Algorithms (Brute Force)

Pramod Ganapathi

Department of Computer Science State University of New York at Stony Brook

October 19, 2021

Contents

- Exhaustive Search
 - Linear Search
 - String Matching
 - Closest Pair
 - Traveling Salesperson Problem (TSP)
 - Knapsack Problem
 - Exhaustive Search Sort
 - 8 Queens Problem
 - DFS and BFS
- Straightforward Approach
 - Random Permutation Generation
 - Bubble Sort
 - Selection Sort
 - Counting Sort

- There are two interpretations of brute force search
 - 1. Extensive search
 - 2. Straightforward approach to solve problems

Exhaustive search

EXHAUSTIVESEARCH()

- 1. for every solution ${\cal S}$ in the search space do
- 2. if solution S is valid then
- 3. **print** solution S

String matching

Problem

• Given a text T[0..n-1] and a pattern P[0..m-1], find the location of the first occurrence of the pattern in the text.

• Given a text T[0..n-1] and a pattern P[0..m-1], find the location of the first occurrence of the pattern in the text.

Solution

- Check if the pattern matches with the text starting from the 1st index of text.
- If not, check if the pattern matches with the text starting from the 2nd index of the text.
- Repeat this process until either the pattern is found or the end of the text is reached (without finding any pattern).

STRINGMATCHING(T[0..n-1], P[0..m-1])

Input: Text T[0..n-1] and pattern P[0..m-1]Output: Return the first position in T where the pattern P occurs 1. for $i \leftarrow 0$ to n - m do 2. $j \leftarrow 0$ 3. while j < m and P[j] = T[i + j] do 4. $j \leftarrow j + 1$ 5. if j = m then 6. return i7. return -1

Algorithm	Preprocess time	Matching time	Space
Brute force	none	$\mathcal{O}\left(mn ight)$	$\Theta\left(m+n\right)$
Trie	$\Theta\left(m ight)$	$\Theta\left(nodes\cdot \Sigma \right)$	$\Theta\left(nodes\cdot \Sigma \right)$
Suffix tree	$\Theta\left(n ight)$	$\mathcal{O}\left(m ight)$	$\Theta\left(n ight)$
Rabin-Karp	$\Theta\left(m ight)$	$\mathcal{O}\left(mn ight)$	$\Theta(1)$
Aho-Corasick	$\Theta\left(m ight)$	$\mathcal{O}\left(n ight)$	$\Theta\left(m ight)$
Boyer-Moore	$\Theta\left(m+ \Sigma \right)$	$\mathcal{O}\left(mn ight)$	$\Theta\left(\Sigma \right)$
KMP	$\Theta\left(m ight)$	$\mathcal{O}\left(n ight)$	$\Theta\left(m ight)$

• Given *n* points in 2-D Euclidean space, find the closest pair of points.

• Given *n* points in 2-D Euclidean space, find the closest pair of points.

Solution

• For every two distinct points $p_i=(x_i,y_i)$ and $p_j=(x_j,y_j)\text{,}$ the distance between them can be computed as

$$d(p_i, p_j) = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

• Find the points that leads to smallest such distance

CLOSESTPAIR(x[1..n], y[1..n])

Input: Arrays x[1..n] and y[1..n] for x- and y-coordinates **Output:** Closest pair of points a and b

- 1. $minimum \leftarrow \infty$
- 2. for $i \leftarrow 1$ to n-1 do
- 3. for $j \leftarrow i+1$ to <u>n</u> do
- 4. distance $\leftarrow \sqrt{(x_i x_j)^2 + (y_i y_j)^2}$
- 5. if *distance < minimum* then
- 6. $minimum \leftarrow distance$
- 7. $a \leftarrow i; b \leftarrow j$
- 8. return $\{(x_a, y_a), (x_b, y_b)\}$

Algorithm	Time	Space
Brute force	$\Theta\left(n^2\right)$	$\Theta(1)$
D&C	$\Theta\left(n\log^2 n\right)$	$\Theta\left(n\log n\right)$
D&C improved	$\Theta(n\log n)$	$\Theta\left(n\log n\right)$

- Find the shortest tour through a given set of *n* cities that visits each city exactly once before returning to the city where it started.
- Given a weighted connected graph, find the shorest "Hamiltonian circuit".

