
Algorithms
(Algorithmic Problem Solving)

Pramod Ganapathi
Department of Computer Science

State University of New York at Stony Brook

December 5, 2023

Contents

Practical Algorithms
GO Webpage Ranking → PageRank
GO Stable Marriage → Gale-Shapley
GO ♥ String Matching → Rabin-Karp, Boyer-Moore-Horspool,
Aho-Corasick
GO Bit Tricks
GO ♥ Polynomial Multiplication → Cooley-Tukey

Probabilistic Algorithms
GO ♥ Primality → Miller-Rabin
GO Membership → Bloom Filter
GO Frequency → Count-Min Sketch
GO Cardinality → Hyperloglog

External-Memory Algorithms
GO Merging k Sorted Arrays
GO Sorting → Merge Sort

Contents

Quantum Algorithms
GO Fundamentals
GO ♥ Random Number Generator

Technical Problems
GO ♥ Majority Vote
GO ♥ Longest Palindromic Substring
GO Selection Two Sorted Arrays
GO Largest Subarray Sum
GO Loop in a Linked List
GO Y-shaped Linked List
GO Search Sorted Matrix
GO First Missing Positive
GO Celebrity Problem
GO Random Permutation
GO Count Distinct Pairs
GO Maximum and Minimum

Contents

Sorting Algorithms
GO Permutation Sort
GO Slow Sort
GO Pancake Sort
GO Stooge Sort
GO Counting Sort
GO Radix Sort
GO Bitonic Sort

Algorithmic-problem-solving template

Step 1. Problem

Step 2. Solutions

Step 3. Complexity

Step 4. Performance

Step 5. Extensions

Step 6. References

Practical Algorithms HOME

Webpage Ranking HOME

Problem

Problem
Design an algorithm to rank web pages efficiently.
Input: A directed graph with transition probability
Output: [0.310945, 0.415423, 0.248756, 0.0248756]

1 2

3 4

0.6

0.4

0.7

0.3

0.9

0.1

0.8
0.2

Internet = directed graph
Web pages = nodes
Hyperlinks = edges
Transitions are probabilistic

What is the meaning of ranking?

Meaning of page rank.
Rank = relative importance
Rank = number of times a user visits a page when they keep
visiting pages via hyperlinks for a long time
Rank = proportion of time a user spends in that page if the user
spends long enough time

Stationary/stable distribution (SD).
If a user visits pages of the Internet for a long period of time as
per transition probabilities, the distribution stabilizes and this is
called stationary/stable distribution (SD)

Page rank algorithm

Algorithm discovered by Sergey Brin and Lawrence Page
Core idea behind Google
A billion-dollar algorithm
Ranks billions of pages efficiently
Static page ranking = ranking of all web pages on the Internet
Dynamic page ranking = ranking of web pages on the Internet
related to the search terms
The relative ranks of web pages returned for search queries
might be very different from their relative ranks when they are
measured statically (without search terms).
Here, we will only learn about static ranking of all web pages

Modeling page rank using linear algebra

T [i, j] = Probability of a user transitioning from page i to page j

1 2

3 4

0.6

0.4

0.7

0.3

0.9

0.1

0.8
0.2

Transition matrix T =

 0 0.6 0.4 0
0.7 0 0.3 0
0 0.9 0 0.1

0.8 0.2 0 0

Row sum (sum of outgoing prob.) should be 1
Col sum (sum of incoming prob.) does not mean anything

Modeling page rank using linear algebra

Pt[i] = Probability of a user being at page i at time t

Pt[i] =

Pt−1[1]× T [1, i]

+Pt−1[2]× T [2, i]
...

+Pt−1[n]× T [n, i]

 =
n∑
j=1

(Pt−1[j]× T [j, i])

Pt = [Pt[1] Pt[2] · · · Pt[n]]

=

 n∑
j=1

(Pt−1[j]× T [j, 1]) · · ·
n∑
j=1

(Pt−1[j]× T [j, n])

= Pt−1 × T

Pt =

[

1
n

1
n · · ·

1
n

]
if t = 0,

Pt−1 × T if t > 0.

Modeling page rank using linear algebra

Pt[i] = Probability of a user being at page i at time t

Pt[i] =

Pt−1[1]× T [1, i]

+Pt−1[2]× T [2, i]
...

+Pt−1[n]× T [n, i]

 =
n∑
j=1

(Pt−1[j]× T [j, i])

Pt = [Pt[1] Pt[2] · · · Pt[n]]

=

 n∑
j=1

(Pt−1[j]× T [j, 1]) · · ·
n∑
j=1

(Pt−1[j]× T [j, n])

= Pt−1 × T

Pt =

[

1
n

1
n · · ·

1
n

]
if t = 0,

Pt−1 × T if t > 0.

Modeling page rank using linear algebra

Pt[i] = Probability of a user being at page i at time t

Pt[i] =

Pt−1[1]× T [1, i]

+Pt−1[2]× T [2, i]
...

+Pt−1[n]× T [n, i]

 =
n∑
j=1

(Pt−1[j]× T [j, i])

Pt = [Pt[1] Pt[2] · · · Pt[n]]

=

 n∑
j=1

(Pt−1[j]× T [j, 1]) · · ·
n∑
j=1

(Pt−1[j]× T [j, n])

= Pt−1 × T

Pt =

[

1
n

1
n · · ·

1
n

]
if t = 0,

Pt−1 × T if t > 0.

Modeling page rank using linear algebra

Pt[i] = Probability of a user being at page i at time t

Pt[i] =

Pt−1[1]× T [1, i]

+Pt−1[2]× T [2, i]
...

+Pt−1[n]× T [n, i]

 =
n∑
j=1

(Pt−1[j]× T [j, i])

Pt = [Pt[1] Pt[2] · · · Pt[n]]

=

 n∑
j=1

(Pt−1[j]× T [j, 1]) · · ·
n∑
j=1

(Pt−1[j]× T [j, n])

= Pt−1 × T

Pt =

[

1
n

1
n · · ·

1
n

]
if t = 0,

Pt−1 × T if t > 0.

Modeling page rank using linear algebra

Page ranks or stable distribution P is computed as:
P = P × T

Questions...
Do we always get a stable distribution (convergence)?
If there is a stable distribution, is it always unique?
Does every initial distribution converge to a stable distribution?

Modeling page rank using linear algebra

There are three major algorithms to compute page ranks or SD P ,
if it exists:
Brute force
System of linear equations
Eigenvector

Solutions → Brute force

1 2

3 4

0.6

0.4

0.7

0.3

0.9

0.1

0.8
0.2 T =

 0 0.6 0.4 0
0.7 0 0.3 0
0 0.9 0 0.1

0.8 0.2 0 0

Pt
t Pt[1] Pt[2] Pt[3] Pt[4]
0 0.25 0.25 0.25 0.25
1 0.29166667 0.30833333 0.225 0.175
2 0.31305556 0.34305556 0.21972222 0.12416667
3 0.32186111 0.36550926 0.22252778 0.09010185
4 0.32388673 0.38081019 0.22781759 0.06748549
· · · · · · · · · · · · ·

19 0.310945 0.415423 0.248756 0.0248756

Page ranks P = [0.310945, 0.415423, 0.248756, 0.0248756]

Solutions → System of linear equations

1 2

3 4

0.6

0.4

0.7

0.3

0.9

0.1

0.8
0.2 T =

 0 0.6 0.4 0
0.7 0 0.3 0
0 0.9 0 0.1

0.8 0.2 0 0

Pt[1] = 0.7 · Pt[2] + 0.8 · Pt[4]
Pt[2] = 0.6 · Pt[1] + 0.9 · Pt[3] + 0.2 · Pt[4]
Pt[3] = 0.4 · Pt[1] + 0.3 · Pt[2]
Pt[4] = 0.1 · Pt[3]

1 = Pt[1] + Pt[2] + Pt[3] + Pt[4]

Page ranks P = [0.310945, 0.415423, 0.248756, 0.0248756]

Solutions → Eigenvector

1 2

3 4

0.6

0.4

0.7

0.3

0.9

0.1

0.8
0.2 T =

 0 0.6 0.4 0
0.7 0 0.3 0
0 0.9 0 0.1

0.8 0.2 0 0

[Pt[1] Pt[2] Pt[3] Pt[4]] = [Pt[1] Pt[2] Pt[3] Pt[4]]×

 0 0.6 0.4 0
0.7 0 0.3 0
0 0.9 0 0.1

0.8 0.2 0 0

=⇒

Pt[1]
Pt[2]
Pt[3]
Pt[4]

 =

 0 0.7 0 0.8
0.6 0 0.9 0.2
0.4 0.3 0 0
0 0 0.1 0

×
Pt[1]
Pt[2]
Pt[3]
Pt[4]

Solutions → Eigenvector

1 2

3 4

0.6

0.4

0.7

0.3

0.9

0.1

0.8
0.2 T =

 0 0.6 0.4 0
0.7 0 0.3 0
0 0.9 0 0.1

0.8 0.2 0 0

(P = P · T) =⇒
(
col(P) = T transpose · col(P)

)

which is equivalent to the formula

λ~v = A · ~v

where λ = 1, A = T transpose, and ~v = col(P)
and ~v is the eigenvector of A corresponding to eigenvalue 1. So,

col(P) is the eigenvector of T transpose corresponding to eigenvalue 1

Page ranks P = [0.310945, 0.415423, 0.248756, 0.0248756]

Solutions → Eigenvector

1 2

3 4

0.6

0.4

0.7

0.3

0.9

0.1

0.8
0.2 T =

 0 0.6 0.4 0
0.7 0 0.3 0
0 0.9 0 0.1

0.8 0.2 0 0

(P = P · T) =⇒
(
col(P) = T transpose · col(P)

)
which is equivalent to the formula

λ~v = A · ~v

where λ = 1, A = T transpose, and ~v = col(P)
and ~v is the eigenvector of A corresponding to eigenvalue 1. So,

col(P) is the eigenvector of T transpose corresponding to eigenvalue 1

Page ranks P = [0.310945, 0.415423, 0.248756, 0.0248756]

Solutions → Eigenvector

1 2

3 4

0.6

0.4

0.7

0.3

0.9

0.1

0.8
0.2 T =

 0 0.6 0.4 0
0.7 0 0.3 0
0 0.9 0 0.1

0.8 0.2 0 0

(P = P · T) =⇒
(
col(P) = T transpose · col(P)

)
which is equivalent to the formula

λ~v = A · ~v

where λ = 1, A = T transpose, and ~v = col(P)
and ~v is the eigenvector of A corresponding to eigenvalue 1. So,

col(P) is the eigenvector of T transpose corresponding to eigenvalue 1

Page ranks P = [0.310945, 0.415423, 0.248756, 0.0248756]

Problems

There can be two types of problems.
Page ranks can be zero
Page ranks can be unstable

Problem → Page rank being zero
1 2

3 4

0.8

0.2

0.7

0.3

0.6
0.4

0.7
0.2

0.1

T =

 0 0.8 0.2 0
0.7 0 0.3 0
0.4 0.6 0 0
0.7 0.2 0.1 0

P = [0.376147, 0.422018, 0.201835, 0]

How can the rank of a page be equal to zero?

A sink subgraph is the subgraph of the given digraph that has no
outgoing edges from it to the rest of the graph
Example: The set {1, 2, 3} is a sink subgraph
A strongly connected graph is a digraph such that there is a
directed path between every two nodes
Example: There is no path from any of {1, 2, 3} to 4

If the pagerank of at least one of the nodes in the digraph is zero,
then the graph is not strongly connected.

Problem → Page rank being zero
1 2

3 4

0.8

0.2

0.7

0.3

0.6
0.4

0.7
0.2

0.1

T =

 0 0.8 0.2 0
0.7 0 0.3 0
0.4 0.6 0 0
0.7 0.2 0.1 0

P = [0.376147, 0.422018, 0.201835, 0]

How can the rank of a page be equal to zero?
A sink subgraph is the subgraph of the given digraph that has no
outgoing edges from it to the rest of the graph
Example: The set {1, 2, 3} is a sink subgraph
A strongly connected graph is a digraph such that there is a
directed path between every two nodes
Example: There is no path from any of {1, 2, 3} to 4

If the pagerank of at least one of the nodes in the digraph is zero,
then the graph is not strongly connected.

Problem → Unstable page ranks

1 2

3 4

1

1

1

1 T =

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

Pt

t Pt[1] Pt[2] Pt[3] Pt[4]
0 1 0 0 0
1 0 1 0 0
2 0 0 0 1
3 0 0 1 0
4 1 0 0 0

How can the ranks of pages be unstable?

A periodic Markov chain is a Markov chain such that the
distribution oscillates between multiple distributions periodically
An aperiodic Markov chain is a Markov chain that is not periodic

Pageranks do not converge for a periodic Markov chain

Problem → Unstable page ranks

1 2

3 4

1

1

1

1 T =

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

Pt

t Pt[1] Pt[2] Pt[3] Pt[4]
0 1 0 0 0
1 0 1 0 0
2 0 0 0 1
3 0 0 1 0
4 1 0 0 0

How can the ranks of pages be unstable?
A periodic Markov chain is a Markov chain such that the
distribution oscillates between multiple distributions periodically
An aperiodic Markov chain is a Markov chain that is not periodic

Pageranks do not converge for a periodic Markov chain

Theorem for Markov chains

For a Markov chain that is strongly connected (i.e., no sink
subgraph) and aperiodic:
1. A unique stable distribution P exists
2. All initial distributions P0 converge to P

Ideas

What should we do if a Markov chain is not strongly connected
or periodic?
Idea: Transform it to Markov chain that is strongly connected
and periodic
How do you do this conversion/transformation?
Idea: Transform the given digraph into a complete graph by
making each edge cost positive using uniform randomization (via
a concept called teleportation factor)
Intuition: When a user is stuck at a page (or a subgraph) there
is a tiny nonzero probability that she will be teleported to a
random web page

Teleportation factor

How do you transform the digraph into a complete graph?
Transform the given transition matrix T using a chosen
teleportation factor α ∈ (0, 1) as:

T [i, j]← (1− α)T [i, j] + α
(

1
n

)
or

T ← (1− α)T + α
nS

where S is an n× n matrix with all 1s

What does this transformation mean?
This transformation means that

T [i, j] will be

incremented if T [i, j] ∈ [0, 1/n)
the same if T [i, j] = 1/n
decremented if T [i, j] ∈ (1/n, 1]

After the transformation (for n ≥ 2), T [i, j] ∈ (0, 1) for all i, j

Teleportation factor

How do you transform the digraph into a complete graph?
Transform the given transition matrix T using a chosen
teleportation factor α ∈ (0, 1) as:

T [i, j]← (1− α)T [i, j] + α
(

1
n

)
or

T ← (1− α)T + α
nS

where S is an n× n matrix with all 1s
What does this transformation mean?
This transformation means that

T [i, j] will be

incremented if T [i, j] ∈ [0, 1/n)
the same if T [i, j] = 1/n
decremented if T [i, j] ∈ (1/n, 1]

After the transformation (for n ≥ 2), T [i, j] ∈ (0, 1) for all i, j

Solutions

Algorithms
Brute force
Power method
System of equations
Eigenvector

Solutions → Brute force

BruteForce(T [1 . . . n, 1 . . . n])

TransformTransitionMatrix(T)
Create the pagerank arrays Pold[1 . . . n] and Pnew[1 . . . n]
Pold[1 . . . n]← [1/n, 1/n, . . . , 1/n]
Pnew[1 . . . n]← Pold[1 . . . n]
maxerror ← 10−6; error ←∞
while error > maxerror do
Pnew ← Pold · T
error ← |Pnew − Pold|
Pold ← Pnew

return Pnew[1 . . . n]

Solutions → System of equations

SystemOfEquations(T [1 . . . n, 1 . . . n])

TransformTransitionMatrix(T)
Create the pagerank array P [1 . . . n]
P ← SolveSystemOfEquations(P = P · T)
return P [1 . . . n]

Solutions → Eigenvector method

EigenvectorMethod(T [1 . . . n, 1 . . . n])

TransformTransitionMatrix(T)
Create the pagerank array P [1 . . . n]
P ← SolveForFirstEigenvector(col(P) = T transpose · col(P))
return P [1 . . . n]

Which is the best algorithm?

Brute force takes time till convergence
System of linear equations takes O

(
n3)

Eigenvector method takes O
(
n3)

Which algorithm is the fastest?
Brute force takes the least time for Internet-type graphs
(≈ 50 iterations)

Theoretically fast algos might not always be the best in practice

References

GO Page rank video by Reducible
GO AMS description of page rank
GO Cornell tutorial for page rank
GO Brin and Page’s paper
GO Linear algebra behind Google

https://www.youtube.com/watch?v=JGQe4kiPnrU
http://www.ams.org/publicoutreach/feature-column/fcarc-pagerank
https://pi.math.cornell.edu/~mec/Winter2009/RalucaRemus/Lecture3/lecture3.html
http://infolab.stanford.edu/pub/papers/google.pdf
https://www.rose-hulman.edu/~bryan/googleFinalVersionFixed.pdf

Stable Marriage HOME

Problem

Problem
Given the preference/priority list of n guys and n gals, design
an algorithm to determine if a set of stable marriages exists and
find one such set.

Problem

A matching is a 1-to-1 correspondence b/w n guys and n gals.
An unstable pair is a pair (m,w) who would have a love affair:
Man m prefers woman w to his matched partner and
Woman w prefers man w to her matched partner

An unstable matching is a set of marriages which has an
unstable pair (C, p).

Preference
Guy 1st 2nd 3rd
A p q r
B q r p
C r p q

Preference
Gal 1st 2nd 3rd
p B C A
q C A B
r A B C

This matching is unstable due to the unstable pair (C, p):
C prefers p over C’s matched partner q
p prefers C over p’s matched partner A

Example 1

Preference
Guy 1st 2nd 3rd
A p q r
B q r p
C r p q

Preference
Gal 1st 2nd 3rd
p B C A
q C A B
r A B C

Answer
There are three sets of stable marriages.
Give each man his first choice: {(A,p), (B,q), (C,r)}
(Each woman gets her last choice)
Give each woman her first choice: {(A,r), (B,p), (C,q)}
(Each man gets his last choice)
Give each man his second choice: {(A,q), (B,r), (C,p)}
(Each woman gets her second choice)

All other sets are unstable.

Example 2

Preference
Guy 1st 2nd 3rd 4th
A p q r s
B p s r q
C q p r s
D s q r p

Preference
Gal 1st 2nd 3rd 4th
p D C A B
q B D A C
r D A B C
s C B A D

Answer
There is only one set of stable marriages.
{(A,r), (B,s), (C,p), (D,q)}
All men get their second choice, except A who gets third choice
All women get their second choice

All other sets are unstable.

Gale-Shapley’s algorithm

In 1962, David Gale and Lloyd Shapley discovered an algorithm
based on deferred acceptance that guarantees that
(Matching) each man and each woman gets matched
(Stability) the matching is stable
(Optimality) the matching is always best for the group that
proposes and worst for the group that handles proposals

Applications:
Matching hospitals and medical residents
Matching roommates
Shapley and Roth were awarded 2012 Nobel Memorial Prize in
Economic Sciences (Gale died in 2008)
Exists as functions in Python, MATLAB, and R

Gale-Shapley’s algorithm

High level description of the algorithm
1. All individuals rank the members of the opposite set in order of

preference
2. One of the two sets is chosen to make proposals
3. In a loop, run

i. An individual from the proposing group who is not already
engaged will propose to their most preferable option who has
not already rejected them

ii. The person being proposed to will:
Accept if this is their first offer
Reject if this is worse than their current offer
Accept if this is better than their current offer

4. When all members of the proposing group are matched,
terminate. The current pairs represents stable set of marriages.

Gale-Shapley’s algorithm

Let’s understand the working of the algorithm on an example.

Preference
Guy 1st 2nd 3rd 4th
A p q r s
B p s r q
C q p r s
D s q r p

Preference
Gal 1st 2nd 3rd 4th
p D C A B
q B D A C
r D A B C
s C B A D

A proposes to p and p accepts the proposal
A is p’s first offer/proposal

Gale-Shapley’s algorithm

Preference
Guy 1st 2nd 3rd 4th
A p q r s
B p s r q
C q p r s
D s q r p

Preference
Gal 1st 2nd 3rd 4th
p D C A B
q B D A C
r D A B C
s C B A D

B proposes to p and p rejects the proposal
p’s current partner A is better than B

Gale-Shapley’s algorithm

Preference
Guy 1st 2nd 3rd 4th
A p q r s
B p s r q
C q p r s
D s q r p

Preference
Gal 1st 2nd 3rd 4th
p D C A B
q B D A C
r D A B C
s C B A D

B proposes to p and p rejects the proposal
p’s current partner A is better than B

Gale-Shapley’s algorithm

Preference
Guy 1st 2nd 3rd 4th
A p q r s
B p s r q
C q p r s
D s q r p

Preference
Gal 1st 2nd 3rd 4th
p D C A B
q B D A C
r D A B C
s C B A D

C proposes to q and q accepts the proposal
C is q’s first offer/proposal

Gale-Shapley’s algorithm

Preference
Guy 1st 2nd 3rd 4th
A p q r s
B p s r q
C q p r s
D s q r p

Preference
Gal 1st 2nd 3rd 4th
p D C A B
q B D A C
r D A B C
s C B A D

D proposes to s and s accepts the proposal
D is s’s first offer/proposal

Gale-Shapley’s algorithm

Preference
Guy 1st 2nd 3rd 4th
A p q r s
B p s r q
C q p r s
D s q r p

Preference
Gal 1st 2nd 3rd 4th
p D C A B
q B D A C
r D A B C
s C B A D

B proposes to s and s accepts the proposal
B is better than s’s current partner D

Gale-Shapley’s algorithm

Preference
Guy 1st 2nd 3rd 4th
A p q r s
B p s r q
C q p r s
D s q r p

Preference
Gal 1st 2nd 3rd 4th
p D C A B
q B D A C
r D A B C
s C B A D

D proposes to q and q accepts the proposal
D is better than q’s current partner C

Gale-Shapley’s algorithm

Preference
Guy 1st 2nd 3rd 4th
A p q r s
B p s r q
C q p r s
D s q r p

Preference
Gal 1st 2nd 3rd 4th
p D C A B
q B D A C
r D A B C
s C B A D

C proposes to p and p accepts the proposal
C is better than p’s current partner A

Gale-Shapley’s algorithm

Preference
Guy 1st 2nd 3rd 4th
A p q r s
B p s r q
C q p r s
D s q r p

Preference
Gal 1st 2nd 3rd 4th
p D C A B
q B D A C
r D A B C
s C B A D

A proposes to q and q rejects the proposal
q’s current partner D is better than A

Gale-Shapley’s algorithm

Preference
Guy 1st 2nd 3rd 4th
A p q r s
B p s r q
C q p r s
D s q r p

Preference
Gal 1st 2nd 3rd 4th
p D C A B
q B D A C
r D A B C
s C B A D

A proposes to r and r accepts the proposal
A is r’s first offer/proposal

Gale-Shapley’s algorithm

Preference
Guy 1st 2nd 3rd 4th
A p q r s
B p s r q
C q p r s
D s q r p

Preference
Gal 1st 2nd 3rd 4th
p D C A B
q B D A C
r D A B C
s C B A D

There is no man who is not engaged
Algorithm terminates

Stable matching is achieved
Matching best for men and worst for women

Gale-Shapley’s algorithm

Preference
Gal 1st 2nd 3rd 4th
p D C A B
q B D A C
r D A B C
s C B A D

Preference
Guy 1st 2nd 3rd 4th
A p q r s
B p s r q
C q p r s
D s q r p

If women propose and men handle proposals you get the same
stable matching in this specific example

This is because this instance has only one stable matching
In other examples, you can get different stable matchings

Gale-Shapley’s algorithm

StableMarriage-GaleShapley(menpreferences, womenpreferences)

Input: n = number of men (or women), menpreferences = preference list
of men, womenpreferences = preference list of women

Output: Stable matching
engaged = dictionary with initial empty mappings for men and women
while there is a man who is not engaged do

man = next non-engaged man and
woman = first woman in man’s preferences list to whom man has not
yet proposed

if woman is not engaged then
engage man and woman

else if woman prefers man to her current partner then
mark current partner as not engaged
engage man and woman

else if woman does not prefer man to her current partner then
woman rejects man

return stable matching engaged mapping

Complexity

Time = O
(
n2)

Space = O (n) for notengaged dequeue and engaged map

Gale-Shapley’s algorithm

Stable matching even when #men > #women or #women >
#men
There is no stable matching for stable roommate matching
An even number of boys wish to divide up into pairs of
roommates
Example: Boys A, B, C, D where A ranks B first, B ranks C first,
C ranks A first, and A,B,C all rank D last. Then regardless of
D’s preferences there can be no stable pairing, for whoever has
to room with D will want to move out and one of the other two
will be willing to take him in.

References

GO Gale-Shapley paper
GO Gale-Shapley simulation

https://www.eecs.harvard.edu/cs286r/courses/fall09/papers/galeshapley.pdf
http://www.matchu.ai/GaleShapley

String Matching HOME

Problem

Given a text text[1 . . . n] and a pattern pattern[1 . . .m], design
an algorithm to find the location of the first occurrence of the
pattern in the text.

Solutions → Brute force

a b

pattern[1 . . .m]text[1 . . . n]

a a a a a a a a a a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a

b

b

b

b

b

b

b

b

ba a

Solutions → Brute force

1. Check if the pattern matches the text starting from the 1st index of text.
2. If not, check if the pattern matches with the text starting from the 2nd index

of the text.
3. Repeat this process until either the pattern is found or the end of the text is

reached (without finding any pattern).

StringMatching-BruteForce(text[1 . . . n], pattern[1 . . .m])

for i← 1 to n−m+ 1 do
// If text window at position i matches with pattern, return position
if text[i . . . (i+m− 1)] = pattern then

return i
return −1

〈PreprocessTime, MatchTime, Space〉 = 〈0,O (mn) ,Θ (1)〉

Solutions → Hashing

a b

pattern[1 . . .m]text[1 . . . n]

a a a a a a a a a a a a

a a a

a a a

a a a

a a a

a a a

a a a

a a a

a

b

b

b

b

b

b

b

b

ba a

Hash(string[1 . . .m], b, p)

// Polynomial hash: s1b
m−1 + s2b

m−2 + · · ·+ sm−1b
1 + smb

0

// Use Horner’s rule to compute polynomial hash
hash← 0
for i← 1 to m do
hash← (hash× b+ string[i]) mod p

return hash

Time = Θ (m)

Solutions → Hashing
1. Check if patternhash matches the texthash at index 1.
2. If not, check if patternhash matches the texthash at index 2.
3. Repeat this process until either the pattern is found or the end of the text is

reached (without finding any pattern).

StringMatching-Hashing(text[1 . . . n], pattern[1 . . .m])

p← a good prime // e.g.: 101
b← size of ASCII set // i.e., 256
patternhash← Hash(pattern, b, p)
texthash← Hash(text[1 . . .m], b, p)
for i← 1 to n−m+ 1 do

// If hash value of text window matches the hash value of pattern and
if the text window matches the pattern then there is a match

if texthash = patternhash and text[i . . . (i+m− 1)] = pattern then
return i

// Compute hash value of the next text window in Θ (m) time
if i 6= n−m+ 1 then
texthash← Hash(text[i+ 1 . . . i+m])

return −1

〈PreprocessTime, MatchTime, Space〉 = 〈Θ (m) ,O (mn) ,Θ (1)〉

Solutions → RabinKarp (rolling hash)

StringMatching-RabinKarp(text[1 . . . n], pattern[1 . . .m])

p← a good prime // e.g.: 101
b← size of ASCII set // i.e., 256
h← bm−1 mod p // highest term in the polynomial hash
patternhash← Hash(pattern, b, p)
texthash← Hash(text[1 . . .m], b, p)
for i← 1 to n−m+ 1 do

if texthash = patternhash and text[i . . . (i+m− 1)] = pattern then
return i

// Rolling hash: Compute hash value of the next text window using
the current text window in Θ (1) time

if i 6= n−m+ 1 then
texthash← RollingHash(texthash, text[i . . . i+m])

return −1

Solutions → RabinKarp (rolling hash)

RollingHash(texthash, string[1 . . .m′]) (m′ = m+ 1)

texthash← ((texthash− string[1]× h)× b+ string[m′]) mod p
return texthash

Time = Θ (1)

Solutions → RabinKarp (rolling hash)

36 2 4 1 2 3 4 2 8 9 7 3 41 2

6 3 2 4

3 2 4 1

2 24 1

324 1

321 4

pattern[1 . . .m]text[1 . . . n]

6

1 · 103 + 2 · 102 + 3 · 101 + 4 · 100 = 1234

6 · 103 + 3 · 102 + 2 · 101 + 4 · 100 = 6324

(6324− 6 · 103) · 10 + 1 = 3241

(3241− 3 · 103) · 10 + 2 = 2412

(2412− 2 · 103) · 10 + 3 = 4123

(4123− 4 · 103) · 10 + 4 = 1234

Solutions → RabinKarp (rolling hash)

36 2 4 1 2 3 4 2 8 9 7 3 41

6 3 4

3 2 4 1

2 24 1

324 1

321 4

pattern[1 . . .m]text[1 . . . n]

6

(1 · 103 + 2 · 102 + 3 · 101 + 4 · 100) mod 31 = 2

(6 · 103 + 3 · 102 + 2 · 101 + 4 · 100) mod 31 = 8

((8− 6 · 103 mod 31) · 10 + 1) mod 31 = 25

((25− 3 · 103 mod 31) · 10 + 2) mod 31 = 2

((2− 2 · 103 mod 31) · 10 + 3) mod 31 = 8

((8− 4 · 103 mod 31) · 10 + 4) mod 31 = 2

2

2

Solutions → Boyer-Moore-Horspool

text[1 . . . n] pattern[1 . . .m]

a eb br r

a eb br r

a eb br r

a eb br ri g eva t h rb i pa ae e tb r

shift by skip[t] characters to right

shift by skip[b] characters to right

a r rb b e

a r rb b e

a r rb b e

a r rb b e

a r rb b e

g a ebr i s a ar r rb b e

text[1 . . . n] pattern[1 . . .m]

shift by skip[r] characters to right

shift by skip[a] characters to right

shift by skip[b] characters to right

character b a r e other
skip[character] 2 4 3 1 6

skip[α] =
{

distance from the end of the pattern of α’s last occurrence if α 6= pattern[m]
distance from the end of the pattern of α’s last but one occurrence if α = pattern[m]

}

Solutions → Boyer-Moore-Horspool

StringMatching-BMH(text[1 . . . n], pattern[1 . . .m])

skip[0 . . . 255]← ConstructSkipTable(pattern)
i← m
while i ≤ n do

if text[(i−m+ 1) . . . i] = pattern comparing from right to left then
return i−m+ 1

else
i← i+ skip[text[i]]

return −1
ConstructSkipTable(pattern[1 . . .m])

// Initialize the skip table of ASCII characters to m
skip[0 . . . 255]← [m. . .m]
for i← 1 to m− 1 do
skip[pattern[i]]← m− i

return skip[0 . . . 255]

〈PreprocessTime, MatchTime, Space〉 = 〈Θ (m+ |Σ|) ,O (mn) ,Θ (|Σ|)〉

Solutions → Aho-Corasick
pattern[1 . . .m]text[1 . . . n]

a b ca a a a a a a a a aab b b bc c

∑
−{a, b} ∑

−{a} ∑
−{a, b} ∑

−{a}
∑
−{a, b, c}

0 1 2 3 4 5 6
bb ca aa

a
a

b
a

State a b c
∑
−{a, b, c}

0 1 0 0 0
1 1 2 0 0
2 3 0 0 0
3 1 4 0 0
4 5 0 0 0
5 1 4 6 0
6 − − − −

Solutions → Aho-Corasick

StringMatching-AhoCorasick(text[1 . . . n], pattern[1 . . .m])

transitiontable[0 . . .m, 0 . . . 255]← BuildTransitionTable(pattern)
state← 0
for i← 1 to n do
state← transitiontable[state, text[i]]
if state = m then

return i−m+ 1
return −1

〈PreprocessTime, MatchTime, Space〉 = 〈Θ (m) ,O (n) ,Θ (m)〉

Solutions → Aho-Corasick

BuildTransitionTable(pattern[1 . . .m])

// Stage 1. Construct array X such that X[i] represents the length of
the longest proper suffix at index i which is also the prefix at index 1

X[0 . . .m]← [0 . . . 0]; len← 0
for i← 1 to m do

if i < m and pattern[i+ 1] = pattern[len+ 1] then
len← len+ 1; X[i]← len

else if len 6= 0 then
len← X[len− 1]; i← i− 1

else
X[i]← 0

// Stage 2. Compute table from X array
table[0 . . .m, 1 . . . |Σ|]← [0 . . . 0, 0 . . . 0]; table[0, pattern[1]]← 1
for i← 1 to m do

for j ← 1 to |Σ| do
if i < m and j = pattern[i+ 1] then table[i, j]← i+ 1
else table[i, j]← table[X[i− 1], j]

return table

〈Time, Space〉 = 〈Θ (mΣ) ,Θ (mΣ)〉

Complexity

Algorithm Preprocess time Matching time Space
Brute force − O (mn) Θ (1)
Rabin Karp Θ (m) O (mn) Θ (1)
Horspool Θ (m+ |Σ|) O (mn) Θ (|Σ|)
Aho-Corasick Ω (m|Σ|) O (n) Θ (m|Σ|)

Bit Tricks HOME

Why care?

