Algorithms
(Brute Force)

Pramod Ganapathi
Department of Computer Science
State University of New York at Stony Brook

October 19, 2021

B
Y B2

% A,

FERS

PN
T3

S
2

Contents

@ Exhaustive Search
@ Linear Search
String Matching
Closest Pair
Traveling Salesperson Problem (TSP)
Knapsack Problem
Exhaustive Search Sort
8 Queens Problem
DFS and BFS
@ Straightforward Approach
@ Random Permutation Generation
@ Bubble Sort
@ Selection Sort
o Counting Sort

Brute force

@ There are two interpretations of brute force search
1. Extensive search
2. Straightforward approach to solve problems

Exhaustive search

Valid solution
Valid solution
°

Search space with

candidate solutions

Valid solution

EXHAUSTIVESEARCH()

1. for every solution S in the search space do
2. if solution § is valid then
3. print solution &

String matching

[Problem]

o Given a text 7'[0..n — 1] and a pattern P[0..m — 1], find the
location of the first occurrence of the pattern in the text.

String matching

Problem

o Given a text 7'[0..n — 1] and a pattern P[0..m — 1], find the
location of the first occurrence of the pattern in the text.

Solution

@ Check if the pattern matches with the text starting from the
1st index of text.

@ If not, check if the pattern matches with the text starting from
the 2nd index of the text.

@ Repeat this process until either the pattern is found or the end
of the text is reached (without finding any pattern).

String matching

STRINGMATCHING(T'[0..n — 1], P[0..m — 1])

Input: Text T[0..n — 1] and pattern P[0..m — 1]

Output: Return the first position in T where the pattern P occurs
1. fori <+ 0ton—mdo

2. j«0

3. while j <m and P[j] = T[i + j] do
4. jej+1

5. if j =m then

6 return ¢

7. return —1

String matching

Algorithm Preprocess time | Matching time | Space

Brute force none O (mn) O (m+n)
Trie © (m) O (nodes - |Z|) | © (nodes - |X|)
Suffix tree O (n) O (m) O (n)
Rabin-Karp © (m) O (mn) ©(1)
Aho-Corasick | © (m) O (n) © (m)
Boyer-Moore | © (m + X)) O (mn) e (%))

KMP O (m) O (n) O (m)

Closest pair

[Problem)

@ Given n points in 2-D Euclidean space, find the closest pair of
points.

Closest pair

Problem

@ Given n points in 2-D Euclidean space, find the closest pair of
points.

Solution

o For every two distinct points p; = (z4,%;) and p; = (x;,v;),
the distance between them can be computed as
d(pi,pj) = \/(fEi — ;)% + (i — y5)?

@ Find the points that leads to smallest such distance

Closest pair

CLOSESTPAIR(z[1..n], y[1..n])

Input: Arrays x[1..n] and y[1..n] for x- and y-coordinates
Output: Closest pair of points a and b

1. minimum < oo

2. fori< 1ton—1do

3. forj<+i+1tondo

4 distance < \/(ml — ;)2 + (yi — y;)>
5. if distance < minimum then
6
5
8

minimum < distance
a1, b7
. return {(@a, ya), (@5, ys)}

Closest pair

(Algorithm Time Space
Brute force O (n?) o(1)
D&C C) <n log? n) O (nlogn)
D&C improved | © (nlogn) O (nlogn)

Traveling salesperson problem (TSP)

Problem

@ Find the shortest tour through a given set of n cities that visits
each city exactly once before returning to the city where it
started.

@ Given a weighted connected graph, find the
shorest “Hamiltonian circuit”.

Traveling salesperson problem (TSP)

No. Tour Length Shortest? |
1 a—>b—oc—>d—al|l24+84+14+7=18

2 la—wb—>d—c—a|24+43+14+5=11 v

3 a—>c—b—>d—>a|5+8+3+7=23

4 a—>c—d—b—a|lb+1+3+2=11 v

5 la—wd—b—c—a|T7T+3+8+5=23

6 a—>d—>c—>b—a|T7T+14+84+2=18

Traveling salesperson problem (TSP)

Algorithm Computes | Time I Space
Exact algorithms

Brute force opt O(n—1N | ©(n?)
Bellman-Held-Karp DP opt O (2"n?) O (2"n)
Approximation algorithms for graphs satisfying triangle inequality
Rosenkrantz-Stearns-Lewis | <2 opt [© (n?logn) | ?
Christofides <15o0pt [©(n?) ?

Knapsack problem

| Problem
e Given n items of known weights wy,ws,...,w, and values
v1,V2,...,U, and a knapsack of capacity W, find the most

valuable subset of the items that fit into the knapsack.

