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Abstract

This dissertation is an excursion into computer-discovered algorithms and computer-aided
algorithm design. In our vision of the not-so-distant future of computing, machines will
take the responsibility of designing and implementing most, if not all, machine-specific
highly efficient nontrivial algorithms with provable correctness and performance guaran-
tees. Indeed, as the complexity of computing hardware grows and their basic architectures
keep changing rapidly, manually redesigning and reimplementing key algorithms for high
performance on every new architecture is quickly becoming an impossible task. Automa-
tion is needed.

We design algorithms that can design other algorithms. Our focus is on auto-generating
algorithms for solving dynamic programming (DP) recurrences efficiently on state-of-the-
art parallel computing hardware. While DP recurrences can be solved very easily using
nested or even tiled nested loops, for high performance on modern processors/coprocessors
with cache hierarchies, portability across machines, and automatic adaptivity to runtime
fluctuations in the availability of shared resources (e.g., cache space) highly nontrivial
recursive divide-and-conquer algorithms are needed. But, these recursive divide-and-
conquer algorithms are difficult to design and notoriously hard to implement for high per-
formance. Furthermore, new DP recurrences are being encountered by scientists every
day for solving brand new problems in diverse application areas ranging from economics to
computational biology. But, how does an economist or a biologist without any formal train-
ing in computer science design an efficient algorithm for evaluating his/her DP recurrence
on a computer? Well, we can help!

We present Autogen – an algorithm that given any blackbox implementation of a DP
recurrence (e.g., inefficient naive serial loops) from a wide class of DP problems, can auto-
matically discover a fast recursive divide-and-conquer algorithm for solving that problem
on a shared-memory multicore machine. We mathematically formalize Autogen, prove its
correctness, and provide theoretical performance guarantees for the auto-discovered algo-
rithms. These auto-generated algorithms are shown to be efficient (e.g., highly parallel
with highly optimizable kernels, and cache-, energy-, and bandwidth-efficient), portable
(i.e., cache- and processor-oblivious), and robust (i.e., cache- and processor-adaptive).

We present Autogen-Wave – a framework for computer-assisted discovery of fast divide-
and-conquer wavefront versions of the algorithms already generated by Autogen. These re-
cursive wavefront algorithms retain all advantages of the Autogen-discovered algorithms
on which they are based, but have better and near-optimal parallelism due to the wave-
front order of execution. We also show how to schedule these algorithms with provable
performance guarantees on multicore machines.

We present Viterbi – an efficient cache-oblivious parallel algorithm to solve the Viterbi
recurrence, as a first step toward extending Autogen to handle DP recurrences with ir-
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regular data-dependent dependencies. Our algorithm beats the current fastest Viterbi
algorithm in both theory and practice.

We present Autogen-Fractile – a framework for computer-aided design of high-performing
and easily portable recursively tiled/blocked algorithms for a wide class of DP problems
having fractal-type dependencies. These recursively tiled algorithms have excellent cache
locality and excellent parallel running time on multi-/many-core machines with deep mem-
ory hierarchy.

We present Autogen-Tradeoff – a framework that can be used to design efficient and
portable not-in-place algorithms to asymptotically increase the parallelism of some of the
Autogen-discovered algorithms without affecting cache-efficiency.

This dissertation takes the first major step on which to build computing systems for
automatically designing efficient and portable nontrivial algorithms. We hope that more
work follows in this science of algorithm discovery.
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Chapter 1

Introduction & Background

“All life is problem-solving”, says Karl Popper, a famous philosopher. Considering problem-
solving itself as a problem, can we solve the problem of problem-solving? In the world of
computer science, problem-solving often means coming up with algorithms to solve com-
puter science problems. Solving the problem of problem-solving means coming up with
an algorithm that can automatically come up with various other algorithms for solving a
multitude of problems. In this dissertation, we answer affirmatively that we can solve the
problem of problem-solving for a class of problems by designing algorithms / frameworks
that can automatically / semi-automatically discover other efficient and portable nontrivial
algorithms to solve a wide class of dynamic programming problems.

1.1 Motivation and vision
Programming is hard. Programming typically involves understanding the given problem
deeply, identifying / coming up with data structures to structure and organize the data,
finding provably correct algorithms for solving the problem that access data from the data
structures efficiently, and coding the algorithms and data structures to take the problem
specification as input and output the desired solutions. Performance is usually the most
important measure of goodness of correct programs. In computer science, almost all paths
lead not to Rome but to develop high-performing programs.

A majority of today’s algorithms are sequential. Each step of execution of a serial algo-
rithm consists of an instruction. The speed of the sequential computers has improved expo-
nentially for several years through increase in the number of transistors on an integrated
circuit. The improvement is now coming at very high costs. As a result, manufacturers
are building parallel computers with multiple processing elements which are cost-effective
and also improve the total computing speed. To solve problems on parallel computers effi-
ciently, we need to design parallel algorithms and each step of execution in such algorithms
consists of multiple instructions.

Real-life applications [Chen et al., 2014] [Kim et al., 2014] such as databases (of Google,
Facebook, Microsoft, Twitter, Netflix, IBM, Amazon, etc), cryptography, computer graph-
ics, computer vision, weather forecasting, crystallography, simulation of galaxy formation
and planetary movements, gene analysis, material science, circuit design, defense, geology,
molecular science, condensed matter, etc involve gigantic volume of computations which
when executed sequentially might take months to years. Parallelism is one of the key
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factors in improving performance. Hence, designing parallel algorithms typically leads to
high-performing programs.

Modern computers have a tree-like hierarchy of caches having different sizes and access
times. A typical algorithm has to access data and when the data does not fit in a partic-
ular cache it moves back-and-forth between different levels of caches. Reducing the total
number of such data transfers improves the overall performance. Cache locality is yet an-
other key factor to improve performance. Hence, designing cache-efficient algorithms (i.e.,
algorithms with good cache locality) might lead to more efficient programs.

Most of today’s cache-efficient parallel algorithms are cache-aware and/or processor-
aware. This means the algorithms need to know the machine parameters such as cache
size, block size, number of levels of caches, number of processors etc. There are several
types of machine architectures and it is not feasible to write cache-efficient parallel pro-
grams for every single one of them. Resource-obliviousness (e.g: processor- and cache-
obliviousness) is a key factor to achieve portability. Hence, designing resource-oblivious
algorithms leads to portable programs that execute with reasonable performance on vari-
ous machine architectures with a little or no change in the code.

Designing algorithms that are efficient (i.e., parallel and cache-efficient) and portable
(i.e., processor- and cache-oblivious) for a shared-memory multicore parallel machine is
complicated. It requires expertise in different domains such as algorithms, data struc-
tures, parallel computing, compilers, machine architecture, and so on. Manually designing
fast and portable algorithms is not scalable because the number of problems to solve is
very large and solving each problem requires expertise in different domains. Automatic
discovery of the desired algorithms is the solution. Hence, we need to design algorithms /
frameworks so that the ordinary programmers and computational scientists can use these
systems to automatically / semi-automatically discover fast and portable algorithms in
their respective fields.

In this dissertation, we design algorithms / frameworks to automatically / semi-automatically
discover fast, portable, and robust algorithms to solve a wide class of dynamic program-
ming problems. In the subsequent sections of this chapter, we discuss the fundamentals
necessary to understand the entire dissertation. At the end of this chapter, we briefly
describe the scope of the dissertation and our contributions.

1.2 Cache-efficient algorithms
In this section, we define several terms related to cache-efficient algorithms and discuss
the models of computation used for designing cache-efficient algorithms.

We all know from physics that no physical signal (thoughts are not included) can travel
faster than light. Due to this reason, for a given memory access time or cache latency, there
is a physical limit on how large a cache (or memory) can be. Therefore a cache cannot be
fast, compact, and have a large memory size, simultaneously. This problem is called the
memory wall problem [Sanders, 2003].

The simplest and the most common way to solve the memory wall problem is to use
a hierarchy of caches having different access times or latencies. Modern computers often
have a tree-like hierarchy of private and shared caches. Caches at different levels have
different sizes and latencies. Reducing the number of memory transfers in various levels
of caches reduces the overall runtime of an algorithm.
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An algorithm that performs asymptotically fewer number of memory transfers (w.r.t
another algorithm solving the same problem) is called a cache-efficient algorithm. An algo-
rithm is called cache-optimal if no other algorithm (to solve the same problem) can incur
asymptotically fewer number of memory transfers than the former. In order to make good
use of cache, an algorithm must have the following two features:

O [Spatial cache locality.] Whenever a cache block is brought into the cache, it contains
as much useful data as possible.

O [Temporal cache locality.] Whenever a cache block is brought into the cache, as much
useful work as possible is performed on this data before removing the block from the
cache.

Throughout literature, computer scientists have developed various mathematical mod-
els to analyze the number of memory transfers between consecutive levels of cache. Here,
we summarize a few important models.

1.2.1 I/O model
I/O model [Aggarwal et al., 1988] is also known as external-memory model, disk access
machine (DAM) model, cache-aware model, and cache-conscious model. The model consists
of a single CPU and a 2-level memory hierarchy: internal-memory and external-memory.
The internal-memory can be viewed as a cache and the external-memory can be viewed
as memory. The aim of the model is to mathematically model a computer’s memory and
compute theoretically the number of memory transfers between the two caches.

The internal-memory is made up of M/B blocks each of size B bytes. The size of a block
is called the block size B and the size of the internal-memory is called the cache size M .
The external-memory is of infinite size. We can consider RAM to be the internal-memory
and hard disk to be the external-memory. The transfer of data between internal-memory
and external-memory happens in units of blocks, each of size B.

If the data block required by an algorithm is present in the cache, then the event is
called a cache hit. On the other hand, if the data block is not found in the cache, then the
event is called a cache miss (or page fault). If there is a cache miss, then the data block that
is referenced must be brought from the from the external-memory. The cache complexity
(or I/O complexity) is measured in terms of the number of cache misses incurred. The
cache misses affects the number of block or I/O transfers. Our aim in algorithm design
in this model is to develop algorithms that minimizes the number of cache misses thereby
decreasing the running time of the algorithms.

The limitations of the algorithm designed in this model are:
O [Non-adaptibility for all memory levels.] The algorithms in the I/O model are tailored

to optimize cache complexity for a single level of cache.
O [Non-portability.] The algorithms in this model know the cache parameters. Hence,

the same algorithms cannot run on all machine architectures without change. In
many applications, if it is not possible to know the cache parameters such as number
of cache levels, cache sizes, and block sizes, which makes the algorithms non-portable.

O [Cache non-adaptivity.] The algorithms assume that the available space in cache is
fixed and not changing dynamically over time. In real life scenarios, the available
cache space will be changing dynamically because multiple processes will be running
simultaneously and sharing cache.
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1.2.2 Cache-oblivious model
This model, also called the ideal-cache model [Frigo et al., 1999], is an extension of the I/O
model, in which the algorithms do not depend on the cache parameters such as the number
of levels of cache, cache sizes, and block sizes. Though the algorithms are analyzed for two
adjacent levels of a memory hierarchy, they apply to any two adjacent levels of the memory
hierarchy. Though the analysis makes use of cache parameters, the algorithms do not.
Hence, they are portable and cache-adaptive.

The assumptions of the model are:
(1) [Optimal page replacement policy.] An optimal page replacement algorithm chooses
data block that will be accessed furthest in the future. But, such an algorithm is difficult
to implement because it is difficult to know beforehand which page is going to be used and
when, unless all memory patterns of the software being run is known beforehand. The least
recently used (LRU) and first in first out (FIFO) algorithms increase the cache complexity
by at most a constant factor [Sleator and Tarjan, 1985] and hence are commonly used in
practice.
(2) [Automatic page replacement.] When a cache miss occurs, the requested data block is
automatically transferred from the external-memory to the internal-memory by the hard-
ware and/or operating system.
(3) [Full associativity.] When a data block is transfered from the external-memory to
internal-memory, it can be placed anywhere in internal-memory. There are three types
of cache associativity: (i) direct mapped, where a cache block can go to one spot in the
cache. It is easy to find a cache block but it does not have flexibility; (ii) n-way set associa-
tive, where the cache is made up of sets each of size n. Often, n is 2 or 4. The larger the
value of n, fewer the number of sets, and fewer number of bits are needed to encode them.
The larger the value of n, fewer the number of cache conflicts and lower the miss rates but
the hardware costs increase; and (iii) fully-associative, where a cache block can go to any
spot of the cache. Though there is flexibility, it is extremely difficult to implement such a
strategy. In practice, a tradeoff is made to reduce the cache conflicts and miss rates and
also not increasing hardware costs. Full-associativity can be implemented in software.

1.2.3 Parallel cache-oblivious model
The parallel cache-oblivious (PCO) model [Blelloch et al., 2011] is a modification to the
cache-oblivious model. The PCO model is a modification of the cache-oblivious model. The
model allows for arbitrary imbalances among tasks and works for a very general memory
hierarchy called parallel memory hierarchy (PMH) model.

A computation is modeled as a series of tasks, strands, and parallel blocks. A parallel
block consists of several tasks and a strand is a single thread of execution unit. The cache
complexity measure defined in the paper accounts for all cache misses at a particular level
in the memory hierarchy. The cache complexity does not account for shared data blocks
among parallel threads. Hence, for a shared cache, the cache complexity in this model is p
times that in the cache-oblivious model. Still, for several algorithms the cache complexity
measure defined in the paper matches asymptotically with the serial cache complexity of
the cache-oblivious model.
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1.3 Cache-oblivious algorithms
In 1988, Aggarwal and Vitter introduced the I/O model in a seminal paper [Aggarwal et al.,
1988] titled “The Input/Output Complexity of Sorting and Related Problems”. The algo-
rithms defined in the I/O model are called I/O-efficient algorithms or cache-aware algo-
rithms. The performance of these algorithms are not measured by how many computa-
tions they perform but instead by how many I/O misses (or page faults) they incur. These
algorithms must know the size of the available cache and the block size. The I/O-efficient
algorithms typically execute fast but are not portable.

The algorithms designed in the cache-oblivious model are called cache-oblivious algo-
rithms. These algorithms in their implementations do not make use of cache-parameters
such as cache size M , block size B, number of levels in the cache hierarchy, etc. These
algorithms do not have any information about the cache hierarchy of the machine it runs
on. Due to this reason, such algorithms are portable and can run on any shared-memory
parallel machine ranging from tiny smart phones to the compute nodes of gigantic super-
computers.

