
1

Algorithms
(Brute Force)

Pramod Ganapathi
Department of Computer Science

State University of New York at Stony Brook

October 19, 2021

2

Contents

Exhaustive Search
Linear Search
String Matching
Closest Pair
Traveling Salesperson Problem (TSP)
Knapsack Problem
Exhaustive Search Sort
8 Queens Problem
DFS and BFS

Straightforward Approach
Random Permutation Generation
Bubble Sort
Selection Sort
Counting Sort

3

Brute force

There are two interpretations of brute force search
1. Extensive search
2. Straightforward approach to solve problems

4

Exhaustive search

Search space with

candidate solutions

Valid solution
Valid solution

Valid solution

ExhaustiveSearch()
1. for every solution S in the search space do
2. if solution S is valid then
3. print solution S

5

String matching

Problem
Given a text T [0..n − 1] and a pattern P [0..m − 1], find the
location of the first occurrence of the pattern in the text.

Solution
Check if the pattern matches with the text starting from the
1st index of text.
If not, check if the pattern matches with the text starting from
the 2nd index of the text.
Repeat this process until either the pattern is found or the end
of the text is reached (without finding any pattern).

5

String matching

Problem
Given a text T [0..n − 1] and a pattern P [0..m − 1], find the
location of the first occurrence of the pattern in the text.

Solution
Check if the pattern matches with the text starting from the
1st index of text.
If not, check if the pattern matches with the text starting from
the 2nd index of the text.
Repeat this process until either the pattern is found or the end
of the text is reached (without finding any pattern).

6

String matching

StringMatching(T [0..n− 1], P [0..m− 1])
Input: Text T [0..n− 1] and pattern P [0..m− 1]
Output: Return the first position in T where the pattern P occurs
1. for i← 0 to n−m do
2. j ← 0
3. while j < m and P [j] = T [i + j] do
4. j ← j + 1
5. if j = m then
6. return i
7. return −1

7

String matching

Algorithm Preprocess time Matching time Space
Brute force none O (mn) Θ (m + n)
Trie Θ (m) Θ (nodes · |Σ|) Θ (nodes · |Σ|)
Suffix tree Θ (n) O (m) Θ (n)
Rabin-Karp Θ (m) O (mn) Θ (1)
Aho-Corasick Θ (m) O (n) Θ (m)
Boyer-Moore Θ (m + |Σ|) O (mn) Θ (|Σ|)
KMP Θ (m) O (n) Θ (m)

8

Closest pair

Problem
Given n points in 2-D Euclidean space, find the closest pair of
points.

Solution
For every two distinct points pi = (xi, yi) and pj = (xj , yj),
the distance between them can be computed as
d(pi, pj) =

√
(xi − xj)2 + (yi − yj)2

Find the points that leads to smallest such distance

8

Closest pair

Problem
Given n points in 2-D Euclidean space, find the closest pair of
points.

Solution
For every two distinct points pi = (xi, yi) and pj = (xj , yj),
the distance between them can be computed as
d(pi, pj) =

√
(xi − xj)2 + (yi − yj)2

Find the points that leads to smallest such distance

9

Closest pair

ClosestPair(x[1..n], y[1..n])
Input: Arrays x[1..n] and y[1..n] for x- and y-coordinates
Output: Closest pair of points a and b
1. minimum←∞
2. for i← 1 to n− 1 do
3. for j ← i + 1 to n do
4. distance←

√
(xi − xj)2 + (yi − yj)2

5. if distance < minimum then
6. minimum← distance
7. a← i; b← j
8. return {(xa, ya), (xb, yb)}

10

Closest pair

Algorithm Time Space
Brute force Θ

(
n2) Θ (1)

D&C Θ
(
n log2 n

)
Θ (n log n)

D&C improved Θ (n log n) Θ (n log n)

11

Traveling salesperson problem (TSP)

Problem
Find the shortest tour through a given set of n cities that visits
each city exactly once before returning to the city where it
started.
Given a weighted connected graph, find the
shorest “Hamiltonian circuit”.

