Algorithms (Brute Force)

Pramod Ganapathi
Department of Computer Science
State University of New York at Stony Brook

October 19, 2021

Contents

- Exhaustive Search
- Linear Search
- String Matching
- Closest Pair
- Traveling Salesperson Problem (TSP)
- Knapsack Problem
- Exhaustive Search Sort
- 8 Queens Problem
- DFS and BFS
- Straightforward Approach
- Random Permutation Generation
- Bubble Sort
- Selection Sort
- Counting Sort

Brute force

- There are two interpretations of brute force search

1. Extensive search
2. Straightforward approach to solve problems

Exhaustive search

[^0]
String matching

Problem

- Given a text $T[0 . . n-1]$ and a pattern $P[0 . . m-1]$, find the location of the first occurrence of the pattern in the text.

String matching

Problem

- Given a text $T[0 . . n-1]$ and a pattern $P[0 . . m-1]$, find the location of the first occurrence of the pattern in the text.

Solution

- Check if the pattern matches with the text starting from the 1st index of text.
- If not, check if the pattern matches with the text starting from the 2 nd index of the text.
- Repeat this process until either the pattern is found or the end of the text is reached (without finding any pattern).

String matching

```
StringMatching (T[0..n-1], \(P[0 . . m-1])\)
Input: Text \(T[0 . . n-1]\) and pattern \(P[0 . . m-1]\)
Output: Return the first position in \(T\) where the pattern \(P\) occurs
1. for \(i \leftarrow 0\) to \(n-m\) do
2. \(j \leftarrow 0\)
3. while \(j<m\) and \(P[j]=T[i+j]\) do
4. \(\quad j \leftarrow j+1\)
5. if \(j=m\) then
6. return \(i\)
7. return -1
```


String matching

Algorithm	Preprocess time	Matching time	Space
Brute force	none	$\mathcal{O}(m n)$	$\Theta(m+n)$
Trie	$\Theta(m)$	$\Theta($ nodes $\cdot\|\Sigma\|)$	$\Theta($ nodes $\cdot\|\Sigma\|)$
Suffix tree	$\Theta(n)$	$\mathcal{O}(m)$	$\Theta(n)$
Rabin-Karp	$\Theta(m)$	$\mathcal{O}(m n)$	$\Theta(1)$
Aho-Corasick	$\Theta(m)$	$\mathcal{O}(n)$	$\Theta(m)$
Boyer-Moore	$\Theta(m+\|\Sigma\|)$	$\mathcal{O}(m n)$	$\Theta(\|\Sigma\|)$
KMP	$\Theta(m)$	$\mathcal{O}(n)$	$\Theta(m)$

Closest pair

Problem

- Given n points in 2-D Euclidean space, find the closest pair of points.

Closest pair

Problem

- Given n points in 2-D Euclidean space, find the closest pair of points.

Solution

- For every two distinct points $p_{i}=\left(x_{i}, y_{i}\right)$ and $p_{j}=\left(x_{j}, y_{j}\right)$, the distance between them can be computed as $d\left(p_{i}, p_{j}\right)=\sqrt{\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}}$
- Find the points that leads to smallest such distance

Closest pair

```
ClosestPair(x[1..n], y[1..n])
Input: Arrays }x[1..n]\mathrm{ and }y[1..n] for x- and y-coordinate
Output: Closest pair of points }a\mathrm{ and b
1. minimum}\leftarrow
2. for }i\leftarrow1\mathrm{ to }n-1\mathrm{ do
3. for }j\leftarrowi+1\mathrm{ to }n\mathrm{ do
4. distance}\leftarrow\sqrt{}{(\mp@subsup{x}{i}{}-\mp@subsup{x}{j}{}\mp@subsup{)}{}{2}+(\mp@subsup{y}{i}{}-\mp@subsup{y}{j}{\prime}\mp@subsup{)}{}{2}
5. if distance < minimum then
6. minimum }\leftarrow\mathrm{ distance
7. }a\leftarrowi;b\leftarrow
8. return {(\mp@subsup{x}{a}{},\mp@subsup{y}{a}{}),(\mp@subsup{x}{b}{},\mp@subsup{y}{b}{})}
```


Closest pair

Algorithm	Time	Space
Brute force	$\Theta\left(n^{2}\right)$	$\Theta(1)$
D\&C	$\Theta\left(n \log ^{2} n\right)$	$\Theta(n \log n)$
D\&C improved	$\Theta(n \log n)$	$\Theta(n \log n)$

Traveling salesperson problem (TSP)

Problem

- Find the shortest tour through a given set of n cities that visits each city exactly once before returning to the city where it started.
- Given a weighted connected graph, find the shorest "Hamiltonian circuit".