Problem
Why care for bit tricks?

Extensively used by compilers and programmers for achieving
high performance
Easily extends to Bit vector; Instead of working with 32 or 64
bits, bit vector can use an arbitrary size of bits and the
operations and concepts remain the same
Many algorithms make use these bit tricks
Example: most-widely used HyperLogLog++ algorithm requires
counting the number of trailing zeros in a word

Binary representation

Let x = 〈xw−1xw−2 . . . x0〉 be a w-bit word
Unsigned integer value stored in x is

x = + xw−12w−1 + xw−22w−2 + · · ·+ x020

Signed integer value stored in x is

x = − xw−12w−1 + xw−22w−2 + · · ·+ x020

Prefix 0B represents a binary number in programming languages
Examples:
Unsigned int x = 0B10010110 = 128 + 16 + 4 + 2 = 150
Signed int x = 0B10010110 = −128 + 16 + 4 + 2 = −106

Bitwise operators

A = 0B10110011
B = 0B01101001

Operator Description Operation
& AND A & B = 0B00100001
| OR A | B = 0B11111011
⊕ XOR A⊕B = 0B11011010
∼ NOT ∼ A = 0B01001100
>> shift right A >> 1 = 0B01011001

shift right A >> 2 = 0B00101100
<< shift left A >> 1 = 0B01100110

shift left A >> 2 = 0B11001100

Complementation

Problem
Take the complement of a word x

1’s complement =∼ x
2’s complement =∼ x+ 1 = −x

Term Bits
x 1 0 1 1 1 1 0 1 0 1 1 0 1 1 0 1
∼ x 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0
∼ x+ 1 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 1

Odd or even

Problem
Check if an integer is odd or even

A = x & 1

Term Bits
x 1 0 1 1 1 1 0 1 0 1 1 0 1 1 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
A = x & 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Extract a bit

Problem
Extract the kth bit in a word x.

mask = 1 << k

A = (x & mask) >> k

Term Bits
x 1 0 1 1 1 1 0 1 1 1 1 0 1 1 0 1
mask = 1 << 7 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
x & mask 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
A = (x & mask) >> 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Set a bit

Problem
Set the kth bit in a word x.

mask = 1 << k

A = x | mask

Term Bits
x 1 0 1 1 1 1 0 1 0 1 1 0 1 1 0 1
mask = 1 << 7 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
A = x | mask 1 0 1 1 1 1 0 1 1 1 1 0 1 1 0 1

Clear a bit

Problem
Clear the kth bit in a word x.

mask =∼ (1 << k)
A = x & mask

Term Bits
x 1 0 1 1 1 1 0 1 1 1 1 0 1 1 0 1
1 << 7 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
mask =∼ (1 << 7) 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
A = x & mask 1 0 1 1 1 1 0 1 0 1 1 0 1 1 0 1

Toggle a bit

Problem
Toggle the kth bit in a word x.

mask = 1 << k

A = x⊕mask

Term Bits
x 1 0 1 1 1 1 0 1 0 1 1 0 1 1 0 1
mask = 1 << 7 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
A = x⊕mask 1 0 1 1 1 1 0 1 1 1 1 0 1 1 0 1

Extract a bit field

Problem
Extract a bit field in a word x.

A = (x & mask) >> shift

Term Bits
x 1 0 1 1 1 1 0 1 0 1 1 0 1 1 0 1
mask 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0
x & mask 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
(x & mask) >> shift 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0

Set a bit field

Problem
Set a bit field in a word x to a value y.

A = (x & ∼ mask) | ((y << shift) & mask)

Term Bits
x 1 0 1 1 1 1 0 1 0 1 1 0 1 1 0 1
mask 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0
∼ mask 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1
A1 = x & ∼ mask 1 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1
y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
A2 = (y << 7) & mask 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
A = A1 | A2 1 0 1 1 1 0 0 1 1 1 1 0 1 1 0 1

Swap

Problem
Swap two integers x and y.

Using temporary variables: t = x; x = y; y = t;
No temporary variables: x = x⊕ y; y = x⊕ y; x = x⊕ y;

Term Bits
x 1 0 1 1 1 1 0 1 0 1 1 0 1 1 0 1
y 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
x = x⊕ y 1 0 1 1 1 1 0 1 1 0 0 1 0 0 1 0
y = x⊕ y 1 0 1 1 1 1 0 1 0 1 1 0 1 1 0 1
x = x⊕ y 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Swap

Problem
How does { x = x⊕ y; y = x⊕ y;x = x⊕ y; } swap?

Core idea:

a⊕ a = 0 =⇒ b⊕ a⊕ a = a⊕ b⊕ a = a⊕ a⊕ b = b

How do you apply this idea to this algorithm?
Let’s keep the x and y variables unchanged

a = x⊕ y
b = a⊕ y = x⊕ y ⊕ y = x

c = a⊕ b = x⊕ y ⊕ x = y

Variables b and c store original values of x and y, respectively
Variables b and c are the variables y and x, respectively

Detect if two integers have opposite sign

Problem
Detect if two integers x and y have opposite sign.

A = (x⊕ y) < 0

Term Bits
x 1 0 1 1 1 1 0 1 0 1 1 0 1 1 0 1
y 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
(x⊕ y) 1 0 1 1 1 1 0 1 1 0 0 1 0 0 1 0
A = (x⊕ y) < 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Term Bits
x 1 0 1 1 1 1 0 1 0 1 1 0 1 1 0 1
y 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
(x⊕ y) 0 1 0 0 0 0 1 0 0 1 1 0 1 1 0 1
A = (x⊕ y) < 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sign of an integer
Problem
Determine the sign of an integer x (return +1/0/-1).

A = (x > 0)− (x < 0)

Term Bits
x 1 0 1 1 1 1 0 1 0 1 1 0 1 1 0 1
(x > 0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(x < 0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
A = (x > 0)− (x < 0) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Term Bits
x 0 0 1 1 1 1 0 1 0 1 1 0 1 1 0 1
A = (x > 0)− (x < 0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Term Bits
x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A = (x > 0)− (x < 0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Check if number is a power of 2
Problem
Check if unsigned integer x is a power of 2.

A = x ∧ !(x & (x− 1))

Term Bits
x 1 0 1 1 1 1 0 1 0 1 1 0 1 1 0 0
(x− 1) 1 0 1 1 1 1 0 1 0 1 1 0 1 0 1 1
(x & (x− 1)) 1 0 1 1 1 1 0 1 0 1 1 0 1 0 0 0
!(x & (x− 1)) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A = x ∧ !(x & (x− 1)) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Term Bits
x 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
(x− 1) 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
(x & (x− 1)) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
!(x & (x− 1)) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
A = x ∧ ∼ (x & (x− 1)) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Create the table for x = 0.

Minimum of two integers

Problem
Find the minimum of two integers x and y.

A = y ⊕ ((x⊕ y) & − (x < y))

Term Bits
x 1 0 1 1 1 1 0 1 0 1 1 0 1 1 0 1
y 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
(x < y) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
−(x < y) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(x⊕ y) 1 0 1 1 1 1 0 1 1 0 0 1 0 0 1 0
(x⊕ y) & − (x < y) 1 0 1 1 1 1 0 1 1 0 0 1 0 0 1 0
A = y ⊕ ((x⊕ y) & − (x < y)) 1 0 1 1 1 1 0 1 0 1 1 0 1 1 0 1

x < y =⇒ −(x < y) = −1 = 1 . . . 1 =⇒ A = y ⊕ (x⊕ y) = x
x ≥ y =⇒ −(x < y) = 0 = 0 . . . 0 =⇒ A = y ⊕ 0 = y

Maximum of two integers

Problem
Find the maximum of two integers x and y.

A = x⊕ ((x⊕ y) & − (x < y))

Term Bits
x 1 0 1 1 1 1 0 1 0 1 1 0 1 1 0 1
y 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
(x < y) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
−(x < y) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(x⊕ y) 1 0 1 1 1 1 0 1 1 0 0 1 0 0 1 0
(x⊕ y) & − (x < y) 1 0 1 1 1 1 0 1 1 0 0 1 0 0 1 0
A = x⊕ ((x⊕ y) & − (x < y)) 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

x < y =⇒ −(x < y) = −1 = 1 . . . 1 =⇒ A = x⊕ (x⊕ y) = y
x ≥ y =⇒ −(x < y) = 0 = 0 . . . 0 =⇒ A = x⊕ 0 = x

Count set bits in unsigned int

Problem
Count set bits in unsigned int x.

for (A = 0;x;A++) x← x & (x− 1)

Count Term Bits
A = 0 x 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 1
A = 1 x = x & (x− 1) 1 0 0 0 1 1 0 1 0 1 1 0 0 1 0 0
A = 2 x = x & (x− 1) 1 0 0 0 1 1 0 1 0 1 1 0 0 0 0 0
A = 3 x = x & (x− 1) 1 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0
A = 4 x = x & (x− 1) 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0
A = 5 x = x & (x− 1) 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
A = 6 x = x & (x− 1) 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
A = 7 x = x & (x− 1) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A = 8 x = x & (x− 1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

dlog2 xe for an unsigned int x

Problem
Compute dlog2 xe for an unsigned int x.

for (A = 0;x >>= 1;A++) ;

Log Term Bits
A = 0 x 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1
A = 1 x >>= 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0
A = 2 x >>= 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1
A = 3 x >>= 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
A = 4 x >>= 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
A = 5 x >>= 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
A = 6 x >>= 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Round to next power of 2
Problem

Round to next power of 2, i.e., 2dlog2 xe of an unsigned int x.

x−−; x| = x >> 1; x| = x >> 2; x| = x >> 4; x| = x >> 8; x| = x >> 16; x| = x >> 32; x + +;

Term Bits
x 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
x−− 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1
x| = x >> 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1
x| = x >> 2 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1
x| = x >> 4 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1
x| = x >> 8 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
x| = x >> 16 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
x| = x >> 32 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
x+ + 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

x−− is used to correctly handle powers of 2.

Polynomial Multiplication HOME

Step 1. Problem

Problem
Multiply two (n− 1)-degree polynomials.
For simplicity, we assume n is a power of 2.
Formally, let A(x) and B(x) be (n − 1)-degree polynomials.
Compute (2n− 2)-degree polynomial C(x) such that

C(x) = A(x) × B(x) where

A(x) = a0 + a1x
1 + · · ·+ an−1x

n−1

B(x) = b0 + b1x
1 + · · ·+ bn−1x

n−1

C(x) = c0 + c1x
1 + · · ·+ c2n−2x

2n−2

Step 2. Subproblem

Mult(A[`..h], B[`..h]) = Multiply two (h− `) degree polynomials
A[`..h] and B[`..h].

Compute Mult(A[0..n− 1], B[0..n− 1]).

Step 3. Core idea

A×B = (ALAR)× (BLBR)
= (AL +AR · xn/2)× (BL +BR · xn/2)
= (AL ×BL) + (AL ×BR +AR ×BL) · xn/2

+ (AR ×BR) · xn

= (AL ×BL)

+
(

(AL +AR)× (BL +BR)
−(AL ×BL)− (AR ×BR)

)
· xn/2

+ (AR ×BR) · xn

Step 3. Core idea

ALAR , BLBR

Mult(n)

AL, BL AL+AR, BL+BR AR, BR

P1 P2 P3

C

Step 4. Example
Consider

A(x) = [−6, 11,−6, 1] = −6 + 11x− 6x2 + x3

B(x) = [−120, 74,−15, 1] = −120 + 74x− 15x2 + x3

Now consider A(x) ·B(x):
[−6, 11,−6, 1]× [−120, 74,−15, 1]
= ([−6, 11] + [−6, 1]x2)× ([−120, 74] + [−15, 1]x2)
= [−6, 11]× [−120, 74]

+ ([−6, 11]× [−15, 1] + [−6, 1]× [−120, 74])x2

+ ([−6, 1]× [−15, 1])x4

= [−6, 11]× [−120, 74]+

+
(

([−6, 11] + [−6, 1])× ([−120, 74] + [−15, 1])
−([−6, 11]× [−120, 74])− ([−6, 1]× [−15, 1])

)
· x2

+ ([−6, 1]× [−15, 1])x4

Step 5. Algorithm

KaratsubaProduct(A[` . . . h], B[` . . . h])

Input: Two (h − `)-degree polynomials A and B, where ` and h are the
lower and higher order coefficients

Output: Product of polynomials A and B
if ` = h then return A[`]×B[`]
mid← b(h+ `)/2c; n← h− `+ 1
AL ← A[` . . .mid], AR ← A[mid+ 1 . . . h]
BL ← B[` . . .mid], BR ← B[mid+ 1 . . . h]
parallel: P1 ← KaratsubaProduct(AL, BL)

P2 ← KaratsubaProduct((AL +AR), (BL +BR))
P3 ← KaratsubaProduct(AR, BR)

return (P1 + (P2 − P1 − P3) · xn/2 + P3 · xn)

Step 6. Complexity

Work T (n) =
{

Θ (1) if n = 1,
3T (n/2) + Θ (n) if n > 1.

}
∈ Θ

(
nlog2 3

)

Depth D(n) =
{

Θ (1) if n = 1,
D(n/2) + Θ (n) if n > 1.

}
∈ Θ (n)

Space S(n) =
{

Θ (1) if n = 1,
3S(n/2) + Θ (n) if n > 1.

}
∈ Θ

(
nlog2 3

)

Cache Q(n) =
{
O (M/B) if n ≤ γM,

3Q(n/2) + Θ (n/B) if n > γM.

}
∈ O

(
nlog2 3

MB

)

Polynomial representation

1. Coefficient representation
(n− 1)-degree polynomial can be represented using n coefficients
A(x) = a0 + a1x

1 + · · ·+ an−1x
n−1 =

∑n−1
i=0 aix

i

A(x) = [a0, a1, . . . , an−1] B coefficient vector
2. Root representation

(n− 1)-degree polynomial can be represented using n− 1 roots
A(x) = c(x− r1)(x− r1) · · · (x− rn−1)
A(x) = [c, {r1, r1, . . . , rn−1}] B set of roots

3. Point representation
(n− 1)-degree polynomial can be represented using n points
{(x0, y0), (x1, y1), . . . , (xn−1, yn−1)} where yi = A(xi)
A(x) is the set of these sample points B set of samples

Polynomial representation

1. Coefficient representation
3-degree polynomial can be represented using 4 coefficients
A(x) = −6 + 11x− 6x2 + x3

A(x) = [−6, 11,−6, 1] B coefficient vector
2. Root representation

3-degree polynomial can be represented using 3 roots
A(x) = 1(x− 1)(x− 2)(x− 3)
A(x) = [1, {1, 2, 3}] B set of roots

3. Point representation
4-degree polynomial can be represented using 4 points
{(0,−6), (10, 504), (20, 5814), (30, 21924)}
A(x) is the set of these sample points B set of samples

Operations on polynomials

Coeff. Point

Root

Θ
(
n2)

∞

add: Θ (n)

mult: Θ
(
nlog2 3

)
add: Θ (n)

mult: Θ (n)

Θ
(
n2) Θ

(
n2)

∞

add: ∞

mult: Θ (n)

Operations on polynomials

Coeff. Point
Θ
(
n2)

add: Θ (n)

mult: Θ
(
nlog2 3

)
add: Θ (n)

mult: Θ (n)

Root representation is not very useful. Let’s remove it.
Polynomial multiplication can be done in two different ways:
1. Multiply in coefficient representation using Karatsuba’s idea
2. Convert coefficient to point representation

Multiply in point representation
Convert point to coefficient representation

Evaluation and interpolation

A(x0)
A(x1)
A(x2)

...
A(xn−1)

=

1 x0 x2
0 · · · xn−1

0
1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 · · · xn−1

2
...

...
...

1 xn−1 x2
n−1 · · · xn−1

n−1

a0
a1
a2
...

an−1

X = {x0, x1, . . . , xn−1} and Y = VXA

Evaluation.
Convert coefficient to point representation.
A is known, X is chosen, Y is computed.
Y can be computed in Θ

(
n2) time using Horner’s formula.

Interpolation.
Convert point to coefficient representation.
X and Y are known, A is computed.
A can be computed in Θ

(
n2) time using Lagrange’s formula.

Evaluation and interpolation

Problem
Can we perform evaluation & interpolation better than Θ

(
n2)?

Great idea
We can perform evaluation and interpolation in Θ (n logn) us-
ing roots of 1 and divide-and-conquer.
Evaluation of (n − 1)-degree polynomial A(x) at n roots of
unity can be done in Θ (n logn) using divide-and-conquer.
Interpolation of n roots of unity to an (n−1)-degree polynomial
can be done in Θ (n logn) using divide-and-conquer.

Step 3. Core idea

Coeff. Point

evaluation: Θ (n logn)

interpolation: Θ (n logn)

mult: Θ (n)

Step 3. Core idea

Core idea.
A(x) = Aeven(x2) + xAodd(x2)

A(−x) = Aeven(x2)− xAodd(x2)
Example.

7 + 3x+ 2x2 + 6x3 = (7 + 2x2) + x(3 + 6x2)
7 + 3(−x) + 2(−x)2 + 6(−x)3 = (7 + 2x2)− x(3 + 6x2)

Interpretation.
If we have the results of Aeven(x2) and Aodd(x2),
we can compute A(x) and A(−x) in constant time.
Because we take square roots repeatedly, we use roots of unity.
This leads to the amalgamation of ideas from mathematics
(roots of unity) and computation (divide-and-conquer).

Roots of unity

1

1 −1

1 −1
√
−1 −

√
−1

n roots of unity are the n solutions to equation xn = 1.
n roots of unity are ω0

n, ω
1
n, . . . , ω

n−1
n , where

ωkn = ek(2πi)/n = cos(k(2π/n)) + i sin(k(2π/n)) and i =
√
−1.

ω0
1

ω0
2 ω1

2

ω0
4 ω1

4 ω2
4 ω3

4

ω0
8 ω1

8 ω2
8 ω3

8 ω4
8 ω5

8 ω6
8 ω7

8

Step 3. Core idea

Θ (n logn) evaluation: Use X = {ω0
n, ω

1
n, . . . , ω

n−1
n } .

A(ω1

n)
A(ω1

n)
A(ω2

n)
...

A(ωn−1
n)

 =

1 ω0

n (ω0
n)2 · · · (ω0

n)n−1

1 ω1
n (ω1

n)2 · · · (ω1
n)n−1

1 ω2
n (ω2

n)2 · · · (ω2
n)n−1

...
...

...
1 ωn−1

n (ωn−1
n)2 · · · (ωn−1

n)n−1

a0
a1
a2
...

an−1

Θ (n logn) interpolation: Use X = 1

n{ω
−0
n , ω−1

n , . . . , ω
−(n−1)
n } .

a0
a1
a2
...

an−1

 = 1
n

1 ω−0
n (ω−0

n)2 · · · (ω−0
n)n−1

1 ω−1
n (ω−1

n)2 · · · (ω−1
n)n−1

1 ω−2
n (ω−2

n)2 · · · (ω−2
n)n−1

...
...

...
1 ω

−(n−1)
n (ω−(n−1)

n)2 · · · (ω−(n−1)
n)n−1

A(ω1

n)
A(ω1

n)
A(ω2

n)
...

A(ωn−1
n)

Step 3. Core idea

Evaluation FFT(n)

[a0, a1, a2, a3, a4, a5, a6, a7]
Divide

[a0, a2, a4, a6] [a1, a3, a5, a7]

[y′0, y′1, y′2, y′3] [y′′0 , y′′1 , y′′2 , y′′3]

[y0, y1, y2, y3, y4, y5, y6, y7]

Combine

Step 3. Core idea

Interpolation InverseFFT(n)

[y0, y1, y2, y3, y4, y5, y6, y7]
Divide

[y0, y2, y4, y6] [y1, y3, y5, y7]

[a′0, a′1, a′2, a′3] [a′′0, a′′1, a′′2, a′′3]

[a0, a1, a2, a3, a4, a5, a6, a7]

Combine

Step 4. Example (Evaluation)

[a0, a1, a2, a3] = [7, 3, 2, 6]

[a0, a1] = [7, 2] [a0, a1] = [3, 6]

a0 = 7 a0 = 2 a0 = 3 a0 = 6

y0 = 7 y0 = 2 y0 = 3 y0 = 6

y0 = 7 + 2ω0
2

y1 = 7− 2ω0
2

y0 = 3 + 6ω0
2

y1 = 3− 6ω0
2

y0 = (7 + 2ω0
2) + (3 + 6ω0

2)ω0
4 = 7 + 3ω0

4 + 2(ω0
4)2 + 6(ω0

4)3

y1 = (7− 2ω0
2) + (3− 6ω0

2)ω1
4 = 7 + 3ω1

4 + 2(ω1
4)2 + 6(ω1

4)3

y2 = (7 + 2ω0
2)− (3 + 6ω0

2)ω0
4 = 7 + 3ω2

4 + 2(ω2
4)2 + 6(ω2

4)3

y3 = (7− 2ω0
2)− (3− 6ω0

2)ω1
4 = 7 + 3ω3

4 + 2(ω3
4)2 + 6(ω3

4)3

Step 5. Algorithm

FFT([a0, a1, . . . , an−1]) B Evaluation

Input: Coefficients of polynomial A(x): [a0, a1, . . . , an−1]
Output: Point values vector Y for X values [ω0

n, ω
1
n, . . . , ω

n−1
n]

if n = 1 then return a0

ωn ← e2πi/n

ω ← 1
// [Stage 1. Divide] .
Aeven ← [a0, a2, . . . , an−2]
Aodd ← [a1, a3, . . . , an−1]
// [Stage 2. Conquer] .
parallel: Y even ← FFT(Aeven)

Y odd ← FFT(Aodd)
// [Stage 3. Combine] .
for k ← 0 to n/2− 1 do
yk ← Y even

k + ωY odd
k

yn/2+k ← Y even
k − ωY odd

k

ω ← ωωn

return [y0, y1, . . . , yn−1]

Step 5. Algorithm

InverseFFT([y0, y1, . . . , yn−1]) B Interpolation

Input: Point values vector Y for X values [ω0
n, ω

1
n, . . . , ω

n−1
n]

Output: Coefficients of polynomial A(x): [a0, a1, . . . , an−1]
if n = 1 then return y0

ωn ← (1/n)e−2πi/n

ω ← 1
// [Stage 1. Divide] .
Y even ← [y0, y2, . . . , yn−2]
Y odd ← [y1, y3, . . . , yn−1]
// [Stage 2. Conquer] .
parallel: Aeven ← InverseFFT(Y even)

Aodd ← InverseFFT(Y odd)
// [Stage 3. Combine] .
for k ← 0 to n/2− 1 do
ak ← Aeven

k + ωAodd
k

an/2+k ← Aeven
k − ωAodd

k

ω ← ωωn

return [a0, a1, . . . , an−1]

Step 5. Algorithm

CooleyTukeyProduct(A(x), B(x))

Input: Polynomials A(x) and B(x) of same degree
Output: Polynomial product C(x) = A(x)×B(x)
[a0, a1, . . . , an−1]← Coefficients(A(x))
[b0, b1, . . . , bn−1]← Coefficients(B(x))
// [Stage 1. Add high-order coefficients] .

[an, an+1, . . . , a2n−1]← [0, 0, . . . , 0]
[bn, bn+1, . . . , b2n−1]← [0, 0, . . . , 0]
// [Stage 2. Evaluate]. .
parallel: [yA0 , yA1 , . . . , yA2n−1]← FFT([a0, a1, . . . , a2n−1])

[yB0 , yB1 , . . . , yB2n−1]← FFT([b0, b1, . . . , b2n−1])
// [Stage 3. Pointwise multiply] .
parallel: for k ← 0 to 2n− 1 do
yCk ← yAk × yBk

// [Stage 4. Interpolate] .
[c0, c1, . . . , c2n−1]← InverseFFT([yC0 , yC1 , . . . , yC2n−1])
C(x)← [c0, c1, . . . , c2n−1]
return C(x)

Step 6. Complexity

Work T (n) =
{

Θ (1) if n = 1,
2T (n/2) + Θ (n) if n > 1.

}
∈ Θ (n logn)

Depth D(n) =
{

Θ (1) if n = 1,
D(n/2) + Θ (n) if n > 1.

}
∈ Θ (n)

Space S(n) =
{

Θ (1) if n = 1,
2S(n/2) + Θ (n) if n > 1.

}
∈ Θ (n logn)

Cache Q(n) =
{
O (M/B) if n ≤ γM,

2Q(n/2) + Θ (n/B) if n > γM.

}
∈ O

(
n

B
log n

M

)

Probabilistic Algorithms HOME

Primality HOME

Problem

Given a positive integer greater than 1, check if the number is
prime or not.
A prime is a natural number greater than 1 that has no positive
divisors other than 1 and itself.
Input: n = 11
Output: prime
Input: n = 15
Output: composite

Solutions → Naive algorithm

If n is divisible by any number in the range [2, n− 1], then n is
composite, else, n is prime

Primality-NaiveAlgorithm(n)

for i← 2 to n− 1 do
if n mod i = 0 then

return composite
return prime

〈Time, Space〉 = 〈O (n) ,Θ (1)〉

Solutions → School algorithm

If n is divisible by any number in the range [2, n− 1], then n is
composite, else, n is prime
This is because a larger factor of n must be a multiple of a
smaller factor that has been already checked

Primality-SchoolAlgorithm(n)

for i← 2 to
⌊√

n
⌋
do

if n mod i = 0 then
return composite

return prime

〈Time, Space〉 =
〈
O
(√
n
)
,Θ (1)

〉

Solutions → Optimized school algorithm
All integers can be expressed as (6k + i), where
i ∈ {−1, 0, 1, 2, 3, 4}.
Test whether n is divisible by 2 or 3. But 2 divides
(6k + 0), (6k + 2), (6k + 4) and 3 divides (6k + 3). So, simply
check if n is divisible by any number in the form (6k ± 1) not
greater than

√
n.