Traveling salesperson problem (TSP)

No.	Tour	Length	Shortest?
1	$a \to b \to c \to d \to a$	2 + 8 + 1 + 7 = 18	
2	$a \to b \to d \to c \to a$	2+3+1+5=11	1
3	$a \to c \to b \to d \to a$	5 + 8 + 3 + 7 = 23	
4	$a \to c \to d \to b \to a$	5 + 1 + 3 + 2 = 11	1
5	$a \to d \to b \to c \to a$	7 + 3 + 8 + 5 = 23	
6	$a \to d \to c \to b \to a$	7 + 1 + 8 + 2 = 18	

Traveling salesperson problem (TSP)

Algorithm	Computes	Time	Space
Exact algorithms			
Brute force	opt	$\Theta\left((n-1)!\right) \\ \Theta\left(2^n n^2\right)$	$\Theta\left(n^2\right)$
Bellman-Held-Karp DP	opt	$\Theta\left(2^n n^2\right)$	$\Theta\left(2^n n\right)$
Approximation algorithms for graphs satisfying triangle inequality			
Rosenkrantz-Stearns-Lewis	$\leq 2 \operatorname{opt}$	$\Theta\left(n^2\log n\right)$?
Christofides	$\leq 1.5 \; \mathrm{opt}$	$\Theta(n^3)$?

• Given n items of known weights w_1, w_2, \ldots, w_n and values v_1, v_2, \ldots, v_n and a knapsack of capacity W, find the most valuable subset of the items that fit into the knapsack.

Knapsack problem

Subset	Total weight	Total value	Opt?
{}	0	\$0	
{1}	7	\$42	
{2}	3	\$12	
{3}	4	\$40	
{4}	5	\$25	
$\{1, 2\}$	7 + 3 = 10	42 + 12 = \$54	
$\{1,3\}$	7 + 4 = 11	42 + 40 = \$82	
$\{1, 4\}$	7 + 5 = 12	42 + 25 = \$67	
$\{2,3\}$	3 + 4 = 7	12 + 40 = \$52	
$\{2,4\}$	3 + 5 = 8	12 + 25 = \$37	
$\{3, 4\}$	4 + 5 = 9	40 + 25 = \$65	1
$\{1, 2, 3\}$	7 + 3 + 4 = 14	42 + 12 + 40 = \$94	
$\{1, 2, 4\}$	7 + 3 + 5 = 15	42 + 12 + 25 = \$79	
$\{1, 3, 4\}$	7 + 4 + 5 = 16	42 + 40 + 25 = \$109	
$\{2, 3, 4\}$	3 + 4 + 5 = 12	12 + 40 + 25 = \$77	
$\{1, 2, 3, 4\}$	7 + 3 + 4 + 5 = 19	42 + 12 + 40 + 25 = \$119	

- Depth first search (DFS)
- Breadth first search (BFS)

Graph representations

- Adjacency list
- Adjacency matrix

Adjacency list

Adjacency matrix

Feature	DFS	BFS		
Similarities	Similarities			
Works on	Trees and graphs	Trees and graphs		
Time	$\mathcal{O}\left(V + E \right)$	$\mathcal{O}\left(V + E \right)$		
Space	$\mathcal{O}\left(V ight)$	$\mathcal{O}\left(V ight)$		
Differences				
Core idea	Starts at arbitrary node and ex- plores as far as possible along each branch before backtrack- ing	Starts at arbitrary node and ex- plores all nodes at the present depth prior to moving on to the nodes at the next depth level		
DS	Uses stack	Uses queue		

Image source: https://vivadifferences.com/wp-content/uploads/2019/10/DFS-VS-BFS.png

Applications:

- Finding connected components.
- Topological sorting.
- Finding the bridges of a graph.
- Finding strongly connected components.
- Determining whether a species is closer to one species or another in a phylogenetic tree.
- Planarity testing.
- Solving puzzles with only one solution, such as mazes. (DFS can be adapted to find all solutions to a maze by only including nodes on the current path in the visited set.)
- Maze generation may use a randomized depth-first search.
- Finding biconnectivity in graphs.