All classic iterative algorithms in literature we have seen in text books are cache-
oblivious as they do not make use of cache parameters. The fact that they are cache-
oblivious (and hence portable) does not compel us to use them in all our applications. We
care for two key factors in order of priority: performance and portability. If the algorithms
are too slow, then probably we do not care for portability. We will go for non-portable fast
algorithms than portable slow algorithms. Then why should we care for cache-oblivious
algorithms?

In 1999, Frigo et al. published a landmark paper called “Cache-Oblivious Algorithms”
[Frigo et al., 1999] in which they showed that it is possible to develop efficient cache-
oblivious algorithms that are simultaneously theoretically fast and portable. These al-
gorithms exploit temporal locality and are cache-oblivious because they are often based on
the recursive divide-and-conquer algorithm design technique.

Cache-oblivious algorithms and/or data structures [Demaine, 2002, Kumar, 2003, Bro-
dal, 2004] have been developed to solve a variety of problems. A few cache-oblivious algo-
rithms and/or data structures are designed for rectangular matrix multiplication, rectan-
gular matrix transpose, fast Fourier transform (FFT), funnelsort (cache-oblivious merge
sort), and distribution sort [Frigo et al., 1999, Frigo et al., 2012], Jacobi multipass fil-
ter [Prokop, 1999], B-trees [Bender et al., 2000, Bender et al., 2005a], searching, partial-
persistence, and planar point location [Bender et al., 2002a], searching [Brodal et al., 2002],
funnel heap (priority queue) [Brodal and Fagerberg, 2002], priority queue, list ranking,
tree algorithms, directed breadth first search (BFS) and depth first search (DFS), undi-
rected BFS, and minimal spanning forest [Arge et al., 2002a], computational geometry
problems [Brodal and Fagerberg, 2002], dynamic dictionary [Bender et al., 2002b], or-
thogonal range searching [Agarwal et al., 2003], FFT [Frigo and Johnson, 2005], sten-
cil computations [Frigo and Strumpen, 2005], mesh layout for visualization [Yoon et al.,
2005], parallel B-trees [Bender et al., 2005b], R-trees [Arge et al., 2005], longest com-
mon subsequence [Chowdhury and Ramachandran, 2006], string B trees [Bender et al.,
2006a], parenthesis problem [Chowdhury and Ramachandran, 2008], databases [He and
Luo, 2008], parallel matrix multiplication, parallel 1-D stencil computation, and other
problems [Frigo and Strumpen, 2009], Floyd-Warshall’s all-pairs shortest path [Chowd-
hury and Ramachandran, 2010], 3-D convex hull and 2-D segment intersection [Chan and
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Chen, 2010], range minimum query [Hasan et al., 2010], multicore-oblivious algorithms
for matrix transposition, prefix sum, FFT, sorting, Gaussian elimination paradigm, and
list ranking [Chowdhury et al., 2013].

Experimental evaluation of cache-oblivious algorithms can be found in [Rahman et al.,
2001,Olsen and Skov, 2002,Ladner et al., 2002,Kumar, 2003,Yotov et al., 2007,Chowdhury,
2007, Frigo and Strumpen, 2007, Brodal et al., 2008, Tithi et al., 2015, Tang et al., 2015,
Chowdhury et al., 2016b,Chowdhury et al., 2016a].

Throughout this dissertation, we will be interested in algorithms that are simultane-
ously fast and portable i.e., cache-efficient, cache-oblivious, and parallel.

1.4 Parallel algorithms
Real-life applications (see the papers in [Bischof et al., 2008]) such as databases (of Google,
Facebook, Twitter, Netflix, etc), cryptography, computer graphics, computer vision, weather
forecasting, crystallography, simulation of galaxy formation and planetary movements,
gene analysis, material science, circuit design, defense, geology, molecular science, con-
densed matter, etc will have gigantic number of computations which when executed serially
might take months to years. Developing fast parallel algorithms to such applications will
be of tremendous value, saves energy and time. Hence, designing parallel algorithms [Karp
and Ramachandran, 1988] is of utmost significance.

A machine is called a parallel computer if it performs multiple operations at a time.
Parallel machines are important to reduce the execution time to complete a task. Now-a-
days most machines including smartphones, laptops, desktops, workstations, and super-
computers run parallel computations. Smartphones, laptops, desktops, and compute nodes
of supercomputers use the shared-memory multicore model as the machine model. Due to
the importance of shared-memory machine algorithms, the entire dissertation is based on
the shared-memory multicore model.

1.4.1 Dynamic multithreading model
In the dynamic multithreading model [Graham, 1969,Brent, 1974,Eager et al., 1989,Cor-
men et al., 2009], the programmer simply specifies the logical parallelism in a computation
without worrying about load balancing the computations. A scheduler that is part of the
concurrency platform will do the necessary scheduling / load balancing different tasks on
to different processors.

The major advantages of the model are:
O [Simple keywords.] The model defines majorly three keywords: spawn for nested

parallelism (when functions can run in parallel), parallel for parallel loops, and sync
for synchronization of threads.

O [Simple performance metrics.] The model gives easy ways to quantify parallelism
using work and span.

O [Well-suited for divide-and-conquer.] The model is well-suited for divide-and-conquer
algorithms to extract parallelism at every level of the recursion.

O [Works well in practice.] The model works well in practice and hence is used in sev-
eral dynamic multithreading systems such as Cilk [Blumofe et al., 1996b,Frigo et al.,
1998], Cilk++ [Leiserson, 2010], Intel Cilk Plus [Plus, 2016], and OpenMP [Chapman
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et al., 2008].

The most common theoretical model to model a multithreaded program execution is
using directed acyclic graphs (DAGs). In this DAG model, every node is a computation. A
node x precedes a node y, denoted by x � y, if x must be executed before y can begin. If two
nodes x and y are such that if neither x � y nor y � x , then they are executed in parallel,
denoted by x ‖ y. Figure 1.2(a), which has been adapted from [Blumofe, 1995], gives an
example DAG representation for a multithreaded program execution. We characterize a
DAG using work and span as described below, which is also called the work-span model.

Work. The work T1 of a multithreaded program is defined as the total number of instruc-
tions executed on a machine. If we assume that an instruction takes a constant time to
execute, then the work is the serial running time of the program. In a DAG, the work is
equal to the total number of nodes, assuming every node executes a single instruction. For
example, in Figure 1.2(a), the work is 20 as there are 20 nodes in the DAG.

The parallel running time Tp, for p processors can be lower-bounded using work and
it is called the work law. It is straightforward to see that the parallel running time on a
parallel machine with p processors must be at least T1/p because at most p instructions can
run in parallel at a time i.e., Tp ≥ T1/p.

Span. The span T∞ of a multithreaded computation is defined as the maximum number
of instructions executed by any processor when there are an infinite number of processors.
It is the longest path from the root (the only node with indegree 0) to a leaf (node with
outdegree 0) of the DAG. Span is also called critical path length or depth. For example, in
Figure 1.2(a), the span is 10 as the longest path from root to leaf in the dag has 10 nodes.

The parallel running time Tp, for p processors can be lower-bounded using span and it
is called the span law. It is straightforward to see that the running time on p processors
cannot be smaller than the running time on an infinite number of processors i.e., Tp ≥ T∞.

Parallelism. Parallelism is defined as the ratio of work and span i.e., T1/T∞. It represents
the maximum speedup that can be achieved from an infinite number of processors. For our
DAG in Figure 1.2(a), the parallelism is T1/T∞ = 20/10 = 2. This means we cannot achieve
more than 2 speedup whatever might be the number of processors.

The goodness of a parallel algorithm is measured from its work and span. A parallel
algorithm typically reduces the span, thereby increasing the parallelism. Several cache-
oblivious algorithms mentioned in Section 1.3 can be parallelized. Sometimes the algo-
rithms might have to be changed suitably to allow proper parallelization.

1.4.2 Parallel memory hierarchy model
In this memory model, a parallel computer consists of several processors connected through
a shared memory, where any processor can access any location in the shared memory.

A very generic memory model to represent an example of shared-memory multicore
model is the parallel memory hierarchy (PMH) model as shown in Figure 1.1. The parallel
memory hierarchy (PMH) [Blelloch et al., 2011] model models the memory hierarchy of
many real parallel systems. It consists of h+ 1 levels as shown in Figure. The leaves of the
tree at level-0 are the p processors and the internal nodes at level-i (i ∈ [1, h]) are the ideal
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caches. Each cache at a level l is represented by 〈Ml, Bl, fl〉, which means the cache size is
Ml, the cache has fl children (aka branch factor or fanout), and the cache line size between
the cache and any of its children is Bl.

Here are the assumptions from [Blelloch et al., 2011]: (i) Bi ≥ 1, Mi ≥ Bi for i ∈ [1, h];
(ii) Mh =∞, M0 = p0 = 0, B0 = 1; (iii) Bi ≥ Bi−1 for i ∈ [1, h−1]; and (iv) Mi/Bi ≥ piMi−1/Bi−1
for i ∈ [2, h] and M1/B1 ≥ p1.

Mh =∞, Bh, ph

Mh−1, Bh−1, ph−1 Mh−1, Bh−1, ph−1 · · · · · · Mh−1, Bh−1, ph−1

M1, B1, p1 M1, B1, p1 · · · · · · · · · · · · · · · · · · · · · M1, B1, p1

· · · · · · · · ·

Figure 1.1: The parallel memory hierarchy model.

A cache can be shared by all processors that are rooted at that cache. Algorithms divide
a task (or problem) into subtasks and each subtask is executed as a thread on a processor.
When multiple threads are run to process multiple subtasks the problem will be solved
efficiently and this process is termed multithreading. Also, algorithms developed in this
shared-memory model are generally faster because the shared variable that is modified
by a processor is immediately accessible to the other processors and they need not send /
receive messages (which is a rather slow process).

1.4.3 Parallel algorithms

Similar to sequential algorithm design techniques, we also have techniques for design-
ing parallel algorithms. Some of them are: divide-and-conquer; randomization for sam-
pling [Rajasekaran and Sen, 1993], symmetry breaking [Luby, 1986], and load balancing;
parallel pointer techniques such as pointer jumping [Wyllie, 1979], Euler tour [Tarjan and
Vishkin, 1985], graph contraction [Miller and Reif, 1989, Miller and Reif, 1991]; ear de-
composition [Maon et al., 1986, Miller and Ramachandran, 1992]; finding small graph
separators [Reif, 1993]; hashing [Karlin and Upfal, 1988, Vishkin, 1984]; and iterative
techniques [Bertsekas and Tsitsiklis, 1989].

Several parallel algorithms [Blelloch and Maggs, 2010] have been proposed, for ex-
ample, prefix sums [Stone, 1975], list ranking [Reid-Miller, 1994, Anderson and Miller,
1990, Anderson and Miller, 1991], and graph algorithms [Reif, 1993, Jaja, 1992, Gibbons
and Rytter, 1989].
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1.5 Scheduling algorithms
The total running time of a multithreaded program on a parallel machine depends not
only on minimizing work and span but also how well the computations are scheduled on
different processors, which is done by an algorithm called scheduler.

A scheduler maps parallel tasks of a multithreaded program to different processors in a
parallel machine. It load balances the work among different processing elements automat-
ically without the intervention of the programmer. Several schedulers have been proposed,
analyzed, and implemented in literature. Optimal algorithms scheduled using bad sched-
ulers does not lead to high-performance and similarly slow algorithms scheduled using the
best schedulers also do not lead to great performance. For the best performance, we need
parallel algorithms with good cache efficiency and good parallelism and also scheduling al-
gorithms (or schedulers) that exploit these characteristics. Please refer [Kwok and Ahmad,
1999] for a survey on schedulers.

It is important to note that a job scheduler is different from a task scheduler. A job
scheduler schedulers different processes to a processor (or more processors). A job sched-
uler is part of an operating system. An operating system takes the responsibility of schedul-
ing jobs. On the other hand, a task scheduler schedules different tasks or threads of work
units to different processors or processing elements. Task / thread scheduling is part of
parallel algorithms. A programming language runtime system takes the responsibility of
scheduling tasks / threads.

1.5.1 Greedy scheduler
A greedy scheduler tries to perform as much work as possible at every step. Let p denote
the number of processors in a parallel machine. At any execution step, if there are fewer
than p tasks then all tasks are executed and the step is called an incomplete step. On the
other hand, if there are greater than or equal to p tasks at any step, then any p of the tasks
are executed and the step is called a complete step.

From [Graham, 1969, Brent, 1974], we get Tp ≤ T1/p + T∞. In [Eager et al., 1989] it
was shown that any greedy scheduler will satisfy this bound. Also, the methodology of
using work and span to analyze parallel algorithms was proposed. It is easy to show that
Tp ≤ 2T ∗p , where T ∗p is the parallel running time of optimal scheduling. Finding an optimal
schedule is an NP-complete problem [Garey and Johnson, 2002]. The greedy scheduling for
an example DAG when p = 1 and p = 2 are shown in Figures 1.2(b, c), respectively. Greedy
schedulers perform very well in practice.

1.5.2 Parallel depth first scheduler
A parallel depth first (PDF) scheduler [Blelloch et al., 1995, Blelloch et al., 1999, Blelloch
and Gibbons, 2004] is a priority scheduler that schedules most recent ready nodes. The
priority to tasks is given to those tasks the sequential program would have executed ear-
lier. The schedule is equivalent to the depth first search and hence the scheduler keeps
scheduling the nodes depth-wise until there are no ready nodes. As the schedule happens
in depth first order it is true that the cache performance of this scheduling approach is
better than that of a randomized greedy schedule. However, the scheduling is centralized
(and not distributed) and this puts burden on a single thread and affects performance.
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Figure 1.2: (a) A directed acyclic graph (DAG) representation for a multithreaded program
execution. Scheduling of the DAG using: (b) greedy scheduler for p = 1. (c) greedy scheduler
for p = 2. (d) PDF scheduler for p = 2. It is also called 2-DF schedule. (e) work-stealing
scheduler for p = 2. (f) work-stealing scheduler for p = 3; In (b, c, d, e, f), the numbers
represent the time steps; and red, green, and blue nodes represent that they are executed
by processors 1, 2, and 3, respectively.