Primality-OptimizedSchoolAlgorithm(n)

if n = 2 or n = 3 then return prime
if n mod 2 = 0 or n mod 3 = 0 then return composite
// Check if n is divisible by a number of the form 6k ± 1
for i← 5 to

(⌊√
n
⌋
− 2
)
increment 6 do

if n mod i = 0 then
return composite // i = 6k − 1

if n mod (i+ 2) = 0 then
return composite // i = 6k + 1

return prime

〈Time, Space〉 =
〈
O
(√
n
)
,Θ (1)

〉

Solutions → Sieve of Eratosthenes

Primality-SieveOfEratosthenes(n)

last←
⌊√

n
⌋

Create a Boolean array P [2 . . . last] to indicate prime numbers
for i← 2 to last do
P [i]← true

for j ← 2 to last do
if P [j] = true then

for k ← 2 to blast/jc do
i← j × k
P [i]← false

if n mod j = 0 then
return composite

return prime

〈Time, Space〉 =
〈
O
(√
n log logn

)
,Θ
(√
n
)〉

Solutions → Wilson’s theorem

Wilson’s theorem: A positive integer n > 1 is prime iff
((n− 1)! + 1) mod n = 0

n (n− 1)! ((n− 1)! + 1) mod n Is Prime?
2 1 0 3

3 2 0 3

4 6 2 7

5 24 0 3

6 120 1 7

7 720 0 3

8 5040 1 7

9 40320 1 7

10 362880 1 7

11 3628800 0 3

12 39916800 1 7

13 479001600 0 3

Solutions → Wilson’s theorem

Wilson’s theorem: A positive integer n > 1 is prime iff
((n− 1)! + 1) mod n = 0

Primality-WilsonTheorem(n)

factorial← 1
for i← 2 to n− 1 do
factorial← (factorial × i) mod n

if (factorial + 1) = n then return prime
return composite

〈Time, Space〉 = 〈Θ (n) ,Θ (1)〉

Solutions → Fermat’s theorem

n ≥ 4 is prime iff for all a ∈ [2, n− 2], we have
(an−1 − 1) mod n = 0.

n : a 2 3 4 5 6 7 8 9 10 11 12 13
4 3
5 0 0
6 1 2 3
7 0 0 0 0
8 7 2 7 4 7
9 3 8 6 6 8 3
10 1 2 3 4 5 6 7
11 0 0 0 0 0 0 0 0
12 7 2 3 4 11 6 7 8 3
13 0 0 0 0 0 0 0 0 0 0
14 1 2 3 4 5 6 7 8 9 10 11
15 3 8 0 9 5 3 3 5 9 0 8 3

Solutions → Fermat’s theorem

Primality-FermatTheorem(n)

if n = 2 or n = 3 then return prime
for a← 2 to n− 2 do

// If (an−1 − 1) mod n 6= 0, then n is definitely composite
if Power(a, n− 1, n) 6= 1 then

return composite
return prime

〈Time, Space〉 = 〈O (n logn) ,Θ (1)〉

Power function using repeated squaring

Power(a, b, c)

Output: Computes (ab) mod c in Θ (log b) time
result← 1
while b > 0 do

if b mod 2 = 1 then result← (result× a) mod c
b = b/2; a = (a× a) mod c

return result

〈Time, Space〉 = 〈Θ (log b) ,Θ (1)〉

Solutions → Fermat’s test

If a cell in the nth row of the table is nonzero, then n is definitely
composite.
Bad news.
If a cell in the nth row of the table is 0, then n may or may not
be prime.
Formally, for all n ≥ 4, for some a ∈ [2, n− 2], if
(an−1 − 1) mod n = 0, then n may or may not be prime.
Example: Cell in n = 13, a = 8 is zero and n is prime
Example: Cell in n = 15, a = 11 is zero but n is composite

Good news.
There are very few cases when n is composite and it has some
cells as zeros in its row
So, we run this check multiple times to increase our success
probability of guessing whether n is prime or composite

Solutions → Fermat’s test

Primality-FermatTest(n)

if n = 2 or n = 3 then return prime
// More trials increases the probability of success
for count← 1 to #trials do
a← RandomNumber({2, 3, 4, . . . , n− 2})
// If (an−1 − 1) mod n 6= 0, then n is definitely composite
if Power(a, n− 1, n) 6= 1 then

return composite
return prime // may or may not be prime

〈Time, Space〉 = 〈O (#trials · logn) ,Θ (1)〉

Solutions → Miller’s theorem

Miller’s theorem:
Suppose p is an odd prime. Let p− 1 = 2k ·m, where m is odd.
Then, for every a ∈ [2, p− 2], either
am ≡ 1 (mod p) or
a2i·m ≡ −1 (mod p) for some i ∈ [0, k − 1].

Solutions → Miller’s theorem
For odd integer n > 1, n− 1 = 2km, where k ≥ 1 and m is odd

(x2km − 1) = ((x2k−1m)2 − 1)

= (x2k−1m − 1)(x2k−1m + 1)

= (x2k−2m − 1)(x2k−2m − 1)(x2k−1m + 1)
· · ·

= (xm − 1)(xm + 1)(x2m + 1)(x4m + 1) · · · (x2k−1m + 1)

If n is prime and a ∈ [1, n− 1], then an−1 − 1 ≡ 0 mod n by
Fermat’s theorem, so, using the factorization above we get

(am − 1)(am + 1)(a2m + 1)(a4m + 1) · · · (a2k−1m + 1) ≡ 0 mod n

When n is odd prime, one of these factors must be 0 mod n, so

am ≡ 1 mod n or a2im ≡ −1 mod n for some i ∈ [0, . . . k − 1]

Solutions → Miller’s theorem

a ∈ [2, n− 2]
n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
5 1 1
7 −1 0 −1 0
9 − − − − − −
11 0 −1 −1 −1 0 0 0 −1
13 1 −1 0 1 1 1 1 −1 0 1
15 − − − − − − − − − − − −
17 2 3 1 3 3 3 2 2 3 3 3 1 3 2
19 0 0 −1 −1 −1 −1 0 −1 0 −1 0 0 0 0 −1 −1
21 − − − − − − − − − − − − − − − − − −
23 −1 −1 −1 0 −1 0 −1 0 0 −1 −1 0 0 −1 0 0 0 0 0 0
25 − − − − − 1 − − − − − − − − − − 1 − − − − −

Cell Test 1 Test 2 Comments
−1 3 ? Test 1 passed; We don’t care about Test 2
≥ 0 7 3 Cell = least i ∈ [0, k − 1] that passes Test 2
− 7 7 Test 1 failed; Test 2 failed

Rows for prime numbers have no dashes
Rows for composite numbers have at least one dash

Solutions → Miller’s theorem
Primality-MillerTheorem(n)

if n > 2 and n is even then return composite
// Find exponent k and odd number m such that (n− 1) = 2k ×m
k ← 0; m← n− 1
while m mod 2 = 0 do { m← m/2; k ← k + 1 }
// Apply Miller’s theorem. a = 1 & a = n− 1 are redundant.
for a← 2 to n− 2 do
T ← Power(a,m, n)
// Check test 1; If test 1 fails, check test 2 for i = 0
if T = 1 or T = n− 1 then continue
// Check test 2 for i ∈ [1, k − 1]
for i← 1 to k − 1 do
T ← Power(T, 2, n)
// If T = 1, we only get 1’s for future values of i
if T = 1 then return composite
if T = n− 1 then break

if T 6= n− 1 then return composite
return prime

〈Time, Space〉 =
〈
O
(
n log2 n

)
,Θ (1)

〉

Solutions → Miller-Rabin’s test
Primality-MillerRabinTest(n)

if n > 2 and n is even then return composite

// Find exponent k and odd number m such that (n− 1) = 2k ×m
k ← 0; m← n− 1
while m mod 2 = 0 do { m← m/2; k ← k + 1 }
// Apply Miller’s constraints in a randomized way as suggested by Rabin
for count← 1 to #trials do
a← RandomNumber({2, 3, 4, . . . , n− 2})
T ← Power(a,m, n)
// Check test 1; If test 1 fails, check test 2 for i = 0
if T = 1 or T = n− 1 then continue
// Check test 2 for i ∈ [1, k − 1]
for i← 1 to k − 1 do
T ← Power(T, 2, n)
if T = 1 then return composite
if T = n− 1 then break

if T 6= n− 1 then return composite
return prime

〈Time, Space〉 =
〈
O
(
#trials · log2 n

)
,Θ (1)

〉

Solutions → Naive AKS’s test

n ≥ 2 is prime iff all coefficients, except first and last, of the nth
row in the Pascal’s triangle are multiples of n

0 1 2 3 4 5 6 7 8 9
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
7 1 7 21 35 35 21 7 1
8 1 8 28 56 70 56 28 8 1
9 1 9 36 84 126 126 84 36 9 1

Solutions → Naive AKS’s test

n ≥ 2 is prime iff for all i ∈ [1, n− 1], nCi is a multiple of n.
Primality-NaiveAKSTest(n)

// Step 1. Compute all required binomial coefficients
r ← bn/2c // binomial coefficients are symmetric
Create an array C[0 . . . r]
for i← 0 to n do

for j ← 0 to min(i, r) do
if j = 0 or j = i then C[j]← 1
else C[j]← C[j − 1] + C[j]

// Step 2. Check if the binomial coefficients are multiples of n
for j ← 1 to r do

if C[j] mod n 6= 0 then
return composite

return prime

〈Time, Space〉 =
〈

Θ
(
n2
)
,Θ (n)

〉

Complexity

Algorithm Time Space Probabilistic?
Naive algorithm O (n) Θ (1) 7

School algorithm O (
√
n) Θ (1) 7

Opt. school algo. O (
√
n) Θ (1) 7

SieveOfEratosthenes O (
√
n log logn) Θ (

√
n) 7

Wilson’s theorem Θ (n) Θ (1) 7

Fermat’s theorem O (n logn) Θ (1) 7

Fermat’s test O (#trials · logn) Θ (1) 3

Miller’s theorem O
(
n log2 n

)
Θ (1) 7

Miller-Rabin’s test O
(
#trials · log2 n

)
Θ (1) 3

Naive AKS test Θ
(
n2) Θ (n) 7

Membership HOME

Problem

Problem
Design a data structure to implement a set with add and search
operations.

Solutions
Add Search Comments

Balanced tree O (logn) O (logn) works for sort-related ops.
Hash table O (n) O (n) worst case is worse

O (1) ∗ O (1) ∗ amortized case is awesome
Bloom filter O (1) O (1) has false positive errors

There are many more solutions.

Bloom filter

A probabilistic data structure to check set membership
discovered by Burton Howard Bloom in 1970.
Takes less space than a hash table and answers approximately
Has false positives but no false negatives, i.e.,
If BF returns found/present, then there is a small chance that
the item is not present
If BF returns not found, then the item is definitely not present
Bloom filter has two main components:
A bit array A[0 . . . N − 1]
Independent hash functions h1, h2, . . . , hk such that
hi : Σ∗ → {0, 1, 2, . . . , N − 1} such that the mapping is uniform

Bloom filter class

class BloomFilter(n, p)

Input: n← number of elements; p← desired false probability
k ← number of hash functions; N ← Bloom filter/table size
A← Bloom filter bit array/table of size N
Initialize(); Add(x); Search(x)
Initialize()

k ←
⌊− ln p

ln 2

⌋
; N ←

⌊
n · k

ln 2

⌋
A[0 . . . N − 1]← [0 . . . 0]
Add(x)

for i← 1 to k do
A[hi(x)]← 1

Search(x)

for i← 1 to k do
if A[hi(x)] 6= 1 then

return false
return true

Add

Add(x)

for i← 1 to k do
A[hi(x)]← 1

Source: Medjedovic-Tahirovic-Dedovic’s Algorithms and Data Structures for Massive Datasets

Search

Search(x)

for i← 1 to k do
if A[hi(x)] 6= 1 then

return false
return true

Source: Medjedovic-Tahirovic-Dedovic’s Algorithms and Data Structures for Massive Datasets

Complexity analysis

Given number of elements n
Given the false positive rate p
Compute the number of hash functions as

k ←
⌊
− ln p
ln 2

⌋
Compute the Bloom filter bit array size N as

N ←
⌊
n · k

ln 2

⌋

Feature Complexity
Add O (k) = O (ln (1/p))
Search O (k) = O (ln (1/p))
Space O (N) = O (nk) = O (n ln (1/p))

Error analysis

Incorrect formula for computing the false positive prob. was
given by [Bloom 1970] as

False positive prob. = p =
(
1− (1− 1/N)nk

)k
Incorrect formula for computing the false positive prob. was
given by [Bose et al. 2008] as

False positive prob. = p∗ =
(

1
Nk(n+1)

)
·
∑m
i=1 i

ki! mCi knCi

Fortunately, the incorrect p gives a very good approximation to
correct p∗ for practical values
We show Bloom’s derivation to derive the incorrect p so that you
can be careful when you do probabilistic analysis

Error analysis

Prob. that a bit will be 0 after 1 insertion = (1− 1/N)k

Prob. that a bit will be 0 after n insertions = (1− 1/N)nk

Prob. that a bit will be 1 after n insertions =
(
1− (1− 1/N)nk

)
Prob. that k bits are 1 after n insertions =

(
1− (1− 1/N)nk

)k
Simplify.

Prob. of false positives
= Prob. that k bits are 1 after n insertions

=
(
1− (1− 1/N)nk

)k =
(

1−
(
(1− 1/N)N

)nk
N

)k
≈
(

1− e
nk
N

)k
(∵ (1− 1/x)x ≈ e)

So,

False positive probability = p =
(

1− enk
N

)k

Error analysis

n p = 0.0001 p = 0.001 p = 0.01 p = 0.1
101 N = bN0.0001nc, k = 13 N = bN0.001nc, k = 10 N = bN0.01nc, k = 7 N = bN0.1nc, k = 3
102 N = bN0.0001nc, k = 13 N = bN0.001nc, k = 10 N = bN0.01nc, k = 7 N = bN0.1nc, k = 3
103 N = bN0.0001nc, k = 13 N = bN0.001nc, k = 10 N = bN0.01nc, k = 7 N = bN0.1nc, k = 3
104 N = bN0.0001nc, k = 13 N = bN0.001nc, k = 10 N = bN0.01nc, k = 7 N = bN0.1nc, k = 3
105 N = bN0.0001nc, k = 13 N = bN0.001nc, k = 10 N = bN0.01nc, k = 7 N = bN0.1nc, k = 3
106 N = bN0.0001nc, k = 13 N = bN0.001nc, k = 10 N = bN0.01nc, k = 7 N = bN0.1nc, k = 3
107 N = bN0.0001nc, k = 13 N = bN0.001nc, k = 10 N = bN0.01nc, k = 7 N = bN0.1nc, k = 3
108 N = bN0.0001nc, k = 13 N = bN0.001nc, k = 10 N = bN0.01nc, k = 7 N = bN0.1nc, k = 3
109 N = bN0.0001nc, k = 13 N = bN0.001nc, k = 10 N = bN0.01nc, k = 7 N = bN0.1nc, k = 3

1010 N = bN0.0001nc, k = 13 N = bN0.001nc, k = 10 N = bN0.01nc, k = 7 N = bN0.1nc, k = 3

N0.0001 = 19.170116754734877, N0.001 = 14.37758756605116
N0.01 = 4.792529188683719, N0.1 = 0.9965784284662087
Note that Bloom filter bit array size N is in bits

References

GO BF simulator
GO BF parameter calculator
GO BF extensions
GO BF applications
GO BF false positive prob. analysis in [Bose et al. 2008]

https://www.jasondavies.com/bloomfilter/
https://hur.st/bloomfilter/
https://en.wikipedia.org/wiki/Bloom_filter#Extensions_and_applications
https://en.wikipedia.org/wiki/Bloom_filter#Examples
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=fd1c94b4449e577cc07ec4aefcecdb653d5420f1

Frequency HOME

Problem

Problem
Design a data structure that can estimate the frequencies of
items.

Solutions
Update Estimate Comments

Balanced tree O (logn) O (logn) works for sort-related
ops.

Hash table O (n) O (n) worst case is worse
O (1) ∗ O (1) ∗ amortized case is awe-

some
Count-min sketch O (1) O (1) has false positive errors

with approximations

There are many more solutions.

Count-min sketch

A probabilistic data structure to estimate frequencies, discovered
by Graham Cormode and Shan Muthukrishnan in 2005
Takes less space than a hash table and answers approximately
and probabilistically
Always overestimates, never underestimates, i.e.,
If CMS returns x, then x is greater than or equal to actual
frequency
Count-min sketch has two main components:
A 2-D count matrix A[1 . . . k, 1 . . . w]
Independent hash functions h1, h2, . . . , hk such that
hi : Σ∗ → {1, 2, . . . ,m} such that the mapping is uniform

Count-min sketch class

class CountMinSketch(ε, δ)

Input: ε← approximation parameter; δ ← error probability parameter
k ← number of hash functions; w ← width of CMS
A← 2-D CMS matrix of size k × w
Initialize(); Update(x, cx); Estimate(x)
Initialize()

k ←
⌈
ln 1

δ

⌉
; w ←

⌈
e
ε

⌉
A[1 . . . k, 1 . . . w]← [0 . . . 0, 0 . . . 0]
Update(x, cx)

for i← 1 to k do
A[i, hi(x)]← A[i, hi(x)] + cx

Estimate(x)

min← A[1, h1(x)]
for i← 2 to k do

if A[i, hi(x)] < min then
min← A[i, hi(x)]

return min

Update

Update(x, cx)

for i← 1 to k do
A[i, hi(x)]← A[i, hi(x)] + cx

Source: Medjedovic-Tahirovic-Dedovic’s Algorithms and Data Structures for Massive Datasets

Estimate
Estimate(x)

min← A[1, h1(x)]
for i← 2 to k do

if A[i, hi(x)] < min then
min← A[i, hi(x)]

return min

Source: Medjedovic-Tahirovic-Dedovic’s Algorithms and Data Structures for Massive Datasets

Complexity analysis

Given approximation fixed parameter ε
Given error probability fixed parameter δ
Compute the number of hash functions k as

k ←
⌈
ln 1

δ

⌉
Compute the CMS matrix width size w as

w ←
⌈
e
ε

⌉
Feature Complexity
Update O (k) = O (1)
Estimate O (k) = O (1)
Space O (mk) = O (1)

Error and approximation analysis

Let the data stream be (a1, c1), (a2, c2), . . . , (at, ct)
Let N = sum of all frequencies = c1 + c2 + · · ·+ ct
Let f truex = true frequency of item x in CMS
Let f estx = estimated frequency of item x in CMS
Then

f estx is in
{

[f truex , f truex + ε ·N] with probability ≥ 1− δ
(f truex + ε ·N,∞) with probability ≤ δ

}
where, ε, δ ∈ (0, 1)

Differences between Bloom filter and CMS

Feature Bloom filter CMS
Duplicates Set Multiset
Array 1-D 2-D
Hash function Maps to entire array Maps to portions of 2-D array
Query Existential queries Counting queries
Size Typ. linear w.r.t set size Typ. sublinear w.r.t total freq
Randomness Uniformly random Uni. random & pairwise ind.

Cardinality HOME

Problem

Problem
Given a data stream, compute the number of distinct elements
efficiently.
Input: [4, 8, 9, 4, 4, 8]
Output: 3

Solutions → Brute force

1. Check all previous values for duplicates
2. Count a value only if no previous duplicate

BruteForce(A[1 . . . n])

distinct← 1
for i← 2 to n do
j ← 1
while j ≤ i do

// Check current element with previous (j < i) or current (j = i)
if A[i] = A[j] then break
j ← j + 1

// If there is no previous duplicate, then increment distinct
if j = i then
distinct← distinct+ 1

return distinct

〈Time, Space〉 =
〈
O
(
n2
)
,Θ (1)

〉

Solutions → Sort and count

1. Sort the array
2. Equal values are together in the sorted input
3. Count the first occurrence of each value

SortAndCount(A[1 . . . n])

distinct← 1
Sort(A[1 . . . n])
for i← 2 to n do

// Current value is different from previous value
if A[i] 6= A[i− 1] then
distinct← distinct+ 1

return distinct

〈Time, Space〉 = 〈Θ (n logn) ,Θ (n)〉

Solutions → Bit vector

1. Create a bit vector B[1 . . . U], where U is the maximum value in
the universe or in the array

2. For value A[i], set B[A[i]] to true
3. Count the number of true values in the bit vector

BitVector(A[1 . . . n])

distinct← 0
U ← Max(A[1 . . . n]) // max element in the array/universe
B[1 . . . U]← [0 . . . 0]
// For value A[i], set B[A[i]] to true
for i← 1 to n do B[A[i]]← 1
// Count the number of true values in the bit vector
for i← 1 to U do

if B[i] = 1 then distinct← distinct+ 1
return distinct

〈Time, Space〉 = 〈Θ (n+ U) ,Θ (U)〉 , where U ≥ Max(A[1 . . . n]

Solutions → Hash set

1. Create a hash set to store unique values
2. Add each element to the hash set
3. Return the size of the hash set

HashSet(A[1 . . . n])

Create a hash set H to store unique values
for i← 1 to n do
H.Add(A[i])

distinct← H.Size() // #elements in the hash set
return distinct

〈Time, Space〉 = 〈Θ (n) ,Θ (n)〉

Solutions → Linear counting

Like Bloom filter, linear counter is a bit vector of size m and
does not store hash keys
Linear counter length m is proportional to n but requires 1 bit
per element
There can be hard collisions that are not handled
#Distinct elements is estimated based on the observed fraction
of empty bits in the set

Solutions → Linear counting

1. Use a hash function h
2. Create and initialize a bit array of size proportional to n to zeros
3. Set h(A[1]) index in the bit array to 1
4. Set h(A[2]) index in the bit array to 1
5. so on...
6. Set h(A[n]) index in the bit array to 1

#Distinct elements = #zeros in the bit array

Solutions → Linear counting

LinearCounting(A[1 . . . n])

m← n // assuming n is known
linearcounter[1 . . .m]← [0 . . . 0]
// Adding elements to the linear counter
for i← 1 to n do
linearcounter[h(A[i])]← 1

// Compute the number of zeros in the linear counter
zercount← 0
for i← 1 to n do
if linearcounter[i] = 0 then
zerocount← zerocount+ 1

// Estimate #distinct elements using probabilistic analysis

distinct←
⌊
−m× ln

(
zerocount

m

)⌋
return distinct

〈Time, Space〉 = 〈Θ (n) ,Θ (n)〉

Solutions → Probabilistic counting

1. Use a hash function h
2. Let z1 = (#trailing zeros in h(A[1])) + 1
3. Let z2 = (#trailing zeros in h(A[2])) + 1
4. so on...
5. Let zn = (#trailing zeros in h(A[n])) + 1
6. Let zmax = Max(z1, z2, . . . , zn)

#Distinct elements = 2zmax

Solutions → Probabilistic counting

#distinct=7, 16-bit hashes, estimated #distinct= 25 = 32
Source: Medjedovic-Tahirovic-Dedovic’s Algorithms and Data Structures for Massive Datasets

Solutions → Probabilistic counting

ProbabilisticCounting(A[1 . . . n])

zmax ← 0 // denotes max #trailing zeros in a hash value
for i← 1 to n do
z ← CountTrailingZeros(h(A[i]))
if z > zmax then zmax ← z

distinct← 2zmax

return distinct

〈Time, Space〉 = 〈Θ (n) ,Θ (1)〉

Why does the algorithm work?

Among k random generated bit strings
≈ k/2 bit strings have 0 as the last digit
≈ k/22 bit strings have 00 as the last digits
≈ k/23 bit strings have 000 as the last digits
≈ k/2j bit strings have 0 . . . 0︸ ︷︷ ︸

j

as the last digits

Probability of generating a hash value for item A[i]
having z1 = 1 (hash ends with 1) is 1/2
having z2 = 2 (hash ends with 10) is 1/22

having z3 = 3 (hash ends with 100) is 1/23

having zj = j (hash ends with 1 0 . . . 0︸ ︷︷ ︸
j−1

) is 1/2j

An event having prob. 1/2j occurs if on avg. 2j trials are
performed
An event having prob. 1/2zmax occurs if on avg. 2zmax trials are
performed

Why does the algorithm work?

Among k random generated bit strings
≈ k/2 bit strings have 0 as the last digit
≈ k/22 bit strings have 00 as the last digits
≈ k/23 bit strings have 000 as the last digits
≈ k/2j bit strings have 0 . . . 0︸ ︷︷ ︸

j

as the last digits

Probability of generating a hash value for item A[i]
having z1 = 1 (hash ends with 1) is 1/2
having z2 = 2 (hash ends with 10) is 1/22

having z3 = 3 (hash ends with 100) is 1/23

having zj = j (hash ends with 1 0 . . . 0︸ ︷︷ ︸
j−1

) is 1/2j

An event having prob. 1/2j occurs if on avg. 2j trials are
performed
An event having prob. 1/2zmax occurs if on avg. 2zmax trials are
performed

Why does the algorithm work?

Among k random generated bit strings
≈ k/2 bit strings have 0 as the last digit
≈ k/22 bit strings have 00 as the last digits
≈ k/23 bit strings have 000 as the last digits
≈ k/2j bit strings have 0 . . . 0︸ ︷︷ ︸

j

as the last digits

Probability of generating a hash value for item A[i]
having z1 = 1 (hash ends with 1) is 1/2
having z2 = 2 (hash ends with 10) is 1/22

having z3 = 3 (hash ends with 100) is 1/23

having zj = j (hash ends with 1 0 . . . 0︸ ︷︷ ︸
j−1

) is 1/2j

An event having prob. 1/2j occurs if on avg. 2j trials are
performed
An event having prob. 1/2zmax occurs if on avg. 2zmax trials are
performed

Solutions → Stochastic averaging

Problem:
Probabilistic counting does not approximate well
Idea: Use m hash functions and take the average
Flaw: But, using m hash functions is very expensive

Idea: Bucketing
Have m = 2b buckets
Find the bucket using the last b bits of the hash value
Perform probabilistic counting with the remaining bits.
Add the distinct items in all buckets

Solutions → Stochastic averaging

Problem:
Probabilistic counting does not approximate well
Idea: Use m hash functions and take the average
Flaw: But, using m hash functions is very expensive

Idea: Bucketing
Have m = 2b buckets
Find the bucket using the last b bits of the hash value
Perform probabilistic counting with the remaining bits.
Add the distinct items in all buckets

Solutions → Stochastic averaging

1. Let z1 = estimator/prediction for bucket 1
2. Let z2 = estimator/prediction for bucket 2
3. so on...
4. Let zm = estimator/prediction for bucket m
5. Let zavg = z1+z2+···+zm

m
= average estimator/prediction of all buckets

#Distinct elements = Round (m · 2zavg)

Solutions → Stochastic averaging

#distinct=7, 16-bit hashes, 4 buckets, estimated
#distinct= Round

(
4 · 22.5) = 23

Source: Medjedovic-Tahirovic-Dedovic’s Algorithms and Data Structures for Massive Datasets

Solutions → Stochastic averaging

StochasticAveraging(A[1 . . . n])

// Initialize estimators in m buckets
Create an array zmax[0, 1, . . . ,m− 1]← [0, 0, . . . , 0]
// Compute estimators in m buckets
for i← 1 to n do
bucket← h(A[i]) mod m // determines bucket
buckethash← dh(A[i])/me // determines hash in bucket
z ← CountTrailingZeros(buckethash)
if z > zmax[bucket] then zmax[bucket]← z

// Find the average of estimators in m buckets
zavg ← 1

m
· (zmax[0] + zmax[1] + · · ·+ zmax[m− 1])

// Estimate the #distinct elements in all buckets
distinct← Round (m · 2zavg)
return distinct

〈Time, Space〉 = 〈Θ (n) ,Θ (1)〉

Solutions → LogLog

1. Let z1 = estimator/prediction for bucket 1
2. Let z2 = estimator/prediction for bucket 2
3. so on...
4. Let zm = estimator/prediction for bucket m
5. Let zavg = z1+z2+···+zm

m
= average estimator/prediction of all buckets

#Distinct elements = Round (αm ·m · 2zavg) , where,

αm =
{

0.39701− 2π2+ln2 2
48m if m < 64,

0.39701 if m ≥ 64.

}

Solutions → LogLog

#distinct=7, 16-bit hashes, 4 buckets, estimated
#distinct= Round

(
0.29169926137 · 4 · 22.5) = 7

Source: Medjedovic-Tahirovic-Dedovic’s Algorithms and Data Structures for Massive Datasets

Solutions → LogLog

LogLog(A[1 . . . n])

// Initialize estimators in m buckets
Create an array zmax[0, 1, . . . ,m− 1]← [0, 0, . . . , 0]
// Compute estimators in m buckets
for i← 1 to n do
bucket← h(A[i]) mod m // determines bucket
buckethash← dh(A[i])/me // determines hash in bucket
z ← CountTrailingZeros(buckethash)
if z > zmax[bucket] then zmax[bucket]← z

// Find the average of estimators in m buckets
zavg ← 1

m
· (zmax[0] + zmax[1] + · · ·+ zmax[m− 1])

// Estimate the #distinct elements in all buckets
distinct← Round (αm ·m · 2zavg)
return distinct

〈Time, Space〉 = 〈Θ (n) ,Θ (1)〉

Solutions → HyperLogLog

1. Let z1 = estimator/prediction for bucket 1
2. Let z2 = estimator/prediction for bucket 2
3. so on...
4. Let zm = estimator/prediction for bucket m
5. Let B = m

1
2z1 + 1

2z2 +···+ 1
2zm

= average estimator/prediction of all buckets

#Distinct elements = Round (βm ·m ·B)

βm =

0.541 if m = 4,
0.627 if m = 8,
0.673 if m = 16,
0.697 if m = 32,
0.709 if m = 64,

0.723
1+1.079/m if m ≥ 128.