Knapsack problem

Subset Total weight Total value Opt?
{} 0 $0

{1} 7 $42

{2} 3 $12

{3} 4 $40

{4} 5 $25

{1,2} 7+3=10 42 4+ 12 = $54

{1,3} T+4=11 42 4+ 40 = $82

{1,4} 7T+5=12 42 4+ 25 = $67

{2,3} 344=7 12 + 40 = $52

{2,4} 3+5=38 12 + 25 = $37

(3,4} 445=9 40 + 25 = $65 v
{1,2,3} T+3+4=14 42 + 12440 = $94

{1,2,4} T+3+5=15 42+ 12425 =879

{1,3,4} T+4+5=16 42 4+ 40 + 25 = $109

{2,3,4} 3+4+5=12 12 +40+25 = $77

{1,2,3,4}

T+3+44+5=19

42 + 12440 + 25 = $119

Graph traversals

o Depth first search (DFS)
o Breadth first search (BFS)

Graph representations

o Adjacency list
@ Adjacency matrix

Adjacency list

(e

Adjacency matrix

NS o2 o=

w N = O

(00 | N

DFS and BFS

Feature | DFS | BFS

Similarities

Works on | Trees and graphs Trees and graphs
Time O (VI+|E]) o (VI+IE])
Space o(vl o(vi

Differences

Core idea

DS

Starts at arbitrary node and ex-
plores as far as possible along
each branch before backtrack-
ing

Uses stack

Starts at arbitrary node and ex-
plores all nodes at the present
depth prior to moving on to the
nodes at the next depth level
Uses queue

DFS

I 4 :

1 L4 24 \\\

() @ ® ® @—-—@—-—@ (&)
Depth-first search Breadth-first search

Image source: https://vivadifferences.com/wp-content/uploads/2019/10/DFS-VS-BFS.png

https://vivadifferences.com/wp-content/uploads/2019/10/DFS-VS-BFS.png

DFS

Applications:

Finding connected components.

Topological sorting.

Finding the bridges of a graph.

Finding strongly connected components.

Determining whether a species is closer to one species or another
in a phylogenetic tree.

Planarity testing.

Solving puzzles with only one solution, such as mazes. (DFS can
be adapted to find all solutions to a maze by only including
nodes on the current path in the visited set.)

Maze generation may use a randomized depth-first search.
Finding biconnectivity in graphs.

BFS

Applications:

@ Finding the shortest path between two nodes u and v, with path
length measured by number of edges

o (Reverse) Cuthill-McKee mesh numbering.

@ Edmonds-Karp method for computing maximum flow.

o Serialization/Deserialization of a binary tree vs serialization in
sorted order.

@ Construction of the failure function of the Aho-Corasick pattern
matcher.

@ Testing bipartiteness of a graph.

@ Implementing parallel algorithms for computing a graph’s
transitive closure.

DFS

DEPTHFIRSTSEARCH(G)

Mark each vertex in V with 0 as a mark of being unvisited
count < 0
for each vertex v in V do
if v is marked with 0 then
DFS(v)

a0

DFS(v)

1. count < count + 1

2. Mark v with count

3. for each vertex w in V adjacent to v do
4. if w is marked with 0 then

5 DFS(w)

DFS

DFS

DFS

DFS

DFS

DFS

BFS

BREADTHFIRSTSEARCH(G)

1. Mark each vertex in V' with 0 as a mark of being unvisited
2. count <+ 0

3. for each vertex v in V do

4. if v is marked with 0 then

5 BFS(v)

BFS(v)

1. count < count + 1

2. Mark v with count

3. Initialize a queue with v

4. while queue is not empty do

5. for each vertex w in V adjacent to the front vertex do
6 if w is marked with 0 then

7 count < count + 1

8. Mark w with count

9 Add w to the queue

0. Remove the front vertex from the queue

10.

BFS

BFS

BFS

BFS

BFS

BFS

Exhaustive search

Negatives
@ Combinatorial explosion or curse of dimensionality
Positives

Might be the only technique that works for some problems
(e.g. linear search)

@ Might be used for benchmarking solutions

Exhaustive search + pruning = Backtracking

Backtracking is a very powerful algorithm design technique
Might be fast for small instances of problems

(e.g. insertion sort is used to sort subarrays of size < 30)

Used to find the shortest proofs or axioms in mathematics

Used in computer-generated/aided proofs

Benchmarking cryptographic algorithms using brute force attack
Used in games where computer is a player

Random permutation generation

| Problem

e Generate random permutations of A[l..n].