Using a PDF scheduler we obtain Tp ≤ T1/p + T∞ and a parallel space complexity of
Sp ≤ S1 + O (pT∞), where S1 is the space complexity when there is only 1 processor. The
PDF scheduling for an example DAG when p = 2 is shown in Figure 1.2(d).

1.5.3 Work-stealing scheduler
A work stealing scheduler [Blumofe and Leiserson, 1998, Blumofe and Leiserson, 1999] is
a distributed scheduler that distributes parallel tasks among the available processors to
minimize the total execution time by allowing a processor to steal work from other ran-
domly selected processor(s) when it runs out of work. Though the work stealing concept
is old it was popularized by its implementation in the C-based Cilk multithreaded parallel
programming runtime system [Blumofe et al., 1996b,Frigo et al., 1998].

In the scheduler, every processor maintains its own dequeue of tasks. Every processor
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pops ready threads for execution and pushes spawned threads from its dequeue. Whenever
a processors runs out of tasks, it steals from the top of the dequeue of a processor selected
at random.

For any parallel algorithm that is run under the randomized work-stealing scheduler
on a parallel machine with private caches, the expected parallel running time [Arora et al.,
2001] and the parallel cache complexity [Acar et al., 2000] is given by Tp = T1/p + O (T∞)
and Qp = O (Q1 + p(M/B)T1), respectively. Also, the parallel space complexity is bounded
as Sp ≤ pS1, where S1 is the serial space complexity. The work-stealing scheduling for an
example DAG when p = 2 and p = 3 are shown in Figures 1.2(e, f) respectively. Work
stealing schedulers perform very well in practice and hence are used in Cilk [Blumofe
et al., 1996b,Frigo et al., 1998], Cilk++ [Leiserson, 2010], Intel Cilk Plus [Plus, 2016], and
OpenMP [Chapman et al., 2008]. They are also used in Java, Microsoft Visual Studio,
GCC, and several other runtime systems.

1.5.4 Space-bound scheduler

A space-bounded scheduler [Chowdhury et al., 2013, Blelloch et al., 2011, Simhadri et al.,
2014] was designed to overcome the limitation of the work-stealing scheduler and achieve
optimal parallel cache efficiency. The scheduler works for recursive divide-and-conquer
parallel computation where a constant number of subtasks are generated by any task. In
this scheduling method, the programmer sends a space bound (the upper bound on the
amount of space that will be consumed by a task) of a task as a hint to the scheduler.
When a task is anchored to a cache at some level, then the task will only be executed by
the processors under the subtree rooted at that cache.

For an algorithm that is run under the space-bounded scheduler, Tp = Θ (T1/p) and
Qp = O (Q1). The scheduler cannot be used to schedule the computation DAG of Figure 1.2
(a) because the scheduler works only for trees of constant branch factor.

1.6 Algorithm design techniques
Algorithm design techniques are like problem-solving strategies that give generic methods
and processes to crack algorithmic problems. There is an old proverb: “Give a man a fish
and you feed him for a day; teach a man to fish and you feed him for a lifetime.” Adapting
the proverb to algorithm design, we can state: “Give a man an algorithm and you solve
his current algorithmic problem; teach a man several algorithm design techniques and you
solve most of his algorithmic problems.”

There are several algorithm design strategies [Levitin, 2011] that can be used to de-
sign new algorithms for new problems such as brute force, divide-and-conquer, decrease-
and-conquer, transform-and-conquer, greedy technique, dynamic programming, iterative
improvement, backtracking, and branch-and-bound.

The algorithms presented in this dissertation use a combination of the two algorithm
design techniques: divide-and-conquer and dynamic programming. In subsequent sections,
we will briefly describe the important aspects of the two algorithm design techniques.
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1.6.1 Divide-and-conquer
Divide-and-conquer is a powerful algorithm design strategy used to solve a problem by
breaking it down into smaller and simpler subproblems. The general plan of a divide-and-
algorithm is as follows:

1. [Divide.] The given problem is divided into smaller subproblems (typically the sub-
problems are independent and are of the same size).

2. [Conquer.] The subproblems are solved (typically using recursion)
3. [Combine.] If necessary, the solutions to the subproblems are combined to form the

solution to the original problem.
Recursive divide-and-conquer algorithms have the following advantages:

O [Complexity analysis.] They can be represented succinctly and can be analyzed for
complexities using recurrence relations [Bentley, 1980].

O [Efficiency.] They are usually efficient [Levitin, 2011] in the sense that they reduce
the total number of computations. E.g.: Comparison-based sorting algorithms that
use divide-and-conquer require O (n log n) comparisons.

O [Easy parallelization.] They can be parallelized easily [Mou and Hudak, 1988, Blel-
loch and Maggs, 2010] as the subproblems are typically independent, which can be
run in parallel.

O [Cache-efficiency and cache-obliviousness.] They often are (or can be made) cache-
efficient and cache-oblivious [Frigo et al., 1999, Chatterjee et al., 2002, Frens and
Wise, 1997].

O [Processor-obliviousness.] They often are (or can be made) processor-oblivious [Frigo
et al., 1999,Chowdhury and Ramachandran, 2008].

O [Energy efficiency.] They can be energy efficient as they reduce the total number of
computations or the number of cache misses [Tithi et al., 2015].

For example, some of the fastest sorting algorithms such as merge sort and quicksort
are based on divide-and-conquer.

1.6.2 Dynamic programming (DP)
Dynamic programming (DP) is an algorithm design technique used to solve a problem
by breaking it down into smaller and simpler subproblems. The method is used to solve
problems that have the properties of overlapping subproblems and optimal substructure.
DP is especially used to solve optimization problems. Surprisingly, many combinatorial
problems that typically require an exponential time for the standard algorithms to solve,
can be solved in polynomial time and space using DP. This is the reason some algorithmists
compare DP to a magical wand that turns stones into gold.

DP is used in a variety of fields such as operations research, parsing of ambiguous
languages [Giegerich et al., 2004], sports and games [Romer, 2002, Duckworth and Lewis,
1998,Smith, 2007], economics [Rust, 1996], finance [Robichek et al., 1971], and agriculture
[Kennedy, 1981]. In computational biology, several significant problems such as protein-
homology search, gene-structure prediction, motif search, analysis of repetitive genomic
elements, RNA secondary-structure prediction, and interpretation of mass spectrometry
data [Bafna and Edwards, 2003,Durbin et al., 1998,Gusfield, 1997,Waterman et al., 1995]
make use of dynamic programming.

In general, dynamic programming can be described as filling a table efficiently. The
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table to be filled is called DP table and it consists of cells in a grid format. Initially, only a
few cells are filled. Every cell can be computed using the values of already computed cells
using a recurrence relation. Typically, all the cells of the DP table has to be filled using the
recurrence relation. Often, we will be interested in the final values of one or more cells of
the DP table, we call goal cells.

Dynamic programming can be implemented in two ways:
O [Top-down.] In this approach (also called memoization), the cells that the goal cell(s)

depend upon are computed and stored. This process happens recursively (from root to
leaves in the recursion tree) and only those cells that are required are stored / cached.
The approach might lead to more space usage due to recursion.

O [Bottom-up.] In this approach, all cells will be computed exactly once in a bottom-
up fashion (from leaves to root in the recursion tree) finally reaching the goal cell(s).
This approach is the most widely used approach to implement dynamic programming
algorithms.

Dynamic programming algorithms have the following advantages:
O [Efficiency.] Several problems that require exponential time naively can be solved

using DP in polynomial time.
O [Suited for discrete optimization problems.] DP is well-suited to solve discrete opti-

mization (minimization or maximization) problems as it explores all possible ways
and selects the one that optimizes a given condition.

Methods to solve discrete optimization problems are called mathematical programming
(or mathematical optimization) methods [Lew and Mauch, 2006]. It includes methods such
as linear programming, quadratic programming, iterative methods, dynamic programming
etc. There are efficient algorithms such as simplex method to solve linear programming
problems. However, there is no universal efficient algorithm to solve all dynamic program-
ming problems largely due of its generality.

Differences between plain recursion and dynamic programming
Consider the Fibonacci example. We know that the Fibonacci number F (i) is defined re-
cursively as

F (i) =

i if i = 0 or 1,
F (i− 1) + F (i− 2) if i > 1.

(1.1)

The recursion tree for this computation is given in Figure 1.3. The complexity of this
algorithm (or the number of nodes in the recursion tree) is of the order Θ (φn), where φ is
the golden ratio. Using dynamic programming, we can write the recurrence as

F [i] =

i if i = 0 or 1,
F [i− 1] + F [i− 2] if i > 1.

(1.2)

The recursion-DAG is shown in Figure 1.3. The complexity improves drastically to Θ (n).
A summary table of the differences between simple recursion and dynamic programming
techniques is given in Table 1.1.

In dynamic programming, finding the subproblems is the toughest part. In fact, de-
pending on the identified subproblems, a problem can be solved in different ways using the
same dynamic programming technique.
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Figure 1.3: Computation of the Fibonacci number F(5) with base cases represented by
rectangles. Left: Recursion tree when simple recursion is used. Right: Computation DAG
when dynamic programming is used.

Feature Recursion Dynamic programming
Execution Top-down Bottom-up
Storing / caching No Yes
Unrolling Recursion tree Computation DAG
Complexity Exponential (typically) Polynomial
Subproblems Overlapping / independent Overlapping
Recurrence Uses parentheses (to denote functions) Uses square brackets (to denote table)

Table 1.1: Differences between recursion and dynamic programming.

1.6.3 Divide-and-conquer dynamic programming
We can combine divide-and-conquer and dynamic programming techniques. The divide-
and-conquer algorithms to solve dynamic programming problems are superior to existing
algorithms both in theory and in practice. Such algorithms have all the advantages of
divide-and-conquer (with the exception of reducing the total number of computations). Of-
ten, the algorithms are:

O [Efficient.] – cache-efficient, parallel, and energy efficient.
O [Portable.] – cache-oblivious and processor-oblivious.
O [Robust.] – cache-adaptive.
Due to all the reasons mentioned above, divide-and-conquer technique is by far the

most powerful way to implement dynamic programming algorithms. Almost all of our
algorithms presented in this dissertation are based on divide-and-conquer except the algo-
rithms that discover them.

1.7 Dynamic programming implementations
Dynamic programs are described through recurrence relations that specify how the cells of
a DP table must be filled using already computed values for other cells. Dynamic programs
are traditional implemented iteratively i.e., using series of loops. Standard iterative algo-
rithms do not have temporal locality, do not achieve very high parallelism (typically, for
problems having complicated non-local dependencies), and have poor bandwidth efficiency.
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We can improve the performance of iterative algorithms using blocking / tiling / strip-
mining. The tiled iterative algorithms are cache-efficient but they are cache-aware. Also,
they do not achieve higher parallelism (for complicated non-local dependencies) and are
not cache-adaptive. Table 1.2 summarizes the differences between the three algorithms.
It is important to note that we can improve to parallelism of iterative and tiled iterative
algorithms to near-optimal by using wavefront-order execution. However, the programs
become horrendously complicated for complicated non-local DP dependencies.

In the entire dissertation, we will be interested only in recursive divide-and-conquer
parallel DP algorithms.

Feature Iterative Tiled iterative Recursive D&C
algorithms algorithms algorithms

Cache-efficiency Bad Excellent Excellent
Cache-obliviousness Yes No Yes
Cache-adaptivity Yes No Yes
Higher parallelism No No Yes
Highly optimizable kernels NA No Yes
Energy efficiency Bad Excellent Excellent
Bandwidth efficiency Bad Excellent Excellent

Table 1.2: Comparison of different features in iterative, tiled iterative, and recursive
divide-and-conquer dynamic programming algorithms. NA means not applicable.

1.7.1 Iterative DP algorithms
These are the standard looping algorithms consisting of series of for and/or while loops,
some conditional statements, and assignments. These loop-based codes are straightfor-
ward to implement, often have good spatial cache locality, and benefit from hardware
prefetchers. But looping codes suffer in performance from poor temporal cache locality.
Indeed, when the DP table is too large to fit into cache, scanning the entire table over and
over again means that no significant portion of it can be retained in the cache for reuse.

Iterative DP implementations are also often inflexible in the sense that the loops and
the data in the DP table cannot be suitably reordered in order to optimize for better spatial
locality, parallelization, and/or vectorization. Such inflexibility arises because the codes of-
ten read from and write to the same DP table, and thus imposing strict read-write ordering
of the cells.

1.7.2 Blocked / tiled iterative DP algorithms
The method of blocking / tiling is called loop tiling or strip mining. Tiled iterative DP
algorithms are iterative algorithms with the DP table being blocked / tiled such that a tile
exactly fits the cache. When a tile is brought to cache, as much work as possible is done
before kicking the tile out of the cache. Hence, these algorithms have excellent temporal
locality. However, the optimal tile size is a function of the cache size and hence these
algorithms are cache-aware and non-portable.
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1.7.3 Recursive divide-and-conquer DP algorithms
Our two most important priorities are: performance and portability. Iterative algorithms
suffer in performance and tiled iterative algorithms are non-portable. These limitations
are handled by the recursive divide-and-conquer algorithms as they lead to both high per-
formance and portability.

A necessary condition for an algorithm for a problem to have temporal locality is that
the work (total number of computations) done by the algorithm must be asymptotically
larger than the total space usage.

Hence, if we have a cache-oblivious recursive divide-and-conquer DP algorithm for a
problem, it does not necessarily mean that it is cache-efficient (through temporal locality).
The minimum criteria the algorithm has to satisfy is that the average number of computa-
tions per unit of space must be ω (1) (asymptotically more than constant).

Recursive divide-and-conquer algorithms consist of one or more recursive functions.
Because of their recursive nature such algorithms are known to have excellent (and often
optimal) temporal locality. Efficient implementations of these algorithms use iterative ker-
nels when the problem size becomes reasonably small. But unlike standard loop-based DP
codes, the loops inside these iterative kernels can often be easily reordered, thus allowing
for better spatial locality, vectorization, parallelization, and other optimizations.