Solutions → HyperLogLog

#distinct=7, 16-bit hashes, 4 buckets, estimated
#distinct= Round (0.541 · 4 · 3.88) = 8

Source: Medjedovic-Tahirovic-Dedovic’s Algorithms and Data Structures for Massive Datasets

Solutions → HyperLogLog

HyperLogLog(A[1 . . . n])

// Initialize estimators in m buckets
Create an array zmax[0, 1, . . . ,m− 1]← [0, 0, . . . , 0]
// Compute estimators in m buckets
for i← 1 to n do
bucket← h(A[i]) mod m // determines bucket
buckethash← dh(A[i])/me // determines hash in bucket
z ← CountTrailingZeros(buckethash)
if z > zmax[bucket] then zmax[bucket]← z

// Find the harmonic average of estimators in m buckets

B ←
(

m
1

2zmax[0] + 1
2zmax[1] +···+ 1

2zmax[m−1]

)
// Estimate the #distinct elements in all buckets
distinct← Round (βm ·m ·B)
return distinct

〈Time, Space〉 = 〈Θ (n) ,Θ (1)〉

Complexity

Algorithm Time Space
Brute force O

(
n2) Θ (1)

Sort and count Θ (n logn) Θ (n)
Bit vector Θ (n+ U) Θ (U)
Hash table Θ (n) Θ (n)
Linear counting Θ (n) Θ (n)
Probabilistic counting Θ (n) Θ (1)
Stochastic averaging Θ (n) Θ (1)
LogLog Θ (n) Θ (1)
HyperLogLog Θ (n) Θ (1)

References

Book: Algorithms and Data Structures for Massive Datasets
Book: Probabilistic Data Structures and Algorithms for Big Data
Applications

https://a.co/d/1WzQzgk
https://a.co/d/2xoSMF5
https://a.co/d/2xoSMF5

External-Memory Algorithms HOME

Merge k Sorted Arrays HOME

Problem

Merge k sorted arrays each with size n.
Input: Sorted arrays A1, A2, . . . , Ak each with size n
Output: Sorted array consisting of kn elements
Input: A1 = [3, 5, 8], A2 = [4, 6, 7], A3 = [1, 2, 9]
Output: [1, 2, 3, 4, 5, 6, 7, 8, 9]

Solutions → Naive solution

Copy elements in all arrays to a single array
Sort the array using merge sort
NaiveSolution(A1[1 . . . n], . . . , Ak[1 . . . n])

Create a dynamic array A← []
for i← 1 to k do

for j ← 1 to n do
A.Add(Ai[j])

Sort(A)
return A

〈Time, Space〉 = 〈Θ (kn log (kn)) ,Θ (kn)〉

Solutions → Naive merging

Create an empty dynamic array
Merge each array with the evolving array one-by-one
NaiveMerging(A1[1 . . . n], . . . , Ak[1 . . . n])

Create two dynamic arrays B0 ← [] and B1 ← []
j ← 0
for i← 1 to k do
j ← (j + 1) mod 2
Bj ←Merge(B(j+1) mod 2, Ai)

return Bj

〈Time, Space〉 =
〈

Θ
(
k2n

)
,Θ (kn)

〉

Solutions → Naive merging

ϕB0

B1

1 2 3

A →

A →

A0

1 2 3

2 3 4

A1

3 4 5

A2

1 2 2 3 3 4

1 2 2 3 3 3 544

Return Bj, where j = 1

B0 and B1 are empty and j = 0

j = 0

j = 1

B0

B1

j = 0

j = 1

Solutions → Divide-and-conquer

Merge arrays in groups of two to get k/2 arrays
Merge arrays in groups of two to get k/4 arrays
Repeat this process until there is only one array
That single array is the merged sorted array
MergeKSortedArrays(A1[1 . . . n], . . . , Ak[1 . . . n])

return Merge-D&C(A1[1 . . . n], . . . , Ak[1 . . . n])
Merge-D&C(Alow, . . . , Ahigh)

n← (high− low + 1)
if n = 1 then return Alow
mid← (low + high)/2
// Split the arrays into left and right sets
Aleft ←Merge-D&C([Alow, Alow+1, . . . , Amid])
Aright ←Merge-D&C([Amid+1, Amid+2, . . . , Ahigh])
// Merge the left and right sets
Amerged ←Merge(Aleft, Aright)
return Amerged

〈Time, Space〉 = 〈Θ (kn log k) ,Θ (kn)〉

Solutions → Divide-and-conquer

1 2 3

A1

2 3 4

A2

3 4 5

A3

4 5 6

A4

5 6 7 6 7 8 7 8 9 8 9 10

2 3 41 2 3 4 5 63 4 5

1 2 3 2 3 4 7 8 9 8 9 105 6 7 6 7 8

1 2 3 2 3 4

1 2 2 3 3 4 3 4 4 5 5 6 5 6 6 7 7 8 7 8 8 9 9 10

1 2 2 3 3 3 4 4 4 5 5 6 5 6 7 8 9 9

1 2 2 3 3 3 4 4 4 5 5

5 6 7 6 7 8 7 8 9 8 9 10

8 9 107 8 96 7 85 6 7

3 4 5

3 4 5

4 5 6

4 5 6

6 7 7 8 8 10

5 6 7 8 9 96 7 7 8 8 106

A5 A6 A7 A8

Solutions → Naive k-way merge

Core idea.
In 2-way merge, we take the minimum of elements from the two
sorted arrays and add it to the merged array
In k-way merge, we take the minimum of elements from all the k
sorted arrays and add it to the merged array
We compute the minimum of k elements using a naive approach
of scanning all these k elements and taking the minimum

Implementation details.
Maintain a pointer[1 . . . k] array where pointer[i] points to the
next element in Ai to be compared for finding the minimum
element
We take the minimum element of
{A1[pointer[1]], A2[pointer[2]], . . . , Ak[pointer[k]]}. If all
elements of an array are exhausted, i.e., pointer[i] = n+ 1 then
we do not consider that array for computing the minimum
element

Solutions → Naive k-way merge

NaivekwayMerge(A1[1 . . . n], . . . , Ak[1 . . . n])

Amerged ← []
pointer[1 . . . k]← [1 . . . 1] // initialize a pointer for each array
// Get all the elements of Amerged in the sorted order
while true do

// Find the minimum element among the current pointers of the k arrays
minval←∞; minindex← −1
for i← 1 to k do

if pointer[i] ≤ n and Ai[pointer[i]] < minval then
minval← Ai[pointer[i]]
minindex← i

// If no minimum element is found, we are done
if minindex = −1 then break
Amerged.Append(minval)
// Move the pointer of the array from which the minimum element was taken
pointer[minindex]← pointer[minindex] + 1

return Amerged

〈Time, Space〉 =
〈

Θ
(
k2n)

)
,Θ (kn)

〉

Solutions → Naive k-way merge

A1 1

42

2 3

3

53 4

A2

A3

pointerAmerged

1

1

1

ϕ

1

42

2 3

3

53 4

A1

A2

A3

1 1

3

1

1

42

2 3

3

53 4

1

42

2 3

3

53 4

1 2

1 2 2

2

3

1

2

4

1

A1

A2

A3

A1

A2

A3

A1 1

42

2 3

3

53 4

A2

A3

1

2

1

1

2

2

3

Solutions → Naive k-way merge (continued)

A1

A2

A3

pointerAmerged

3

4

1

1

42

2 3

3

53 4

A1

A2

A3

1

1

42

2 3

3

53 4

1

42

2 3

3

53 4

1 2

1 2 2 4

4

4

A1

A2

A3

A1

A2

A3

A1 1

42

2 3

3

53 4

A2

A3

3

4

2

1

1

42

2 3

3

53 4

2 2 3

1 2 2 3 3

3 3

2 2 3 3 3 4 4

4

2

2 3 3 3 4 4

4

3

4

3 3 3 4 4 5

Solutions → Improved k-way merge

Core idea.
In the naive k-way merge algorithm, we compute the minimum
of k elements using a naive approach of scanning all these k
elements and taking the minimum. This takes exactly k
operations per element, even if some arrays are fully processed.
In the improved k-way merge algorithm, we compute the
minimum of k elements in a hash map. This takes at most k
operations per element. If arrays are fully processed, then there
will be no comparisons for their elements.

Implementation details.
Maintain a pointer hash map where pointer[key] points to the
next element in Akey to be compared for finding minimum.
We take the minimum element of Akey[pointer[key]] for all keys
in the hash map. If all elements of an array are exhausted, i.e.,
pointer[key] = n+ 1 then that array number will not be in the
hash map.

Solutions → Improved k-way merge

ImprovedkwayMerge(A1[1 . . . n], . . . , Ak[1 . . . n])

Amerged ← []; Create a hash map pointer where the key is the array number
and the value is the index inside that array
for i← 1 to k do pointer.Add(〈i, 1〉)
// Get all the elements of Amerged in the sorted order
while true do

// Find the minimum element among the current pointers of the keys (i.e.,
array numbers) in the hash map

minval←∞; minindex← −1
foreach key in pointer.Keys() do

if Akey [pointer[key]] < minval then
minval← Akey [pointer[key]]
minindex← key

// If no minimum element is found, we are done
if minindex = −1 then break
Amerged.Append(minval)
// Move the pointer of the array from which the minimum element was taken
pointer[minindex]← pointer[minindex] + 1
// If the array is fully processed, remove its entry from the hash map
if pointer[minindex] > n then pointer.Remove(minindex)

return Amerged

〈Time, Space〉 =
〈
O
(
k2n)

)
,Θ (kn)

〉

Solutions → Best k-way merge

We create a min-heap of size k and add the first elements of all arrays.
When we poll, we check if the element on the right is available, if so, then
add it to the heap. Once the heap is empty, Amerged is the answer.

BestkwayMerge(A1[1 . . . n], . . . , Ak[1 . . . n])

Amerged ← []
Create a min-heap H and initialize with the first element of each array
for i← 1 to k do
H.Add((Ai[1], i, 1)) // (element, arrayindex, elementindex)

while min-heap H is not empty do
// Extract the minimum element from the min-heap

(minelement, arrayindex, elementindex)← H.RemoveMin()
Amerged.Append(minelement)
// Move to the next element in the array that contributed the min element
elementindex← elementindex+ 1
// If there are more elements in the current array, insert the next element

into the heap
if elementindex ≤ n then
H.Add((Aarrayindex[elementindex], arrayindex, elementindex))

return Amerged

〈Time, Space〉 = 〈Θ (nk log k) ,Θ (kn)〉

Solutions → Best k-way merge

A1 1

42

2 3

3

53 4

A2

A3

Amerged

ϕ

1

42

2 3

3

53 4

A1

A2

A3

1

1

42

2 3

3

53 4

1

42

2 3

3

53 4

1 2

1 2 2

A1

A2

A3

A1

A2

A3

A1 1

42

2 3

3

53 4

A2

A3

1

2

2

3

min-heap H

1

32

1

32

2

32

2

33

3

33

Solutions → Best k-way merge (continued)

A1

A2

A3

Amerged

1

42

2 3

3

53 4

A1

A2

A3

1

1

42

2 3

3

53 4

1

42

2 3

3

53 4

1 2

1 2 2

A1

A2

A3

A1

A2

A3

A1 1

42

2 3

3

53 4

A2

A3

1

1

42

2 3

3

53 4

2 2 3

1 2 2 3 3

3 3

2 2 3 3 3 4

2 3 3 3 4 4

3 3 3 4 4 5

min-heap H

3

4

4

4

4

5

3

3

Solutions → External-memory k-way merge

Source: Medjedovic-Tahirovic-Dedovic’s Algorithms and Data Structures for Massive Datasets

Solutions → External-memory k-way merge

kwayMerge(F1, F2, . . . , Fk,M,B)
For each file Fi, create an inputbuffer[i] of size B elements in RAM
Initialize each input buffer with the first data block from its input file
Create a min-heap H to keep track of the minimum from each input buffer, and an empty outputbuffer
to store the result
Initialize min-heap H with the first element of every input buffer
for i← 1 to k do

element← ReadNextElementFromInputBuffer(inputbuffer[i])
if element is not none then H.Add(element, i)

while min-heap H is not empty do
// Remove from min-heap H the min and input buffer index; and write to output buffer
minelement, bufferindex← H.RemoveMin()
WriteElementToOutputBuffer(minelement, outputbuffer)
if output buffer is full then

WriteOutputBufferToDisk(outputbuffer, merged file Fmerged)
Clear contents of outputbuffer

// Add to min-heap H the next element from input buffer having index bufferindex
element← ReadNextElementFromInputBuffer(inputbuffer[bufferindex])
if element is none then

inputbuffer[bufferindex]← ReadNextDataBlockFromDisk(Fbufferindex)
element← ReadNextElementFromInputBufferinputbuffer[bufferindex]

H.Add(element, bufferindex)
return Fmerged

〈Time, Space〉 =
〈

Θ
(
kn

B

)
I/Os,Θ (kn)

〉

Complexity

Algorithm Time Space
Internal-memory algorithms
Naive solution Θ (kn log (kn)) Θ (kn)
Naive merging Θ

(
k2n

)
Θ (kn)

Divide-and-conquer Θ (kn log k) Θ (kn)
Naive k-way merge Θ

(
k2n

)
Θ (kn)

Improved k-way merge O
(
k2n

)
Θ (kn)

Best k-way merge Θ (nk log k) Θ (kn)
External-memory algorithms
External-memory k-way merge Θ

(
kn
B

)
I/Os Θ (kn)

Merge Sort HOME

Solutions → Merge sort (Recursive)
MergeSort(unsortedfile,M,B)

// Step 1: Divide .
Divide unsortedfile into dn/Me chunks, each of size at most M
foreach unsorted chunk do

Load the unsorted chunk into RAM
Sort the chunk using 2-way merge sort
Write back the sorted chunk to the hard disk

Create sortedchunks to contain pointers to all sorted chunks
// Step 2: Conquer and combine (k-way merge), where k = M/B
sortedfile← RecursiveMerge(sortedchunks, k)
return sortedfile

RecursiveMerge(sortedchunks, k)

if there is only one chunk in sortedchunks then
return the only sorted chunk

Create newsortedchunks← [] to contain pointers to merged chunks
while there sortedchunks has more than one chunk do

Divide all sorted chunks into groups of k, except possibly the last group
foreach group of at most k sorted chunks do

Merge the k chunks into a single sorted chunk using k-way merge
Add this merged chunk to newsortedchunks

return RecursiveMerge(newsortedchunks, k)

〈Time, Space〉 =
〈

Θ
(
n

B
logM

B

n

B

)
I/Os,Θ (n)

〉

Solutions → Merge sort (Non-recursive)
MergeSortNonRecursive(unsortedfile,M,B)

// Step 1: Divide .
Divide unsortedfile into dn/Me chunks, each of size at most M
foreach unsorted chunk do

Load the unsorted chunk into RAM
Sort the chunk using 2-way merge sort
Write back the sorted chunk to hard disk

Create sortedchunks to contain pointers to all sorted chunks
// Step 2: Conquer (k-way merge), where k = M/B
while sortedchunks has more than one sorted file do

Create newsortedchunks to contain pointers to merged chunks
Divide all sorted chunks in groups of k, except possibly the last group
foreach group of k sorted chunks do

Merge the k chunks into a single sorted chunk using k-way merge
Append this merged chunk to newsortedchunks

sortedchunks← newsortedchunks
Let the only file in sortedchunks be called sortedfile
return sortedfile

〈Time, Space〉 =
〈

Θ
(
n

B
logM

B

n

B

)
I/Os,Θ (n)

〉

Quantum Algorithms HOME

Fundamentals HOME

What is Hilbert space?

Definition
The inner/dot/scalar product ~v • ~w of two vectors ~v and ~w
is a mathematical operation between two vectors of the same
dimension that returns a scalar number.

Suppose ~v =

v1
v2
...
vn

 and ~w =

w1
w2
...
wn

. Then,
~v • ~w = v1w1 + v2w2 + · · ·+ vnwn.
Hilbert space is a complex vector Euclidean space with well-
defined inner product.

What is superposition?

|0〉 (Ground state)

|1〉 (1st excited state)

|2〉 (2nd excited state)

|k − 1〉 ((k − 1)th excited state)

Nucleus

Energy of an electron in an atom
This is a k-level quantum mechanical system
After measuring, electron is in exactly one of the states.
Before measuring, electron is in all k quantum states.

What is superposition?

Superposition is when a quantum particle
is in multiple states simultaneously

What is superposition?

Energy of an electron in an atom
After measuring, the electron can be in any one of
|0〉, |1〉, . . ., |k − 1〉 quantum energy states, where

|0〉 =

1
0
...
0

 , |1〉 =

0
1
...
0

 , |k − 1〉 =

0
0
...
1

are the computational basis and they represent the
orthonormal basis of a k-dimensional vector space

What is superposition?

Energy of an electron in an atom
Before measuring, the electron is in a
superposition of all k quantum energy states i.e.,
|ψ〉 = c0|0〉+ c1|1〉+ · · ·+ ck−1|k − 1〉

∴ |ψ〉 = c0

1
0
...
0

+ c1

0
1
...
0

+ · · ·+ ck−1

0
0
...
1

 =

c0
c1
...

ck−1

,
where ci’s are complex numbers and |ψ〉 is a unit vector,
i.e., |c0|2 + |c1|2 + · · ·+ |ck−1|2 = 1.

What is a qubit?

A qubit represents the superpositioned state
of a 2-state quantum system

Example: A qubit can be made from a photon being polarized
either horizontally or vertically

|0〉 =
[
1
0

]
and |1〉 =

[
0
1

]

|ψ〉 = a|0〉+ b|1〉 = a

[
1
0

]
+ b

[
0
1

]
=
[
a
b

]
where |a|2 + |b|2 = 1

Qubit |ψ〉 is invalid if |a|2 + |b|2 6= 1

Measuring a qubit

A qubit when measured collapses to one of the two basis states

Suppose |ψ〉 = a|0〉+ b|1〉 = a

[
1
0

]
+ b

[
0
1

]
=
[
a
b

]
Probability of measuring qubit |ψ〉 as |0〉 is |a|2

Probability of measuring qubit |ψ〉 as |1〉 is |b|2

Observe that the sum of all collapsing probabilities must be 1

Comparison between classical and quantum bit

Feature Bit Qubit
Implementation Transistor Quantum system
Exclusive states 0 and 1 |0〉 and |1〉
State after measuring 0 or 1 |0〉 or |1〉
State before measuring 0 or 1 Superposition of |0〉 and |1〉
Representation bit ∈ {0, 1} qubit = a|0〉+ b|1〉

Schrödinger’s cat

Source: https://www.rms.com/blog/2018/09/04/schrodingers-cat-model

Schrödinger’s cat

a + b

Problem
Suppose the probabilities of cat being alive and the cat being
dead are the same. Then, what are the values of a and b?

How to visualize a qubit? Block sphere

Suppose |ψ〉 = (a+ ib)|0〉+ (c+ id)|1〉
There are 4 variables! However,

√
(a2 + b2) +

√
(c2 + d2) = 1

So, we can say there are only 3 independent variables
This implies we can visualize this state on a 3-D unit sphere

What should be the three basis vectors or axes?

How to visualize a qubit? Block sphere

Source: https://www.quantum-inspire.com/kbase/bloch-sphere/

How to visualize a qubit? Block sphere

Source: https://logosconcarne.com/2021/03/15/qm-101-bloch-sphere/

Axis Basis Meaning
Z |0〉 and |1〉 |0〉 and |1〉
Y |i〉 and | − i〉 |0〉+i|1〉√

2 and |0〉−i|1〉√
2

X |+〉 and |−〉 |0〉+|1〉√
2 and |0〉−|1〉√

2

How does a quantum system evolve?

Both classical and quantum systems evolve through state
transformations
Arbitrary transformations of a quantum state are not possible

Time evolution of a quantum system happens through
a series of unitary transformations

A unitary transformation simply means multiplying by a unit
matrix
Multiplying by any unitary matrix U is a valid quantum state
transformation

U · |ψ1〉 = |ψ2〉

What is a unitary matrix?

A matrix U is a unitary matrix if UU † = U †U = I

A matrix U is a unitary matrix if U † = U−1

where U † is the conjugate transpose of U .
Examples
Pauli matrices
I =

[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
Hadamard matrix

H = 1√
2

[
1 1
1 −1

]

What is conjugate transpose of a matrix?

The conjugate transpose of a matrix M is a matrix M † obtained by
taking the complex conjugate of all elements of M and

taking the transpose of the resulting matrix.

Examples

Suppose M =
[

1 + i 2 + 2i 3 + 3i
10− 10i 20− 20i 30− 30i

]
.

Then, M † =
[1− i 10 + 10i
2− 2i 20 + 20i
3− 3i 30 + 30i

]
.

What is a quantum operation?

Definition
A quantum operation transforms a quantum state to another
quantum state.
Any quantum operation can be represented by a unitary matrix.
Similarly, any unitary matrix represents a possible quantum op-
eration.
Every quantum operation can be thought as a rotation in the
Block sphere

Examples
All unitary matrices

Quantum operations are reversible

Every quantum operation, except measurement, is reversible.

If U |ψ1〉 = |ψ2〉, then it is possible to reverse the transformation,
i.e., U †|ψ2〉 = |ψ1〉
Suppose you have a sequence of quantum operations
U1U2U3 · · ·Uk|ψ1〉 = |ψ2〉, then it is possible to reverse the
transformation by using U †kU

†
k−1U

†
k−2 · · ·U1|ψ2〉 = |ψ1〉

Single-qubit operations (quantum-algorithm level)
Non-Clifford gate
T =

[1 0
0 eiπ/4

]
(45◦ rotation around Z axis)

Clifford gates
H = 1√

2

[
1 1
1 −1

]
(create equal superposition of |0〉 and |1〉)

S =
[
1 0
0 i

]
= T 2 (90◦ rotation around Z axis)

X =
[
0 1
1 0

]
= HT 4H (NOT; 180◦ rotation around X axis)

Y =
[
0 −i
i 0

]
= T 2HT 4HT 6 (180◦ rotation around Y axis)

Z =
[
1 0
0 −1

]
= T 4 (180◦ rotation around Z axis)

Pauli operators = {X,Y, Z}

These operations can be composed to approximate
any unitary transformation on a single qubit

Single-qubit operations (function-description level)

Rz(θ) = e−iθZ/2 =
[
e−iθ/2 0

0 eiθ/2

]
Rx(θ) = e−iθX/2 = HRz(θ)H =

[
cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

]
Ry(θ) = e−iθY/2 = SHRz(θ)HS† =

[
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

]
These rotations can be composed to perform
any unitary transformation on a single qubit

For every unitary matrix U , there exists α, β, γ, δ such that

U = eiαRx(β)Rz(γ)Rx(δ)

Single-qubit operations

|0〉 |1〉

|+〉 |−〉

X

H

Z

H

Single-qubit gates
Classical Boolean computing consists of circuits of NOT, AND,
and, OR gates
Quantum computing consists of circuits of quantum gates

A quantum gate is a quantum operation
A quantum circuit is a model to visualize operations on qubits

a|0〉+ b|1〉 X b|0〉+ a|1〉

a|0〉+ b|1〉 Y −ib|0〉+ ia|1〉

a|0〉+ b|1〉 Z a|0〉 − b|1〉

a|0〉+ b|1〉 H a|+〉 − b|−〉

a|0〉+ b|1〉 S a|0〉+ beiπ/2|1〉

a|0〉+ b|1〉 T a|0〉+ beiπ/4|1〉

Random Number Generator HOME

Random number generation

Problem
Generate a truly random bit.

Solution
Cannot be solved in classical computing
Can be solved in quantum computing

Random number generation

|0〉 H

Random number generation

Problem
Generate 37 truly random bits when your quantum computer
has only 5 qubits.

Solution
Generate 5 random bits in parallel for 7 times and then generate
2 random bits in parallel

Multi-qubit operations

1-qubit introduces superposition
>1-qubits introduces interference and entanglement

#dimensions is directly proportional to 2#qubits

Increase in 1 qubit doubles the computational power. This
exponential speedup is the reason that a quantum computer
with 100 qubits can surpass the most powerful supercomputers

Multi-qubit states

First qubit is in the state |ψ1〉 =
[
a
b

]
Second qubit is in the state |ψ2〉 =

[
c
d

]
Corresponding 2-qubit state is given by the
tensor product or Kronecker product

|ψ1〉 ⊗ |ψ2〉 =
[
a
b

]
⊗
[
c
d

]
=

a
[
c
d

]
b

[
c
d

]
 =

acadbc
bd

This idea can be generalized to n-qubits which gives a
normalized vector of size 2n

Multi-qubit states

A 2-qubit state is written as

|ψ〉 = a|00〉+ b|01〉+ c|10〉+ d|11〉 =

abc
d

 where

|00〉 = |0〉 ⊗ |0〉 =
[1
0
]
⊗
[1
0
]

=

1
0
0
0

|01〉 = |0〉 ⊗ |1〉 =

[1
0
]
⊗
[0
1
]

=

0
1
0
0

|10〉 = |1〉 ⊗ |0〉 =

[0
1
]
⊗
[1
0
]

=

0
0
1
0

|11〉 = |1〉 ⊗ |1〉 =

[0
1
]
⊗
[0
1
]

=

0
0
0
1

Small vs. Large quantum systems

n small systems of 2-D
n one-qubits

|ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉

1 large system of 2n-D
1 n-qubit
|Ψ〉

Transformation always possible

Transformation NOT always possible

Small vs. Large quantum systems

⊗

2-D 2-D 4-D

Transformation always possible

Transformation NOT always possible

Quantum system transformation: Small → Large

Definition
A joint system of n small 2-D quantum systems, each having
2 quantum states can be thought as a large 2n-D quantum
mechanical system having 2n quantum states.
The tensor product ⊗ (or Kronecker product) of n one-qubits
can be thought to denote a quantum mechanical system having
2n quantum states.

Examples
3 qubits can be thought to denote an 8-D quantum system.

E.g.: |1〉 ⊗ |0〉 ⊗ |1〉 =
[
0
1

]
⊗
[
1
0

]
⊗
[
0
1

]
=

0
0
0
0
0
1
0
0

= |101〉.

Quantum system transformation: Small → Large

⊗

2-D 2-D 4-D

Examples

Alice has quantum state |ψ〉 = a|0〉+ b|1〉.
Bob has quantum state |φ〉 = c|0〉+ d|1〉.
Then, their combined quantum state is
|ψφ〉 = |ψ〉 ⊗ |φ〉 = (a|0〉+ b|1〉)⊗ (c|0〉+ d|1〉)

=
[
a
b

]
⊗
[
c
d

]
=

acadbc
bd

.

Quantum system transformation: Large → Small

Definition
A large 2n-D quantum mechanical system having 2n quantum
states can be thought as a joint system of n small 2-D quantum
systems, each having 2 quantum states.
A quantum mechanical system having 2n quantum states can
be thought as a tensor product ⊗ (or Kronecker product) of n
one-qubits.

Examples
An 8-D quantum system can be represented using 3 qubits.

E.g.: |101〉 =

0
0
0
0
0
1
0
0

=
[
0
1

]
⊗
[
1
0

]
⊗
[
0
1

]
= |1〉 ⊗ |0〉 ⊗ |1〉.

What is a separable state?

4-D

⊗

2-D 2-D

Definition
The two-qubit state |Ψ〉 is separable if
|Ψ〉 = |ψ〉 ⊗ |φ〉 for some one-qubit states |ψ〉 and |φ〉.

What is a separable state?

4-D

⊗

2-D 2-D

Examples

The combined state of Alice and Bob is |Ψ〉 = 1
2(|00〉+ |01〉 −

|10〉 − |11〉). Find the individual states of Alice and Bob.

Let |Ψ〉 = |ψ〉 ⊗ |φ〉 =
[
ψ1
ψ2

]
⊗
[
φ1
φ2

]
= 1

2

 1
1
−1
−1

 =

ψ1φ1
ψ1φ2
ψ2φ1
ψ2φ2

.
Solving the system of equations, we find that
Alice’s state |ψ〉 = |−〉 and Bob’s state |φ〉 = |+〉.

What is an entangled state?

4-D

⊗

2-D 2-D

Definition
The two-qubit state |Ψ〉 is entangled if
|Ψ〉 6= |ψ〉 ⊗ |φ〉 for any one-qubit states |ψ〉 and |φ〉.
A two-qubit state is called an entangled state if it cannot be
written as the tensor product of single-qubit states.
A two-qubit gate is called an entangled gate if it cannot be
written as the tensor product of single-qubit gates.

What is an entangled state?

4-D

⊗

2-D 2-D

Examples

The combined state of Alice and Bob is |Ψ〉 = 1√
2(|00〉+ |11〉).

Find the individual states of Alice and Bob.

Let |Ψ〉 = |ψ〉 ⊗ |φ〉 =
[
ψ1
ψ2

]
⊗
[
φ1
φ2

]
= 1√

2

1
0
0
1

 =

ψ1φ1
ψ1φ2
ψ2φ1
ψ2φ2

.
The system of equations is not solvable.
Hence, the state |Ψ〉 is entangled. This implies that it is im-
possible to obtain the individual states of Alice and Bob.

What are Bell states?

Definition
The following two-qubit states are known as the Bell states.
They represent an orthonormal, entangled basis for two qubits.

Bell states
|Φ+〉 = 1√

2(|00〉+ |11〉)

|Φ−〉 = 1√
2(|00〉 − |11〉)

|Ψ+〉 = 1√
2(|01〉+ |10〉)

|Ψ−〉 = 1√
2(|01〉 − |10〉)

2-qubit gates

Single-qubit gate.
a|0〉+ b|1〉 U a′|0〉+ b′|1〉[

a′

b′

]
= U

[
a
b

]
Two-qubit gate.

Ua|00〉+ b|01〉+ c|10〉+ d|11〉 a′|00〉+ b′|01〉+ c′|10〉+ d′|11〉

a′

b′

c′

d′

 = U

abc
d

2-qubit gates

Here are some 2-qubit gates

H2 = H ⊗H = 1√
2

[1 1
1 −1

]
⊗ 1√

2

[1 1
1 −1

]
= 1

2

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

Controlled NOT: CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

Technical Problems and Solutions HOME

Majority Vote HOME

Problem

An election was held in a democratic nation to elect their next
leader. The citizens of the nation voted for their favorite
candidates. It is now time to find whether someone won the
election. Winning the election means getting a majority of votes.
Given a set of elements, an element is a majority in that set if
that element occurs greater than 50% of the number of elements
in that set. If there is no majority in an election, there will be a
re-election and the process repeats until there is a majority.
So, how do you find whether someone won an election?

Problem

Assumption: Equality comparison (A[i] = A[j]) between
elements are allowed. Inequality comparisons
(A[i] ≤ A[j] or A[i] < A[j]) between elements are not allowed.