Applications:

- Finding the shortest path between two nodes u and v, with path length measured by number of edges
- (Reverse) Cuthill-McKee mesh numbering.
- Edmonds-Karp method for computing maximum flow.
- Serialization/Deserialization of a binary tree vs serialization in sorted order.
- Construction of the failure function of the Aho-Corasick pattern matcher.
- Testing bipartiteness of a graph.
- Implementing parallel algorithms for computing a graph's transitive closure.

DepthFirstSearch(G)

- 1. Mark each vertex in V with 0 as a mark of being unvisited
- $\textbf{2.} \ count \leftarrow 0$
- 3. for each vertex v in V do
- 4. if v is marked with 0 then
- 5. DFS(v)

DFS(v)

- $\textbf{1.} \ count \leftarrow count + 1$
- 2. Mark v with count
- 3. for each vertex w in V adjacent to v do
- 4. if w is marked with 0 then
- 5. DFS(w)

BREADTHFIRSTSEARCH(G)

- 1. Mark each vertex in V with 0 as a mark of being unvisited
- $\textbf{2.} \ count \leftarrow 0$
- 3. for each vertex v in V do
- 4. if v is marked with 0 then
- 5. BFS(v)

BFS(v)

- 1. $count \leftarrow count + 1$
- 2. Mark v with count
- 3. Initialize a queue with \boldsymbol{v}
- 4. while queue is not empty do
- 5. for each vertex w in V adjacent to the front vertex do
- 6. if w is marked with 0 then
- 7. $count \leftarrow count + 1$
- 8. Mark w with count
- 9. Add w to the queue
- 10. Remove the front vertex from the queue

Negatives

• Combinatorial explosion or curse of dimensionality

Positives

- Might be the only technique that works for some problems (e.g. linear search)
- Might be used for benchmarking solutions
- Exhaustive search + pruning = Backtracking Backtracking is a very powerful algorithm design technique
- Might be fast for small instances of problems (e.g. insertion sort is used to sort subarrays of size ≤ 30)
- Used to find the shortest proofs or axioms in mathematics
- Used in computer-generated/aided proofs
- Benchmarking cryptographic algorithms using brute force attack
- Used in games where computer is a player

Random permutation generation

Problem

• Generate random permutations of A[1..n].

Random permutation generation

Does not generate uniformly random permutations

RANDOM PERMUTATION GENERATOR (A[1..n])

Input: A[1..n]Output: Random permutation of A[1..n]

```
1. for i \leftarrow 1 to n-1 do
```

2. SWAP(A[i], A[RANDOM([1..n])])

```
3. return A[1..n]
```

• Generates uniformly random permutations

```
RANDOM PERMUTATION GENERATOR (A[1..n])
```

```
Input: A[1..n]
Output: Random permutation of A[1..n]
1. for i \leftarrow 1 to n - 1 do
```

- 2. SWAP(A[i], A[RANDOM([i..n])])
- 3. return A[1..n]

• Sort a given *n*-sized array in nondecreasing order.

BUBBLESORT(A[0..n-1])

Input: Arrays A[0..n-1]Output: Sorted array A[0..n-1]1. for $i \leftarrow 0$ to n-2 do 2. for $j \leftarrow 0$ to n-2-i do 3. if A[j+1] < A[i] then

4. SWAP(A[j], A[j+1])

• Sort a given n-sized array in nondecreasing order.