12

Traveling salesperson problem (TSP)

a b

c d

2

5
78

3

1
No. Tour Length Shortest?
1 a→ b→ c→ d→ a 2 + 8 + 1 + 7 = 18
2 a→ b→ d→ c→ a 2 + 3 + 1 + 5 = 11 3

3 a→ c→ b→ d→ a 5 + 8 + 3 + 7 = 23
4 a→ c→ d→ b→ a 5 + 1 + 3 + 2 = 11 3

5 a→ d→ b→ c→ a 7 + 3 + 8 + 5 = 23
6 a→ d→ c→ b→ a 7 + 1 + 8 + 2 = 18

13

Traveling salesperson problem (TSP)

Algorithm Computes Time Space
Exact algorithms
Brute force opt Θ ((n− 1)!) Θ

(
n2)

Bellman-Held-Karp DP opt Θ
(
2nn2) Θ (2nn)

Approximation algorithms for graphs satisfying triangle inequality
Rosenkrantz-Stearns-Lewis ≤ 2 opt Θ

(
n2 log n

)
?

Christofides ≤ 1.5 opt Θ
(
n3) ?

14

Knapsack problem

Problem
Given n items of known weights w1, w2, . . . , wn and values
v1, v2, . . . , vn and a knapsack of capacity W , find the most
valuable subset of the items that fit into the knapsack.

15

Knapsack problem

Subset Total weight Total value Opt?
{} 0 $0
{1} 7 $42
{2} 3 $12
{3} 4 $40
{4} 5 $25
{1, 2} 7 + 3 = 10 42 + 12 = $54
{1, 3} 7 + 4 = 11 42 + 40 = $82
{1, 4} 7 + 5 = 12 42 + 25 = $67
{2, 3} 3 + 4 = 7 12 + 40 = $52
{2, 4} 3 + 5 = 8 12 + 25 = $37
{3, 4} 4 + 5 = 9 40 + 25 = $65 3

{1, 2, 3} 7 + 3 + 4 = 14 42 + 12 + 40 = $94
{1, 2, 4} 7 + 3 + 5 = 15 42 + 12 + 25 = $79
{1, 3, 4} 7 + 4 + 5 = 16 42 + 40 + 25 = $109
{2, 3, 4} 3 + 4 + 5 = 12 12 + 40 + 25 = $77
{1, 2, 3, 4} 7 + 3 + 4 + 5 = 19 42 + 12 + 40 + 25 = $119

16

Graph traversals

Depth first search (DFS)
Breadth first search (BFS)

17

Graph representations

Adjacency list
Adjacency matrix

18

Adjacency list

h

e g

v

u

w z
f

f h

h

ge

fe

g

u

v

w

z

V

19

Adjacency matrix

h

e g

v

u

w z
f h

0

1

2

3

0 1 2 3

u

v

w

z

e

e

g

g

f

f h

20

DFS and BFS

Feature DFS BFS
Similarities
Works on Trees and graphs Trees and graphs
Time O (|V |+ |E|) O (|V |+ |E|)
Space O (|V |) O (|V |)
Differences
Core idea Starts at arbitrary node and ex-

plores as far as possible along
each branch before backtrack-
ing

Starts at arbitrary node and ex-
plores all nodes at the present
depth prior to moving on to the
nodes at the next depth level

DS Uses stack Uses queue

21

DFS

Image source: https://vivadifferences.com/wp-content/uploads/2019/10/DFS-VS-BFS.png

https://vivadifferences.com/wp-content/uploads/2019/10/DFS-VS-BFS.png

22

DFS

Applications:
Finding connected components.
Topological sorting.
Finding the bridges of a graph.
Finding strongly connected components.
Determining whether a species is closer to one species or another
in a phylogenetic tree.
Planarity testing.
Solving puzzles with only one solution, such as mazes. (DFS can
be adapted to find all solutions to a maze by only including
nodes on the current path in the visited set.)
Maze generation may use a randomized depth-first search.
Finding biconnectivity in graphs.