Input: Array of natural numbers
Output: Majority if it exists, -1 if there is no majority
Input: [3, 3, 4, 2, 4, 4, 2, 4, 4]
Output: 4
Input: [3, 3, 4, 2, 4, 4, 2, 4]
Output: −1

Solutions → Brute force

1. Count occurrences of each element
2. Find the majority

Majority-BruteForce(A[1 . . . n])

Input: Array A[1 . . . n] of natural numbers.
Output: Majority element if it exists and −1 otherwise.
for i← 1 to bn/2c do
count← CountOccurrences(A[i . . . n], A[i])
if count > bn/2c then

return A[i]
return −1
CountOccurrences(A[` . . . h], k)

count← 0
for i← ` to h do

if A[i] = k then
count← count+ 1

return count

〈Time, Space〉 =
〈

Θ
(
n2
)
,Θ (1)

〉

Solutions → Sorting

1. Sort the array
2. Count occurrences of each element
3. Find the majority

Majority-Sort(A[1 . . . n])

A[1 . . . n]← Sort(A[1 . . . n])
i← 1
for j ← 2 to n do

if A[j] 6= A[i] then
if (j − i) > bn/2c then

return A[i]
i← j

if (n− i+ 1) > bn/2c then
return A[i]

return −1

〈Time, Space〉 = 〈Θ (n logn) ,Θ (n)〉

Solutions → Divide-and-conquer
1. Split the array into two halves
2. `majority ← majority in the left half
3. rmajority ← majority in the right half
4. Check if `majority or rmajority is the array majority

Majority-D&C(A[1 . . . n])

return D&C(A[1 . . . n])
D&C(A[low . . . high])

if low = high then return A[low]
size← (high− low + 1); mid← b(low + high)/2c
`majority ← D&C(A[low . . .mid])
rmajority ← D&C(A[(mid+ 1) . . . high])
`count← CountOccurrences(A[low . . . high], `majority)
rcount← CountOccurrences(A[low . . . high], rmajority)
if `count > bsize/2c then return `majority
if rcount > bsize/2c then return rmajority
return −1

〈Time, Space〉 = 〈Θ (n logn) ,Θ (logn)〉

Solutions → Hashing

1. Store 〈uniqueelement, frequency〉 pairs in hash map
2. Find majority

Majority-Hashing(A[1 . . . n])

Create hash map H to insert (element, frequency) pairs
for i← 1 to n do

if H.ContainsKey(A[i]) then
H.Add(〈A[i], H.GetValue(A[i]) + 1〉)

else
H.Add(〈A[i], 1〉)

if H.GetValue(A[i]) > bn/2c then
return A[i]

return −1

〈Time, Space〉 = 〈Θ (n) ,Θ (n)〉

Solutions → Median

1. Find the median element
2. Check if the median is the majority

Majority-Median(A[1 . . . n])

median← Selection(A[1 . . . n], bn/2c)
count← CountOccurrences(A[1 . . . n],median)
if count > bn/2c then

return median
return −1

〈Time, Space〉 = 〈Θ (n) ,Θ (1)〉

Solutions → Probabilistic

1. Select a random element and check if it is majority
2. Repeat Step 1 for at most

⌊
log2

1
ε

⌋
number of times

3. Return majority

Majority-Probabilistic(A[1 . . . n])

for i← 1 to
⌊
log2

1
ε

⌋
do

random← Random(A[1 . . . n])
count← CountOccurrences(A[1 . . . n], random)
if count > bn/2c then

return random
return −1

〈Time, Space〉 =
〈

Θ
(
n log 1

ε

)
,Θ (1)

〉

Core idea (take-home lesson)

10 20

n elements

n− 2 elements

A

B

Remove two unequal elements from A to get B
If A has a majority M , then B also has majority M

If B has a majority M , then A need not have majority M

Solutions → BoyerMoore-Multipass

1. If a pair is different, then discard
If a pair is same, then keep one copy

2. Repeat step 1 until only one element if left
3. If array has majority, then final element is majority

If array has no majority, then final element has no meaning

a b c c

c

c d c a b b c c c c d c

c b c c

a b c c

c

c d c a c b c a c c d b

c c

Array has a majority

Final element is the majority

Array has no majority

Final element has no meaning

Solutions → BoyerMoore-Multipass

Majority-BoyerMoore-Multipass(A[1 . . . n])

Majority-Multipass(A[1 . . . n],−1)
Majority-Multipass(A[1 . . . n], tiebreaker)

Create a dynamic array B ← []
for i← 1 to n− 1 increment 2 do

if A[i] = A[i+ 1] then
B.Add(A[i])

if n mod 2 = 1 then tiebreaker ← A[n]
if B is empty then C ← tiebreaker
else C ←Majority-Multipass(B, tiebreaker)
if C = −1 then return −1
count← CountOccurrences(A[1 . . . n], C)
if count > bn/2c or (count = bn/2c and C = tiebreaker) then

return C
return −1

〈Time, Space〉 = 〈Θ (n) ,Θ (n)〉

Solutions → BoyerMoore-Multipass

a c c c

φ

c d c a b b c c c b d c

c b c

Array has a majority

tiebreaker = −1

tiebreaker = c

tiebreaker = c
candidate = c

candidate = c

candidate = c

Solutions → BoyerMoore-Twopass

1. Create a stack. Scan the elements one at a time.
2. If stack is empty or if element considered is the same as stack

top, then push element. Else, pop an element from stack.
3. If stack is non-empty, check if stack top is the majority element.

Else, return −1.

Solutions → BoyerMoore-Twopass

Majority-BoyerMoore-Twopass(A[1 . . . n])

// Stage 1. Eliminate all except one candidate C
Create a stack S
for i← 1 to n do

if S is empty then S.Push(A[i])
else
top← S.Top()
if A[i] = top then S.Push(A[i])
else S.Pop()

// Stage 2. Check whether C is the majority
if S is empty then return −1
C ← S.Top()
count← CountOccurrences(A[1 . . . n], C)
if count > bn/2c then return C
return −1

〈Time, Space〉 = 〈Θ (n) ,O (n)〉

Solutions → BoyerMoore-Twopass

i A[i] S

1 a [a]
2 a [a, a]
3 a [a, a, a]
4 b [a, a]
5 b [a]
6 b φ

7 b [b]

i A[i] S

1 a [a]
2 b φ

3 a [a]
4 b φ

5 a [a]
6 b φ

7 c [c]

i A[i] S

1 a [a]
2 b φ

3 a [a]
4 b φ

5 a [a]
6 b φ

Solutions → BoyerMoore-Twopass-Inplace

1. Let C be majority candidate; m be #unpaired occurrences of C
2. In iteration 1, we set C ← 1st element and m← 1
3. In iteration i ∈ [2, n], if m is zero, then set C ← ith element

and m← 1. Otherwise, compare if ith element is same as C. If
same, then increment m, else, decrement m.

4. If m is positive, then check if C is majority

Solutions → BoyerMoore-Twopass-Inplace

Majority-BoyerMoore-Twopass-Inplace(A[1 . . . n])

C ← A[1]; m← 1
// Stage 1. Eliminate all except one candidate c
for i← 2 to n do

if m = 0 then
{ C ← A[i]; m← 1 }

else
if C = A[i] then m← m+ 1
else m← m− 1

// Stage 2. Check whether c is the majority
if m 6= 0 then
count← CountOccurrences(A[1 . . . n], C)
if count > bn/2c then return C

return −1

〈Time, Space〉 = 〈Θ (n) ,Θ (1)〉

Solutions → BoyerMoore-Twopass-Inplace

1. Let C be majority candidate; m be #unpaired occurrences of C
2. In iteration 1, we set C ← 1st element and m← 1
3. In iteration i ∈ [2, n], if m is zero, then set C ← ith element

and m← 1. Otherwise, compare if ith element is same as C. If
same, then increment m, else, decrement m.

4. If m is positive, then check if C is majority

i A[i] C m

1 a a 1
2 a a 2
3 a a 3
4 b b 2
5 b b 1
6 b b 0
7 b b 1

i A[i] C m

1 a a 1
2 b a 0
3 a a 1
4 b a 0
5 a a 1
6 b a 0
7 c c 1

i A[i] C m

1 a a 1
2 b a 0
3 a a 1
4 b a 0
5 a a 1
6 b a 0

Solutions → FischerSalzberg
Majority-FischerSalzberg(A[1 . . . n])

// Stage 1. Find the majority candidate C
Create two stacks S1 and S2
for i← 1 to n do

if S1 is empty or S1.Top() 6= A[i] then
S1.Push(A[i]) if S2 is not empty then S1.Push(S2.Pop())

else S2.Push(A[i])
C ← S1.Top()
// Stage 2. Confirm if the candidate is the majority
while S1 is not empty do
item← S1.Pop()
if item = C then

if S1 is empty then S2.Push(C)
else S1.Pop()

else
if S2 is empty then return −1
else S2.Pop()

if S2 is not empty then return C
return −1

〈Time, Space〉 = 〈Θ (n) ,Θ (n)〉

Solutions → FischerSalzberg

i A[i] S1 S2

1 a [a] φ

2 a [a] [a]
3 a [a] [a, a]
4 b [a, b, a] [a]
5 b [a, b, a, b, a] φ

6 b [a, b, a, b, a, b] φ

7 b [a, b, a, b, a, b] [b]
[a, b, a, b] [b]
[a, b] [b]
φ [b]

i A[i] S1 S2

1 a [a] φ

2 b [a, b] φ

3 a [a, b, a] φ

4 b [a, b, a, b] φ

5 a [a, b, a, b, a] φ

6 b [a, b, a, b, a, b] φ

7 c [a, b, a, b, a, b, c] φ

[a, b, a, b, a] φ

[a, b, a, b] φ

i A[i] S1 S2

1 a [a] φ

2 b [a, b] φ

3 a [a, b, a] φ

4 b [a, b, a, b] φ

5 a [a, b, a, b, a] φ

6 b [a, b, a, b, a, b] φ

[a, b, a, b] φ

[a, b] φ

φ φ

Complexity

Algorithm Time Extra Space Comments
Brute force Θ

(
n2
)

Θ (1) −
Sorting-based Θ (n logn) Θ (n) Can’t solve.
Divide-and-conquer Θ (n logn) Θ (logn) −
Probabilistic Θ

(
n log 1

ε

)
Θ (1) Can’t solve. Success > 1− ε.

Hashing-based Θ (n) Θ (n) Can’t solve.
Median-based Θ (n) Θ (n) Can’t solve.
BoyerMoore multipass Θ (n) Θ (n) −
BoyerMoore twopass Θ (n) O (n) −
BoyerMoore twopass inplace Θ (n) Θ (1) −
FischerSalzberg Θ (n) Θ (n) −

References

Puzzle book

https://www3.cs.stonybrook.edu/~pramod.ganapathi/puzzles.html

Longest Palindromic Substring HOME

Problem

Problem
Design an algorithm to compute a longest palindromic substring
of a string.

Input: s = bababaeabaed
Output: s[4, 10] = abaeaba

Core data structures

oddp[i] = largest radius of odd-sized palindrome centered at
index i
s[i]

oddp[i]
· · · a t v k z d z k v t x · · ·

4

evenp[i] = largest radius of even-sized palindrome centered at
indices i and i+ 1

s[i]
evenp[i]

· · · a t v k z z k v t x · · ·
4

Core data structures

Longest odd-length palindrome whose center is at index i is
s[(i− oddp[i]) . . . (i+ oddp[i])]

Longest even-length palindrome whose left center is at index i is
s[(i− evenp[i] + 1) . . . (i+ evenp[i])]

Goal

Compute oddp[1 . . . n] and evenp[1 . . . n]

Computing the LPS from oddp[1 . . . n] and evenp[1 . . . n] is easy

Solutions → Brute force algorithm

1. Find all substrings
2. Check which of these substrings are palindromes
3. If palindromes, update oddp and evenp arrays accordingly

BruteForce(s[1 . . . n])

Create arrays oddp[1 . . . n]← [0 . . . 0] and evenp[1 . . . n]← [0 . . . 0]
for i← 1 to n do

for j ← i to n do
if isPalindrome(s[i . . . j]) then
length← j − i+ 1 // palindrome length
radius←

⌊
length

2

⌋
// palindrome radius

center ←
⌊
i+j

2

⌋
// palindrome center

if length is odd then
oddp[center]← Max(oddp[center], radius)

else
evenp[center]← Max(evenp[center], radius)

return (oddp, evenp)

〈Time, Space〉 =
〈
O
(
n3
)
,Θ (n)

〉

Solutions → Standard algorithm

StandardAlgorithm(s[1 . . . n])

Create arrays oddp[1 . . . n]← [0 . . . 0] and evenp[1 . . . n]← [0 . . . 0]
// For each palindrome center i, compute oddp[i]
for i← 1 to n do
`← i− oddp[i]− 1
r ← i+ oddp[i] + 1
while ` ≥ 1 and r ≤ n and s[`] = s[r] do
oddp[i]← oddp[i] + 1
`← `− 1
r ← r + 1

// For each palindrome center i, compute evenp[i]
for i← 1 to n do
`← i− evenp[i]
r ← i+ evenp[i] + 1
while ` ≥ 1 and r ≤ n and s[`] = s[r] do
evenp[i]← evenp[i] + 1
`← `− 1
r ← r + 1

return (oddp, evenp)

〈Time, Space〉 =
〈
O
(
n2
)
,Θ (n)

〉

Solutions → Rabin-Karp + Binary search
BinarySearch(s[1 . . . n])

low ← 1;high← n
longestpalindrome← empty string
while low ≤ high do
mid←

⌊
high−low

2

⌋
palindrome← FindPalindrome(s,mid)
// There is no palindrome with size mid as it is too big
// So check for palindromes with smaller sizes
if palindrome is an empty string then
high← mid− 1

// There is a palindrome with size mid, maybe it is too small
// So check for palindromes with larger sizes
else
longestpalindrome← palindrome
low ← mid+ 1

return longestpalindrome

〈Time, Space〉 = 〈Θ (n · logn)w.h.p,Θ (1)〉

〈Time, Space〉 =
〈
O
(
n2 logn

)
,Θ (1)

〉

Solutions → Rabin-Karp + Binary search

FindPalindrome(s[1 . . . n],m)

// Step 1: Initialize parameters and variables
p← RandomLargePrime([1 . . . nm2])
b← Size of ASCII set
h← b(m−1) mod p, r ← Reverse of string s
hash1← Hash(s[1 . . .m], b, p)
hash2← Hash(r[n−m+ 1 . . . n], b, p)
// Step 2: Create a rolling hash for substrings of size m
for i← 1 to (n−m+ 1) do
j ← n−m− i+ 2 // index of substring in r
// Probability of hash collision is less than 1/n
if hash1 = hash2 and s[i . . . (i+m− 1)] = r[j . . . (j +m− 1)] then

return s[i . . . (i+m− 1)]
// Rolling hash: Compute hash value of the next text window using

the current text window in Θ (1) time
if i 6= (n−m+ 1) then
hash1← RollingHash-LtoR(hash1, s[i]× h, s[i+m], b, p)
hash2← RollingHash-RtoL(hash2, r[j+m−1], r[i−1]×h, b, p)

return empty string

Solutions → Rabin-Karp + Binary search

RollingHash-LtoR(hash, subtract, add, b, p)

hash← ((hash− subtract)× b+ add) mod p
return hash
RollingHash-RtoL(hash, subtract, add, b, p)

hash←
(
(hash− subtract)× b−1 + add

)
mod p

return hash

Time = Θ (1)

b−1 is modulo multiplicative inverse of b

b−1 always exists if the modulus is w.r.t a prime

b−1 can be computed using extended Euclidean algorithm
More information: Modulo multiplicative inverse

https://en.wikipedia.org/wiki/Modular_multiplicative_inverse

Solutions → Manacher’s algorithm

This algorithm is an optimization over O
(
n2) algorithm

Instead of computing oddp[i] and evenp[i] from scratch at every
value of i, we reuse the already computed values to reduce
computations

Solutions → Manacher’s algorithm

indices
s[i]

positions
oddp[i]

1 2 3 4 5 6 7 8 9 10 11 12
b a b a b a e a b a e d

L j i R

0 1 2 2 1 0 3 0

Suppose we have oddp[1 . . . 8]; we want to compute oddp[9]
Let s[L . . . R] = palindromic substring that ends as far to the
right as possible so far
For i = 9, s[L . . . R] = s[4 . . . 10] = abaeaba with center at 7
There are two scenarios to consider:
i ≥ R: Use the standard algorithm logic to compute oddp[i]
i < R: Use oddp[mirror image of i] to compute oddp[i]

When i < R, the mirror image of i is j = (L+R− i)
with respect to the center of s[L . . . R].

Solutions → Manacher’s algorithm

indices
s[i]

positions
oddp[i]

1 2 3 4 5 6 7 8 9 10 11 12
b a b a b a e a b a e d

L j i R

0 1 2 2 1 0 3 0

Suppose we have oddp[1 . . . 8]; we want to compute oddp[9]
Let s[L . . . R] = palindromic substring that ends as far to the
right as possible so far
For i = 9, s[L . . . R] = s[4 . . . 10] = abaeaba with center at 7
There are two scenarios to consider:
i ≥ R: Use the standard algorithm logic to compute oddp[i]
i < R: Use oddp[mirror image of i] to compute oddp[i]

When i < R, the mirror image of i is j = (L+R− i)
with respect to the center of s[L . . . R].

Solutions → Manacher’s algorithm

Case 1. i ≥ R

indices
s[i]

positions
oddp[i]

1 2 3 4 5 6 7 8 9 10 11 12
b a e a b a e a c a e a

j L R i

0 0 2 0 4 0 1 0

In this case, compute oddp[i] using standard algorithm logic

i ≥ R, i.e., 9 ≥ 8
Therefore, we compute oddp[9] as per standard algorithm logic
We have oddp[9] = 3. We do not save any computations

Solutions → Manacher’s algorithm

Case 1. i ≥ R

indices
s[i]

positions
oddp[i]

1 2 3 4 5 6 7 8 9 10 11 12
b a e a b a e a c a e a

j L R i

0 0 2 0 4 0 1 0

In this case, compute oddp[i] using standard algorithm logic

i ≥ R, i.e., 9 ≥ 8
Therefore, we compute oddp[9] as per standard algorithm logic
We have oddp[9] = 3. We do not save any computations

Solutions → Manacher’s algorithm

Case 2. i < R and largest palindrome at center j is
completely inside s[L . . . R]

indices
s[i]

positions
oddp[i]

1 2 3 4 5 6 7 8 9 10 11 12
b a b a b a e a b a e d

L j i R

0 1 2 2 1 0 3 0

In this case, set oddp[i] to oddp[j], and extend oddp[i]

i < R, i.e., 9 < 10
s[j − oddp[j], j + oddp[j]] is inside s[L . . . R],
i.e., s[4 . . . 6] is inside s[4 . . . 10]
Therefore, set oddp[9] to oddp[5], i.e., oddp[9] = 1, and extend
oddp[9] as per standard algorithm logic
We have oddp[9] = 2. We save one computation

Solutions → Manacher’s algorithm

Case 2. i < R and largest palindrome at center j is
completely inside s[L . . . R]

indices
s[i]

positions
oddp[i]

1 2 3 4 5 6 7 8 9 10 11 12
b a b a b a e a b a e d

L j i R

0 1 2 2 1 0 3 0

In this case, set oddp[i] to oddp[j], and extend oddp[i]

i < R, i.e., 9 < 10
s[j − oddp[j], j + oddp[j]] is inside s[L . . . R],
i.e., s[4 . . . 6] is inside s[4 . . . 10]
Therefore, set oddp[9] to oddp[5], i.e., oddp[9] = 1, and extend
oddp[9] as per standard algorithm logic
We have oddp[9] = 2. We save one computation

Solutions → Manacher’s algorithm

Case 3. i < R and largest palindrome at center j is
not completely inside s[L . . . R]

indices
s[i]

positions
oddp[i]

1 2 3 4 5 6 7 8 9 10 11 12
b a e a b a e a b a b d

L j i R

0 0 2 0 4 0 3 0

In this case, set oddp[i] to (R− i), and extend oddp[i]

i < R, i.e., 9 < 10
s[j − oddp[j], j + oddp[j]] is not inside s[L . . . R],
i.e., s[1 . . . 9] is not completely inside s[4 . . . 10]
Therefore, set oddp[9] to (R− i) = (j − L), i.e., oddp[9] = 1,
and extend oddp[9] as per standard algorithm logic
We have oddp[9] = 1. We save one computation

Solutions → Manacher’s algorithm

Case 3. i < R and largest palindrome at center j is
not completely inside s[L . . . R]

indices
s[i]

positions
oddp[i]

1 2 3 4 5 6 7 8 9 10 11 12
b a e a b a e a b a b d

L j i R

0 0 2 0 4 0 3 0

In this case, set oddp[i] to (R− i), and extend oddp[i]

i < R, i.e., 9 < 10
s[j − oddp[j], j + oddp[j]] is not inside s[L . . . R],
i.e., s[1 . . . 9] is not completely inside s[4 . . . 10]
Therefore, set oddp[9] to (R− i) = (j − L), i.e., oddp[9] = 1,
and extend oddp[9] as per standard algorithm logic
We have oddp[9] = 1. We save one computation

Solutions → Manacher’s algorithm

ManacherOdd(s[1 . . . n])

Create array oddp[1 . . . n]← [0 . . . 0]
L← 1
R← −1
for i← 1 to n do

if i < R then
oddp[i]← Min(oddp[L+R− i], R− i)

`← i− oddp[i]− 1
r ← i+ oddp[i] + 1
while ` ≥ 1 and r ≤ n and s[`] = s[r] do
oddp[i]← oddp[i] + 1
`← `− 1
r ← r + 1

if i+ oddp[i] > R then
L← i− oddp[i]
R← i+ oddp[i]

return oddp

〈Time, Space〉 = 〈Θ (n) ,Θ (n)〉

Solutions → Manacher’s algorithm

ManacherEven(s[1 . . . n])

Create array evenp[1 . . . n]← [0 . . . 0]
L← 1
R← −1
for i← 1 to n do

if i < R then
evenp[i]← Min(evenp[L+R− i], R− i)

`← i− evenp[i]
r ← i+ evenp[i] + 1
while ` ≥ 1 and r ≤ n and s[`] = s[r] do
evenp[i]← evenp[i] + 1
`← `− 1
r ← r + 1

if i+ evenp[i] > R then
L← i− evenp[i] + 1
R← i+ evenp[i]

return evenP

〈Time, Space〉 = 〈Θ (n) ,Θ (n)〉

Complexity

Algorithm Time Space All pal. substr?
Brute force O

(
n3) Θ (n) 3

Standard algo O
(
n2) Θ (n) 3

Rabin-Karp + bin. search O (n logn) w.h.p Θ (1) 7

O
(
n2 logn

)
Θ (1) 7

Manacher Θ (n) Θ (n) 3

Suffix trees Θ (n) Θ (n) 3

Selection Two Sorted Arrays HOME

Problem

Find the kth smallest element among two sorted arrays
A[1 . . .m] and B[1 . . . n], where k ∈ [1, (m+ n)].
Input: [10, 30, 40, 60, 70, 80, 100], [20, 50, 90, 110], and k = 9
Output: 90
Input: [10, 30, 40, 60, 70, 80, 100], [20, 50, 90, 110], and k = 4
Output: 40

Solutions → Concatenate and sort

1. Concatenate the two arrays and sort it
2. Return the kth smallest element

Selection-Concatenate&Sort(A[1 . . .m], B[1 . . . n], k)

Create an array M [1 . . . (m+ n)]
M [1 . . .m]← A[1 . . .m] // Copy the first array to M
M [(m+ 1) . . . (m+ n)]← B[1 . . . n] // Copy the second array to M
Sort(M [1 . . . (m+ n)]) // Sort M
return M [k] // Return the kth smallest element of M

〈Time, Space〉 = 〈Θ ((m+ n) log(m+ n)) ,Θ (m+ n)〉

Solutions → Concatenate and heapify

1. Concatenate the two arrays and build a heap
2. Return the kth smallest element

Selection-Concatenate&Heapify(A[1 . . .m], B[1 . . . n], k)

Create a heap H[1 . . . (m+ n)]
H[1 . . .m]← A[1 . . .m] // Copy the first array to H
H[(m+ 1) . . . (m+ n)]← B[1 . . . n] // Copy the second array to H
Heapify(H[1 . . . (m+ n)]) // Construct heap from H in linear time
// RemoveMin from H for a total of k times
for i← 1 to k do
result← H.RemoveMin()

return result

〈Time, Space〉 = 〈Θ ((m+ n) + k log(m+ n)) ,Θ (m+ n)〉

Solutions → Merge

1. Merge the two sorted arrays
2. Return the kth smallest element

Selection-Merge(A[1 . . .m], B[1 . . . n], k)

i← 1; j ← 1; `← 1
Create an array M [1 . . . (m+ n)]
// Merge the two sorted arrays to M until an array becomes empty
while i ≤ m and j ≤ n do

if A[i] ≤ B[j] then { M [`]← A[i]; i← i+ 1 }
else { M [`]← B[j]; j ← j + 1 }
`← `+ 1

// Copy the remaining elements to M
if i > m then M [` . . . (m+ n)]← B[j . . . n]
else if j > n then M [` . . . (m+ n)]← A[i . . .m]
// Return the kth smallest element of M
return M [k]

〈Time, Space〉 = 〈Θ (m+ n) ,Θ (m+ n)〉

Solutions → Merge optimized

1. Merge the two sorted arrays without using extra space to find
the kth smallest element

Selection-MergeOptimized(A[1 . . .m], B[1 . . . n], k)

i← 1; j ← 1
// Iterate for k elements
while k > 0 do

// If one of the arrays is reached
if i > m then return B[j + k − 1]
if j > n then return A[i+ k − 1]
// Merge-like operations
if A[i] < B[j] then i← i+ 1
else if A[i] ≥ B[j] then j ← j + 1
k ← k − 1

return min(A[i], B[j])

〈Time, Space〉 = 〈Θ (k) ,Θ (1)〉

Solutions → Decrease-and-conquer (recursive)

1. Find the middle indices mid1 and mid2 of the two arrays
2. Compare mid1 +mid2 and k and compare A[mid1] and
B[mid2]. Recursively call the algorithm on a smaller
subproblem depending on the four cases.

Solutions → Decrease-and-conquer (recursive)

Core idea

Step 1. Select mid1 and mid2 of arrays A and B, respectively
Step 2. We get 4 cases:
Case 1: mid1 +mid2 < k and A[mid1] > B[mid2]
Case 2: mid1 +mid2 < k and A[mid1] ≤ B[mid2]
Case 3: mid1 +mid2 ≥ k and A[mid1] > B[mid2]
Case 4: mid1 +mid2 ≥ k and A[mid1] ≤ B[mid2]

Step 3. Eliminate half of an array in each case and recurse

Solutions → Decrease-and-conquer (recursive)

Case 1: mid1 +mid2 < k and A[mid1] > B[mid2]

A[mid1] = 70

B[mid2] = 50

mid1

mid2

kth smallest can’t be in the first half of the second array B
Eliminate the first half of the second array B

Find and return (k −mid2)th smallest in the remaining elements
Selection-De&C(A,B[(mid2 + 1) . . . n], k −mid2)

Solutions → Decrease-and-conquer (recursive)

Case 2: mid1 +mid2 < k and A[mid1] ≤ B[mid2]

A[mid1] = 30

B[mid2] = 50

mid1

mid2

kth smallest can’t be in the first half of the first array A
Eliminate the first half of the first array A

Find and return (k −mid1)th smallest in the remaining elements
Selection-De&C(A[(mid1 + 1) . . .m], B, k −mid1)

Solutions → Decrease-and-conquer (recursive)

Case 3: mid1 +mid2 ≥ k and A[mid1] > B[mid2]

A[mid1] = 70

B[mid2] = 50

mid1

mid2

kth smallest can’t be in the second half of the first array A
Eliminate the second half of the first array A

Find and return kth smallest in the remaining elements
Selection-De&C(A[1 . . .mid1], B, k)

Solutions → Decrease-and-conquer (recursive)

Case 4: mid1 +mid2 ≥ k and A[mid1] ≤ B[mid2]

A[mid1] = 30

B[mid2] = 50

mid1

mid2

kth smallest can’t be in the second half of the second array B
Eliminate the second half of the second array B

Find and return kth smallest in the remaining elements
Selection-De&C(A,B[1 . . .mid2], k)

Solutions → Decrease-and-conquer (recursive)

Selection-De&C(A[1 . . .m], B[1 . . . n], k)

// If an array is empty, return kth element of other array
if m = 0 then return B[k]
if n = 0 then return A[k]
// Recursive case: Find the midpoint of each array
mid1← bm/2c; mid2← bn/2c
if mid1 +mid2 < k and A[mid1] > B[mid2] then

// kth smallest can’t be in the first half of the second array B
return Selection-De&C(A,B[(mid2 + 1) . . . n], k −mid2)

else if mid1 +mid2 < k and A[mid1] ≤ B[mid2] then
// kth smallest can’t be in the first half of the first array A
return Selection-De&C(A[(mid1 + 1) . . .m], B, k −mid1)

else if mid1 +mid2 ≥ k and A[mid1] > B[mid2] then
// kth smallest can’t be in the second half of the first array A
return Selection-De&C(A[1 . . .mid1], B, k)

else if mid1 +mid2 ≥ k and A[mid1] ≤ B[mid2] then
// kth smallest can’t be in the second half of the second array B
return Selection-De&C(A,B[1 . . .mid2], k)

〈Time, Space〉 = 〈O (log(m+ n)) ,O (log(m+ n))〉

Solutions → Binary search (recursive)

1. Select index i in the first array A, where i = min(m, bk/2c)
2. Select index j in the second array B, where j = k − i
3. Compare A[i] and B[j]
4. If A[i] > B[j], discard the first j elements of B

Find the (k − j)th smallest element recursively
5. If A[i] ≤ B[j], discard the first i elements of A

Find the (k − i)th smallest element recursively

Does index j always exist in array B? No!
Problem can be solved by considering the shorter array as A.