The sizes of the iterative kernels are determined based on vectorization efficiency and
overhead of recursion, and not on cache sizes, and thus the algorithms remain cache-
oblivious and portable. Unlike tiled looping codes these algorithms are also cache-adaptive
[Bender et al., 2014] — they passively self-adapt to fluctuations in available cache space
when caches are shared with other concurrently running programs.

1.8 Automatic algorithm discovery
Automation is a revolutionary idea. Automation is the process of using automatic devices
and computing machines to replace the routine human effort and labor. For example,
online shopping systems such as amazon.com, mass manufacturing of products, ATM ma-
chines, ticket machines, food machines, automated testing, robotics, GPS navigation, vehi-
cles, traffic lights, video surveillance, automated replies, self-driving cars, and thousands
of other stuff. Automation has several advantages:

O [Saves time.] Automation replaces manual effort with machine effort. Hence, it saves
a lot of time, energy, and money of humans. Reducing the time improves productivity.

O [Increases accuracy.] Machines perform the work they are designed or programmed
to do. As they do not take decisions (like we do), they follow a human’s command as
it is and they do not deviate from what is supposed to be done. Hence, this machine
process maintains the accuracy and does not give an opportunity for humans to make
mistakes :).

O [Deeper understanding of the process.] Automating a human effort leads to a deeper
understanding of the process itself and this understanding might be very useful.

In computer science, automation is majorly used to replace the human labor in the soft-
ware development process. Automation is also used to some extent in problem solving.
There are automated frameworks for domain specific languages (DSL), e.g.: Pochoir [Tang
et al., 2011], automatically generate high performing implementations for certain problems
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from known efficient algorithms. However, there is little work for automation of nontrivial
design of algorithms [Kant, 1985] given just the problem specifications. This dissertation
is the first major step in the science of discovery of nontrivial efficient cache-oblivious al-
gorithms.

Designing algorithms is hard. Discovering a fast and portable algorithm requires exper-
tise from different fields such as algorithmics, data structures, parallel algorithms, com-
puter architecture, compiler design, operating system, and so on. A domain expert (human)
who has a deeper understanding of the problem and who has a good experience in solving
similar problems can design an efficient algorithm given sufficient time, energy, and re-
sources. However, this method does not scale very well when the number of problems to
be solved gets bigger and bigger. Also, the designed algorithms must be proved correct,
analyzed for their complexities, and implemented. Hence, an intelligent way to address
this issue is to build machines to solve problems automatically or in computer science ter-
minology – design an algorithm that discovers other algorithms.

Having a system that can automatically generate highly efficient parallel implemen-
tations from easy-to-write and concise specifications of the problem is extremely useful.
Computational scientists who specialize in subjects other than computer science such as
biology, chemistry, physics, material science, and so on without a formal training in com-
puter science find it difficult to develop highly efficient algorithms for the state-of-the-art
supercomputers. A system that automates the complicated task of efficient algorithm dis-
covery saves hundreds of thinking hours and brings the power of supercomputing closer to
programmers without deep computer science (CS) background.

1.8.1 Program synthesis
Program synthesis [Steier and Anderson, 2012] is a field in computer science that is re-
lated to automatic programming or automatic algorithm design. The idea for program
synthesis originated in the 1960s with the aim to automate programming using artificial
intelligence. In recent decades, formal mathematical methods are used to specify, derive
(using deductive methods), and verify (using formal verification methods such as theorem
provers) algorithms.

There is a large literature using formal methods to synthesize programs [Klonatos et al.,
2013, Armando et al., 1999]. However, all these methods use different types of logical
calculus and they require a lot of user interaction such as specifying the functions or other
parameters that the algorithm to be designed must use. This is the reason most of these
methods are not fully automatic.

1.8.2 Polyhedral compilers
There are several systems to automatically parallelize programs [Bondhugula et al., 2008,
Banerjee et al., 1993, Bae et al., 2013, Feautrier, 1996, Hendren and Nicolau, 1990, Cam-
panoni et al., 2012]. Some systems are described for loops and other systems are described
for trees and DAGs. The literature of parallelizers is vast. A majority of these parallelizers
use loop transformations in the polyhedral model [Feautrier and Lengauer, 2011]. Some of
these systems can also optimize the programs for cache locality and hence they generate
cache-efficient parallel algorithms.
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A few drawbacks of the polyhedral compilers or parallelizers are:
O [Cache-awareness.] The generated algorithms depend on the cache parameters and

hence are cache-aware and not cache-oblivious.
O [Loop programs on arrays.] The application of the model is limited to loops that work

on arrays.
In the polyhedron model, the point-sets form a polyhedra in Zd. The point-sets are

represented as solutions to a system of affine inequalities Ax ≤ b, where A is a constant
matrix, x is a variable vector, and b is a constant vector. The solutions can be found using
loop transformations and integer linear programming.

1.9 Dissertation outline
In this section, we give the statement of the dissertation; contributions of the dissertation
to theoretical and practical computer science; and finally the organization of topics in the
dissertation.

1.9.1 Dissertation statement
The main motivation for the work in the dissertation is to bring automated algorithm de-
sign to the masses. Developing algorithms(s) (resp. framework(s)) that can be used to
automatically (resp. semi-automatically) discover algorithms can be very useful to compu-
tational scientists and programmers with less expertise in computer science. This disser-
tation gives evidence to support the statement:

It is possible to develop algorithm(s) / framework(s) to automatically / semi-
automatically discover algorithms that are simultaneously nontrivial, fast,
portable, and robust, which can be used to solve to a wide class of dynamic pro-
gramming problems.

1.9.2 Dissertation contributions
The major contributions of the dissertation are as follows:

O [Autogen.] We design an algorithm called Autogen that for a wide class of dynamic
programming problems automatically discovers nontrivial efficient (cache-efficient,
parallel, and energy-efficient), portable (processor- and cache-oblivious), and robust
(processor- and cache-adaptive) recursive divide-and-conquer algorithms given itera-
tive descriptions of the DP recurrences. We prove the correctness of Autogen, analyze
the cache-complexities of Autogen-discovered algorithms, and implement Autogen.

O [Autogen-Wave.] We design a framework called Autogen-Wave that for a wide class
of dynamic programming problems semi-automatically discovers non-trivial recur-
sive divide-and-conquer wavefront algorithms from standard divide-and-conquer al-
gorithms and DP recurrences. Autogen-Wave is the sequel of Autogen as it takes the
Autogen-discovered algorithms as input and discovers algorithms that have near-
optimal parallelism (retaining all the other advantages of the input algorithms).
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Figure 1.4: Dissertation map.

O [Viterbi.] Autogen cannot be directly used to develop efficient algorithms for data-
dependent / data-sensitive dynamic programs. The Viterbi recurrence is an extremely
important example of a data-dependent dynamic program for which there is no ef-
ficient resource-oblivious algorithm. We design the first provably correct efficient
resource-oblivious parallel Viterbi algorithm.

O [Autogen-Fractile.] We design a framework called Autogen-Fractile that can be used
to semi-automatically discover efficient cache-aware tiled algorithms based on recur-
sive divide-and-conquer, for a wide class of dynamic programming problems. We prove
strong theoretical bounds on cache locality and parallelism. We design the fastest
GPU algorithms for several dynamic programs using the framework.

O [Autogen-Tradeoff.] We design a framework called Autogen-Tradeoff that can be
used to design algorithms to asymptotically increase the parallelism of some of the
Autogen-discovered algorithms without affecting cache-efficiency, but using extra space.

The relation between all the chapters in the dissertation and how they relate to the
theme of the dissertation is shown in Figure 1.4. A list of my papers appear in Table
1.3. The work in the dissertation is a joint contribution. The experiments (included in
the dissertation for completeness) are the work of Jesmin Jahan Tithi, Stephen Tschudi,
Rathish Das, Mohammad Mahdi Javanmard, Yunpeng Xiao, and Isha Khanna.
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No. Paper Conf / journal In thesis?
Major contribution
1 Autogen: Automatic Discovery of Cache-Oblivious Parallel Recursive Algorithms

for Solving Dynamic Programs
PPoPP 2016 Chap. 2

with Rezaul Chowdhury, Jesmin Jahan Tithi, Charles Bachmeier, Bradley Kusz-
maul, Charles E. Leiserson, Armando Solar-Lezama, & Yuan Tang

(Invited to TOPC)

2 Autogen: Automatic Discovery of Cache-Oblivious Parallel Recursive Algorithms
for Solving Dynamic Programs

Under prep. Chap. 2

with Rezaul Chowdhury, Jesmin Jahan Tithi, Charles Bachmeier, Bradley Kusz-
maul, Charles E. Leiserson, Armando Solar-Lezama, & Yuan Tang

3 Provably Efficient Scheduling of Cache-Oblivious Wavefront Algorithms Under prep. Chap. 3
with Rezaul Chowdhury, Jesmin Jahan Tithi, & Yuan Tang

4 An Efficient Cache-Oblivious Parallel Viterbi Algorithm Euro-Par 2016 Chap. 4
with Rezaul Chowdhury, Vivek Pradhan, Jesmin Jahan Tithi, & Yunpeng Xiao

5 A Framework for Designing External-Memory RAM-Oblivious GPU Algorithms for
Dynamic Programs

Under review Chap. 5

with Rezaul Chowdhury, Rathish Das, Mohammad Mahdi Javanmard, & Stephen
Tschudi

6 Space-Parallelism Tradeoff for Cache-Oblivious Parallel Algorithms Under prep. Chap. 6
with Rezaul Chowdhury, Mohammad Mahdi Javanmard, Isha Khanna, Pre-
madurga Kolli, & Stephen Tschudi

7 Divide-and-Conquer Variants of Bubble, Selection, & Insertion Sorts Under prep. Chap. A
with Rezaul Chowdhury

8 A Framework to Discover Combinatorial Algorithms Under prep. 7

with Rama Badrinath & Abhiram Natarajan
9 Premtuatoins & PAttERns Under prep. 7

with Rezaul Chowdhury
10 The Range 1 Query (R1Q) Problem COCOON 2014 7

with Michael A. Bender, Rezaul Chowdhury, Samuel McCauley, & Yuan Tang (Invited to TCS)
11 The Range 1 Query (R1Q) Problem TCS 2016 7

with Michael A. Bender, Rezaul Chowdhury, Samuel McCauley, & Yuan Tang
Minor contribution
12 Cache-Oblivious Wavefront: Improving Parallelism of Recursive Dynamic Pro-

gramming Algorithms Without Losing Cache-Efficiency
PPoPP 2015 7

with Yuan Tang, Ronghui You, Haibin Kan, Jesmin Jahan Tithi, & Rezaul Chowd-
hury

13 The I/O Complexity of Computing Prime Tables LATIN 2016 Chap. A
with Michael A. Bender, Rezaul Chowdhury, Alex Conway, Martin Farach-Colton,
Rob Johnson, Samuel McCauley, Bertrand Simon, & Shikha Singh

(part)

14 High-Performance Energy-Efficient Recursive Dynamic Programming with
Matrix-Multiplication-like Flexible Kernels

IPDPS 2015 Chap. A

with Jesmin Jahan Tithi, Aakrati Talati, Sonal Aggarwal, & Rezaul Chowdhury (part)

Table 1.3: My papers. In mathematics and theoretical computer science, we often follow
the convention of listing authors in alphabetical order of last names.

1.9.3 Dissertation organization
The organization of the topics in the dissertation is as follows. We present our Autogen
algorithm, its proof of correctness, and cache complexity of Autogen-discovered algorithms
in Chapter 2. We present recursive divide-and-conquer algorithms to several dynamic
programming problems in Appendix A. In Chapter 3, we present our Autogen-Wave frame-
work that can be used to discover divide-and-conquer wavefront algorithms. We present
the Autogen-Wave-discovered divide-and-conquer wavefront algorithms in Appendix B. In
Chapter 4, we present a provably cache-efficient cache-oblivious parallel Viterbi algorithm.
Efficient algorithms are presented for DP problems with irregular data dependencies in
Appendix C. In Chapter 5, we present the Autogen-Fractile framework that can be used
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to discover highly efficient recursive divide-and-conquer-based tiled algorithms. In Ap-
pendix D, we present several divide-and-conquer tiled algorithms. Finally, we present our
Autogen-Tradeoff framework in Chapter 6 and present hybrid algorithms in Appendix E.
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Chapter 2

Automatic Discovery of Efficient
Divide-&-Conquer DP Algorithms

We present Autogen — an algorithm that for a wide class of dynamic programming (DP)
problems automatically discovers highly efficient cache-oblivious parallel recursive divide-
and-conquer algorithms from inefficient iterative descriptions of DP recurrences. Autogen
analyzes the set of DP table locations accessed by the iterative algorithm when run on a
DP table of small size, and automatically identifies a recursive access pattern and a cor-
responding provably correct recursive algorithm for solving the DP recurrence. We use
Autogen to autodiscover efficient algorithms for several well-known problems. Our ex-
perimental results show that several autodiscovered algorithms significantly outperform
parallel looping and tiled loop-based algorithms. Also these algorithms are less sensitive
to fluctuations of memory and bandwidth compared with their looping counterparts, and
their running times and energy profiles remain relatively more stable. To the best of our
knowledge, Autogen is the first algorithm that can automatically discover new nontrivial
divide-and-conquer algorithms.

2.1 Introduction
Autogen is an algorithm for automatic discovery of efficient recursive divide-and-conquer
dynamic programming (DP) algorithms for multicore machines from naive iterative de-
scriptions of the dynamic programs. DP [Bellman, 1957, Sniedovich, 2010, Cormen et al.,
2009] is a widely used algorithm design technique that finds optimal solutions to a problem
by combining optimal solutions to its overlapping subproblems, and explores an otherwise
exponential sized search space in polynomial time by saving solutions to subproblems in a
table and never recomputing them. DP is extensively used in computational biology [Bafna
and Edwards, 2003,Durbin et al., 1998,Gusfield, 1997,Waterman et al., 1995], and in many
other application areas including operations research, compilers [Lew and Mauch, 2006],
sports [Romer, 2002, Duckworth and Lewis, 1998], games [Smith, 2007], economics [Rust,
1996], finance [Robichek et al., 1971] and agriculture [Kennedy, 1981].