23

BFS

Applications:
Finding the shortest path between two nodes u and v, with path
length measured by number of edges
(Reverse) Cuthill–McKee mesh numbering.
Edmonds-Karp method for computing maximum flow.
Serialization/Deserialization of a binary tree vs serialization in
sorted order.
Construction of the failure function of the Aho-Corasick pattern
matcher.
Testing bipartiteness of a graph.
Implementing parallel algorithms for computing a graph’s
transitive closure.

24

DFS

DepthFirstSearch(G)
1. Mark each vertex in V with 0 as a mark of being unvisited
2. count← 0
3. for each vertex v in V do
4. if v is marked with 0 then
5. DFS(v)

DFS(v)
1. count← count + 1
2. Mark v with count
3. for each vertex w in V adjacent to v do
4. if w is marked with 0 then
5. DFS(w)

25

DFS

A C D

E F G H

I J K L

M N O P

B

26

DFS

A C D

E F G H

I J K L

M N O P

B

27

DFS

A C D

E F G H

I J K L

M N O P

B

28

DFS

A C D

E F G H

I J K L

M N O P

B

29

DFS

A C D

E F G H

I J K L

M N O P

B

30

DFS

A C D

E F G H

I J K L

M N O P

B

31

BFS

BreadthFirstSearch(G)
1. Mark each vertex in V with 0 as a mark of being unvisited
2. count← 0
3. for each vertex v in V do
4. if v is marked with 0 then
5. BFS(v)

BFS(v)
1. count← count + 1
2. Mark v with count
3. Initialize a queue with v
4. while queue is not empty do
5. for each vertex w in V adjacent to the front vertex do
6. if w is marked with 0 then
7. count← count + 1
8. Mark w with count
9. Add w to the queue

10. Remove the front vertex from the queue

32

BFS

F H

I J K L

M N O P

A B C

E

D

G

0

33

BFS

B

I J K L

M N O P

C D

GFE

A

H

0 1

34

BFS

A

J K L

M N O P

B C

E

D

HGF

I

0 1 2

35

BFS

K L

M N O P

I

HGF

A B C D

E

J

2 30 1

36

BFS

F G H

I J K L

M N O P

A B C D

E

4

1 2 30

37

BFS

F G H

I J K L

M N O P

A B C D

E

4

1 2 30

5

38

Exhaustive search

Negatives
Combinatorial explosion or curse of dimensionality

Positives
Might be the only technique that works for some problems
(e.g. linear search)
Might be used for benchmarking solutions
Exhaustive search + pruning = Backtracking
Backtracking is a very powerful algorithm design technique
Might be fast for small instances of problems
(e.g. insertion sort is used to sort subarrays of size ≤ 30)
Used to find the shortest proofs or axioms in mathematics
Used in computer-generated/aided proofs
Benchmarking cryptographic algorithms using brute force attack
Used in games where computer is a player

39

Random permutation generation

Problem
Generate random permutations of A[1..n].

40

Random permutation generation

Does not generate uniformly random permutations
RandomPermutationGenerator(A[1..n])
Input: A[1..n]
Output: Random permutation of A[1..n]
1. for i← 1 to n− 1 do
2. Swap(A[i], A[Random([1..n])])
3. return A[1..n]

Generates uniformly random permutations
RandomPermutationGenerator(A[1..n])
Input: A[1..n]
Output: Random permutation of A[1..n]
1. for i← 1 to n− 1 do
2. Swap(A[i], A[Random([i..n])])
3. return A[1..n]

41

Bubble sort

Problem
Sort a given n-sized array in nondecreasing order.

BubbleSort(A[0..n− 1])
Input: Arrays A[0..n− 1]
Output: Sorted array A[0..n− 1]
1. for i← 0 to n− 2 do
2. for j ← 0 to n− 2− i do
3. if A[j + 1] < A[i] then
4. Swap(A[j], A[j + 1])

42

Selection sort

Problem
Sort a given n-sized array in nondecreasing order.