Solutions → Binary search (recursive)
Case 1: i+ j ≤ k and A[i] > B[j]

A[i] = 70

B[j] = 50

i

j

kth smallest can’t be in the first j elements of the second array B
Eliminate the first j elements of the second array B

Find and return (k − j)th smallest in the remaining elements
Selection-BinarySearch(A,B[j + 1 . . . n], k − j)

Solutions → Binary search (recursive)

Case 2: i+ j ≤ k and A[i] ≤ B[j]

A[i] = 30

B[j] = 50

i

j

kth smallest can’t be in the first i elements of the first array A
Eliminate the first i elements of the first array A

Find and return (k − i)th smallest in the remaining elements
Selection-BinarySearch(A[i+ 1 . . . n], B, k − i)

Solutions → Binary search (recursive)

Selection-BinarySearch(A[1 . . .m], B[1 . . . n], k)

// First array should be the shorter of the two arrays
if m > n then

return Selection-BinarySearch(B[1 . . . n], A[1 . . .m], k)
// If first array is empty, return the kth element of the second array
if m = 0 then return B[k]
// If k = 1, return the minimum of the first elements of the two arrays
if k = 1 then return min(A[1], B[1])
// Pick the number of elements that will be discarded in the two arrays
i← min(m, bk/2c); j ← k − i
// If A[i] > B[j], then discard the first j elements of B
if A[i] > B[j] then

return Selection-BinarySearch(A,B[j + 1 . . . n], k − j)
// If A[i] ≤ B[j], then discard the first i elements of A
else if A[i] ≤ B[j] then

return Selection-BinarySearch(A[i+ 1 . . . n], B, k − i)

〈Time, Space〉 = 〈Θ (log k) ,Θ (log k)〉

Complexity

Algorithm Time Extra Space
Concatenate-sort Θ ((m+ n) log(m+ n)) Θ (m+ n)
Concatenate-heapify Θ ((m+ n) + k log(m+ n)) Θ (m+ n)
Merge Θ (m+ n) Θ (m+ n)
Merge optimized Θ (k) Θ (1)
De&C (recursive) Θ (log(m+ n)) Θ (log(m+ n))
Binary search (recursive) Θ (log k) Θ (log k)

Largest Subarray Sum HOME

Problem

Given an array of reals, find the subarray with the largest sum,
and return its sum.
Input: [−2, 1,−3, 4,−1, 2, 1︸ ︷︷ ︸,−5, 4]
Output: 6
Input: [5, 4,−1, 7, 8︸ ︷︷ ︸]
Output: 23

Solutions → Brute force

BruteForce(A[1 . . . n])

max← −∞
for i← 1 to n do

for j ← i to n do
sum← Sum(A[i . . . j])
if sum > max then max← sum

return max

〈Time, Space〉 =
〈

Θ
(
n3
)
,Θ (1)

〉

Solutions → Optimized brute force

For all subarrays, calculate the sum of the subarray as you travel
the array.
OptimizedBruteForce(A[1 . . . n])

max← −∞
for i← 1 to n do
sum← 0
for j ← i to n do
sum← sum + A[j]
if sum > max then max← sum

return max

〈Time, Space〉 =
〈

Θ
(
n2
)
,Θ (1)

〉

Solutions → Optimized brute force

-5 4 -1 7

i j

-5 4 -1 7

-5 4 -1 7

-5 4 -1 7

-5 4 -1 7

4 -1 7

-5 4 -1 7

-5 4 -1 7

-5 4 -1 7

i

-5 4 -1 7

i j

j

i j

i j

i j

i

i

i

j

j

j

sum max

0 −∞

−5 −5

−1−1

−2 −1

sum = 0; max = −∞

sum = 0

4

3

10 10

10

10

−1

6

7

10

sum = -5; As sum > max, max = sum

sum = -2; As sum ≤ max, max is not updated

i j

Largest Subarray Sum

-5 4 -1 7

i

-5 4 -1 7

i

-5 4 -1 7

i

-5 4 -1 7

i

-5

5 5

0 5

5

5

0

0

10

10

10

sum = -1; As sum > max, max = sum

sum = 5; As sum > max, max = sum

sum = 10; As sum > max, max = sum

sum = 4; As sum ≤ max, max is not updated

sum = 3; As sum ≤ max, max is not updated

sum = -1; As sum ≤ max, max is not updated

sum = 6; As sum ≤ max, max is not updated

sum = 7; As sum ≤ max, max is not updated

sum = 0

sum = 0

Solutions → Divide-and-conquer

1. Divide the given array in two halves
2. Return the maximum of the following three:

(a) Max subarray sum in left half (recurse)
(b) Max subarray sum in right half (recurse)
(c) Max subarray sum so that the subarray crosses the midpoint

DivideAndConquer(A[1 . . . n])

if n = 1 then return A[1]
mid←

⌊
n
2

⌋
Sleft ← DivideAndConquer(A[1 . . .mid])
Sright ← DivideAndConquer(A[mid+ 1 . . . n])
Smerge ←Merge(A[1 . . . n],mid)
return Max(Sleft, Sright, Smerge)

〈Time, Space〉 = 〈Θ (n logn) ,Θ (logn)〉

Solutions → Divide-and-conquer

Merge(A[1 . . . n],mid)

// Find the maximum suffix in the first half
suffixmax← −∞; sum← 0
for i← mid to 1 do
sum← sum+A[i]
if sum > suffixmax then suffixmax← sum

// Find the maximum prefix in the second half
prefixmax← −∞; sum← 0
for i← mid+ 1 to n do
sum← sum+A[i]
if sum > prefixmax then prefixmax← sum

// Max subarray sum so that subarray crosses the midpoint
return (suffixmax+ prefixmax)

Solutions → Divide-and-conquer

A 3 −2 1 1 -3 5 -1 2 1 −2 0 1 2 3 -5 4

3 −2 1 1 -3 5 -1 2 1 −2 0 1 2 3 -5 4

2

1

6

3

4

5

3

5

1

−1

−1

0

2

5

0

4

11

suffixmax+ prefixmax

prefixmax

suffixmax

Solutions → Improved divide-and-conquer

1. Create a class called Node for any subproblem (subarray)
2. For any subproblem/subarray, we define a node with four values:
sum = largest subarray sum, total = total subarray sum
prefixmax = max prefix sum, suffixmax = max suffix sum

3. Compute and return the sum corresponding to the node of
A[1 . . . n] using D&C
ImprovedDivideAndConquer(A[1 . . . n])

Node answer ← GetMaxSumSubarray(A[1 . . . n])
return answer.sum
GetMaxSumSubarray(A[low . . . high])

if low = high then return Node(A[low])
mid← b(low + high)/2c
node` ← GetMaxSumSubarray(A[low . . .mid])
noder ← GetMaxSumSubarray(A[mid+ 1 . . . high])
return Merge(node`, noder)

Solutions → Improved divide-and-conquer

Merge(`, r)

x← Node(0)
// Max prefix subarray sum
x.prefixmax← Max(`.prefixmax, `.total + r.prefixmax, `.total + r.total)
// Max suffix subarray sum
x.suffixmax← Max(r.suffixmax, r.total+ `.suffixmax, `.total+ r.total)
// Total subarray sum
x.total← `.total + r.total

// Max subarray sum
x.sum← Max(x.prefixmax, x.suffixmax, x.total, `.sum, r.sum

`.suffixmax+ r.prefixmax)
return x

〈Time, Space〉 = 〈Θ (n) ,Θ (logn)〉

Solutions → Improved divide-and-conquer

Node x for array A

x.prefixmax

x.total

x.sum

x.suffixmax

Solutions → Improved divide-and-conquer

Node ℓ for left half

ℓ.prefixmax

Node r for right half

ℓ.total

r.suffixmax

Node x for the entire array

ℓ.total

ℓ.total r.total

r.prefixmax

ℓ.suffixmax

Node ℓ for left half Node r for right half

Node x for the entire array

r.total

r.total

max

max

x.prefixmax =

x.suffixmax =

Solutions → Improved divide-and-conquer

Node x for the entire array

Node ℓ for left half Node r for right half

ℓ.sum

ℓ.prefixmax

r.prefixmaxℓ.suffixmax

ℓ.suffixmax

r.suffixmax

r.prefixmax

ℓ.total

ℓ.total

r.total

r.total

r.sum

maxx.sum =

Solutions → Kadane’s algorithm

1. Iterate through the array. For each number, add it to the sum
we are building.

2. If sum is smaller than the element value, we know it isn’t worth
keeping, so throw it away.

3. Update max (max subarray sum) every time we find a new
maximum.
KadaneAlgorithm(A[1 . . . n])

max← A[1]; sum← A[1]
for i← 2 to n do

// If sum is negative, throw it away. Otherwise, keep adding to it.
sum← Max(A[i], sum+A[i])
max← Max(max, sum)

return max

〈Time, Space〉 = 〈Θ (n) ,Θ (1)〉

Solutions → Kadane’s algorithm

As arr[i] > sum + arr[i], sum = arr[i]; As sum < max, max isn’t updated

sum max

−2 −2

−3 −2

44

3

Initialize sum & max to the first element

7

-2

i

Largest Subarray Sum

-2 14-3 -1 -35

-2 -2 14-3 -1 -35

-2 -2 14-3 -1 -35

-2 -2 14-3 -1 -35

-2 -2 14-3 -1 -35

-2 -2 14-3 -1 -35

-2 -2 14-3 -1 -35

1 4

42

4

7 7

74

As arr[i] > sum + arr[i], sum = arr[i]; As sum > max, max = sum

As arr[i] < sum + arr[i], sum += arr[i]; As sum < max, max isn’t updated

As arr[i] < sum + arr[i], sum += arr[i]; As sum > max, max = sum

As arr[i] < sum + arr[i], sum += arr[i]; As sum < max, max isn’t updated

As arr[i] < sum + arr[i], sum += arr[i]; As sum < max, max isn’t updated

As arr[i] < sum + arr[i], sum += arr[i]; As sum < max, max isn’t updated

i

i

i

i

i

i

Complexity

Algorithm Time Space
Brute force Θ

(
n3) Θ (1)

Optimized brute force Θ
(
n2) Θ (1)

Divide-and-conquer Θ (n logn) Θ (logn)
Improved divide-and-conquer Θ (n) Θ (logn)
Kadane’s algorithm Θ (n) Θ (1)

Loop in a Linked List HOME

Problem

You are given a singly linked list that may contain a loop. Your
task is to detect the presence of a loop in the linked list, and if
there exists a loop, then find the node where the loop begins
(intersection node), and calculate the length of the cycle.
Input: A singly linked list
Output: The following information should be returned:
Detection of loop: True if a loop is detected, false otherwise.
Intersection node: If a loop is detected, return the node where
the loop begins. If there is no loop, return null.
Length of the cycle: If a loop is detected, return the length of
the cycle. If there is no loop, return 0.

Problem

Input:
1 2 3 4 5

6

78

9

Output: (true, node 5, 5)

Solutions → Storing length

Step 1. Create and initialize variables:
curr: pointer to current node
prev: pointer to the previous node
currd: distance of the curr pointer from head
(distance is measured in the number of nodes)
prevd: distance of the prev pointer from head
Step 2. Repeat until the end of SLL is reached or currd < prevd
Move curr and prev pointers one node at a time
Update currd and prevd distances
Step 3. If curr reaches null, there is no loop
Step 4. If currd < prevd, there is a loop with:
Intersection node = curr
Loop length = prevd− currd+ 1

Solutions → Storing length
LoopInALinkedList(head)

// Step 1. Create and initialize variables
curr ← head; prev ← head; currd← 1; prevd← 0
// Step 2. Move curr and prev pointers by one unit until end of SLL is reached

or curr pointer is at a smaller distance than that of prev pointer from head
while curr 6= null and currd > prevd do
prev ← curr // previous pointer
prevd← currd // distance to previous pointer
curr ← curr.next // current pointer
currd← Distance(head, curr) // distance to current pointer

// Step 3. If curr = null, there is no loop
if curr = null then return (false, null, null)
// Step 4. If curr 6= null, there is a loop starting at node curr with a length

of prevd− currd+ 1
else return (true, curr, prevd− currd+ 1)

Distance(first, last)

// Find the number of nodes between first and last pointers
count← 1; current← first
while current 6= last do
count← count+ 1; current← current.next

return count

〈Time, Space〉 =
〈
O
(
n2
)
,O (1)

〉

Solutions → Storing length

6

7

89

10

Step 1

6

7

89

10

6

7

89

10

prevd = 0, currd = 1
Since prevd < currd,
continue

4

32

5

1 4

32

5

1

Step 2
prevd = 1, currd = 2
Since prevd < currd,
continue

4

32

5

1

Step 3
prevd = 2, currd = 3
Since prevd < currd,
continue

6

7

89

10

4

32

5

1

Step 4
prevd = 3, currd = 4
Since prevd < currd,
continue

6

7

89

10

4

32

5

1

Step 5
prevd = 4, currd = 5
Since prevd < currd,
continue

6

7

89

10

4

32

5

1

Step 6
prevd = 5, currd = 6
Since prevd < currd,
continue

Solutions → Storing length

6

7

89

10

Step 7

6

7

89

10

6

7

89

10

prevd = 6, currd = 7
Since prevd < currd,
continue

4

32

5

1 4

32

5

1

Step 8
prevd = 7, currd = 8
Since prevd < currd,
continue

4

32

5

1

Step 9
prevd = 8, currd = 9
Since prevd < currd,
continue

6

7

89

10

4

32

5

1

Step 10
prevd = 9, currd = 10
Since prevd < currd,
continue

6

7

89

10

4

32

5

1

Step 11

Since prevd > currd,
loop detected

prevd = 10, currd = 6

Solutions → Hashing

Use a hash map to keep track nodes visited.
Iterate through the linked list to check if node is present in the
hash map.
If found, there exists a loop else add node and its position to the
hash map.
The intersection node is identified as the first node already
present in the hash map.
As we’re already storing node positions {node number :
position} in the hash map, the length of the loop equals the
difference between the current node count and the value of the
first repeated node in the hash map.

Solutions → Hashing

LoopInALinkedList(head)

Create a hash map H
count← 0; curr ← head
// Traverse the singly linked list using the curr pointer
while curr 6= null do

// If curr node exists in the hash map, there is a loop
if H.Contains(curr) then
looplength← (count−H[curr])
return (true, curr, looplength)

// If curr node is visited for the first time, add it to the map
H.Add(curr, count)
count← count+ 1; curr ← curr.next

// If the end of the linked list is reached, there is no loop
return (false, null, null)

〈Time, Space〉 = 〈O (n) ,O (n)〉

Solutions → Hashing

6

7

89

10

Step 1
Since 1 is not in H,
Insert 1 in H and
continue

4

32

5

1

6

7

89

10

4

32

5

1

Step 4

Insert 4 in H and
continue

H: []

H: [1, 2, 3]

Since 4 is not in H,

6

7

89

10

4

32

5

1

Step 2

Insert 2 in H and
continue

6

7

89

10

4

32

5

1

Step 5

Insert 5 in H and
continue

H: [1]

H: [1, 2, 3, 4]

Since 2 is not in H,

Since 5 is not in H,

6

7

89

10

4

32

5

1

Step 3

Insert 3 in H and
continue

6

7

89

10

4

32

5

1

Step 6

Insert 6 in H and
continue

H: [1, 2]

H: [1, 2, 3, 4, 5]

Since 3 is not in H,

Since 6 is not in H,

Solutions → Hashing

6

7

89

10

Step 7

6

7

89

10

6

7

89

10

Since 7 is not in H,
Insert 7 in H and
continue

4

32

5

1 4

32

5

1

Step 8
Since 8 is not in H,
Insert 8 in H and
continue

4

32

5

1

Step 9
Since 9 is not in H,
Insert 9 in H and
continue

6

7

89

10

4

32

5

1

Step 10
Since 10 is not in H,
Insert 10 in H and
continue

6

7

89

10

4

32

5

1

Step 11

Loop detected
break

Since 6 is in H,

H: [1, 2, 3, 4, 5, 6] H: [1, 2, 3, 4, 5, 6, 7, 8] H: [1, 2, 3, 4, 5, 6, 7, 8, 9]

H: [1, 2, 3, 4, 5, 6, 7, 8, 9,10] H: [1, 2, 3, 4, 5, 6, 7, 8, 9,10]

Solutions → Slow and fast pointers

Step 1. Use two pointers to scan the linked list:
tortoise: slow pointer moves one node at a time
hare: fast pointer moves two nodes at a time
Step 2. Compare tortoise and hare each time
Step 3. If the end of the list is reached, then there is no loop
Step 4. If tortoise = hare, then there is a loop.
Now compute:
looplength: count the list length starting from and ending at
tortoise
intersection: start tortoise from head and hare from
looplength distance from head; advance both pointers one node
at a time until they meet; this node is the intersection node

Solutions → Slow and fast pointers

LoopInALinkedList(head)

// Step 1. tortoise and hare are slow and fast pointers, respectively
tortoise← head; hare← head
// Step 2. Scan the linked list and compare tortoise and hare
while hare 6= null and hare.next 6= null do
tortoise← tortoise.next
hare← hare.next.next
if tortoise = hare then break

// Step 3. If end of list is reached, there is no loop
if hare = null or hare.next = null then

return (false, null, null)
// Step 4. If tortoise = hare, there is a loop
looplength← Looplength(tortoise)
intersection← Intersection(head, looplength)
return (true, intersection, looplength)

〈Time, Space〉 = 〈O (n) ,O (1)〉

Solutions → Slow and fast pointers

Looplength(curr)

looplength← 1; loop← curr.next
while loop 6= curr do
loop← loop.next
looplength← looplength+ 1

return looplength
Intersection(head, looplength)

tortoise← head; hare← head
// hare starts from looplength distance from head
while looplength > 0 do
hare← hare.next
looplength← looplength− 1

// Advance both pointers and compare until match
while tortoise 6= hare do
hare← hare.next
tortoise← tortoise.next

// Meeting node is the intersection node
return tortoise

Solutions → Slow and fast pointers

6

7

Step 1

6 6

Begin traversal,
tortoise increment by 1
hare increment by 2

4

32

5

4

32

5

1

Step 2

4

32

5

1

Step 3
Since hare ̸= tortoise, Since hare ̸= tortoise,

1

tortoise increment by 1
hare increment by 2

tortoise increment by 1
hare increment by 2

8

9 7

8

9 7

8

9

6

4

32

5

1

Step 4

6

4

32

5

1

Step 5

6

4

32

5

1

Step 6
Since hare ̸= tortoise,Since hare ̸= tortoise,Since hare ̸= tortoise,
tortoise increment by 1
hare increment by 2

tortoise increment by 1
hare increment by 2

tortoise increment by 1
hare increment by 2

7

8

9 7

8

9 7

8

9

Solutions → Slow and fast pointers

6

Step 7

6 6

Since hare ̸= tortoise,
tortoise increment by 1
hare increment by 2

4

32

5

4

32

5

1

Step 8

4

32

5

1

Step 9
Since hare ̸= tortoise, Since hare = tortoise,
tortoise increment by 1
hare increment by 2

loop detected
break

1

7

8

9 7

8

9

8

6

Step 7

6 6

Since hare ̸= tortoise,
tortoise increment by 1
hare increment by 2

4

32

5

4

32

5

1

Step 8

4

32

5

1

Step 9
Since hare ̸= tortoise, Since hare = tortoise,
tortoise increment by 1
hare increment by 2

loop detected
break

7

8

9 7

8

9

8

9 7

79

Solutions → Slow and fast pointers alternative

This algorithm is identical to the previous algorithm, except that
We check in each of the two steps of hare if it meets tortoise,
to avoid hare jumping the tortoise

Solutions → Slow and fast pointers alternative

LoopInALinkedList(head)

// Step 1. tortoise and hare are slow and fast pointers, respectively
tortoise← head; hare← head
// Step 2. Scan the linked list and compare tortoise and hare
while hare 6= null and hare.next 6= null do
tortoise← tortoise.next
hare← hare.next
if tortoise = hare then break
hare← hare.next
if tortoise = hare then break

// Step 3. If the end of the list is reached, there is no loop
if hare = null or hare.next = null then

return (false, null, null)
// Step 4. If tortoise = hare, there is a loop
looplength← Looplength(tortoise)
intersection← Intersection(head, looplength)
return (true, intersection, looplength)

〈Time, Space〉 = 〈O (n) ,O (1)〉

Solutions → Brent’s algorithm

Step 1. Use two pointers to scan the linked list:
tortoise: slow pointer transports directly to fast pointer position
hare: fast pointer moves steps nodes at a time
where, steps is initially 2
Step 2. Compare tortoise and hare for each step of hare until steps
Increase steps to F(steps) (Brent used F(x) = 2x)
tortoise transports directly to hare position
Step 3. If the end of the list is reached, then there is no loop
Step 4. If tortoise = hare, then there is a loop.
Now compute looplength and intersection as before

Solutions → Brent’s algorithm
LoopInALinkedList(head)

// Step 1. tortoise and hare are slow and fast pointers, respectively
tortoise← head; hare← head; steps← 1
// Step 2. Scan the linked list and compare tortoise and hare. Advance

hare by F(steps) at a time and tortoise to hare position.
while true do

for i← 1 to steps do
if hare = null then break
hare← hare.next
if hare = tortoise then break

if hare = null or hare = tortoise then break
tortoise← hare // transport tortoise to hare
steps← F(steps) // update steps

// Step 3. If the end of the list is reached, there is no loop
if hare = null then return (false, null, null)
// Step 4. If hare = tortoise, there is a loop
looplength← Looplength(tortoise)
intersection← Intersection(head, looplength)
return (true, intersection, looplength)

〈Time, Space〉 = 〈O (n) ,O (1)〉

Solutions → Brent’s algorithm

6

7

89

10

Step 1

6

7

89

10

6

7

89

10

Begin traversal,
steps← 2
hare← hare.next

4

32

5

4

32

5

1

Step 2

4

32

5

1

Step 3

6

7

89

10

4

2

5

1

Step 4

6

7

89

10

4

32

5

1

Step 5

6

7

89

10

4

32

5

1

Step 6

steps traversed = 1, Since steps are done,

steps traversed = 2,steps traversed = 1,Restart traversal,

1

Since hare ̸= tortoise,
hare← hare.next

tortoise← hare
step = 2 ∗ step = 4

Since hare ̸= tortoise,
hare← hare.next

Since hare ̸= tortoise,
hare← hare.next

steps← 4
hare← hare.next

3

Solutions → Brent’s algorithm

6

7

89

10

Step 7

6

7

89

10

6

89

10

steps traversed = 3,
Since hare ̸= tortoise,
hare← hare.next

4

32

5

4

32

5

1

Step 8

4

32

5

1

Step 9

6

7

89

10

4

2

5

1

Step 10

6

7

89

10

4

32

5

1

Step 11

6

7

89

10

4

32

5

1

Step 12

Since steps are done, Restart traversal,

steps traversed = 3,steps traversed = 2,steps traversed = 1,

tortoise← hare
step = 2 ∗ step = 8

steps← 4
hare← hare.next

Since hare ̸= tortoise,
hare← hare.next

Since hare ̸= tortoise,
hare← hare.next

Since hare ̸= tortoise,
hare← hare.next

1

7

3

Solutions → Brent’s algorithm

6

7

89

10

Step 13

6

89

10

6

89

10

steps traversed = 4,
Since hare ̸= tortoise,
hare← hare.next

4

32

5

4

32

5

1

Step 14

4

32

5

1

Step 9

6

7

89

10

4

2

5

1

Step 10

6

7

89

10

4

32

5

1

Step 11

6

7

89

10

4

32

5

1

Step 12

Since hare = tortoise, Restart traversal,

steps traversed = 3,steps traversed = 2,steps traversed = 1,

loop detected
break

steps← 4
hare← hare.next

Since hare ̸= tortoise,
hare← hare.next

Since hare ̸= tortoise,
hare← hare.next

Since hare ̸= tortoise,
hare← hare.next

1

7

3

7

Complexity

Algorithm Time Extra space
Storing length O

(
n2) O (1)

Hashing O (n) O (n)
Slow-fast pointers O (n) O (1)
Slow-fast pointers alternative O (n) O (1)
Brent’s algorithm O (n) O (1)

Y-shaped Linked List HOME

Problem

There are two singly linked lists of sizes m and n, respectively.
Due to some error, the two linked lists are connected in Y-shape.
Design an efficient algorithm to determine the point of
intersection of the two lists given their head nodes i.e., head1
and head2.

Solutions → Brute force

1. Run two nested loops. One loop for list 1 and another for list 2.
2. If the two pointers match then that is the intersection node. Else

return null.
YShapedLinkedList-BruteForce(head1, head2)

pointer1← head1
// Outer loop for nodes in list 1
while pointer1 6= null do
pointer2← head2
// Inner loop for nodes in list 2
while pointer2 6= null do

// First time the two pointers are the same is the intersection
if pointer1 = pointer2 then

return pointer1
pointer2← pointer2.next()

pointer1← pointer1.next()
return null

〈Time, Space〉 = 〈O (mn) ,Θ (1)〉

Solutions → Two stacks
1. Store all nodes of list 1 in stack 1 and list 2 in stack 2
2. Pop the same node pointers from both stacks until the pointers are different
3. The last same node reference is the intersecting node

YShapedLinkedList-TwoStacks(head1, head2)

Create two stacks S1 and S2
ptr1← head1; ptr2← head2; result← null

// Store all nodes of list 1 in stack 1 and list 2 in stack 2
while ptr1 6= null do { S1.Push(ptr1); ptr1← ptr1.next }
while ptr2 6= null do { S2.Push(ptr2); ptr2← ptr2.next }
// If the two stack tops are different then there is no intersection
if S1.Top() 6= S2.Top() then return null
// Keep popping the same node references from the two stacks, the last

node reference that is same is the intersection node
while S1 is not empty and S2 is not empty and S1.Top() = S2.Top() do
{ result← S1.Pop(); S2.Pop() }

// Return the intersecting node
return result

〈Time, Space〉 = 〈Θ (m+ n) ,Θ (m+ n)〉

Solutions → Hashset

1. Store every node reference of list 1 in a hashset
2. Scan each node reference of list 2 and check if it exists in the

hashset
YShapedLinkedList-Hashset(head1, head2)

pointer1← head1; pointer2← head2
Create a hashset H to store node references
// Store every node reference of list 1 in a hashset
while pointer1 6= null do
H.Add(pointer1)
pointer1← pointer1.next()

// Scan each node pointer of list 2 and check if it exists in the hashset
while pointer2 6= null do

if H.ContainsKey(pointer2) then
return pointer2

pointer2← pointer2.next()
return null

〈Time, Space〉 = 〈O (m+ n) ,Θ (m)〉

Solutions → Difference count
1. Find the difference diff in the lengths of the lists.

This is the length of the bottom portion of Y.
2. Advance the pointer of the longer list by diff
3. Now move pointers of both longer and shorter one node at a time until there

the intersection node is found. Else return null

YShapedLinkedList-DifferenceCount(head1, head2)

// Find the difference in the lengths of the lists. Determine which list is
longer and set the longer and shorter lists accordingly

m← ComputeLength(head1); n← ComputeLength(head2)
if m > n then { diff ← m− n; longer ← head1; shorter ← head2 }
else { diff ← n−m; longer ← head2; shorter ← head1 }
// Advance the pointer of the longer list by the difference in lengths
for i← 1 to diff do longer ← longer.next()
// Iterate through both lists until the pointers meet at the merge point
while longer 6= shorter do
longer ← longer.next(); shorter ← shorter.next()

return longer

〈Time, Space〉 = 〈Θ (m+ n) ,Θ (1)〉

Solutions → Loop in a linked list

1. Traverse the first linked list, count the elements, and make a
circular linked list. Remember the last node so that we can
break the circle later on.

2. Transformed problem: Finding the loop in the second linked list.
3. Since we already know the length of the loop (size of the first

linked list), we can traverse those many nodes in the second
list. Then, start another pointer from the beginning of the
second list and traverse until they are equal, which is the
required intersection point.

4. Remove the circular structure from the linked list.

Solutions → Loop in a linked list

A1

A2

A3

C1

C2

C3

C4

C5

B6

B5

B4

B3

B2

B1

Length of the first list = length of the loop = 8
pointer1 (at C3) is 8 steps ahead of pointer2 (at B1)

A1

A2

A3

C1

C2

C3

C4

C5

B6

B5

B4

B3

B2

B1

Step 1

Step 4

A1

A2

A3

C1

C2

C3

C4

C5

B6

B5

B4

B3

B2

B1

Step 2

A1

A2

A3

C1

C2

C3

C4

C5

B6

B5

B4

B3

B2

B1

Step 3

Solutions → Loop in a linked list

A1

A2

A3

C1

C2

C3

C4

C5

B6

B5

B4

B3

B2

B1

Step 5

A1

A2

A3

C1

C2

C3

C4

C5

B6

B5

B4

B3

B2

B1

Intersection found!

Step 7

A1

A2

A3

C1

C2

C3

C4

C5

B6

B5

B4

B3

B2

B1

Step 6

Solutions → Loop in a linked list

YShapedLinkedList-LoopInALinkedList(head1, head2)

pointer1← head1; pointer2← head2; lastnode← null

// Traverse the first linked list and make it circular
length1← 0
while pointer1.next 6= null do
pointer1← pointer1.next; length1← length1 + 1

lastnode← pointer1; pointer1.next← head1
// Set one of the pointers ahead
pointer1← head2
while length1 > 0 do
pointer1← pointer1.next; length1← length1− 1

// Traverse until they are equal, which is the intersection point
while pointer1 6= pointer2 do
pointer1← pointer1.next; pointer2← pointer2.next

// Remove the circular structure from the linked list
lastnode.next← null
return pointer1

〈Time, Space〉 = 〈Θ (m+ n) ,Θ (1)〉

Solutions → System of linear equations

Let
X = length of the first list until the intersection point
Y = length of the second list until the intersection point
Z = length from intersection node (inclusive) to the last node

1. Traverse the second list and find length L2
2. Traverse the first list and reverse it and find length L1
3. Traverse the new second list and find length L3
4. We have system of 3 equations and 3 unknowns. Solve:

X + Z = L1; Y + Z = L2; X + Y = L3
5. We get:

X = 1
2 ·(L1+L3−L2); Y = 1

2 ·(L2+L3−L1); Z = 1
2 ·(L1+L2−L3)

6. Find the intersection node by traversing from the new second list by Y steps
7. Reverse the first linked list (if required)

Solutions → System of linear equations

L1 L2

L3

Reversing List 1

Solutions → System of linear equations

X

Y

Reversing List 1

Z

Based on L1, L2 and L3,
compute X, Y and Z

Solutions → System of linear equations

YShapedLinkedList-LinearEquations(head1, head2)

// Compute the length of the second and first linked lists
L1 ← GetLinkedListLength(head1)
L2 ← GetLinkedListLength(head2)
// Reverse first linked list and compute L3
reversedhead1← ReverseLinkedList(head1)
L3 ← GetLinkedListLength(head2)
// Solve the equations for X, Y , and Z
X = 1

2 · (L1 +L3−L2);Y = 1
2 · (L2 +L3−L1);Z = 1

2 · (L1 +L2−L3)
// Traverse the second linked list to the intersection point and return
answer ← head2
for i← 1 to Y do answer ← answer.next

// Restore first linked list by reversing it again
head1← ReverseLinkedList(reversedhead1)
return answer

〈Time, Space〉 = 〈Θ (m+ n) ,Θ (1)〉

Solutions → System of linear equations

GetLinkedListLength(head)

L← 0; pointer ← head
while pointer 6= null do
L← L+ 1; pointer ← pointer.next

return L
ReverseLinkedList(head)

current← head; previous← null; nextcurrent← null
// Iterate through the list and reverse pointers
while current 6= null do
nextcurrent← current.next
current.next← previous
previous← current
current← nextcurrent

return previous

Solutions → Two pointers
1. Scan list 1 using pointer1. Scan list 2 using pointer2.
2. If pointer1 reaches list 1 end, then start from list 2. If pointer2 reaches list

2 end, then start from list 1.
3. At any moment, when the two node references are same, it is the intersection

node. Else, return null.