Dynamic programs are described through recurrence relations that specify how the cells
of a DP table must be filled using already computed values for other cells. Such recurrences
are commonly implemented using simple algorithms that fill out DP tables iteratively.
These loop-based codes are straightforward to implement, often have good spatial cache
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locality1, and benefit from hardware prefetchers. But looping codes suffer in performance
from poor temporal cache locality2. Iterative DP implementations are also often inflexible
in the sense that the loops and the data in the DP table cannot be suitably reordered
in order to optimize for better spatial locality, parallelization, and/or vectorization. Such
inflexibility arises because the codes often read from and write to the same DP table, and
thus imposing strict read-write ordering of the cells.

Recursive divide-and-conquer DP algorithms (see Table 2.1) can often overcome many
limitations of their iterative counterparts. Because of their recursive nature such algo-
rithms are known to have excellent (and often optimal) temporal locality. Efficient im-
plementations of these algorithms use iterative kernels when the problem size becomes
reasonably small. But unlike in standard loop-based DP codes, the loops inside these
iterative kernels can often be easily reordered, thus allowing for better spatial locality,
vectorization, parallelization, and other optimizations. The sizes of the iterative kernels
are determined based on vectorization efficiency and overhead of recursion, and not on
cache sizes, and thus the algorithms remain cache-oblivious3 [Frigo et al., 1999] and more
portable than cache-aware tiled iterative codes. Unlike tiled looping codes these algorithms
are also cache-adaptive [Bender et al., 2014] — they passively self-adapt to fluctuations in
available cache space when caches are shared with other concurrently running programs.

For example, consider the dynamic program for solving the parenthesis problem [Galil
and Park, 1994] in which we are given a sequence of characters S = s1 · · · sn and we are
required to compute the minimum cost of parenthesizing S. Let C[i, j] denote the minimum
cost of parenthesizing si · · · sj. Then the DP table C[0 : n, 0 : n] is filled up using the
following recurrence:

C[i, j] =


∞ if 0 ≤ i = j ≤ n,
vj if 0 ≤ i = j − 1 < n,
min
i≤k≤j

{(C[i, k] + C[k, j]) + w(i, k, j)} if 0 ≤ i < j − 1 < n;
(2.1)

where the vj ’s and function w(·, ·, ·) are given.
Figure 3.1 shows a serial looping code LOOP-PARENTHESIS implementing Recurrence

3.1. Though the code is really easy to understand and write, it suffers from poor cache
performance. Observe that the innermost loop scans one row and one column of the same
DP table C. Assuming that C is of size n × n and C is too large to fit into the cache, each
iteration of the innermost loop may incur one or more cache misses leading to a total of
Θ (n3) cache misses in the ideal-cache model [Frigo et al., 1999]. Such extreme inefficiency
in cache usage makes the code bandwidth-bound. Also this code does not have any paral-
lelism as none of the three loops can be parallelized. The loops cannot also be reordered
without making the code incorrect4 which makes the code difficult to optimize.

Figure 3.1 shows the type of parallel looping code PAR-LOOP-PARENTHESIS one would
write to solve Recurrence 3.1. We can analyze its parallel performance under the work-
span model [Cormen et al., 2009] (chapter 27) which defines the parallelism of a code

1Spatial locality — whenever a cache block is brought into the cache, it contains as much useful data as
possible.

2Temporal locality — whenever a cache block is brought into the cache, as much useful work as possible
is performed on this data before removing the block from the cache.

3Cache-oblivious algorithms — algorithms that do not use the knowledge of cache parameters in the
algorithm description.

4compare this with iterative matrix multiplication in which all 6 permutations of the three nested loops
produce correct results
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PAR-LOOP-PARENTHESIS(C, n)

1. for t← 2 to n− 1 do
2. parallel for i← 1 to n− t do
3. j ← t+ i
4. for k ← i+ 1 to j do
5. C[i, j]← min

(
C[i, j], C[i, k]+
C[k, j] + w(i, k, j)

)

Parallelizer

LOOP-PARENTHESIS(C, n)

1. for i← n− 1 to 0 do
2. for j ← i+ 2 to n do
3. for k ← i to j do
4. C[i, j]← min

(
C[i, j], C[i, k]+
C[k, j] + w(i, k, j)

)

Autogen

Apar(〈X,X,X〉)

1. if X is a small matrix then Aloop-par(〈X,X,X〉)
2. else
3. par: Apar(〈X11, X11, X11〉), Apar(〈X22, X22, X22〉)
4. Bpar(〈X12, X11, X22〉)

Bpar(〈X,U, V 〉)

1. if X is a small matrix then Bloop-par(〈X,U, V 〉)
2. else
3. Bpar(〈X21, U22, V11〉)
4. par: Cpar(〈X11, U12, X21〉), Cpar(〈X22, X21, V12〉)
5. par: Bpar(〈X11, U11, V11〉), Bpar(〈X22, U22, V22〉)
6. Cpar(〈X12, U12, X22〉)
7. Cpar(〈X12, X11, V12〉)
8. Bpar(〈X12, U11, V22〉)

Cpar(〈X,U, V 〉)

1. if X is a small matrix then Cloop-par(〈X,U, V 〉)
2. else
3. par: Cpar(〈X11, U11, V11〉), Cpar(〈X12, U11, V12〉),

Cpar(〈X21, U21, V11〉), Cpar(〈X22, U21, V12〉)
4. par: Cpar(〈X11, U12, V21〉), Cpar(〈X12, U12, V22〉),

Cpar(〈X21, U22, V21〉), Cpar(〈X22, U22, V22〉)

Figure 2.1: Left upper half: A parallel looping code that evaluates Recurrence 3.1. Left
lower half: Autogen takes the serial parenthesis algorithm as input and automatically
discovers a recursive divide-and-conquer cache-oblivious parallel algorithm. Initial call to
the divide-and-conquer algorithm is Apar(〈C,C,C〉), where C is an n × n DP table and n is
a power of 2. The iterative base-case kernel of a function Fpar is Floop-par. Right: Pictorial
representation of the recursive divide-and-conquer algorithm discovered by Autogen. Data
in the dark red blocks are updated using data from light blue blocks.

as T1/T∞, where Tp (p ∈ [1,∞)) is the running time of the code on p processing cores
(without scheduling overhead). Clearly, the parallelism of PAR-LOOP-PARENTHESIS is
Θ (n3) /Θ (n2) = Θ (n). If the size M of the cache is known the code can be tiled to improve
its cache performance to Θ

(
n3/

(
B
√
M
))

, where B is the cache line size. However, such
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rigid cache-aware tiling makes the code less portable, and may contribute to a significant
loss of performance when other concurrently running programs start to use space in the
shared cache.

Finally, Figure 3.1 shows the type of algorithm Autogen would generate from the se-
rial code. Though designing such a parallel recursive divide-and-conquer algorithm is not
straightforward, it has many nice properties. First, the algorithm is cache-oblivious, and
for any cache of size M and line size B it always incurs Θ

(
n3/

(
B
√
M
))

cache misses which
can be shown to be optimal. Second, its parallelism is Θ

(
n3−log2 3

)
= ω (n1.41) which is asymp-

totically greater than the Θ (n) parallelism achieved by the parallel looping code. Third,
since the algorithm uses recursive blocking, it can passively self-adapt to a correct block
size (within a small constant factor) as the available space in the shared cache changes
during runtime. Fourth, it has been shown that function Cloop-par is highly optimizable like
a matrix multiplication algorithm, and the total time spent inside Cloop-par asymptotically
dominates the time spent inside Aloop-par and Bloop-par [Tithi et al., 2015]. Hence, reasonably
high performance can be achieved simply by optimizing Cloop-par.

We ran the recursive algorithm and the parallel looping algorithm from Figure 3.1 both
with and without tiling on a multicore machine with dual-socket 8-core 2.7 GHz Intel
Sandy Bridge processors (2 × 8 = 16 cores in total), per-core 32 KB private L1 cache and
256 KB private L2 cache, and per-socket 20 MB shared L3 cache, and 32 GB RAM shared
by all cores. All algorithms were implemented in C++, parallelized using Intel Cilk Plus
extension, and compiled using Intel C++ Compiler v13.0. For a DP table of size 8000×8000,
the recursive algorithm without any nontrivial hand-optimizations ran more than 15 times
faster than the non-tiled looping code, and slightly faster than the tiled looping code when
each program was running all alone on the machine. When we ran four instances of the
same program (i.e., algorithm) on the same socket each using only 2 cores, the non-tiled
looping code slowed down by almost a factor of 2 compared to a single instance running
on 2 cores, the tiled looping code slowed down by a factor of 1.5, and the recursive code
slowed down by a factor of only 1.15. While the non-tiled looping code suffered because of
bandwidth saturation, the tiled looping code suffered because of its inability to adapt to
cache sharing.

In this chapter, we present Autogen — an algorithm that for a very wide class of DP
problems can automatically discover efficient cache-oblivious parallel recursive divide-and-
conquer algorithms from naive serial iterative descriptions of DP recurrences (see Figure
2.2). Autogen works by analyzing the set of DP table locations accessed by the input se-
rial algorithm when run on a DP table of suitably small size, and identifying a recursive
fractal-like pattern in that set. For the class of DP problems handled by Autogen the set
of table locations accessed by the algorithm is independent of the data stored in the ta-
ble. The class includes many well-known DP problems such as the parenthesis problem,
pairwise sequence alignment and the gap problem as well as problems that are yet to be
encountered. Autogen effectively eliminates the need for human involvement in the design

Autogen

analyze the trace
of the input algorithm
on a small DP table

Input
serial
iterative
DP algorithm

Output
parallel recursive DP algorithm:
cache-efficient, cache-oblivious,
cache-adaptive, energy-efficient

Figure 2.2: Input and output of Autogen.
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I-DP R-DP

Work Serial cache Span Serial cache Span
Problem (T1) comp. (Q1) (T∞) comp. (Q1) (T∞)
Parenthesis problem Θ (n3) Θ (n3) Θ (n2) Θ

(
n3/(B

√
M)

)
Θ
(
nlog 3

)
Floyd-Warshall’s APSP 3-D Θ (n3) Θ (n3/B) Θ (n log n) Θ (n3/B) O

(
n log2 n

)
Floyd-Warshall’s APSP 2-D Θ (n3) Θ (n3/B) Θ (n log n) Θ

(
n3/(B

√
M)

)
Θ
(
n log2 n

)
LCS / Edit distance Θ (n2) Θ (n2/B) Θ (n) Θ (n2/(BM)) Θ

(
nlog 3

)
Multi-instance Viterbi Θ (n3t) Θ (n3t/B) Θ (nt) Θ

(
n3t/(B

√
M)

)
Θ (nt)

Gap problem Θ (n3) Θ (n3) Θ (n2) Θ
(
n3/(B

√
M)

)
Θ
(
nlog 3

)
Protein accordion folding Θ (n3) Θ (n3/B) Θ (n2) Θ

(
n3/(B

√
M)

)
Θ (n log n)

Spoken-word recognition Θ (n2) Θ (n2/B) Θ (n) Θ (n2/(BM)) Θ
(
nlog 3

)
Function approximation Θ (n3) Θ (n3/B) Θ (n2) Θ

(
n3/(B

√
M)

)
Θ
(
nlog 3

)
Binomial coefficient O (n2) O (n2/B) Θ (n) Θ (n2/(BM)) Θ

(
nlog 3

)
Bitonic traveling salesman Θ (n2) Θ (n2/B) Θ (n) Θ (n2/(BM)) Θ (n log n)
Matrix multiplication Θ (n3) Θ (n3/B) Θ (n) Θ

(
n3/(B

√
M)

)
Θ (n)

Bubble sort Θ (n2) Θ (n2/B) Θ (n2) Θ (n2/(BM)) Θ (n)
Selection sort Θ (n2) Θ (n2/B) Θ (n2) Θ (n2/(BM)) Θ (n)
Insertion sort O (n2) O (n2/B) O (n2) O

(
nlog 3/(BM log 3−1)

)
O (n)

Table 2.1: Work (T1), serial cache complexity (Q1), and span (T∞) of I-DP and R-DP algo-
rithms for several DP problems. Here, n = problem size, M = cache size, B = block size,
and p = #cores. By Tp we denote running time on p processing cores. We assume that the
DP table is too large to fit into the cache, and M = Ω

(
Bd
)

when Θ
(
nd
)

is the size of the DP
table. On p cores, the running time is Tp = O (T1/p+ T∞) and the parallel cache complexity
is Qp = O (Q1 + p(M/B)T∞) with high probability when run under the randomized work-
stealing scheduler on a parallel machine with private caches. The problems in the lower
section are non-DP problems. For insertion sort, T1 for R-DP is O

(
nlog 3

)
.

of efficient cache-oblivious parallel algorithms for all present and future problems in that
class.

Our contributions. Our major contributions are as follows:
(1) [Algorithmic.] We present Autogen — an algorithm that for a wide class of DP

problems automatically discovers highly efficient cache-oblivious parallel recursive
divide-and-conquer algorithms from iterative descriptions of DP recurrences. Auto-
gen works by analyzing the DP table accesses (assumed to be independent of the data
in the table) of an iterative algorithm on a table of small size, finding the dependen-
cies among different orthants of the DP table recursively, and constructing a tree and
directed acyclic graphs that represent a set of recursive functions corresponding to
a parallel recursive divide-and-conquer algorithm. We prove the correctness of the
algorithms generated by Autogen.

(2) [Experimental.] We have implemented a prototype of Autogen which we have used
to autogenerate efficient cache-oblivious parallel recursive divide-and-conquer algo-
rithms (pseudocodes) from naive serial iterative descriptions of several DP recur-
rences. We present experimental results showing that several autogenerated algo-
rithms without any nontrivial hand-tuning significantly outperform parallel looping
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codes in practice, and have more stable running times and energy profiles in a multi-
programming environment compared to looping and tiling algorithms.

Related work. Systems for auto-generating fast iterative DP implementations (not algo-
rithms) exist. The Bellman’s GAP compiler [Giegerich and Sauthoff, 2011] converts declar-
ative programs into optimized C++ code. A semi-automatic synthesizer [Pu et al., 2011]
exists which uses contraint-solving to solve linear-time DP problems such as maximal sub-
string matching, assembly-line optimization and the extended Euclid algorithm.