Random permutation generation

@ Does not generate uniformly random permutations

RANDOMPERMUTATIONGENERATOR(A[L..n])

Input: A[l..n]

Output: Random permutation of A[l..n|
1. fori< 1ton—1do

2. Swap(A[i], A[RaNDOM([1..n])])
3. return A[l..n]

@ Generates uniformly random permutations

RANDOMPERMUTATIONGENERATOR(A[1..n])

Input: A[l..n]

Output: Random permutation of A[l..n]
1. fori< 1ton—1do

2. Swapr(A[i], A[IRANDOM([i..n])])

3. return A[l..n]

Bubble sort

Problem

@ Sort a given n-sized array in nondecreasing order.

BUBBLESORT(A[0..n — 1])

Input: Arrays A[0..n — 1]
Output: Sorted array A[0..n — 1]
1. for i <~ 0ton—2do
for j« Oton—2—1ido
if Alj+ 1] < A[¢] then
Swip(A[j], A[j + 1))

Hwn

Selection sort

Problem

@ Sort a given n-sized array in nondecreasing order.

SELECTIONSORT(A[0..n — 1])

Input: Arrays A[0..n — 1]
Output: Sorted array A[0..n — 1]
1. fori<+-0ton—2do

2. man <1

3. forj«<~i+1ton—1do
4. if A[j] < A[min] then

5 min < j

6. SwaAP(A[i], Almin])

Counting sort

| Problem

@ Sort a given n-sized array in nondecreasing order.
@ [tems are non-negative integers with maximum value k.

Counting sort

Problem

@ Sort a given n-sized array in nondecreasing order.
@ [tems are non-negative integers with maximum value k.

Solution

e Create an array for indices in the range [0, k]
@ Distribute items to these indices to compute item frequences
@ Compute the cumulative frequencies of items for indices
in the range [0, k]
@ Find the sorted array

Counting sort

A‘Z‘S‘S‘O‘Q‘?)‘O‘S‘ Unsorted array A[l..n]

c ‘ 2 ‘ 0 ‘ 2 ‘ 3 ‘ 0 ‘ 1 ‘ Frequencies array C|0..k]

C ‘ 2 ‘ 2 ‘ 4 ‘ 7 ‘ 7 ‘ 8 ‘ Cumulative frequencies array C[0..k]

BloJol2]2]3]3][3]5] Sorted array B[L..n]

Counting sort

COUNTINGSORT(A[1..n])

Input: An array A[l..n] of non-negative integers

Output: Array A[l..n] sorted in nondecreasing order

1. k + maximum value in A[l..n]

2. B[l..n] < new array; C[0..k] < new array initialized to 0

[Find the frequencies of items],
[After this step, C[i] will contain #elements equal to 1]
for j < 1 to n do
4. ClA[] « ClA[] +1
[Find the cumulative frequencies of items]
[After this step, C[i] will contain #elements less than or equal to 4]
5. for i < 1 to k do
6. Cl]«+ Cli|+C[i—1]
[Get the sorted array in B]oiuiii
for j < n to 1 do
BIC[A[j]] «+ A[j]
9. ClA[]] « ClAfl] -1
[Copy the sorted array to A] ...
10. for j <~ 1 to n do
11. A[j] « Blj]

w

© ~N

Counting sort

o —- o | ™ o om | n 0 0| [- R~ |
[| L | I [| L |
FTET DT BRELE BBENE ZDEDHX
S SIS <O RO SIS
(o] [] (o] [] (] [5] (] [w]
o] [+] o] [=] o] [=] o] [
™M || ™Mm| o ™ |00 || 0 el Kool Boal Ba ™= ||~
™| = ~ [N I S - [I S - o~ |~
S| | a0 (== RIsE Nl Bl S| F || =F o= || =
o™ o e el (] o™ o el Earl BB Ko
W N|o | o™ w N o | i aN|o | o W N O |
[N Rl B3 Ne) N o | o | N | o oo [I el el e
< O RO < O RO < O RO < O RO
m ~ ™ o &N o | ®» © ™ | I IS - I |
[T L | I [[L |
ENCNNCG) =S ag ENNCANCNG) w N E X
< O AR O < O AR O < O RO < O RO
o] [Bl o] [o] [e]
o™ | 00 o0 ™ | 00 0 ™M |0 | ™| o ™ |00 || 0
| = ~ ™= ~ |~ ~ ™~ ~
(=N Bug © o | © el (=N [N} 0 [e=l IRVl B I I Yol
w0 | A [a\] [IT B\ I el I | 0| N oA 0N |Oo |
[N A (o] A\ N — o~ — [B] —
<O RO < O RO <O RO < O RO

