indegree [v]=0 then
6. Q.Enqueue(v)
7. Mark v}\mathrm{ as visited
8. while Q is not empty do
9. }u\leftarrowQ\mathrm{ .DEQUEUE()
10. T.AddLast(u)
11. for each vertex w in V adjacent to }u\mathrm{ do
12. if w}\mathrm{ is unvisited then
13. indegree [w] \leftarrow indegree[w] - 1
14. if indegree [w]=0 then
15. Q.EnQuEuE( }w
16. Mark w as visited
17. return T
```


Decrease by Constant Factor $\boldsymbol{\text { номв }}$

Lighter ball

Problem

- There are $n \geq 1$ identical-looking balls, but, one of the balls is lighter than the other balls. Design an efficient algorithm to detect the lighter ball using a weighing scale/balance.

Lighter ball among 9 balls: Divide by 2


```
\(\operatorname{LighterBaLL}([\ell, \ell+1, \ell+2, \ldots, h])\)
Input: Set of \((h-\ell+1)\) balls: \(\ell, \ell+1, \ell+2, \ldots, h\)
Output: Index number of the lighter ball
Require: Invocation is LighterBall \(([0 . . n-1])\) such that \(n \geq 2\)
1. if \(\ell=h\) then
2. return \(\ell\)
3. half \(\leftarrow\lfloor(h-\ell+1) / 2\rfloor\)
4. \(A \leftarrow\) first half number of balls i.e., \([\ell, \ell+1, \ldots, \ell+h a l f-1]\)
5. \(B \leftarrow\) second half number of balls i.e., \([\ell+\) half \(, \ldots, \ell+2 \cdot h a l f]\)
6. \(C \leftarrow\) remaining ball \([h]\) if total balls is odd
7. weigh sets \(A\) and \(B\)
8. if weight \((A)<\) weight \((B)\) then
9. return LighterBall \((A)\)
10. else if weight \((A)>\) weight \((B)\) then
11. return LighterBall \((B)\)
12. else if weight \((A)=\) weight \((B)\) then
13. return LighterBall \((C)\)
```


Complexity

- Weighings.

$$
W(n)=\left\{\begin{array}{ll}
0 & \text { if } n=1 \\
W(\lfloor n / 2\rfloor)+1 & \text { if } n \geq 2
\end{array}\right\}
$$

Solving, $W(n)=\left\lfloor\log _{2} n\right\rfloor$

- Time complexity.

$$
\begin{aligned}
& T(n)=\left\{\begin{array}{ll}
\Theta(1) & \text { if } n=1 \\
T(n / 2)+\Theta(1) & \text { if } n \geq 2
\end{array}\right\} \\
& \text { Solving, } T(n) \in \Theta(\log n)
\end{aligned}
$$

Lighter ball among 9 balls: Divide by 3

Decrease-by-third algorithm

$\operatorname{LighterBALL}([\ell, \ell+1, \ell+2, \ldots, h])$
Input: Set of $(h-\ell+1)$ balls: $\ell, \ell+1, \ell+2, \ldots, h$
Output: Index number of the lighter ball
Require: Invocation is LighterBall $([0 . . n-1])$ such that $n \geq 3$

1. if $\ell=h$ then
$\triangleright 1$ ball
2. return ℓ
3. else if $\ell=h-1$ then $\triangleright 2$ balls
4. return lighter ball among ℓ and h
5. third $\leftarrow\lfloor(h-\ell+1) / 3\rfloor$
6. $A \leftarrow$ first third number of balls i.e., $[\ell, \ell+1, \ldots, \ell+$ third -1$]$
7. $B \leftarrow$ second third number of balls i.e., $[\ell+$ third, $\ldots, \ell+2 \cdot$ third -1$]$
8. $C \leftarrow$ remaining balls, i.e., $[\ell+2 \cdot$ third $, \ldots, h]$
9. weigh sets A and B
10. if weight $(A)<$ weight (B) then
11. return LighterBall (A)
12. else if weight $(A)>$ weight (B) then
13. return LighterBall (B)
14. else if weight $(A)=$ weight (B) then
15. return LighterBall (C)

Complexity

- Weighings.

$$
W(n)=\left\{\begin{array}{ll}
0 & \text { if } n=1 \\
1 & \text { if } n=2 \\
W(\lceil n / 3\rceil)+1 & \text { if } n \geq 3
\end{array}\right\}
$$

Solving, $W(n)=\left\lceil\log _{3} n\right\rceil$

- Time complexity.

$$
T(n)=\left\{\begin{array}{ll}
\Theta(1) & \text { if } n=1 \text { or } 2 \\
T(n / 3)+\Theta(1) & \text { if } n \geq 3
\end{array}\right\}
$$

Solving, $T(n) \in \Theta(\log n)$

Josephus problem

Problem

- There are n people numbered from 1 to n in a circle. Starting from person 1, we eliminate every second person until only survivor is left. Design an efficient algorithm to find the survivor's number $J(n)$.

Example: $J(6)=5$

CLL algorithm

- Create a circular linked list (CLL) of size n.
- Node at location i stores item i.
- Delete alternate nodes until only one node is left.
- Time is $\Theta(n)$, space is $\Theta(n)$
- Is there a more efficient algorithm?

Decrease-by-half algorithm

$$
J(n)=\left\{\begin{array}{ll}
1 & \text { if } n=1 \\
2 J(n / 2)-1 & \text { if } n \geq 2 \text { and } n \text { is even, } \\
2 J(n / 2)+1 & \text { if } n \geq 2 \text { and } n \text { is odd. }
\end{array}\right\}
$$