YShapedLinkedList-TwoPointers(head1, head2)

pointer1← head1; pointer2← head2
// If one of the lists is empty, then there is no intersection node
if pointer1 = null or pointer = null then return null
// Traverse the lists until the intersection node is found
while pointer1 6= pointer2 do
pointer1← pointer1.next(); pointer2← pointer2.next()
if pointer1 = pointer2 then return pointer1
// If a pointer reaches its list end, then start from other list
if pointer1 = null then pointer1← head2
if pointer2 = null then pointer2← head1

return pointer1

〈Time, Space〉 = 〈O (m+ n) ,Θ (1)〉

Solutions → Two pointers

A1

A2

A3

C1

C2

C3

C4

C5

B6

B5

B4

B3

B2

B1

Step 1

A1

A2

A3

C1

C2

C3

C4

C5

B6

B5

B4

B3

B2

B1

Step 6

A1

A2

A3

C1

C2

C3

C4

C5

B6

B5

B4

B3

B2

B1

Step 3

A1

A2

A3

C1

C2

C3

C4

C5

B6

B5

B4

B3

B2

B1

Step 2

A1

A2

A3

C1

C2

C3

C4

C5

B6

B5

B4

B3

B2

B1

Step 4

A1

A2

A3

C1

C2

C3

C4

C5

B6

B5

B4

B3

B2

B1

Step 5

Solutions → Two pointers

A1

A2

A3

C1

C2

C3

C4

C5

B6

B5

B4

B3

B2

B1

Step 7

A1

A2

A3

C1

C2

C3

C4

C5

B6

B5

B4

B3

B2

B1

Step 12

A1

A2

A3

C1

C2

C3

C4

C5

B6

B5

B4

B3

B2

B1

Step 9

A1

A2

A3

C1

C2

C3

C4

C5

B6

B5

B4

B3

B2

B1

Step 8

A1

A2

A3

C1

C2

C3

C4

C5

B6

B5

B4

B3

B2

Step 10

B1 A1

A2

A3

C1

C2

C3

C4

C5

B6

B5

B4

B3

B2

B1

Step 11

Solutions → Two pointers

A1

A2

A3

C1

C2

C3

C4

C5

B6

B5

B4

B3

B2

B1 A1

A2

A3

C1

C2

C3

C4

C5

B6

B5

B4

B3

B2

B1

Step 13 Step 14

A1

A2

A3

C1

C2

C3

C4

C5

B6

B5

B4

B3

B2

B1

Step− 10

A1

A2

A3

C1

C2

C3

C4

C5

B6

B5

B4

B3

B2

B1

Step− 15

Intersection found!

A1

A2

A3

C1

C2

C3

C4

C5

B6

B5

B4

B3

B2

B1

Step− 12

Complexity

Algorithm Time Extra Space
Brute force O (mn) Θ (1)
Two stacks Θ (m+ n) Θ (m+ n)
Hashset O (m+ n) Θ (m)
Difference count Θ (m+ n) Θ (1)
Loop in a linked list Θ (m+ n) Θ (1)
Linear equations Θ (m+ n) Θ (1)
Two pointers O (m+ n) Θ (1)

Search Sorted Matrix HOME

Problem

Search if an element k exists in a m× n sorted matrix
A[1 . . .m, 1 . . . n].
If the element k exists, then return the location (i.e., row and
column) of one cell whose value is k
Input: Sorted matrix A of size m× n
Output: Location where k exists, −1 otherwise.

Solutions → Linear search

SearchInSortedMatrix(A[1 . . .m, 1 . . . n], k)

for i← 1 to m do
for j ← 1 to n do

if A[i, j] = k then
return (i, j)

return −1

〈Time, Space〉 = 〈O (mn) ,Θ (1)〉

Solutions → D&C

Core idea

Step 1. Select the mid element
Step 2. We get 3 cases:
Case 0: mid element = k
Case 1: mid element > k
Case 2: mid element < k

Step 3. Eliminate a quadrant in Cases 1 and 2 and recurse

Solutions → D&C

Case 1: mid element > k
Suppose mid element = 50 and k = 30

50

I II

III IV

k can’t be in quadrant IV
Search for k in quadrants I, II, and III

Solutions → D&C

Case 2: mid element < k
Suppose mid element = 50 and k = 70

50

I II

III IV

k can’t be in quadrant I
Search for k in quadrants II, III, and IV

Solutions → D&C
SearchInSortedMatrix(A[1 . . .m, 1 . . . n], k)

return D&C(A[1 . . .m, 1 . . . n], k)
D&C(A[r` . . . rh, c` . . . ch], k)

if r` > rh or c` > ch then return −1
rm ← (r` + rh)/2; cm ← (c` + ch)/2
if A[rm, cm] = k then return (rm, cm)
// In this case, element is definitely not in the fourth quadrant
else if A[rm, cm] > k then

return
D&C(A[r` . . . rm − 1, c` . . . cm − 1], k) or // first quadrant
D&C(A[r` . . . rm−1, cm . . . ch], k) or // second quadrant
D&C(A[rm . . . rh, c` . . . cm − 1], k) or // third quadrant

// In this case, element is definitely not in the first quadrant
else if A[rm, cm] < k then

return
D&C(A[r` . . . rm, cm + 1 . . . ch], k) or // second quadrant
D&C(A[rm+1 . . . rh, c` . . . cm], k) or // third quadrant
D&C(A[rm + 1 . . . rh, cm + 1 . . . ch], k) or // fourth quadrant

〈Time, Space〉 =
〈
O
(
min(m,n)log2 3

)
,O (log max(m,n))

〉

Solutions → D&C improved

Core idea
Step 1. Select the mid-row
Step 2. Do a binary search in the mid-row for the largest index
index such that the array element at that index is not greater
than k
Step 3. We get 3 cases:
Case 1: there is no such index
Case 2: element (at index) = k
Case 3: element (at index) < k

Step 4. Do the following:
Case 1: search the upper rectangle recursively
Case 2: return the location
Case 3: search the second and third regions recursively

In Cases 1 and 3, we eliminate at least half of the elements

Solutions → D&C improved

Case 1: there is no index
i.e., suppose the first element in the mid row is 70,
which is greater than k = 50

70

Upper half

Lower half

k can’t be in the lower half
Search for k in the upper half
Area of lower half is > 50%

Solutions → D&C improved

Case 3: element < k
Suppose element = 30, next element = 70, and k = 50

70

I II

III
IV

30

k can’t be in regions I and IV
Search for k in regions II and III

Combined area of regions I and IV is > 50%

Solutions → D&C improved

-2

k = 10

Binary search row

1

2

3

4

5

6

7

8

9

10

11

11

12

15

19

2216

13

21

14

23

17

26

24

30

1

2

3

4

5

6

7

8

9

10

11

11

12

15

19

2216

13

21

14

23

17

26

24

30

k not found,

1

2

3

4

5

6

7

8

9

10

11

11

12

15

19

2216

13

21

14

23

17

26

24

30

9 is max element < k,
16 is min element > k

Eliminating red zones,
Recursively searching white top-right

and bottom-left sub-matrices

Solutions → D&C improved

SearchInSortedMatrix(A[1 . . .m, 1 . . . n], k)

return D&C-Improved(A[1 . . .m, 1 . . . n], k)
D&C-Improved(A[r` . . . rh, c` . . . ch], k)

if c` > ch or r` > rh then return −1
// Binary search returns the largest index j in [c` . . . ch] for which

A[rm, j] ≤ k. If no such index exists, it returns −1
rm ← (r` + rh)/2
j ← BinarySearch(A[rm, c` . . . ch])
if j = −1 then

return D&C-Improved(A[r` . . . rm − 1, c` . . . ch], k) // upper half
else if A[rm, j] = k then

return (rm, j)
else if A[rm, j] < k then

return
D&C-Improved(A[r` . . . rm − 1, j + 1 . . . ch], k) or // region II
D&C-Improved(A[rm + 1 . . . rh, c` . . . j], k) // region III

〈Time, Space〉 = 〈O (m logn) ,O (logm)〉

Solutions → Binary search

Element found!

-10 -7 -4 -2

j

1

-8 -3 3

4

-2

-2

-2

-1-5

-5 -3 0 5

-1 1 3 6

0

3

5

52 4 7

7 98

6 9 10 11

10 12 15 17 20

-10 -7 -4 -2 1

-8 -3 3

4

-2

-2

-1-5

-5 -3 0 5

-1 1 3 6

0

3

5

52 4 7

7 98

6 9 10 11

10 12 15 17 20

-10 -7 -4 -2 1

-8 -3 3

4

-2

-2

-1-5

-5 -3 0 5

-1 1 3 6

0

3

5

52 4 7

7 98

6 9 10 11

10 12 15 17 20

-10 -7 -4 -2 1

-8 -3 3

4

-2

-2

-1-5

-5 -3 0 5

-1 1 3 6

0

3

5

52 4 7

7 98

6 9 10 11

10 12 15 17 20

j j j

k = 8
columns < # rows, so binary search on each column

Solutions → Binary search

Perform a binary search for k in each row or column
SearchInSortedMatrix(A[1 . . .m, 1 . . . n], k)

// #rows < #columns
if m < n then

for i← 1 to m do
j ← BinarySearch(A[i, 1 . . . n], k)
if j 6= −1 then return (i, j)

// #columns ≤ #rows
else

for j ← 1 to n do
j ← BinarySearch(A[1 . . .m, j], k)
if j 6= −1 then return (i, j)

return −1

〈Time, Space〉 = 〈O (min(m,n) log max(m,n)) ,Θ (1)〉

Solutions → Decrease-and-conquer

Core idea

Step 1. Select the top-right element
Step 2. We get 2 cases:
Case 0: element = k
Case 1: element > k
Case 2: element < k

Step 3.
If Case 1, select the left element, and repeat Step 2
If Case 2, select the down element, and repeat Step 2

Solutions → Decrease-and-conquer

SearchInSortedMatrix(A[1 . . .m, 1 . . . n], k)

// Start from the top right element
row ← 1; col← n

while row ≤ m and col ≥ 1 do
if A[row, col] = k then

return (row, col)
// In this case, go left as column col (down elements) can’t have k
else if k < A[row, col] then
col← col − 1

// In this case, go down as row row (left elements) can’t have k
else if k > A[row, col] then
row ← row + 1

return −1

〈Time, Space〉 = 〈O (m+ n) ,Θ (1)〉

Solutions → Decrease-and-conquer

-2

k = 10
Starting from top right

Element found!

1

2

3

4

5

6

7

8

9

10

11

11

12

15

19

2216

13

21

14

23

17

26

24

30

Solutions → Decrease-and-conquer

Can we start from any corner?
No!
We can start from
top-right (and go left or down)
bottom-left (and go up or right)

We cannot start from
top-left (and go right or down)
bottom-right (and go left or up)

Why can’t we start from top-left or bottom-right?

Complexity

Algorithm Time Space
Linear search O (mn) Θ (1)
D&C O

(
min(m,n)log 3

)
O (log max(m,n))

Improved D&C O (m logn) O (logm)
Binary search O (min(m,n) log max(m,n)) Θ (1)
Decrease-and-conquer O (m+ n) Θ (1)

First Missing Positive HOME

Problem

Given an array A[1 . . . n] of unique integers, design an efficient
approach to find the smallest missing natural number.
Input: [2,−9, 5, 11, 1,−10, 7]
Output: 3
Extension: What if we allow duplicates or repetitions?

Solutions → Brute force 1

1. Check if i is missing in the array A[1 . . . n] for i ∈ [1 . . . n]
2. Stop and return the smallest such i, otherwise return n+ 1

FirstMissingPositive-BruteForce1(A[1 . . . n])

// Check if the any natural number from 1 to n is missing
for i← 1 to n do
imissing ← true
// Iterate over the array to check if the natural number exists
for j ← 1 to n do

// If i is found then break
if i = A[j] then
imissing ← false
break

// Missing value found
if imissing = true then

return i
return n+ 1

〈Time, Space〉 =
〈
O
(
n2
)
,Θ (1)

〉

Solutions → Brute force 2

1. Create an empty sorted set S to add all natural numbers from array
2. Check if i is missing in the array A[1 . . . n] for i ∈ [1 . . . n]
3. Stop and return the smallest such i, otherwise return n+ 1

FirstMissingPositive-BruteForce2(A[1 . . . n])

// Create a sorted set to store the natural numbers
Create an empty sorted set S using a balanced search tree
for i← 1 to n do

if A[i] > 0 then
S.Add(A[i])

// Find the first missing natural number from A[1 . . . n] using S
for i← 1 to n do

if S does not contain i then
return i

return n+ 1

〈Time, Space〉 = 〈O (n logn) ,O (n)〉

Solutions → Scan

1. Sort the input array in-place to skip non-natural numbers
2. Check if i is missing in the array A[1 . . . n] for i ∈ [1 . . . n]
3. Stop and return the smallest such i, otherwise return n+ 1

FirstMissingPositive-Scan(A[1 . . . n])

// Sort the array in-place
Sort(A[1 . . . n])
// Skip negative numbers and zero from the array
index← 1
while A[index] < 1 do index← index+ 1
i← 1
// Find the missing natural number from the sorted input array
for j ← index to n do

if A[j] = i then i← i+ 1
else if A[j] > i then
return i

return i

〈Time, Space〉 = 〈O (n logn) ,Θ (1)〉

Solutions → In-place hashing

1. Use i ∈ [1 . . . n] of the same array to mark the presence of the numbers
2. If A[i] is a natural number and i ≤ n, swap & place it in A[A[i]]
3. Stop and return smallest i where A[i] 6= i, otherwise return n+ 1

FirstMissingPositive-InPlaceHashing(A[1 . . . n])

// Swap natural number A[i] to A[i]th index if A[i] ∈ [1 . . . n]
for i← 1 to n do

while A[i] ≥ 1 and A[i] ≤ n and A[i] 6= A[A[i]] do
Swap(A[i],A[A[i]])

// Find the first natural number that is not A[i] 6= i in A[1 . . . n]
for i← 1 to n do

if A[i] 6= i then
return i

return n+ 1

〈Time, Space〉 = 〈Θ (n) ,Θ (1)〉

Solutions → In-place hashing

−4 −1

1 2 3 4 5 6 7 8

4

4

6

6

2

2

1 8

8

3

3 −1−41

4 62 83 −1−41

A

A

A

A[1 . . . n]

For each i ∈ [1, n], do this in a loop.

Return the first i which is not equal to A[i]

That is, return 5

5

If A[i] ∈ [1, n] and A[i] 6= A[A[i]], then Swap(A[i],A[A[i]])

Solutions → In-place hashing

−4 3 1 8

8

2 6 −1 4A

1 2 3 4 86 75

−4 3 1 8 2 6 −1 4A

i = 1; A[i] 6∈ [1, n], so do nothing

i = 2; A[i] ∈ [1, n] and A[i] 6= A[A[i]], so Swap(A[i], A[A[i]])

−4 1 3 8 2 6 −1 4A

i = 3; A[i] ∈ [1, n] but A[i] = A[A[i]], so do nothing

i = 2; A[i] ∈ [1, n] and A[i] 6= A[A[i]], so Swap(A[i], A[A[i]])

1 −4 3 8 2 6 −1 4 i = 2; A[i] 6∈ [1, n], so do nothingA

3 2 6 −1A 1 −4

3 8 2 6 −1 4A 1 −4

3 8 2 6 −1 4A 1 −4

i = 4; A[i] ∈ [1, n] and A[i] 6= A[A[i]], so Swap(A[i], A[A[i]])

3 4 2 6 −1 8A 1 −4 i = 4; A[i] ∈ [1, n] but A[i] = A[A[i]], so do nothing

4 8 i = 5; A[i] ∈ [1, n] and A[i] 6= A[A[i]], so Swap(A[i], A[A[i]])

3 −4 6 −1A 1 2 4 8 i = 5; A[i] 6∈ [1, n], so do nothing

3 6 −1A 1 4 82 −4

3 6 −1A 1 4 82 −4

3 6 −1A 1 4 82 −4

i = 7; A[i] 6∈ [1, n], so do nothing

i = 6; A[i] ∈ [1, n] but A[i] = A[A[i]], so do nothing

i = 8; A[i] ∈ [1, n] but A[i] = A[A[i]], so do nothing

Solutions → Hash table

1. Insert all the array numbers in a hashtable H
2. Find the first natural number i that is not present in H

FirstMissingPositive-HashTable(A[1 . . . n])

// Create a HashTable to store the natural numbers
Create a HashTable H
for i← 1 to n do H[A[i]]← true
// Find the first missing natural number from A[1 . . . n] using H
for i← 1 to n+ 1 do

if H does not contain i then
return i

〈Time, Space〉 = 〈O (n) ,O (n)〉

This Solution Might Not Always Work. Why?

Complexity

Algorithm Time Space
Brute Force 1 O

(
n2) Θ (1)

Brute Force 2 O (n logn) O (n)
Scan O (n logn) Θ (1)
In-Place Hashing Θ (n) Θ (1)
In-Place Hashing & Partition Θ (n) Θ (1)

Celebrity Problem HOME

Problem

The knowledge of n guests in a party is represented by a binary
matrix M [1 . . . n, 1 . . . n], where M [i, j] = 1 means that person i
knows person j. Given this binary matrix, find a celebrity if there
exists a celebrity, where, a celebrity is a person who is known by
everyone and doesn’t know anyone.
If there are multiple celebrities, return any one celebrity.
(Prove that there cannot be more than one celebrity)
If there are no celebrities, return −1.
Input:
i : j 1 2 3
1 0 1 1
2 0 0 0
3 1 1 0

Output: 2

Core idea (take-home lesson)

i knows j, i.e., M [i, j] = 1

i is not a celebrity

j is a potential celebrity

i doesn’t know j, i.e., M [i, j] = 0

j is not a celebrity

i is a potential celebrity

Solutions → Brute force

1. We iterate over each person and check if they are a celebrity.
2. The inner for loop determines whether a person is a celebrity by verifying if

they are known by everyone and don’t know anyone.

FindCelebrity-BruteForce(M [1 . . . n, 1 . . . n])

for i← 1 to n do
iscelebrity ← true // assume person i is a celebrity
for j ← 1 to n do

// Skip self
if i = j then continue
// Check if person i knows j or if person j doesn’t know i
if M [i, j] = 1 or M [j, i] = 0 then
iscelebrity ← false
break

if iscelebrity then
return i

return −1

〈Time, Space〉 =
〈
O
(
n2
)
,Θ (1)

〉

Solutions → Graph

Indegree of person i is the number of people who know i
Outdegree of person i is the number of people i knows
We calculate the indegree and outdegree for each person based
on their relationships in M .
Next, we iterate through the guests to find the celebrity, i.e., a
person who has an indegree of n− 1 (knows everyone except
self) and an outdegree of 0 (is not known by anyone).

Solutions → Graph

FindCelebrity(M [1 . . . n, 1 . . . n])

// Step 1. Calculate outdegree and indegree of each node
outdegree[1 . . . n]← [0 . . . 0]; indegree[1 . . . n]← [0 . . . 0]
for i← 1 to n do

for j ← 1 to n do
// As i knows j, increment outdegree of i and indegree of j
if M [i, j] = 1 then
outdegree[i]← outdegree[i] + 1
indegree[j]← indegree[j] + 1

// Step 2. Finding the celebrity
for i← 1 to n do

if outdegree[i] = 0 and indegree[i] = n− 1 then
return i // celebrity found

return −1

〈Time, Space〉 =
〈

Θ
(
n2
)
,Θ (n)

〉

Solutions → Graph

1

2

3

1 2 3

1

1

1

0 0 0

01 0

1

2

3

1 2 3

1

1

1

0 0 0

0

0

1

1

2

3

1 2 3

1

1

1

0 0 0

00

0

0

1

2

3

1 2 3

1

1

1

0 0 0

00

0

1

2

3

1 2 3

1

1

1

0 0

01

0

0

1

2

3

1 2 3

1

1

1

0

01

0

0 0

1

2

3

1 2 3

1

1

1

01

0

0 0 0

1

2

3

1 2 3

1

1

1

0

0

0 0 0

1

1

2

3

1 1

0

0

0 0 0

1 1

1

2

3

1 2 3

1 10

0 0 0

1 1 0

M outdegree indegree

0

0

0

0

0

M outdegree indegree M outdegree indegree

0

0

0

0

0

0

1

0

0 0

1

0

0

1

10

2

0

0

1

10

2

0

0

1

10

2

0

0

1

10

2

0

1

12

0

1 1

2

0

2 1

2

1

2

0

2 1

2

1

outdegree indegree

2

0

2 1

11

2

3

Celebrity

2

Solutions → Recursion

The algorithm recursively finds a potential celebrity in the first
n− 1 elements of the matrix M .
It checks the base case to return 1 when n is 1, indicating that
the only person is the celebrity.
If no celebrity is found in the first n− 1 person, it considers n as
the potential celebrity.
It checks if the potential celebrity knows person n− 1. If yes,
n− 1 is the celebrity.
If the potential celebrity doesn’t know person n− 1, the
previously found celebrity(id) is the celebrity.
The wrapper function ensures that the potential celebrity is a
real celebrity based on the matrix M .

Solutions → Recursion

FindCelebrity(M [1 . . . n, 1 . . . n])

// Step 1. Find the celebrity candidate
candidate← FindPotentialCelebrity(M,n)
if candidate = −1 then

return −1 // no celebrity found
// Step 2. Check if the candidate is a celebrity
outdegree← 0; indegree← 0
for i← 1 to n do

if i 6= candidate then
outdegree← outdegree+M [candidate, i]
indegree← indegree+M [i, candidate]

if outdegree = 0 and indegree = n− 1 then
return candidate

return −1 // no celebrity found

〈Time, Space〉 = 〈Θ (n) ,Θ (n)〉

Solutions → Recursion

FindPotentialCelebrity(M [1 . . . n, 1 . . . n],m)

if m = 0 then return −1
// Recursively find celebrity in the first m− 1 persons
candidate← FindPotentialCelebrity(M,m− 1)
// If there is no candidate in the first m− 1 people, m is the new candidate
if candidate = −1 then return m
// If candidate knows m person, then m is the new candidate
if M [candidate,m] = 1 then return m
// If m knows candidate, then candidate is the new candidate
if M [m, candidate] = 1 then return candidate
return −1

Solutions → Recursion

1

1

1

0 0 0

00

0

M
0

0

0

1 01 0

N = 4

FindPotentialCelebrity(M, 4)

FindPotentialCelebrity(M, 3)

FindPotentialCelebrity(M, 2)

FindPotentialCelebrity(M, 1)

FindPotentialCelebrity(M, 0)
Base case
Exiting with −1

candidate = −1, so exiting with m = 1

candidate ̸= −1

M [m, candidate] = M [3, 2] = 1, so exiting with m = 2

M [m, candidate] = M [4, 2] = 1, so exiting with m = 2

Potential celebrity is 2

M [candidate,m] = M [1, 2] = 1, so exiting with m = 2

candidate ̸= −1

candidate ̸= −1

M [candidate,m] = M [2, 3] ̸= 1, so checking ahead

M [candidate,m] = M [2, 4] ̸= 1, so checking ahead

Solutions → Elimination technique

We use a stack to eliminate potential non-celebrities.
We compare pairs of individuals to determine which one cannot
be a celebrity and pushes the other back into the stack.
After processing all pairs, one person remains in the stack.
Check if this person is known to everyone and doesn’t know
anyone to identify the celebrity.

Solutions → Elimination technique

FindCelebrity(M [1 . . . n, 1 . . . n])

// Step 1. Find a potential celebrity
Create a stack S ← [] to store all potential celebrities
for i← 1 to n do S.Push(i)
while Stack S has greater than 1 element do
i← S.Pop(); j ← S.Pop() // pop 2 elements
// Check if i knows j, and push the potential celebrity to stack
if M [i, j] = 1 then S.Push(j)
else S.Push(i)

candidate← S.Pop()
// Step 2. Check if the candidate is a celebrity
for i← 1 to n do

if i 6= candidate then
if M [i, candidate] = 0 then return −1
if M [candidate, i] = 1 then return −1

return candidate

〈Time, Space〉 = 〈Θ (n) ,Θ (n)〉

Solutions → Elimination technique

1

2

3

1 2 3

1

1

1

0 0 0

00

0

M

0

0

0

1 01 04

4

Stack

1

2

3

1 2 3

1

1

1

0 0 0

00

0 0

0

0

1 01 04

4

1

2

3

1 2 3

1

1

1

0 0 0

00

0 0

0

0

1 01 04

4

Popped Elements

i = 4

j = 3

4

2

1

i = 4

j = 2

4

3

2

1

1

2

3

1 2 3

1

1

1

0 0 0

00

0 0

0

0

1 01 04

4

2

1

i = 2

j = 1

1

2

3

1 2 3

1

1

1

0 0 0

00

0 0

0

0

1 01 04

4

2 Potential celebrity is 2

Solutions → Efficient elimination technique

We iterate through the people, starting with the first person r.
Check if r knows the ith person and updates the diagonal
elements accordingly.
After processing, it checks if any person can be a celebrity by
verifying if they are known by everyone and don’t know anyone.
If a potential celebrity is found, return it; otherwise, −1 is
returned if no celebrity is found.

Solutions → Efficient elimination technique

FindCelebrity(M [1 . . . n, 1 . . . n])

// Step 1. Find the celebrity candidate
r ← 1
for i← 2 to n do

if M [r, i] = 1 then
M [r, r]← ? // r can’t be a celebrity
r ← i // update r to i

else
M [i, i]← ? // i can’t be a celebrity

// The single candidate will have its diagonal cell as 0
candidate← 1
while candidate ≤ n do

if M [candidate, candidate] = 0 then break
// Step 2. Check if the candidate is really the celebrity
for i← 1 to n do

if i 6= candidate then
if M [i, candidate] = 0 then return −1
if M [candidate, i] = 1 then return −1

return candidate

〈Time, Space〉 = 〈Θ (n) ,Θ (1)〉
Assumption: The input matrix M can be updated

Solutions → Efficient elimination technique

1

2

3

1 2 3

1

1

1

0 0 0

00

0

M

0

0

0

1 01 04

4

Pointers

1

2

3

1 2 3

1

1

1

0 0 0

00

⋆ 0

0

0

1 01 04

4

1

2

3

1 2 3

1

1

1

0 0 0

0

0

0

0

1 01 04

4

Action

1

2

3

1 2 3

1

1

1

0 0 0

0

0

0

0

1 01 ⋆4

4

r = 1

i = 2

Since M [r, i] = M [1, 2] = 1,

r = 2

i = 3

⋆

⋆

r = 2

i = 4

⋆

⋆

Set: M [r, r] = M [1, 1]← ⋆

Since M [r, i] is 0,

Set: M [i, i]← 1

Since M [r, i] is 0,

Set: M [i, i]← 1

Check Diagonals

and r ← i = 2

Potential celebrity is 2

Solutions → Two pointers

Initialize two pointers, i at 1 (person 1) and j at n (person n).
Iteratively check if person j knows person i. If so, decrement j;
otherwise, increment i.
Person pointed to by i is considered the celebrity candidate.
Verify if the celebrity candidate is known by everyone and knows
no one for every i.
If the candidate satisfies these conditions, they are considered
the celebrity, and their index is returned; otherwise, −1 is
returned if no celebrity is found.

Solutions → Two pointers

FindCelebrity-TwoPointers(M [1 . . . n, 1 . . . n])

// Step 1. Find the celebrity candidate
i← 1, j ← n
while i < j do

if M [j, i] = 1 then
j ← j − 1 // person j knows person i, so j can’t be a celebrity

else
i← i+ 1 // person j doesn’t know i, so i can’t be a celebrity

candidate← i // person i is the celebrity candidate
// Step 2. Check if the candidate is really the celebrity
for j ← 1 to n do

if j 6= candidate then
if M [j, candidate] = 0 or M [candidate, j] = 1 then

return −1 // candidate is not a celebrity

return candidate // candidate is the celebrity

〈Time, Space〉 = 〈Θ (n) ,Θ (1)〉

Solutions → Two pointers (example 1)

1

2

3

1 2 3

1

1

1

0 0 0

00

0

M

0

0

0

1 01 04

4

Pointers Action

i = 1
j = 5

Since M [j, i] = M [5, 1] = 1,

j cannot be a celebrity.

Hence, j ← j − 1.

1 01 1

1

0

0

0

15

5

2 31 4 5

People

i = 1
j = 4

Since M [j, i] = M [4, 1] = 1,

j cannot be a celebrity.

Hence, j ← j − 1.

2 31 4 5

i = 1
j = 3

Since M [j, i] = M [3, 1] = 0,

i cannot be a celebrity.

Hence, i← i+ 1.

2 31 4 5

i = 2
j = 3

Since M [j, i] = M [3, 2 = 1,

j cannot be a celebrity.

Hence, j ← j − 1.

2 31 4 5

i = 2
j = 2

Since i = j = 2 i.e. i ≥ j,

Potential celebrity is 2
2 31 4 5

i = 2 turns out to be a celebrity,
return 2

i

i

i

i

j

j

j

j

i

Solutions → Two pointers (example 2)

1

2

3

1 2 3

1

1

1

0 0 0

00

0

M

0

0

0

1 01 04

4

Pointers Action

i = 1
j = 5

Since M [j, i] = M [5, 1] = 0,

i cannot be a celebrity.

Hence, i← i+ 1.

0 00 1

1

0

0

0

15

5

2 31 4 5

People

i = 2
j = 5

Since M [j, i] = M [5, 2] = 0,

i cannot be a celebrity.

Hence, i← i+ 1.

2 31 4 5

i = 3
j = 5

Since M [j, i] = M [5, 3] = 0,

i cannot be a celebrity.

Hence, i← i+ 1.

2 31 4 5

i = 4
j = 5

Since M [j, i] = M [5, 4] = 1,

j cannot be a celebrity.

Hence, j ← j − 1.