Traveling salesperson problem (TSP)

No.	Tour	Length	Shortest?
1	$a \rightarrow b \rightarrow c \rightarrow d \rightarrow a$	$2+8+1+7=18$	
2	$a \rightarrow b \rightarrow d \rightarrow c \rightarrow a$	$2+3+1+5=11$	\checkmark
3	$a \rightarrow c \rightarrow b \rightarrow d \rightarrow a$	$5+8+3+7=23$	
4	$a \rightarrow c \rightarrow d \rightarrow b \rightarrow a$	$5+1+3+2=11$	\checkmark
5	$a \rightarrow d \rightarrow b \rightarrow c \rightarrow a$	$7+3+8+5=23$	
6	$a \rightarrow d \rightarrow c \rightarrow b \rightarrow a$	$7+1+8+2=18$	

Traveling salesperson problem (TSP)

Algorithm	Computes	Time	Space
Exact algorithms			
Brute force	opt	$\Theta((n-1)!)$	$\Theta\left(n^{2}\right)$
Bellman-Held-Karp DP	opt	$\Theta\left(2^{n} n^{2}\right)$	$\Theta\left(2^{n} n\right)$
Approximation algorithms for graphs satisfying triangle inequality			
Rosenkrantz-Stearns-Lewis	≤ 2 opt	$\Theta\left(n^{2} \log n\right)$	$?$
Christofides	≤ 1.5 opt	$\Theta\left(n^{3}\right)$	$?$

Knapsack problem

Problem

- Given n items of known weights $w_{1}, w_{2}, \ldots, w_{n}$ and values $v_{1}, v_{2}, \ldots, v_{n}$ and a knapsack of capacity W, find the most valuable subset of the items that fit into the knapsack.

Subset	Total weight	Total value	Opt?
$\}$	0	$\$ 0$	
$\{1\}$	7	$\$ 42$	
$\{2\}$	3	$\$ 12$	
$\{3\}$	4	$\$ 40$	
$\{4\}$	5	$\$ 25$	
$\{1,2\}$	$7+3=10$	$42+12=\$ 54$	
$\{1,3\}$	$7+4=11$	$42+40=\$ 82$	
$\{1,4\}$	$7+5=12$	$42+25=\$ 67$	
$\{2,3\}$	$3+4=7$	$12+40=\$ 52$	
$\{2,4\}$	$3+5=8$	$12+25=\$ 37$	
$\{3,4\}$	$4+5=9$	$40+25=\$ 65$	
$\{1,2,3\}$	$7+3+4=14$	$42+12+40=\$ 94$	
$\{1,2,4\}$	$7+3+5=15$	$42+12+25=\$ 79$	
$\{1,3,4\}$	$7+4+5=16$	$42+40+25=\$ 109$	
$\{2,3,4\}$	$3+4+5=12$	$12+40+25=\$ 77$	
$\{1,2,3,4\}$	$7+3+4+5=19$	$42+12+40+25=\$ 119$	

Graph traversals

- Depth first search (DFS)
- Breadth first search (BFS)

Graph representations

- Adjacency list
- Adjacency matrix

Adjacency list

Adjacency matrix

Feature	DFS	BFS
Similarities		
Works on	Trees and graphs	Trees and graphs
Time	$\mathcal{O}(\|V\|+\|E\|)$	$\mathcal{O}(\|V\|+\|E\|)$
Space	$\mathcal{O}(\|V\|)$	
Differences		
Core idea	Starts at arbitrary node and ex- plores as far as possible along each branch before backtrack-	Starts at arbitrary node and ex- plores all nodes at the present depth prior to moving on to the nodes at the next depth level ing Uses stack
DS		

Image source: https://vivadifferences.com/wp-content/uploads/2019/10/DFS-VS-BFS.png

Applications:

- Finding connected components.
- Topological sorting.
- Finding the bridges of a graph.
- Finding strongly connected components.
- Determining whether a species is closer to one species or another in a phylogenetic tree.
- Planarity testing.
- Solving puzzles with only one solution, such as mazes. (DFS can be adapted to find all solutions to a maze by only including nodes on the current path in the visited set.)
- Maze generation may use a randomized depth-first search.
- Finding biconnectivity in graphs.