```
JOSEPHUS(n)
Input: Whole number n
Output: Josephus number }J(n
1. if }n=1\mathrm{ then
2. return 1
3. else if }n\mathrm{ is even then
4. return 2\times Josephus(n/2) - 1
5. else if n is odd then
6. return 2 < Josephus (n/2)+1
```


Case: n is even $(n=2 k)$

Case: n is odd $(n=2 k+1)$

Complexity

- Time complexity.

$$
T(n)=\left\{\begin{array}{ll}
\Theta(1) & \text { if } n=1 \\
T(n / 2)+\Theta(1) & \text { if } n>1
\end{array}\right\}
$$

Solving, $T(n) \in \Theta(\log n)$

- Space complexity.

$$
\begin{aligned}
& S(n)=\left\{\begin{array}{ll}
\Theta(1) & \text { if } n=1 \\
S(n / 2)+\Theta(1) & \text { if } n>1
\end{array}\right\} \\
& \text { Solving, } S(n) \in \Theta(\log n) \text { stack space }
\end{aligned}
$$

Variable Size Decrease номв

Selection problem

Problem

- Find the k th smallest element (or k th order statistic) in a given array $A[0 . . n-1]$.
- Easiest cases. Minimum $(k=1)$, maximum $(k=n)$
- Hardest case. Median ($k=\lfloor n / 2\rfloor$)

Selection algorithms

Algorithm	Time	k-smallest items? Sorted?
Sorting	$\Theta(n \log n)$	$\boldsymbol{\checkmark}, \boldsymbol{\checkmark}$
Partial selection sort	$\Theta(k n)$	$\boldsymbol{\checkmark}, \boldsymbol{\checkmark}$
Partial heapsort	$\Theta(n+k \log n)$	$\boldsymbol{\checkmark}, \boldsymbol{X}$
Online selection	$\Theta(n \log k)$	$\boldsymbol{\checkmark}, \boldsymbol{X}$
Rand. quickselect	$\Theta\left(n^{2}\right)(\Theta(n)$ avg. $)$	$\boldsymbol{\checkmark}, \boldsymbol{X}$
Linear-time algorithm	$\Theta(n)$	$\boldsymbol{X}, \boldsymbol{X}$

PartialSelectionSort $(A[0 . .(n-1)])$

1. Run SelectionSort on $A[0 . .(n-1)]$ for k iterations to find the k smallest elements in sorted order
2. return k th smallest element

Time is $\Theta(k n)$

Partial heapsort

$$
\begin{array}{lr}
\hline \text { PartialHeapsort }(A[0 . .(n-1)]) & \\
\hline \text { 1. } H \leftarrow \text { Construct a min-heap from } A[0 . .(n-1)] \text { in-place } & \triangleright \Theta(n) \\
\text { 2. } H . \text { DeleteMin }() k \text { times } & \triangleright \Theta(k \log n) \\
\text { 3. return } k \text { th smallest element } & \\
\hline
\end{array}
$$

Time is $\Theta(n+k \log n)$

Online selection