2 31 4 5

i = 4
j = 4

Since i = j = 4 i.e. i ≥ j,

Potential celebrity is 4
2 31 4 5

i = 4 turns out to not be a celebrity,
return −1

i

i

i

i

i

j

j

j

j

Complexity

Algorithm Time Space
Brute force O

(
n2) Θ (1)

Graph Θ
(
n2) Θ (n)

Recursion Θ (n) Θ (n)
Elimination Θ (n) Θ (n)
Efficient elimination Θ (n) Θ (1)
Two pointers Θ (n) Θ (1)

Random Permutation HOME

Problem

Generate a random permutation of A[1, 2, . . . , n]. A random
permutation of A[1, 2, . . . , n] is A[p1, p2, . . . , pn], where
[p1, p2, . . . , pn] is a random permutation of [1, 2, . . . , n] with
probability of occurring 1/n!.

Solutions → Algorithm 1

RandomPermutation(A[1 . . . n])

for i← 1 to n− 1 do
x← Random([1 . . . n])
y ← Random([1 . . . n])
Swap(A[x], A[y])

The algorithm is incorrect.

Counterexample:
Suppose k = #iterations for which actual swap takes place
total #permutations = n!
total #outcomes =

(
n2)k

If #permutations does not divide #outcomes,
then the output permutations are not equally likely
For n = 3 and arbitrary natural number k,
#permutations (3!) does not divide #outcomes (

(
32)k)

Solutions → Algorithm 1

RandomPermutation(A[1 . . . n])

for i← 1 to n− 1 do
x← Random([1 . . . n])
y ← Random([1 . . . n])
Swap(A[x], A[y])

The algorithm is incorrect.

Counterexample:
Suppose k = #iterations for which actual swap takes place
total #permutations = n!
total #outcomes =

(
n2)k

If #permutations does not divide #outcomes,
then the output permutations are not equally likely
For n = 3 and arbitrary natural number k,
#permutations (3!) does not divide #outcomes (

(
32)k)

Solutions → Algorithm 2

RandomPermutation(A[1 . . . n])

for i← 1 to n− 1 do
x← i
y ← Random([1 . . . n])
Swap(A[x], A[y])

The algorithm is incorrect.

Counterexample:
Suppose k = #iterations for which actual swap takes place
total #permutations = n!
total #outcomes = nk

If #permutations does not divide #outcomes,
then the output permutations are not equally likely
For n = 3 and arbitrary natural number k,
#permutations (3!) does not divide #outcomes (nk)

Solutions → Algorithm 2

RandomPermutation(A[1 . . . n])

for i← 1 to n− 1 do
x← i
y ← Random([1 . . . n])
Swap(A[x], A[y])

The algorithm is incorrect.

Counterexample:
Suppose k = #iterations for which actual swap takes place
total #permutations = n!
total #outcomes = nk

If #permutations does not divide #outcomes,
then the output permutations are not equally likely
For n = 3 and arbitrary natural number k,
#permutations (3!) does not divide #outcomes (nk)

Solutions → Algorithm 3

RandomPermutation(A[1 . . . n])

for i← 1 to n− 1 do
x← i
y ← Random([i+ 1 . . . n])
Swap(A[x], A[y])

The algorithm is incorrect.

Counterexample:
total #permutations = n!
total #outcomes = (n− 1)!
If #permutations does not divide #outcomes,
then the output permutations are not equally likely
For any natural number n > 1,
#permutations (n!) does not divide #outcomes ((n− 1)!)

Solutions → Algorithm 3

RandomPermutation(A[1 . . . n])

for i← 1 to n− 1 do
x← i
y ← Random([i+ 1 . . . n])
Swap(A[x], A[y])

The algorithm is incorrect.

Counterexample:
total #permutations = n!
total #outcomes = (n− 1)!
If #permutations does not divide #outcomes,
then the output permutations are not equally likely
For any natural number n > 1,
#permutations (n!) does not divide #outcomes ((n− 1)!)

Solutions → Algorithm 4

RandomPermutation(A[1 . . . n])

Choose a random hash function for the hash table H
for i← 1 to n do
H.Add(A[i]) // add the element even if the key exists

for i← 1 to n do
A[i]← ith element in hash table H

Solutions → Fisher-Yates

RandomPermutation(A[1 . . . n])

for i← n downto 2 do
x← Random([1 . . . i])
for j ← x+ 1 downto i do
A[j − 1]← A[j]

A[i]← A[x]

The algorithm is correct.

Proof:
We want to prove that probability of producing random
permutation is 1/n!

Probability = 1
n
× 1
n− 1 × · · · ×

1
2 = 1

n!

Solutions → Durstenfeld

RandomPermutation(A[1 . . . n])

for i← 1 to n− 1 do
x← i
y ← Random([i . . . n])
Swap(A[x], A[y])

can also be written as
RandomPermutation(A[1 . . . n])

for i← n downto 2 do
x← i
y ← Random([1 . . . i])
Swap(A[x], A[y])

The algorithm is correct.

Solutions → Durstenfeld

RandomPermutation(A[1 . . . n])

for i← n downto 2 do
x← i
y ← Random([1 . . . i])
Swap(A[x], A[y])

Proof:
Let X = [1, 2, . . . , n] and Y = [p1, p2, . . . , pn]
We want to prove that probability of producing Y from X is 1/n!
P (Y) = P (Y [1] = p1, Y [2] = p2, . . . , Y [n] = pn)

= P (Y [n] = pn)
× P (Y [n− 1] = pn−1 | Y [n] = pn)
× P (Y [n− 2] = pn−2 | Y [n] = pn, Y [n− 1] = pn−1)
× · · ·
× P (Y [1] = p1 | Y [n] = pn, Y [n− 1] = pn−1, . . . , Y [2] = p2)

= 1
n
× 1
n− 1 × · · · ×

1
1 = 1

n!

Count Distinct Pairs HOME

Problem

Given an array of unique integers A[1 . . . n] and a positive
integer k, count all distinct pairs with differences equal to k.
Input: [8, 5, 1, 4, 2], k = 3
Output: 3 (4− 1 = 5− 2 = 8− 5)
Input: [8, 12, 16, 4, 0, 20], k = 4
Output: 5 (20− 16 = 16− 12 = 12− 8 = 8− 4 = 4− 0)
Input: [1, 1, 1, 1, 2, 2, 2, 2], k = 1
Input has duplicates, so this type of input is not allowed

Solutions → Brute force

Consider every pair of elements and increment count if the
difference equals k

CountPairs-BruteForce(A[1 . . . n],k)

count← 0
for i← 1 to n− 1 do

for j ← i+ 1 to n do
if absolute(A[i]−A[j]) = k then
count← count+ 1

return count

〈Time, Space〉 =
〈

Θ
(
n2
)
,Θ (1)

〉

Solutions → Sorting + binary search

1. Sort the array, initialize count to 0
2. For each element A[i] for i ∈ [1 . . . n− 1], search for A[i] + k in

the remaining array A[i+ 1 . . . n] using binary search
3. Each time A[i] + k is found, increment count by 1

CountingPairs-BinarySearch(A[1 . . . n], k)

Sort(A[1 . . . n])
count← 0
for i← 1 to n− 1 do

// Check if A[i] + k in A[i+ 1 . . . n] using binary search
if BinarySearch(A[i+ 1 . . . n], A[i] + k) 6= −1 then
count← count+ 1

return count

〈Time, Space〉 = 〈Θ (n logn) ,Θ (1)〉

Solutions → Hashing

1. Add all elements of the array to the HashTable H
2. For each element A[i] for i ∈ [1 . . . n], search for A[i] + k and
A[i]− k in H and increment count on finding a match

3. Return count/2

CountingPairs-Hashing(A[1 . . . n],k)

Create an empty HashTable H
for i← 1 to n do H.Add(A[i])
count← 0
for i← 1 to n do

if H.Contains(A[i] + k) then count← count+ 1
if H.Contains(A[i]− k) then count← count+ 1

return count/2

〈Time, Space〉 = 〈Θ (n)∗ ,O (n)〉

Solutions → Sorting + two pointers
1. Sort A[1 . . . n], initialize two pointers low and high to 1
2. Calculate the difference diff = A[high]−A[low].

While high ≤ n
If diff = k, increment low, high, and count
If diff > k, increment low
If diff < k, increment high

CountingPairs-TwoPointers(A[1 . . . n], k)

Sort(A[1 . . . n])
count← 0; low ← 1; high← 1
while high ≤ n do
diff = A[high]−A[low]
if diff = k then
count← count+ 1; low ← low + 1; high← high+ 1

else if diff > k then low ← low + 1
else if diff > k then high← high+ 1

return count

〈Time, Space〉 = 〈Θ (n logn) ,Θ (1)〉

Solutions → Sorting + two pointers

A

5 6 7321A
` h

5 6 7321A
` h

count = 0; A[h]−A[`] < k, so increment h

count = 0; A[h]−A[`] < k, so increment h

4 5 6321

5 6 7321A
` h

count = 0; A[h]−A[`] < k, so increment h

5 6 7321A

5 6 7321A

5 6 7321A count = 2; A[h]−A[`] < k, so increment h

`

`

`

h

h

h

count = 0; A[h]−A[`] = k, so increment `, h, count

count = 1; A[h]−A[`] = k, so increment `, h, count

5 6 7321A
`

count = 0; A[h]−A[`] > k, so increment `

h

k = 3

5 6 7321 This logic applies only for sorted arrays

Counting pairs summary

Algorithm Time Space
Brute force Θ

(
n2) Θ (1)

Sorting + Binary Search Θ (n logn) Θ (1)
Hashing Θ (n)∗ O (n)
Sorting + Two Pointers Θ (n logn) Θ (1)

Solve the problem when there are duplicates in the array.

Maximum and Minimum HOME

Problem

Given an array, find the maximum and minimum elements in the
array.
We consider the number of array element comparisons for
measuring time.
Input: A = [4, 2, 0,−2, 20, 9, 2]
Output: [20,−2]

Solutions → Brute force

Traverse the array and compare each element with max and
min.
BruteForce(A[1 . . . n])

max← A[1]; min← A[1]
for i← 2 to n do

if A[i] > max then max← A[i]
else if A[i] < min then min← A[i]

return (max,min)

〈Time, Space〉 = 〈2n− 2,Θ (1)〉

Solutions → Increment by two
Pick elements in pairs, the smaller element amongst the two
becomes a candidate for min and the larger element for max.
IncrementByTwo(A[1 . . . n])

if n is odd then { max← A[1],min← A[1], i← 2 }
else

if A[1] < A[2] then { max← A[2]; min← A[1] }
else { max← A[1]; min← A[2] }
i← 3

while i < n do
if A[i] < A[i+ 1] then

if A[i] < min then min← A[i]
if A[i+ 1] > max then max← A[i+ 1]

else
if A[i] > max then max← A[i]
if A[i+ 1] < min then min← A[i+ 1]

i← i+ 2
return (max,min)

〈Time, Space〉 =
〈3

2
(
n− 1− n is even

)
,Θ (1)

〉

Solutions → Divide-and-conquer

1. Divide the problem into two equal size sub-problems.
2. Recursively find the max and min of left and right parts.
3. Compare the max of both halves to get the overall max, and

the min of both halves to get the overall min.

Solutions → Divide-and-conquer
DivideAndConquer(A[low . . . high])

size← high− low + 1
if size = 1 then { max← A[low]; min← A[low] }
else if size = 2 then

if A[low] < A[high] then { max← A[high]; min← A[low] }
else { max← A[low]; min← A[high] }

else
mid← b(low + high)/2c
(`max, `min)← DivideAndConquer(A[low . . .mid)
(rmax, rmin)← DivideAndConquer(A[mid+ 1 . . . high])
if `max > rmax then max← `max
else max← rmax
if `min < rmin then min← `min
else min← rmin

return (max,min)

T (n) =
{
n− 1 if n = 1 or 2,
2T (n/2) + 2 if n > 2.

}

〈Time, Space〉 =
〈3n

2 − 2,Θ (logn)
〉

Complexity

Algorithm Time Space
Brute force 2n− 2 Θ (1)
Increment by two 3

2

(
n− 1− n is even

)
Θ (1)

Divide-and-conquer 3n
2 − 2 Θ (logn)

Sorting Algorithms HOME

Problem

Design an efficient algorithm to sort a given array A[1 . . . n].
Input: [80, 30, 90, 50, 40, 20, 100]
Output: [20, 30, 40, 50, 80, 90, 100]
Input: [23, 15, 40, 15, 10]
Output: [10, 15, 15, 23, 40]

Solutions → Permutation sort

PermutationSort(A[1 . . . n])

while true do
RandomPermute(A[1 . . . n])
if IsSorted(A[1 . . . n]) then

break
RandomPermute(A[1 . . . n])

for i← 1 to n− 1 do
A[i]← Swap(A[i], A[Random(i . . . n)])

〈Time, Space〉 = 〈O (∞) ,Θ (1)〉

Solutions → Slow sort
1. Divide the subarray into two halves.
2. Sort the first half recursively.
3. Sort the second half recursively.
4. Swap the last elements of the two halves if they are out of order.
5. Sort the subarray except the last element recursively.

SlowSort(A[low . . . high])

if i ≥ j then return
// Sort the two halves recursively
mid← (low + high)/2
SlowSort(A[low . . .mid])
SlowSort(A[mid+ 1 . . . high])
// The largest element of the subarray should go to its correct position
if A[high] < A[mid] then

Swap(A[high], A[mid])
// Sort the remaining subarray

SlowSort(A[low . . . high− 1])

〈Time, Space〉 =
〈
O
(
n

log2 n
2

)
,Θ (n)

〉

Solutions → Pancake sort
1. Suppose the index of the maximum element in A[1 . . . n] is maxindex.
2. Reverse A[1 . . .maxindex] to move the largest element in the array to

index 1.
3. Reverse A[1 . . . n] to move the largest element to A[n].
4. Recursively sort A[1 . . . n− 1].

PancakeSort(A[1 . . . n])

// The ith iteration finds the ith largest element
for i← n downto 2 do

// Step 1. Find the index of the max(A[1 . . . i])
maxindex← 1
for j ← 2 to i do

if A[j] > A[maxindex] then
maxindex← j

// Step 2. Move max(A[1 . . .maxindex]) to index 1
Reverse(A[1 . . .maxindex])
// Step 3. Move A[1] to its correct position

Reverse(A[1 . . . i])

〈Time, Space〉 =
〈
O
(
n2
)
,Θ (1)

〉

Solutions → Pancake sort

7 9 7 8 6

9 7 7 8 6

6 8 7 7 9

6 8 7 7 9

8 6 7 7 9

7 7 6 8 9

i = 5; maxindex = 2

Reverse A[1 . . .maxindex]

Reverse A[1 . . . i]

i = 4; maxindex = 2

Reverse A[1 . . .maxindex]

Reverse A[1 . . . i]

7 7 6 8 9 i = 3; maxindex = 1

7 7 6 8 9

6 7 7 8 9

Reverse A[1 . . .maxindex]

6 7 7 8 9

Reverse A[1 . . . i]

Reverse A[1 . . . i]

Reverse A[1 . . .maxindex]

i = 2; maxindex = 2

7 6 7 8 9

6 7 7 8 9

Solutions → Stooge sort

1. If the start element is greater than the end element, swap them.
2. If there are three or more elements in the array:

1. Recursively sort the first 2/3rd of the array
2. Recursively sort the last 2/3rd of the array
3. Recursively sort the first 2/3rd of the array

StoogeSort(A[` . . . h])

size← h− `+ 1
if (A[`] > A[h]) then

Swap(A[`], A[h])
if (size > 2) then
third← size/3
StoogeSort(A[` . . . h− third])
StoogeSort(A[`+ third . . . h])
StoogeSort(A[` . . . h− third])

〈Time, Space〉 =
〈

Θ
(
nlog1.5 3

)
,Θ (logn)

〉

Solutions → Stooge sort

3 8 6 7 1 5 2 4

First (2/3)rd of the array

Sort the first (2/3)rd of the array

9

3 8 6 7 1 5 2 49

3 6 7 8 9 5 2 41

3 6 2 4 5 7 8 91

3 6 7 8 9 5 2 41

3 6 2 4 5 7 8 91

2 3 4 5 6 7 8 91

Last (2/3)rd of the array

Sort the last (2/3)rd of the array

First (2/3)rd of the array

Sort the first (2/3)rd of the array

2 3 4 5 6 7 8 91

The original array

The original array is sorted

Solutions → Counting sort

Assumption
Items are natural numbers with maximum value k.

1. Create an array for indices in the range [0, k]
2. Distribute items to these indices to compute item frequences
3. Compute the cumulative frequencies of items for indices

in the range [0, k]
4. Find the sorted array

2 5 3 0 2 3 0 3

2 0 2 3 0 1

2 2 4 7 7 8

A

C

C

Unsorted array A[1..n]

Frequencies array C[0..k]

Cumulative frequencies array C[0..k]

3B Sorted array B[1..n]0 320 3 52

Solutions → Counting sort

CountingSort(A[1 . . . n])

k ← max(A[1 . . . n])
Create new array B[1 . . . n]
Create new array C[0 . . . k] and initialize it to 0
// Find the frequencies of items
// After this step, C[i] will contain #elements equal to i
for j ← 1 to n do
C[A[j]]← C[A[j]] + 1

// Find the cumulative frequencies of items
// After this step, C[i] will contain #elements less than or equal to i
for i← 1 to k do
C[i]← C[i] + C[i− 1]

// Get the sorted array in B
for j ← n downto 1 do
B[C[A[j]]← A[j]
C[A[j]]← C[A[j]]− 1

// Copy the sorted array to A
for j ← 1 to n do
A[j]← B[j]

Solutions → Counting sort

2 5 3 0 2 3 0 3

2 2 4 7 7 8

2 2 4 6 7 8

3

A

B

C

C

A[8] = 3

C[3] = 7

B[7] = 3

C[3]−−

2 5 3 0 2 3 0 3

2 2 4 6 7 8

1 2 4 6 7 8

3

A

B

C

C

A[7] = 0

C[0] = 2

B[2] = 0

C[0]−−
0

2 5 3 0 2 3 0 3

1 2 4 6 7 8

1 2 4 5 7 8

3

A

B

C

C

A[6] = 3

C[3] = 6

B[6] = 3

C[3]−−
0 3

2 5 3 0 2 3 0 3

1 2 4 5 7 8

1 2 3 5 7 8

3

A

B

C

C

A[5] = 2

C[2] = 4

B[4] = 2

C[2]−−
0 32

2 5 3 0 2 3 0 3

1 2 3 5 7 8

0 2 3 5 7 8

3

A

B

C

C

A[4] = 0

C[0] = 1

B[1] = 0

C[0]−−
0 320

2 5 3 0 2 3 0 3

0 2 3 5 7 8

0 2 3 4 7 8

3

A

B

C

C

A[3] = 3

C[3] = 5

B[5] = 3

C[3]−−
0 320 3

2 5 3 0 2 3 0 3

0 2 3 4 7 8

0 2 3 4 7 7

3

A

B

C

C

A[2] = 5

C[5] = 8

B[8] = 5

C[5]−−
0 320 3 5

2 5 3 0 2 3 0 3

0 2 3 4 7 7

0 2 2 4 7 7

3

A

B

C

C

A[1] = 2

C[2] = 3

B[3] = 2

C[2]−−
0 320 3 52

Solutions → Counting sort variant

This algorithm counts the number of occurrences of each
element in the input sequence and then uses that information to
construct the sorted output. It is often used when the range of
input elements is known in advance.
The algorithm works by distributing the input elements into a
number of bins/buckets based on their values and then collecting
from the bins in order, resulting in a sorted output
This algorithm is typically used for sorting a large number of
elements with a small range of possible values

Solutions → Counting sort variant

CountingSortVariant(A[1 . . . n])

(max,min)←MaxMin(A[1 . . . n])
size← max−min+ 1 // size of range [min,max]
Create an array B[1 . . . size]← [0 . . . 0]
// Distribute array A elements to buckets in B
for j ← 1 to n do
i← A[j]−min+ 1; B[i]← B[i] + 1

// Construct the sorted array A based on the bucket array
index← 1
for i← 1 to size do

while B[i] > 0 do
A[index]← i+min− 1
index← index+ 1
B[i]← B[i]− 1

Let #buckets = max(A[1 . . . n])−min(A[1 . . . n])
〈Time, Space〉 = 〈Θ (n+ #buckets) ,Θ (#buckets)〉

Solutions → Counting sort variant
5 7 9 3 5 3 4 5A

B 2 1 3 0 1 0 1

B 2 1 3 0 1 0 1 index = 1 , i = 1

A[index] = i+min− 13

1 1 3 0 1 0 1 B[i]−−

1 1 3 0 1 0 1

3

0 1 3 0 1 0 1

3

0 1 3 0 1 0 1

3

0 0 3 0 1 0 1

3 4

0 0 3 0 1 0 1

3

0 0 2 0 1 0 1

3 4

0 0 0 1 0 1

3

0 0 0 1 0 1

3 4

2

1

5

5 5

0 0 0 0 1

3

0 0 0 0 1

3 4 5 5

0

0

5 7

0

0 0 0 0 1

3

0 0 0 0 0 0

3 4 5 5

0

0

5 7

0

9

0 0 0 1 0 1

3

0 0 0 1 0 1

3 4 5 5

0

0

5

0 0 0 1 0 1

3

0 0 0 0 0 1

3 4 5 5

0

0

5 7

0 0 0 1 0 1

3

0 0 0 1 0 1

3 4 5 5

1

0

5A

B

B

A

B

B

A

B

B

A

B

B

A

B

B

A

B

B

A

B

B

A

B

B

A

B

B

A

B

index = 2 , i = 1

index = 3 , i = 2

index = 4 , i = 3

index = 5 , i = 3

index = 6 , i = 3

index = 4 , i = 4

index = 7 , i = 5

index = 8 , i = 6

index = 8 , i = 7

A[index] = i+min− 1

B[i]−−

A[index] = i+min− 1

B[i]−−

A[index] = i+min− 1

B[i]−−

A[index] = i+min− 1

B[i]−−

A[index] = i+min− 1

B[i]−−

A[index] = i+min− 1

B[i]−−

A[index] = i+min− 1

B[i]−−

0

Solutions → Radix sort

1. Sort the numbers based on digits at unit’s place
2. Sort the numbers based on digits at ten’s place
3. Sort the numbers based on digits at hundred’s place
4. Continue the process until you cover all decimal digits
5. By the end, the entire array will be sorted

7

3

4

4

3

8

2

5

3

5

2

3

0

5

6

7

9

9

0

9

6

9

5

7

2

2

3

3

5

5

7

3

4

8

3

4

9

5

6

7

0

93

2

5

3

5

23

3

4

4

7

8

3 2

4 5

8 3

4 3

7 2

3 5

9

7

9

6

0

5

329 457 839 436 720 355A

Sort

unit’s digit

Sort Sort

ten’s digit hundred’s

digit

Solutions → Radix sort

RadixSort(A[1 . . . n])

max← Max(A[1 . . . n]); exp← 1
// Sort the array for each digit
while exp ≤ max do
C[0 . . . 9]← [0 . . . 0]; B[1 . . . n]← [0 . . . 0]
// Find the cumulative frequencies of items
for i← 1 to n do
{ index←

⌊
A[i]
exp

⌋
mod 10; C[index]← C[index] + 1 }

for i← 1 to 9 do C[i]← C[i] + C[i− 1]
// Populate output using count array
for i← n downto 1 do
index←

⌊
A[i]
exp

⌋
mod 10

B[C[index]]← A[i]
C[index]← C[index]− 1

A[1 . . . n]← B[1 . . . n]; exp← exp× 10

〈Time, Space〉 = 〈Θ (n logn) ,Θ (n)〉

Solutions → Radix sort

Sort numbers based on the digits at unit’s place

1 1 1 1 1 3 4 4 6

1 1 1 1 1 3 4 4 6

329 436 720 355457 839A

C

B

A[6] = 355

C[5] = 2

355 B[2] = 355

C[5]−−

1 1 1 1 1 3 4 4 6

0 1 1 1 1 1 3 4 4 6

329 436 720 355457 839 A[5] = 720

C[0] = 1

355 B[1] = 720

C[0]−−

720

0 1 1 1 1 1 4 4 6

0 1 1 1 1 1 4 4 6

329 436 720 355457 839 A[4] = 436

C[6] = 3

355 B[3] = 436

C[6]−−

720 436

0 1 1 1 1 1 2 4 4

0 1 1 1 1 1 2 4 4

329 436 720 355457 839 A[3] = 839

C[9] = 6

355 B[6] = 839

C[9]−−

720 436 839

0 1 1 1 1 1 2 4 5

0 1 1 1 1 1 2 4 5

329 436 720 355457 839 A[2] = 457

C[7] = 4

355 B[4] = 457

C[7]−−

720 436 839457

0 1 1 1 1 1 2 3 4

0 1 1 1 1 1 2 3 4

329 436 720 355457 839 A[1] = 329

C[9] = 5

355 B[5] = 329

C[9]−−

720 436 839457 329

C

A

C

B

C

A

C

B

C

A

C

B

C

A

C

B

C

A

C

B

C

2

1

1

3

2

6

5

4

3

5

4

Solutions → Radix sort

Sort numbers based on the digits at ten’s place
B from the previous iteration will be the A for this iteration.

0 0 2 4 4 6 6

6 6

C

B

A[6] = 839

C[3] = 4

B[4] = 839

C[3]−−

A[5] = 329

C[2] = 1

B[1] = 329

C[2]−−

A[4] = 457

C[5] = 6

B[6] = 457

C[5]−−

A[3] = 436

C[3] = 3

B[3] = 436

A[2] = 355

C[5] = 5

B[5] = 355

A[1] = 720

C[2] = 1

B[1] = 720

6 6

0 0 2 3 4 6 6 6

60 0 3 4 6 6 6

60 0 4 6 6 6

A

6

720 355 839436 457 329

839

720 355 839436 457 329

329 839

6

3 6

720 355 839436 457 329

60 0 1 3 4 6 6 6

60 0 1 4 6 6 6

329 839

3

720 355 839436 457 329

60 0 1 4 6 6 6

60 0 1 4 6 6 6

329 839

5

5

436

720 355 839436 457 329

60 0 1 2 4 6 6 6

60 0 1 4 6 6 6

329 839

2

436

457

457

457355

720 355 839436 457 329

60 0 2 4 6 6 6

60 0 4 6 6 6

329 839

4

2 4

436 457355720

C

C

B

A

C

C

B

A

C

C

B

A

C

C

B

A

C

C

B

A

C

C[5]−−

C[3]−−

C[2]−−

2

1

6

5 0

1

4

5

2

3

Solutions → Radix sort

Sort numbers based on the digits at hundred’s place
B from the previous iteration will be the A for this iteration.

A[6] = 457

C[4] = 4

B[4] = 457

C[4]−−

60 0 0 2 4 5 6

60 0 0 3 6

4

2 4

4

329 839436 457355720

457

A[5] = 355

C[3] = 2

B[2] = 355

60 0 0 2 5 6

0 0 0

4

1

4

329 839436 457355720

457

3

355

A[4] = 839

C[8] = 6

B[6] = 839

C[8]−−

60 0 0 1 5 6

60 0 0 3 4 5 5

4

1 4

4

329 839436 457355720

457

3

355 839

A[3] = 436

C[4] = 3

B[3] = 436

60 0 0 1 5

60 0 0 2 4 5 5

4

1 4

4

329 839436 457355720

457

3

355 839

5

436

A[2] = 329

C[3] = 1

B[1] = 329

60 0 0 1 5

60 0 0 2 4 5 5

4

0 4

4

329 839436 457355720

457

2

355 839

5

436329

A[1] = 720

C[7] = 5

B[5] = 720

C[7]−−

60 0 0 0

60 0 0 2 6 4 5

4

0 4

4

329 839436 457355720

457

2

355 839

5

436329 720

4 5

63 64 4 5

C

B

A

C

C

B

A

C

C

B

A

C

C

B

A

C

C

B

A

C

C

B

A

C

C[3]−− C[3]−−

C[4]−−

5

Solutions → Bitonic sort

BitonicSort(n)

[3 7 4 8 6 2 1 5]
Split

[3 7 4 8] [6 2 1 5]

[3 4 7 8] [6 5 2 1]

1 2 3 4 5 6 7 8

BitonicMerge

Solutions → Bitonic sort

BitonicSort(n)

[3 7 4 8 6 2 1 5]

[3 7 4 8] [6 2 1 5]

[3 7] [4 8] [6 2] [1 5]

[3 7] [8 4] [2 6] [5 1]

[3 4 7 8] [6 5 2 1]

[1 2 3 4 5 6 7 8]

Solutions → Bitonic sort

Invoke BitonicSort(A[1 . . . n], ascending)
BitonicSort(A[` . . . h], order)

size← h− `+ 1
if size > 1 then
m← (`+ h)/2
BitonicSort(A[` . . .m], ascending)
BitonicSort(A[m+ 1 . . . h], descending)
BitonicMerge(A[` . . . h], order)

Solutions → Bitonic sort

BitonicMerge(A[` . . . h], order)

Input: Array A[` . . . h], ascending/descending order
Output: Bitonic merge the array
size← h− `+ 1
if size > 1 then
m← (`+ h)/2
Compare&Swap(A[` . . . h], order)
BitonicMerge(A[` . . .m], order)
BitonicMerge(A[m+ 1 . . . h], order)

Compare&Swap(A[` . . . h], order)

Input: Array A[` . . . h], ascending/descending order
Output: Compare items in left & right halves of A[` . . . h] and order them
size← h− `+ 1
for i← ` to `+ size/2− 1 do
j ← i+ size/2
if (order is ascending and A[i] > A[j]) or (order is descending
and A[i] < A[j]) then
Swap(A[i], A[j])

Solutions → Bitonic sort

〈Time, Space〉 =
〈

Θ
(
n log2 n

)
,Θ (n)

〉

T (n) =
{

Θ (1) if n = 1,
2T (n/2) + Tmerge(n/2) if n > 1.

}

Tmerge(n) =
{

Θ (1) if n = 1,
2Tmerge(n/2) + Θ (n) if n > 1.

}

Contributors

Tejas Bhatia, Usha Vudatha, Abiyaz Chowdhury, Taha Kothawala,
Ajay Hegde, Sai Sujith Bezawada