There are systems to automatically parallelize DP loops. EasyPDP [Tang et al., 2012]
requires the user to select a directed acyclic graph (DAG) pattern for a DP problem from
its DAG patterns library. New DAG patterns can be added to the library. EasyHPS [Du
et al., 2013] uses the master-slave paradigm in which the master scheduler distributes
computable sub-tasks among its slaves, which in turn distribute subsubtasks among slave
threads. A pattern-based system exists [Liu and Schmidt, 2004] that uses generic program-
ming techniques such as class templates to solve problems in bioinformatics. Parallelizing
plugins [Reitzig, 2012] use diagonal frontier and row splitting to parallelize DP loops.

To the best of our knowledge, there has been no previous attempt to automate the
process of discovering efficient cache-oblivious and cache-adaptive parallel recursive al-
gorithms by analyzing the memory access patterns of naive serial iterative algorithms.
The work that is most related to Autogen, but completely different in many aspects is
Pochoir [Tang et al., 2011]. Pochoir translates simple specifications of a stencil5 into high-
performing parallel code implementing an efficient cache-oblivious parallel algorithm. While
Pochoir tailors the implementation of the same cache-oblivious algorithm (known as the
trapezoidal decomposition algorithm) to different stencil computations, Autogen discovers
a (possibly) brand new efficient parallel cache-oblivious algorithm for every new DP prob-
lem it encounters.

Compiler technology for automatically converting iterative versions of matrix programs
to serial recursive versions is described in [Ahmed and Pingali, 2000]. The approach re-
lies on heavy machineries such as dependence analysis (based on integer programming)
and polyhedral techniques. Autogen, on the other hand, is a much simpler stand-alone
algorithm that analyzes the data access pattern of a given naive (e.g., looping) serial DP
code when run on a small example, and inductively generates a provably correct parallel
recursive algorithm for solving the same DP.

2.2 The Autogen algorithm
In this section, we present an algorithm called Autogen that automatically converts an
iterative algorithm to an efficient cache-oblivious parallel recursive divide-and-conquer al-
gorithm for a wide variety of DP problems.

Definition 1 (I-DP / R-DP / Autogen). Let P be a given DP problem specified through
a DP recurrence. An iterative (or loop-based) algorithm for P is called I-DP. A cache-
oblivious parallel recursive divide-and-conquer algorithm (if it exists) for P is called R-DP.
The algorithm that automatically generates an R-DP given any implementation for P is
called Autogen.

5a stencil is a dynamic program in which the value of a spatial cell at any time step depends on its
neighboring cells in a constant number of previous time steps
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The input to Autogen can be any implementation (I-DP, tiled I-DP, R-DP, or some
other implementation) of the given DP recurrence. As the simplest implementation of a
DP recurrence is an iterative algorithm or I-DP, in this chapter we assume I-DPs as in-
puts to Autogen.

AutogenI-DP R-DP

Algorithm. The four main steps of Autogen are:
(1) [Cell-set generation.] A cell-set is generated from a sample run of the given I-DP on

a problem of small size. See Section 2.2.1.
(2) [Algorithm-tree construction.] An algorithm-tree is constructed from the cell-set in

which each node represents a subset of the cell-set and follows certain rules. See
Section 2.2.2.

(3) [Algorithm-tree labeling.] The nodes of the tree are labeled with function names and
these labels represent a set of recursive divide-and-conquer functions in an R-DP

under Assumption 1. See Section 2.2.3.
(4) [Algorithm-DAG Construction.] For every unique function, we construct a directed

acyclic graph (DAG) that shows both the order in which the functions are to be exe-
cuted and the parallelism involved. See Section 2.2.4.

We make the following assumption for an R-DP.

Assumption 1 (Number of functions). The number of distinct recursive functions in an
R-DP is upper bounded by a constant.

Example. Autogen works for arbitrary d-D (d ≥ 1) DP problems under the assumption that
each dimension of the DP table is of the same length and is a power of 2. For simplicity
of exposition, we explain Autogen by applying it on an I-DP for the parenthesis problem,
which updates a 2-D DP table.

In the parenthesis problem [Galil and Park, 1994], we are given a sequence of charac-
ters S = s1 · · · sn and we would like to compute the minimum cost of parenthesizing S. This
problem represents a class of problems such as optimal matrix chain multiplication, string
parsing for context-free grammar (e.g., CYK algorithm), RNA secondary structure pre-
diction, optimal natural join of database tables (e.g., Selinger algorithm), construction of
optimal binary search trees, optimal polygon triangulation, maximum perimeter inscribed
polygon, and offline job scheduling minimizing total flow time of jobs. Let C[i, j] denote the
minimum cost of parenthesizing si · · · sj. Then, the DP table C[0 : n, 0 : n] is filled up using
the following recurrence.

C[i, j] =


∞ if 0 ≤ i = j ≤ n,
vj if 0 ≤ i = j − 1 < n,
min
i≤k≤j

{(C[i, k] + C[k, j]) + w(i, k, j)} if 0 ≤ i < j − 1 < n;
(2.2)

where vj ’s are given, and function w() can be computed without additional memory ac-
cesses.

Based on the recurrence relation above, we write the serial I-DP for the parenthesis
problem as illustrated in Figure 2.3. In the rest of the section, we show how to convert this
serial I-DP into an R-DP using Autogen.
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LOOP-PARENTHESIS(C, n)

1. for i← n− 1 to 0 do
2. for j ← i+ 2 to n do
3. for k ← i to j do
4. C[i, j]← min (C[i, j], C[i, k] + C[k, j] + w(i, k, j))

PAR-LOOP-PARENTHESIS(C, n)

1. for t← 2 to n− 1 do
2. parallel for i← 1 to n− t do
3. j ← t+ i
4. for k ← i+ 1 to j
5. C[i, j]← min (C[i, j], C[i, k] + C[k, j] + w(i, k, j))

Figure 2.3: Serial and parallel I-DP for the parenthesis problem (Recurrence 3.1). Initial-
ization is not shown.

2.2.1 Cell-set generation
In this step, a cell-set is generated for a given DP problem. We define a few terms that will
be used to define a cell-set.

A cell is a grid point in a DP table identified by its d-D coordinates, e.g., (5, 7) represents
a cell in a 2-D DP table. A cell is fully updated when the value of the cell is final and does
not change in the future, otherwise it is partially updated. A cell x is fully dependent on a
cell y when x is partially or fully updated with the fully updated value of y. A cell x is said
to be partially dependent on a cell y when x is to be updated from the combined values of
y and some other cells. We say that two cells x and y in a DP table are adjacent iff they
differ only in one coordinate value and that difference is exactly 1. A path from cell x to
cell y in a DP table is a sequence of cells starting from x and ending at y such that every
two consecutive cells in the sequence are adjacent.

Definition 2 (Region). For simplicity, a region is defined for 2-D. Let a 2-D DP table be
represented as C[0 : n − 1][0 : n − 1]. Then, a region at a level i ∈ [0, log n] is defined as a
n
2i × n

2i square block in C with its top-left corner at (j · 2i, k · 2i), where j, k ∈ [0, 2i − 1].

A d-D DP table C is called a level-0 region. The orthants of identical dimensions of the
level-0 region are called level-1 regions. Generalizing, the orthants of level-i regions are
called level-(i+ 1) regions. In d-D, a region at a level i can be divided into 2d regions at level
i+ 1, where i ∈ [0, log n).

Definition 3 (Depends, dependencies). A cell x depends on another cell y, represented by
x { y, if cell x is updated using information from cell y, e.g., (5, 13) { (4, 12). A region X
depends on another region Y , represented by X { Y , if ∃ cells x ∈ X, y ∈ Y such that x{ y.

The set of all dependency relations x { y of a cell x is called the dependencies of x.
Similarly, the set of all dependency relations X { Y of a region X is called the dependencies
of X.

Definition 4 (Update relation, cell-/region-tuple). We assume that each iteration of the
innermost loop of the given I-DP performs the following update:

C[x]← f(C1[y1], C2[y2], . . . , Cs[ys]) or (2.3)
C[x]← C[x]⊕ f(C1[y1], C2[y2], . . . , Cs[ys]), (2.4)
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where s ≥ 1; x is a cell of table C; yi is a cell of table Ci; ⊕ is an associative operator (such
as min, max, +, ×); and f is an arbitrary function.

We call the tuple 〈C[x], C1[y1], . . . , Cs[ys]〉 a cell-tuple. Let C[X], C1[Y1], . . . , Cs[Ys] be regions
such that x ∈ X, and yi ∈ Yi. Then we call the tuple 〈C[X], C1[Y1], . . . , Cs[Ys]〉 a region-
tuple. In simple words, a cell-tuple (resp. region-tuple) gives information of which cell
(resp. region) is being written by reading from which cells (resp. regions). The size of a
cell-/region-tuple is 1 + s.

Definition 5 (Cell-set). For any given I-DP, the set of all cell-tuples for all cells in its DP
table is called a cell-set.

Given an I-DP, we modify it such that instead of computing its DP table, it generates
the cell-set for a problem of suitably small size. For a problem of suitably small size and
instead of computing the DP table we simply generate the cell-set. For example, for the
parenthesis problem, we choose n = 64 and generate the cell-set {〈C(i, j), C(i, k), C(k, j)〉},
where C is the DP table, 0 ≤ i < j − 1 < n, and i ≤ k ≤ j. A method of choosing a good
small problem size is explained in Section 2.3.1.

2.2.2 Algorithm-tree construction
In this step, we create an algorithm-tree using the cell-set generated in Section 2.2.1.

Definition 6 (Algorithm-tree). Given an I-DP, a tree representing a hierarchy of recursive
divide-and-conquer functions which is used to find a potentialR-DP is called an algorithm-
tree.

An algorithm-tree is a collection of nodes placed at different levels. The way we con-
struct level-i nodes in an algorithm-tree is by analyzing the dependencies between level-i
regions using the cell-set. Every node in the algorithm-tree represents a subset of the cell-
set satisfying certain region-tuple dependencies. Suppose the algorithm writes into DP
table C, and reads from tables C1, . . . , Cs (they can be same as C). The algorithm-tree is
constructed as follows.

At level 0, as per Definition 2, the only regions possible are the entire tables C,C1, . . . , Cs.
We analyze the cell-tuples of the cell-set to identify the region-tuples at this level. As all
the write cells belong to C and all the read cells belong to C1, . . . , Cs, the only possible
region-tuple is 〈C,C1, . . . , Cs〉. We create a node for this region-tuple and it forms the root
node of the algorithm-tree. It represents the entire cell-set. For example, for parenthesis
problem, as all the write and read cells belong to the same DP table C, the root node will
be {〈C,C,C〉}.

The level-1 nodes are found by distributing the cell-tuples belonging to the root node
among region-tuples of level 1. The level-1 regions are obtained by dividing the DP table C
into four quadrants: C11 (top-left), C12 (top-right), C21 (bottom-left), and C22 (bottom-right).
Similarly, each Ci for i ∈ [1, s] is divided into four quadrants: Ci

11, C
i
12, C

i
21, and Ci

22. The cell-
tuples of the cell-set are analyzed to find all possible nonempty region-tuples at level 1.
For example, if a cell-tuple 〈c, c1, . . . , cs〉 is found to have c ∈ Ck and ci ∈ Ci

ki
for i ∈ [1, s] and

k, ki ∈ {11, 12, 21, 22}, then we say that 〈c, c1, . . . , cs〉 belongs to region-tuple 〈Ck, C1
k1
, . . . , Cs

ks
〉.

Different problems will have different nonempty region-tuples depending on their cell de-
pendencies. For the parenthesis problem, there are four nonempty level-1 region-tuples
and they are 〈C11, C11, C11〉, 〈C22, C22, C22〉, 〈C12, C11, C12〉, and 〈C12, C12, C22〉.
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{〈C,C,C〉}

〈C11,C11,C11〉 〈C12,C11,C12〉 〈C12,C12,C22〉 〈C22,C22,C22〉

(a) Before applying Rule 1.

{〈C,C,C〉}

{〈C11,C11,C11〉} {〈C12,C11,C12〉,〈C12,C12,C22〉} {〈C22,C22,C22〉}

(b) After applying Rule 1.
Figure 2.4: First two levels of the algorithm-tree for parenthesis problem before and after
applying Rule 1.

Sometimes two or more region-tuples are combined into a node. The region-tuples that
write to and read from the same region depend on each other for the complete update of
the write region. Hence, two or more region-tuples are combined into a node if they read
from and write to the same region. The following rule guarantees that such region-tuples
are processed together to to satisfy the read-write constraints as described in Property 2
and avoid incorrect results.

Rule 1 (Combine region-tuples into node). Two region-tuples at the same level of
an algorithm-tree denoted by 〈W,R1, . . . , Rs〉 and 〈W, R′1, . . . , R′s〉 are combined into a
single node provided ∃i, j ∈ [1, s] such that Ri = W = R′j.

For example, for the parenthesis problem, at level 1, the two region-tuples 〈C12, C11, C12〉
and 〈C12, C12, C22〉 are combined into a single node {〈C12, C11, C12〉, 〈C12, C12, C22〉} (see Fig-
ure 2.4(b)). The other two nodes are {〈C11, C11, C11〉} and {〈C22, C22, C22〉}. The three nodes
represent three mutually disjoint subsets of the cell-set and have different region-tuple de-
pendencies. Once we find all level 1 nodes, we recursively follow the same strategy to find
the nodes of levels ≥ 2 partitioning the subsets of the cell-set further depending on their
region-tuple dependencies.

In summary, we follow the following four step process to find the child nodes of a node
F present at level k:

(1) Find the regions at level k + 1 that belong to the regions of F.
(2) Analyze the cell-tuples present in F and use the regions found from the previous step

to find the region-tuples at level k + 1.
(3) Combine region-tuples into nodes following Rule 1.
(4) Split the cell-tuples of F into different nodes as per their region-tuple dependencies.

2.2.3 Algorithm-tree labeling
In this step, the nodes of the algorithm-tree are labeled with function names. Two nodes
are given the same function name when the following two are the same:

(1) Output fingerprint, to denote the same kind of child nodes (subregion-tuples).
(2) Input fingerprint, to denote the same kind of node (region-tuples).

The definitions and the rule follow.