BFS

Applications:

- Finding the shortest path between two nodes u and v, with path length measured by number of edges
- (Reverse) Cuthill-McKee mesh numbering.
- Edmonds-Karp method for computing maximum flow.
- Serialization/Deserialization of a binary tree vs serialization in sorted order.
- Construction of the failure function of the Aho-Corasick pattern matcher.
- Testing bipartiteness of a graph.
- Implementing parallel algorithms for computing a graph's transitive closure.

DepthFirstSEARCh (G)

1. Mark each vertex in V with 0 as a mark of being unvisited
2. count $\leftarrow 0$
3. for each vertex v in V do
4. if v is marked with 0 then
5. $\operatorname{DFS}(v)$

DFS (v)

1. count \leftarrow count +1
2. Mark v with count
3. for each vertex w in V adjacent to v do
4. if w is marked with 0 then
5. $\operatorname{DFS}(w)$

DFS

BFS

BreadthFirstSearch (G)

1. Mark each vertex in V with 0 as a mark of being unvisited
2. count $\leftarrow 0$
3. for each vertex v in V do
4. if v is marked with 0 then
5. $\operatorname{BFS}(v)$
$\mathrm{BFS}(v)$
6. count \leftarrow count +1
7. Mark v with count
8. Initialize a queue with v
9. while queue is not empty do
10. for each vertex w in V adjacent to the front vertex do
11. if w is marked with 0 then
12. count \leftarrow count +1
13. Mark w with count
14. Add w to the queue
15. Remove the front vertex from the queue

BFS

BFS

BFS

Exhaustive search

Negatives

- Combinatorial explosion or curse of dimensionality

Positives

- Might be the only technique that works for some problems (e.g. linear search)
- Might be used for benchmarking solutions
- Exhaustive search + pruning = Backtracking Backtracking is a very powerful algorithm design technique
- Might be fast for small instances of problems (e.g. insertion sort is used to sort subarrays of size ≤ 30)
- Used to find the shortest proofs or axioms in mathematics
- Used in computer-generated/aided proofs
- Benchmarking cryptographic algorithms using brute force attack
- Used in games where computer is a player

Random permutation generation

Problem

- Generate random permutations of $A[1 . . n]$.

Random permutation generation

- Does not generate uniformly random permutations

RandomPermutationGenerator $(A[1 . . n])$
Input: $A[1 . . n]$
Output: Random permutation of $A[1 . . n]$

1. for $i \leftarrow 1$ to $n-1$ do
2. $\operatorname{Swap}(A[i], A[\operatorname{Random}([1 . . n])])$
3. return $A[1 . . n]$

- Generates uniformly random permutations

```
RandomPermutationGEnERator(A[1..n])
Input: A[1..n]
Output: Random permutation of }A[1..n
1. for }i\leftarrow1\mathrm{ to }n-1\mathrm{ do
2. }\operatorname{SWAP}(A[i],A[\operatorname{RaNDOM}([i..n])]
3. return }A[1..n
```


Bubble sort

Problem

- Sort a given n-sized array in nondecreasing order.

```
\(\operatorname{BubbleSort}(A[0 . . n-1])\)
Input: Arrays \(A[0 . . n-1]\)
Output: Sorted array \(A[0 . . n-1]\)
1. for \(i \leftarrow 0\) to \(n-2\) do
2. for \(j \leftarrow 0\) to \(n-2-i\) do
3. if \(A[j+1]<A[i]\) then
4. \(\operatorname{Swap}(A[j], A[j+1])\)
```


Selection sort

```
Problem
SElectionSort(A[0..n-1])
Input: Arrays A[0..n-1]
Output: Sorted array }A[0..n-1
1. for }i\leftarrow0\mathrm{ to }n-2\mathrm{ do
2. }\operatorname{min}\leftarrow
3. for }j\leftarrowi+1\mathrm{ to }n-1\mathrm{ do
4. if }A[j]<A[min] the
5. }\quad\operatorname{min}\leftarrow
6. }\operatorname{SWAP}(A[i],A[min]
```

- Sort a given n-sized array in nondecreasing order.