SelectionSort(A[0..n− 1])
Input: Arrays A[0..n− 1]
Output: Sorted array A[0..n− 1]
1. for i← 0 to n− 2 do
2. min← i
3. for j ← i + 1 to n− 1 do
4. if A[j] < A[min] then
5. min← j
6. Swap(A[i], A[min])

43

Counting sort

Problem
Sort a given n-sized array in nondecreasing order.
Items are non-negative integers with maximum value k.

Solution
Create an array for indices in the range [0, k]
Distribute items to these indices to compute item frequences
Compute the cumulative frequencies of items for indices
in the range [0, k]
Find the sorted array

43

Counting sort

Problem
Sort a given n-sized array in nondecreasing order.
Items are non-negative integers with maximum value k.

Solution
Create an array for indices in the range [0, k]
Distribute items to these indices to compute item frequences
Compute the cumulative frequencies of items for indices
in the range [0, k]
Find the sorted array

44

Counting sort

2 5 3 0 2 3 0 3

2 0 2 3 0 1

2 2 4 7 7 8

A

C

C

Unsorted array A[1..n]

Frequencies array C[0..k]

Cumulative frequencies array C[0..k]

3B Sorted array B[1..n]0 320 3 52

45

Counting sort

CountingSort(A[1..n])
Input: An array A[1..n] of non-negative integers
Output: Array A[1..n] sorted in nondecreasing order
1. k ← maximum value in A[1..n]
2. B[1..n]← new array; C[0..k]← new array initialized to 0

[Find the frequencies of items] .
[After this step, C[i] will contain #elements equal to i]

3. for j ← 1 to n do
4. C[A[j]]← C[A[j]] + 1

[Find the cumulative frequencies of items] .
[After this step, C[i] will contain #elements less than or equal to i]

5. for i← 1 to k do
6. C[i]← C[i] + C[i− 1]

[Get the sorted array in B] .
7. for j ← n to 1 do
8. B[C[A[j]]← A[j]
9. C[A[j]]← C[A[j]]− 1

[Copy the sorted array to A] .
10. for j ← 1 to n do
11. A[j]← B[j]

46

Counting sort

2 5 3 0 2 3 0 3

2 2 4 7 7 8

2 2 4 6 7 8

3

A

B

C

C

A[8] = 3

C[3] = 7

B[7] = 3

C[3]−−

2 5 3 0 2 3 0 3

2 2 4 6 7 8

1 2 4 6 7 8

3

A

B

C

C

A[7] = 0

C[0] = 2

B[2] = 0

C[0]−−
0

2 5 3 0 2 3 0 3

1 2 4 6 7 8

1 2 4 5 7 8

3

A

B

C

C

A[6] = 3

C[3] = 6

B[6] = 3

C[3]−−
0 3

2 5 3 0 2 3 0 3

1 2 4 5 7 8

1 2 3 5 7 8

3

A

B

C

C

A[5] = 2

C[2] = 4

B[4] = 2

C[2]−−
0 32

2 5 3 0 2 3 0 3

1 2 3 5 7 8

0 2 3 5 7 8

3

A

B

C

C

A[4] = 0

C[0] = 1

B[1] = 0

C[0]−−
0 320

2 5 3 0 2 3 0 3

0 2 3 5 7 8

0 2 3 4 7 8

3

A

B

C

C

A[3] = 3

C[3] = 5

B[5] = 3

C[3]−−
0 320 3

2 5 3 0 2 3 0 3

0 2 3 4 7 8

0 2 3 4 7 7

3

A

B

C

C

A[2] = 5

C[5] = 8

B[8] = 5

C[5]−−
0 320 3 5

2 5 3 0 2 3 0 3

0 2 3 4 7 7

0 2 2 4 7 7

3

A

B

C

C

A[1] = 2

C[2] = 3

B[3] = 2

C[2]−−
0 320 3 52