Definition 7 (Output fingerprint). The output fingerprint of a node is the set of all output
fingerprints of its region-tuples. The output fingerprint of a region-tuple is defined as the
set of all its subregion-tuples present in the child nodes. A subregion-tuple of a region-
tuple 〈W,R1, . . . , Rs〉 is defined as a tuple 〈w, r1, . . . , rs〉 where w, ri ∈ {11, 12, 21, 22} such that
〈Ww, Rr1 , . . . , Rrs〉 is a region-tuple, where ∀i ∈ [1, s].
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Definition 8 (Input fingerprint). The input fingerprint of a node is the set of all input
fingerprints of its region-tuples. The input fingerprint of a region-tuple 〈X1, . . . , X1+s〉 is a
tuple 〈p1, . . . , p1+s〉, where ∀i ∈ [1, 1 + s], pi is the smallest index j ∈ [1, i] such that Xj = Xi.

In practice, for most algorithms we have seen, it is enough if we simply consider the
output fingerprints alone for giving the same function name. Having input fingerprint
increases the number of functions but it makes the rule stronger.

Rule 2 (Same function name). Two nodes in an algorithm tree are given the same
function name provided the two nodes have the same output and input fingerprints.

For example, in the parenthesis problem, nodes {〈C12, C11, C12〉, 〈C12, C12, C22〉} and
{〈C1221, C1122, C1221〉, 〈C1221, C1221, C2211〉} satisfy Rule 2, and so get the same function name.

We assume that an algorithm-tree satisfies the one-way function generation property
as defined below. We will make use of the property in later sections.

Property 1 (One-way function generation). In an algorithm-tree, if a node labeled
F is an ancestor of a node labeled G, then there exists no node labeled G that is an
ancestor of a node labeled F. We call this property the one-way function generation
property.

The height of an algorithm-tree is determined by the threshold level as defined below.

Definition 9 (Threshold level). In an algorithm-tree, at least one new function is invoked
at every level starting from level 0 till a certain level l, beyond which no new functions
are invoked. We call l the threshold level and it is upper bounded by a constant as per
Assumption 1.

We stop the process of labeling at a level l where no new functions are invoked. This
means, all functions present in levels [1, l] call themselves.

The two steps: algorithm-tree construction and algorithm-tree labeling can be combined
into a single step, in which case, it is sufficient if we build the algorithm-tree and label it
till level l. In this paper, we have separated them into two different steps for pedagogical
reasons.

Figure 2.5(a) illustrates a small part of the algorithm-tree for the parenthesis problem
with three functions A,B, and C. We see that A calls A and B, B calls B and C and C

A

A AB

B B B B C C C C

C C C C C C C C

A

A A

B

B B

C C

B B

CC

B

C

C C C C

C C C C

(a) (b)
Figure 2.5: (a) A small part of the algorithm-tree for the parenthesis problem. Due to space
constaints, only three nodes are expanded. (b) DAGs for the three functions A,B, and C in the
parenthesis problem showing the order of execution of functions.
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calls C only. The root node is given the function name A. The function A at level 1 calls
{A,A,B}. At level 2, a new function B is generated. After expansion, B at level 2 calls
{B,B,B,B,C,C,C,C}. A new function C is generated at level 3. On expanding, the function
C calls itself {C,C,C,C,C,C,C,C}. As no new functions are generated at level 4, we stop. The
three recursive recursive functions have different functionalities due to the relationship
between the read and write regions.

In the parenthesis problem, the smallest level at which no new functions are called is
l = 4. The three functions generated in the levels [1, 3] are represented in the form

F 7→ {F1,F2, . . . ,FmF
} [l = k],

where the function (or node) F, which is called for the first time at level k, in turn calls
the functions F1,F2, . . . ,FmF

.

A 7→ {A,A,B} [l = 1]
B 7→ {B,B,B,B,C,C,C,C} [l = 2]
C 7→ {C,C,C,C,C,C,C,C} [l = 3]

2.2.4 Algorithm-DAG construction
In this step, we construct a directed acyclic graph (DAG) for every function. An algorithm-
tree does not give information on (a) the sequence in which a function calls other functions,
and (b) the parallelism involved in executing the functions. The DAGs address these two
issues using the rules that follow.

We define a few terms before listing the rules.

Definition 10 (W(), R()). Given a function F, we define W(F) and R(F) as the write region
and the set of read regions of the region-tuples in F, respectively. For a region-tuple T =
〈W,R1, . . . , Rs〉, we define W(T ) = W and R(T ) = {R1, . . . , Rs}.

Definition 11 (Flexibility). A region-tuple T is called flexible provided W(T ) < R(T ), i.e.,
the region-tuple does not write to a region it reads from. A function is called flexible if all of
its region-tuples are flexible.

Definition 12 (Function ordering). If a function F calls two functions F1 and F2, then the
ordering between F1 and F2 can be any of the following three: (a) F1 → F2 i.e., F1 is called
before F2, (b) F1 ↔ F2 i.e., either F1 → F2 or F2 → F1, and (c) F1||F2 i.e., F1 can be run in
parallel with F2.

If a function F calls two functions F1 and F2, then the order in which F1 and F2 are
executed is determined by the following rules.

Rule 3 (Different write regions). If W(F1) ,W(F2) and W(F1) ∈ R(F2), then F1 → F2.

Rule 4 (Same write region). If W(F1) = W(F2), F1 is flexible but F2 is not, then
F1 → F2.
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Rule 5 (Same write region). If W(F1) = W(F2) and both F1 and F2 are flexible, then
F1 ↔ F2.

Rule 6 (Different write regions). If F1 and F2 satisfy none of the rules 3, 4 and 5,
then F1||F2.

Based on the rules above, we construct a DAG for every function. Let a node in a DAG
be called a dnode. We modify the constructed DAGs by deleting unwanted edges from
them as per the following rules. The set of all modified DAGs for all functions represents
an R-DP for the given I-DP.

Rule 7 (DAG). In the algorithm-tree, if a function F calls two functions F1 and F2,
then in the DAG of F, we create dnodes d1 and d2 corresponding to F1 and F2 (if they
are not already present), respectively. If F1 → F2, then we add a directed edge from
d1 to d2. On the other hand, if F1 ↔ F2, then we add a directed edge either from d1 to
d2 or from d2 to d1, but not both.

Rule 8 (Algorithm-DAG). Let d1, d2 and d3 be three dnodes in a DAG. If there are
directed edges from d1 to d2 and from d2 to d3, then mark the directed edge from d1
to d3. Mark all such edges in the DAG until no more edges can be marked. Finally,
delete all marked edges from the DAG.

The redundant functions can be removed using extra space using the following rule.
After the reduction, the functions can be made to satisfy Property 1.

Rule 9 (Function reduction). Let the size of the DP table be nd. Any function F in
the autogeneratedR-DP can be removed using an additional space of O

(
nd−1

)
, if the

cells in W(F) depends on O
(
nd−1

)
cells of R(F).

Thus, starting from a simple I-DP, we can automatically generate an R-DP using Au-
togen. As an example, for the parenthesis problem, an R-DP is given in Figure 2.6 and
illustrated in Figure 2.5 and 2.7. The algorithm includes three functions A, B and C, each
of which is represented by a DAG. Function B contains two region-tuples 〈X,U,X〉 and
〈X,X, V 〉, but because of space constraints we write them as 〈X,U, V 〉.

2.3 Correctness of Autogen
In this section, we first describe a method of choosing a good small problem size for the
sample run, then define a class of DP problems called Fractal-dp on which Autogen works,
and finally provide a proof of correctness for Autogen.

2.3.1 Threshold problem size
Given a DP problem, there exists a minimum value of n (assumed to be a power of 2) for
which one can build an algorithm-tree with the number of levels more than the threshold
level for that problem. Suppose the R-DP algorithm of the problem includes at least m
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Apar(〈X,X,X〉)

1. if X is a small matrix then Aloop-par(〈X,X,X〉)
2. else
3. parallel: Apar(〈X11, X11, X11〉), Apar(〈X22, X22, X22〉)
4. Bpar(〈X12, X11, X22〉)

Bpar(〈X,U, V 〉)

1. if X is a small matrix then Bloop-par(〈X,U, V 〉)
2. else
3. Bpar(〈X21, U22, V11〉)
4. parallel: Cpar(〈X11, U12, V21〉), Cpar(〈X22, X21, V12〉)
5. parallel: Bpar(〈X11, U11, V11〉), Bpar(〈X22, X22, V22〉)
6. Cpar(〈X12, U12, X22〉)
7. Cpar(〈X12, X11, V12〉)
8. Bpar(〈X12, U11, V22〉)

Cpar(〈X,U, V 〉)

1. if X is a small matrix then Cloop-par(〈X,U, V 〉)
2. else
3. parallel: Cpar(〈X11, U11, V11〉), Cpar(〈X12, U11, V12〉), Cpar(〈X21, U21, V11〉), Cpar(〈X22, U21, V12〉)
4. parallel: Cpar(〈X11, U12, V21〉), Cpar(〈X12, U12, V22〉), Cpar(〈X21, U22, V21〉), Cpar(〈X22, U22, V22〉)

Figure 2.6: An R-DP algorithm for the parenthesis problem. Initial call to the algorithm
is Apar(〈C,C,C〉), where C is the DP table.

distinct functions. From Definition 9, the threshold level is upper bounded bym. Therefore,
we should set the sample problem size to n = 2m+k, where k is a problem-specific natural
number.

Empirically, we have found that the number of functions required to represent anR-DP

algorithm for most problems is at most 4. Considering m = 4 and k = 2, we get n = 64.
If we are unable to generate all the functions, we increase the value of k and build the
algorithm-tree again. We continue this process until we generate functions that call no
new functions. Such a threshold value of n is called the threshold problem size for the
given DP problem.

2.3.2 The Fractal-dp class
In this section, we define a class of iterative DP algorithms called Fractal-dp. If an I-DP

belongs to the Fractal-dp class, then Autogen can be applied on the I-DP to get a correct
R-DP.

We define two properties on an I-DP: (a) One-way sweep property, which means that
cells of the given DP table are finalized like a wavefront and the wavefront travels through
the entire table only once and that too, in a single direction; and (b) Fractal property, which
means that cell dependencies in the given DP table display self-similar patterns.

Property 2 (One-way sweep). An I-DP for a DP table C is said to satisfy the one-
way sweep property if the following holds: ∀ cells x, y ∈ C, if x depends on y, then y
is fully updated before x reads from y.

This rule is called one-way sweep because the wavefront of computations (order of cells
getting fully updated) never comes back to a cell again once it is both written as well as
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Figure 2.7: An R-DP i.e., cache-oblivious parallel recursive divide-and-conquer algorithm for the
parenthesis problem with functions A, B and C. Entries in the dark red blocks are updated using
data from light blue blocks. The initial call to the algorithm is Apar(〈C, C, C〉), where C is the
DP table. The function Bpar contains two region tuples denoted by Bpar(〈X, U, X〉, 〈X, X, V 〉), but
because of space constraints we write it as Bpar(〈X, U, V 〉).

read from (in the same order). Autogen cannot be used on a loop-based DP implementation
if it does not satisfy Property 2.

Define G = {angle in radians made by line xy | ∀x, y ∈ C and x depends on y}. The set
G can be rewritten as G = 〈θ1, θ2, . . . , θk〉 such that θ1 < θ2 < · · · < θk. We define δ as

δ = 2π −max
(

max
i∈[1,k−1]

(θi+1 − θi), 2π − θk + θ1

)
If δ ≥ π, then the I-DP violates the one-way sweep property.

Property 3 (Fractal property). An I-DP satisfies the fractal property if the following
holds. Let Sn and S2n be the cell-sets of the I-DP for DP tables [0..n−1]d and [0..2n−1]d,
respectively, where n ≥ 2k (see Section 2.3.1). Generate the cell-set S ′n from S2n by
replacing every coordinate value j with bj/2c and then retaining only the distinct
tuples. Then, Sn = S ′n.

Definition 13 (Fractal-dp class). An I-DP is said to be in the Fractal-dp class if the follow-
ing conditions hold: (a) the I-DP satisfies the one-way sweep property (Property 2), (b) it
satisfies the fractal property (Property 3), and (c) the number of input parameters given to
its update function (i.e., s in Definition 4) is upper bounded by a constant.
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Fractal-dp is a wide class of dynamic programs. In Cormen et al.’s book [Cormen et al.,
2009], 12 out of 16 (i.e., 75%) DP problems belong to Fractal-dp class. In Lew and Mauch’s
book [Lew and Mauch, 2006], approx. 29 out of 47 (i.e., 61%) DP problems belong to
Fractal-dp class.

The problems that do not belong to Fractal-dp class are Viterbi algorithm (if the emis-
sion matrix is included), knapsack problem, sieve of Eratosthenes, some graph DP prob-
lems, some tree DP problems, some DAG DP problems and other problems where the up-
date equation do not follow fractal patterns. E.g: in Viterbi algorithm a cell P [i, j] depends
on B[i, Y [j]], where Y [j] can take different values depending on the problem instance, in
0/1 knapsack problem, a cell K[i, j] depends on K[i− 1, j−W [i]], in sieve of Eratosthenes, a
cell P [i] depends on P [j], where j is a factor of i.

There might be some non-Fractal-dp problems for which Autogen works. We are not
aware of that more general class for which Autogen works. Right now, the proof of cor-
rectness works for Fractal-dp problems. It does not say whether Autogen fails for all non-
Fractal-dp problems.

We prove in the next section that If an I-DP belongs to the Fractal-dp class, then Auto-
gen can be applied on the I-DP to get a functionally equivalent R-DP as defined below.

Definition 14 (Functional equivalence). An R-DP R is said to be functionally equivalent
to an I-DP I provided for every input legal to I, both R and I produce matching output.

2.3.3 Proof of correctness
In this section, we present a proof of correctness for Autogen.

Theorem 1 (Correctness of Autogen). Given an I-DP from the Fractal-dp class
as input, Autogen generates an R-DP that is functionally equivalent to the given
I-DP.