SelectionSort(A[0..n-1])

Input: Arrays A[0..n-1]Output: Sorted array A[0..n-1]1. for $i \leftarrow 0$ to n-2 do 2. $min \leftarrow i$

- 3. for $j \leftarrow i+1$ to n-1 do
- 4. if A[j] < A[min] then
- 5. $min \leftarrow j$
- 6. SWAP(A[i], A[min])

- Sort a given n-sized array in nondecreasing order.
- Items are non-negative integers with maximum value k.

- Sort a given *n*-sized array in nondecreasing order.
- Items are non-negative integers with maximum value k.

Solution

- Create an array for indices in the range $\left[0,k\right]$
- Distribute items to these indices to compute item frequences
- Compute the cumulative frequencies of items for indices in the range $\left[0,k\right]$
- Find the sorted array

Unsorted array A[1..n]

Frequencies array C[0..k]

Cumulative frequencies array C[0..k]

Sorted array B[1..n]

Counting sort

COUNTINGSORT(A[1..n])**Input:** An array A[1..n] of non-negative integers **Output:** Array A[1..n] sorted in nondecreasing order 1. $k \leftarrow \text{maximum value in } A[1..n]$ 2. $B[1..n] \leftarrow$ new array; $C[0..k] \leftarrow$ new array initialized to 0 [Find the frequencies of items] [After this step, C[i] will contain #elements equal to i] 3. for $i \leftarrow 1$ to n do 4. $C[A[j]] \leftarrow C[A[j]] + 1$ [Find the cumulative frequencies of items] [After this step, C[i] will contain #elements less than or equal to i] 5. for $i \leftarrow 1$ to k do 6. $C[i] \leftarrow C[i] + C[i-1]$ [Get the sorted array in B] 7. for $i \leftarrow n$ to 1 do 8. $B[C[A[j]] \leftarrow A[j]$ 9. $C[A[j]] \leftarrow C[A[j]] - 1$ [Copy the sorted array to A] 10. for $j \leftarrow 1$ to n do 11. $A[j] \leftarrow B[j]$

Counting sort

A	2	5	3	0	2	3	0	3	A[8] =	3	A	2	5	3	0	2	3	0	3	A[4] =	0
C	2	2	4	7	7	8			C[3] =	7	C	1	2	3	5	7	8			C[0] =	1
B							3		B[7] =	3	B	0	0		2		3	3		B[1] =	0
C	2	2	4	6	7	8			C[3] -	-	C	0	2	3	5	7	8			C[0] -	_
A	2	5	3	0	2	3	0	3	A[7] =	0	A	2	5	3	0	2	3	0	3	A[3] =	3
C	2	2	4	6	7	8			C[0] =	2	C	0	2	3	5	7	8			C[3] =	5
B		0					3		B[2] =	0	B	0	0		2	3	3	3		B[5] =	3
C	1	2	4	6	7	8			C[0] -	_	C	0	2	3	4	7	8			C[3] -	-
A	2	5	3	0	2	3	0	3	A[6] =	3	A	2	5	3	0	2	3	0	3	A[2] =	5
C	1	2	4	6	7	8			C[3] =	6	C	0	2	3	4	7	8			C[5] =	8
B		0				3	3		B[6] =	3	B	0	0		2	3	3	3	5	B[8] =	5
C	1	2	4	5	7	8			C[3] -	-	C	0	2	3	4	7	7			C[5] -	_
A	2	5	3	0	2	3	0	3	A[5] =	2	A	2	5	3	0	2	3	0	3	A[1] =	2
C	1	2	4	5	7	8			C[2] =	4	C	0	2	3	4	7	7			C[2] =	3
B		0		2		3	3		B[4] =	2	B	0	0	2	2	3	3	3	5	B[3] =	2
C	1	2	3	5	7	8			C[2] -	_		0	2	2	4	7	7			C[2] -	_