```
OnlineSelection \((A[0 . .(n-1)])\)
1. \(H \leftarrow\) Construct a \(k\)-sized max-heap from \(A[0 . .(k-1)] \quad \triangleright \Theta(k)\)
2. for \(i \leftarrow k\) to \((n-1)\) times do
\(\triangleright \Theta(n \log k)\)
3. if \(A[i]\) is not more than the heap's maximum then
4. \(H\).Insert \((A[i])\)
5. H.DeleteMax ()
6. \(k\) th smallest element \(\leftarrow H\).Deletemax ()\(\quad \triangleright \Theta(\log k)\)
7. return \(k\) th smallest element
```

Time is $\Theta(n \log k)$

Randomized quickselect

```
RandomizedQuickSelect( }A[\ell..h],k
    1. if }\ell=h\mathrm{ then
    2. return }A[\ell
    3. }s\leftarrow\mathrm{ RandomizedPartition ( }A[\ell..h]
    4. size \leftarrows-\ell+1
    5. if k= size then
    6. return }A[s
    7. else if }k<s\mathrm{ size then
    8. return RandomizedQuickSelect( }A[\ell..s-1],k
    9. else if k> size then
10. return RaNDOMIzedQuICkSELECT}(A[s+1..h],k-size
```


Randomized partition (using Lomuto partition)

```
RAndomizedPaRtition( }A[\ell..h]
1. }i\leftarrow\operatorname{Random}({\ell,\ell+1,\ldots,h}
2. }\operatorname{SWAP}(A[\ell],A[i]
3. LomutoPartition(A[\ell..h])
LomutoPartition( }A[\ell..h]
1. pivot }\leftarrowA[\ell
|irst element is the pivot
2. }i\leftarrow
3. for }j\leftarrow\ell+1\mathrm{ to }h\mathrm{ do
4. if }A[j]\leq\mathrm{ pivot then
5. }\quadi\leftarrowi+
6. }\operatorname{SWAP}(A[i],A[j]
7. SWAP(pivot, A[i])
8. return i
```


Lomuto partition

$$
\text { pivot } \quad i \leftarrow \ell \text { and } j \leftarrow i+1 . A[j]>\text { pivot. }
$$

3	8	6	7	1	5	2	4
i	j						
j	Increment j until $A[j] \leq$ pivot.						

3	8	6	7	1	5	2	4
i							

3	1	6		7	8	5	5	2	4	Swap $A[i]$ and $A[j]$.
	i				j					

3	1	6	7	8	5	2	4
\quad Increment j until $A[j] \leq$ pivot.							

3	1	6	7	8	5	2	4				
i						\quad Increment i					

3	1	2	7	8	5	6	4	Swap $A[i]$ and $A[j]$.
i								
3	1	2	7	8	5	6	4	Increment j until $j=h+1$.
${ }^{4}$								

2	1	3	7	8	5	6	4
i							

Randomized partition (using Hoare partition)

```
RandomizedPartition( }A[\ell..h]
    1. }i\leftarrow\operatorname{RANDOM}({\ell,\ell+1,\ldots,h}
    2. }\operatorname{SWAP}(A[\ell],A[i]
    3. HoarePartition( }A[\ell..h]
HoarePartition(A[\ell..h])
    1. pivot }\leftarrowA[\ell
    |
    2. }i\leftarrow\ell;j\leftarrowh+
    3. while true do
    4. {
    5. while A[++i]<pivot do
    6. if i=h then break
    7. while pivot < A[--j] do
    8. if j=\ell then break
    9. if i\geqj then break
10. else SWAP}(A[i],A[j]
11. }
12. SWAP(pivot, A[j])
13. return j
```


Hoare partition

3	2	6	7	1	5	8	4		
i				\quad Swap $A[i]$ and $A[j]$					

3	2	6	7	1	5	8	4	Incr. i and decr. j
$i \quad j$								Swap $A[i]$ and $A[j]$.
3	2	1	7	6	5	8	4	

3	2	1	7	6	5	8	4
j	i						

Incr. i and decr. j until $A[i] \geq$ pivot $\geq A[j]$.

3	2	1		7	6	5	8	4
		j		i				

Break loop because $j \leq i$.

1	2		3	7	6	5	8	8	4	,
			j	i						

Swap pivot and $A[j]$. Return j.