Counting sort

Problem

- Sort a given n-sized array in nondecreasing order.
- Items are non-negative integers with maximum value k.

Counting sort

Problem

- Sort a given n-sized array in nondecreasing order.
- Items are non-negative integers with maximum value k.

Solution

- Create an array for indices in the range $[0, k]$
- Distribute items to these indices to compute item frequences
- Compute the cumulative frequencies of items for indices in the range $[0, k]$
- Find the sorted array

Counting sort

A| 2 | 5 | 3 | 0 | 2 | 3 | 0 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

C| 2 | 0 | 2 | 3 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |

C| 2 | 2 | 4 | 7 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- |

B| 0 | 0 | 2 | 2 | 3 | 3 | 3 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Counting sort

CountingSort (A[1..n])

Input: An array $A[1 . . n]$ of non-negative integers
Output: Array $A[1 . . n]$ sorted in nondecreasing order

1. $k \leftarrow$ maximum value in $A[1 . . n]$
2. $B[1 . . n] \leftarrow$ new array; $C[0 . . k] \leftarrow$ new array initialized to 0
[Find the frequencies of items]
[After this step, $C[i]$ will contain \#elements equal to i]
3. for $j \leftarrow 1$ to n do
4. $C[A[j]] \leftarrow C[A[j]]+1$
[Find the cumulative frequencies of items]
[After this step, $C[i]$ will contain \#elements less than or equal to i]
5. for $i \leftarrow 1$ to k do
6. $C[i] \leftarrow C[i]+C[i-1]$
[Get the sorted array in B]
7. for $j \leftarrow n$ to 1 do
8. $B[C[A[j]] \leftarrow A[j]$
9. $C[A[j]] \leftarrow C[A[j]]-1$
[Copy the sorted array to A]
10. for $j \leftarrow 1$ to n do
11. $A[j] \leftarrow B[j]$

Counting sort

A	2	5	3	0	2	3	0	3
C	2	2	4	7	7	8		
B							3	
C	2	2	4	6	7	8		

$A[8]=3$
$C[3]=7$
$B[7]=3$
$C[3]=-$

$A[7]=0$
$C[0]=2$
$B[2]=0$
$C[0]$ - -

A	2	5	3	0	2	3	0	3
C	1	2	4	6	7	8		
B		0				3	3	
C	1	2	4	5	7	8		

$A[6]=3$
$C[3]=6$
$B[6]=3$
$C[3]$ - -

A	2	5	3	0	2	3	0	3
C	1	2	4	5	7	8		
B		0		2		3	3	
C	1	2	3	5	7	8		

$A[5]=2$
$C[2]=4$
$B[4]=2$
$C[2]$ - -

A	2	5	3	0	2	3	0	3
C	1	2	3	5	7	8		
B	0	0		2		3	3	
C	0	2	3	5	7	8		

$A[4]=0$
$C[0]=1$
$B[1]=0$
$C[0]$ - -

A	2	5	3	0	2	3	0	3
C	0	2	3	5	7	8		
B	0	0		2	3	3	3	
C	0	2	3	4	7	8		

$A[3]=3$
$C[3]=5$
$B[5]=3$
$C[3]$ - -

A	2	5	3	0	2	3	0	3
C	0	2	3	4	7	8		
B	0	0		2	3	3	3	5
C	0	2	3	4	7	7		

$A[2]=5$
$C[5]=8$
$B[8]=5$
$C[5]$ - -

A	2	5	3	0	2	3	0	3
C	0	2	3	4	7	7		
B	0	0	2	2	3	3	3	5
C	0	2	2	4	7	7		

$A[1]=2$
$C[2]=3$
$B[3]=2$
$C[2]$ - -

[^0]: ExhaustiveSearch()

 1. for every solution \mathcal{S} in the search space do
 2. if solution \mathcal{S} is valid then
 3. print solution \mathcal{S}