Proof. Let the I-DP and R-DP algorithms for a problem P be denoted by I and R, re-
spectively. We use mathematical induction to prove the correctness of Autogen in d-D,
assuming d to be a constant. First, we prove the correctness for the threshold problem size
i.e., n = 2q for some q ∈ N (see Section 2.3.1) and then show that if the algorithm is correct
for n = 2r, for any r ≥ q then it is also correct for n = 2r+1. The most complicated part of
the proof is the one where we show that the generated R-DP never violates the one-way
sweep property (Property 2) which requires a case-by-case analysis of the order of updates
of a pair of cell-tuples.

Basis. To prove that Autogen is correct for n = 2q, we have to show the following three:
(a) Number of nodes in the algorithm-tree is O (1)
(b) Both I and R apply the same set of cell updates
(c) R never violates the one-way sweep property (Property 2).

(a) The size of the algorithm-tree is O (1).
A node is a set of one or more region-tuples (see Rule 1). As per Rule 2, two nodes with
the same input and output fingerprints are given the same function names. The maximum
number of possible functions is upper bounded by the product of the maximum number of
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possible nodes at a level
(
≤ 2d((2d − 1)s + 1)

)
and the maximum number of children a node

can have
(
≤ 22d((2d−1)s+1)

)
. This is because,

Max #region-tuples at a level ≤ 2d(s+1)

Max #nodes at a level ≤ 2d((2d − 1)s + 1)
Max #nodes with same i/p fingerprint ≤ 2d((2d − 1)s + 1)
Max #children of a node ≤ 22d((2d−1)s+1)

Max #functions ≤ 2d((2d − 1)s + 1)22d((2d−1)s+1)

The height of the tree is O (1) from Definition 9 and Assumption 1. The maximum branch-
ing factor (or the maximum number of children per node) of the tree is also upper bounded
by a constant. Hence, the size of the algorithm-tree is O (1).
(b) Both I and R perform the same set of cell updates.
There is no cell-tuple of I that is not considered by R. In Section 2.2.2, we split the entire
cell-set into subsets of cell-tuples, subsubsets of cell-tuples and so on to represent the dif-
ferent region-tuples. As per the rules of construction of the algorithm-tree, all cell-tuples
of I are considered by R.

There is no cell-tuple of R that is not considered by I. Let there be a cell-tuple T in
R that is not present in I. As the cell-tuples in R are obtained by splitting the cell-set
into subsets of cell-tuples, subsubsets of cell-tuples and so on, the original cell-set should
include T . This means that I should have generated the cell-tuple T , which contradicts
our initial assumption. Hence, by contradiction, all the cell tuples of R are considered by
I.

(c) R never violates the one-way sweep property (Property 2).
We prove that for any two cell-tuples T1 and T2, the order of execution of T1 and T2 in R is
exactly the same as that in I if changing the order may lead to violation of the one-way
sweep property.

The relationship between the tuples T1 and T2 can be defined exhaustively as shown in
Table 2.2 with the four conditions:

O W(T1) ∈ (or <) R(T1).
O W(T2) ∈ (or <) R(T2).
O W(T1) ∈ (or <) R(T2).
O W(T1) = (or ,) W(T2).
A few cases do not hold as the cell-tuples cannot simultaneously satisfy paradoxical

conditions, e.g., cases 3, 5, 11 and 13 in Tab. 2.2. The relation between T1 and T2 can be one
of the following five:

O T1 = T2.
O T1 → T2 i.e., T1 is executed before T2.
O T2 → T1 i.e., T2 is executed before T1.
O T1||T2 i.e., T1 and T2 can be executed in parallel.
O T1 ↔ T2 i.e., either T1 → T2 or T2 → T1.
Columns I and R represent the ordering of the two cell-tuples in I and R algorithms,

respectively. Column I is filled based on the one-way sweep property (Property 2) and
column R is filled based on the four rules 3, 4, 5, and 6. It is easy to see that for every
case in which changing the order of execution of T1 and T2 may lead to the violation of the
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one-way sweep property, both R and I apply the updates in exactly the same order. Hence,
R satisfies the one-way sweep property.
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1 3 3 3 3 T1 = T2 − T1 = T2

2 3 3 3 7 T1 → T2 3 T1 → T2

3 3 3 7 3 − − −
4 3 3 7 7 T1 ‖ T2 6 T1 ‖ T2

5 3 7 3 3 − − −
6 3 7 3 7 T1 → T2 3 T1 → T2

7 3 7 7 3 T2 → T1 4 T2 → T1

8 3 7 7 7 T1 ‖ T2 6 T1 ‖ T2

9 7 3 3 3 T1 → T2 4 T1 → T2

10 7 3 3 7 T1 → T2 3 T1 → T2

11 7 3 7 3 − − −
12 7 3 7 7 T1 ‖ T2 6 T1 ‖ T2

13 7 7 3 3 − − −
14 7 7 3 7 T1 → T2 3 T1 → T2

15 7 7 7 3 T1 ↔ T2 5 T1 ↔ T2

16 7 7 7 7 T1 ‖ T2 6 T1 ‖ T2

Table 2.2: T1 and T2 are two cell-tuples. Columns 2-5 represent the four conditions for
the two cell-tuples. Columns I and R show the ordering of the cell-tuples for I and R
algorithms, respectively. The order of cell updates of R is consistent with I.

Induction. We show that if Autogen is correct for a problem size of n = 2r for some
r ≥ q ∈ N, it is also correct for n = 2r+1.

From the previous arguments we obtained a correct algorithm R for r = q. Algorithm
R is a set of dags for different functions. Let Cn and C2n represent two DP tables of size nd
and (2n)d, respectively, such that n ≥ 2q. According to Property 3, the dependencies among
the regions Cn

11, C
n
12, C

n
21, C

n
22 must be exactly same as the dependencies among the regions

C2n
11 , C

2n
12 , C

2n
21 , C

2n
22 . If they were different, then that would violate Property 3. Hence, the

region-tuples for the two DP tables are the same. Arguing similarly, the region-tuples
remain the same for the DP tables all the way down to the threshold level. In other words,
the algorithm-trees for the two problem instances are exactly the same. Having the same
algorithm-trees with the same dependencies implies that the dags for DP tables Cn and
C2n are the same. Therefore, if Autogen is correct for n = 2r for some r ≥ q ∈ N, it is also
correct for n = 2r+1. �

2.4 Complexity analysis
In this section, we first analyze the space and time complexities of Autogen itself, and then
analyze the general cache complexity of a class of R-DP algorithms generated by Autogen.
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2.4.1 Space/time complexity of Autogen
We analyze the space and time complexities of Autogen using the three parameters d, s,
and l, where d is the number of dimensions, 1+s is the cell-tuple size, and l is the threshold
level.

Let the size of the DP table be nd. Assume that the maximum number of cells a cell de-
pends on is upper bounded by ∆. The number of cell-tuples in d-D is O

(
nd∆

)
. Hence, the

total space complexity of Autogen is O
(
nd∆ds

)
. To construct an algorithm-tree, the cell-

tuples have to be scanned O (l) times. The algorithm-dag construction consumes asymptot-
ically less time as the number of functions is O (1) under Assumption 1. So, the total time
complexity of Autogen is O

(
nd∆dsl

)
.

2.4.2 Cache complexity of an R-DP

In this section, we analyze the cache complexity of an R-DP under the ideal-cache model
[Frigo et al., 1999]. We assume that the size of the DP table (or space complexity) is Θ

(
nd
)
,

and M = Ω
(
Bd
)
, where M = cache size and B = block size. We also assume that the R-

DP (i) satisfies Property 1, and (ii) includes at least one dominating closed or semi-closed
function as defined below. Most well-known R-DP algorithms (including all listed in Table
2.2) satisfy those two properties.

Definition 15 (Closed/semi-closed function). A recursive function is closed provided it does
not call any other recursive function but itself, and it is semi-closed provided it only calls
itself and other closed functions.

Definition 16 (Domination). A closed (resp. semi-closed) function G is dominating provided
no other closed (resp. semi-closed) function of the given R-DP makes more self-recursive
calls than made by G and every non-closed (resp. non-semi-closed) function makes strictly
fewer such calls.

Suppose the R-DP algorithm consists of a set F of m recursive functions F1,F2, . . . ,Fm.
For 1 ≤ i, j ≤ m, let aij be the number of times Fi calls Fj. Then for a suitable constant
γi > 0, the cache complexity QFi

of Fi on an input of size nd can be computed recursively as
follows.

QFi
(n) =

O
(
nd

B
+ nd−1

)
if nd ≤ γiM,∑m

j=1 aijQFj

(
n
2

)
+O (1) otherwise.

If Fk is a closed function, then QFk
(n) = akkQFk

(n/2) + O (1) for nd > γkM . Solving
the recurrence, we get the overall (for all values of nd) cache complexity as QFk

(n) =
O
(
nlk/(BM (lk/d)−1) + nd/B + 1

)
, where lk = log2 akk.

If Fk is a dominating semi-closed function, thenQFk
(n) = akkQFk

(n/2)+o
(
nlk/(BM (lk/d)−1)

)
for nd > γkM . For all sizes of the DP table this recurrence also solves to
O
(
nlk/(BM (lk/d)−1) + nd/B + 1

)
.

If Fk is a dominating closed (resp. semi-closed) function then (i) akk ≥ aii for ev-
ery closed (resp. semi-closed) function Fi, and (ii) akk > ajj for every non-closed (resp.
non-semi-closed) function Fj. The algorithm-tree must contain at least one path P =
〈Fr1 ,Fr2 , . . . ,Fr|P |〉 from its root (= Fr1) to a node corresponding to Fk (= Fr|P |). Since |P | is a

40



small number independent of n, and by definition ariri
< ar|P |r|P | holds for every i ∈ [1, |P |−1],

one can show that the cache complexity of every function on P must be O (QFk
(n)). This

result is obtained by moving upwards in the tree starting from Fr|P |−1, writing down the
cache complexity recurrence for each function on this path, substituting the cache com-
plexity results determined for functions that we have already encountered, and solving the
resulting simplified recurrence. Hence, the cache complexity QFr1

(n) of theR-DP algorithm
is O (QFk

(n)).

Theorem 2 (Cache complexity of the R-DP algorithms). If an R-DP includes
a dominating closed or semi-closed function Fk that calls itself recursively akk times,
then the serial cache complexity of the R-DP for a DP table of size nd is

Q1(n, d,B,M) = O
(

T1(n)
BM (lk/d)−1 + S(n, d)

B
+ 1

)

under the ideal-cache model, where lk = log2 akk, T1(n) = total work = O
(
nlk
)
, M =

cache size, B = block size, M = Ω
(
Bd
)
, and S(n, d) = space complexity = O

(
nd
)
.

It is important to note the serial cache complexity and the total work anR-DP algorithm
are related. The work is found by counting the total number of leaf nodes in the algorithm-
tree. We using Master theorem repeatedly to find T1(n) of the R-DP algorithm.

Theorem 3 (Cache complexity of the R-DP algorithms). Let Fk be a dominat-
ing closed function that calls itself akk number of times and let P = 〈Fr1 ,Fr2 , . . . ,F|P |〉
be a path in the algorithm-tree from its root (= Fr1) to a node corresponding to
Fk(= F|P |). Let q out of these |P | functions call themselves akk times and q is maxi-
mized over all possible paths in the algorithm-tree. Then the serial cache complexity
of the R-DP for a DP table of size nd is

Q1(n, d,B,M) = O
(

T1(n)
BM (lk/d)−1 + S(n, d)

B
+ 1

)

under the ideal-cache model, where lk = log2 akk, T1(n) = total work = O
(
nlk logq−1 n

)
,

M = cache size, B = block size, M = Ω
(
Bd
)
, and S(n, d) = space complexity = O

(
nd
)
.

2.4.3 Upper-triangular system of recurrence relations
Let F1,F2, . . . ,Fm be the m functions of the autogenerated R-DP. Then, the work and cache
complexity of the functions are computed as follows:

Wi(n) =

1 if n = 1∑m
j=i aijWj (n/2) + Θ (1) otherwise;

(2.5)

Qi(n) =

O
(
nd/B + nd−1

)
if nd ≤ γiM,∑m

j=i aijQj (n/2) + Θ (1) otherwise;
(2.6)
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where Wi(n) is the total work of Fi(n), Qi(n) (i ∈ [1,m]) is the serial cache complexity of
Fi(n), Θ

(
nd
)

is the space complexity of the algorithm for d ≥ 1, and aij is the number of
times the function Fi(n) calls Fj(n).

We can represent this system of recurrence relations as an upper-triangular matrix
with non-zero diagonal elements as follows:

W1(n)
W2(n)
...

Wm(n)

 =


a11 a12 · · · a1m
0 a22 · · · a2m
...

...
. . .

...
0 0 · · · amm



W1(n/2)
W2(n/2)

...
Wm(n/2)

+


Θ (1)
Θ (1)
...

Θ (1)


where

H =


a11 a12 · · · a1m
0 a22 · · · a2m
...

...
. . .

...
0 0 · · · amm


is called the algorithm-matrix. It represents an autogenerated R-DP that satisfies As-
sumption 1. For example, the algorithm-matrix for Floyd-Warshall’s APSP divide-and-
conquer DP algorithm is

H =

 2 2 2 2
0 4 0 4
0 0 4 4
0 0 0 8



Representation using finite automaton
Figure 2.8 gives simple finite automata to represent the number of function calls to various
functions in theR-DPs for Floyd-Warshall’s APSP and parenthesis problem. In this graph-
based representation, if there is a directed edge from node Fi to node Fj and its edge weight
is aij, it means that function Fi calls Fj, aij number of times. As we assume the one-way
function generation property to hold, these graphs will always be DAGs as they do not have
cycles (loops not included).

The finite automaton representation can also be used for representing the spans and
I/O complexities of different recursive functions. This representation is a very powerful
tool to intuitively get an idea to derive complicated theorems and lemmas related to the
complexities (work, span, and I/O) of the R-DPs.

To optimize an R-DP program, it is sufficient to optimize only those functions that are
invoked the greatest number of times asymptotically, when the input parameter reaches a
base case size. It is arguably simpler to find the exact number of calls to the functions than
finding a tight asymptotic bound on the number of calls. First, we present techniques to
find the exact number of calls to the functions F1(1) to Fm(1) and then the strategies to find
the number of function calls aymptotically.

Number of function calls
Here, we present two different methods to compute the number of calls to a function Fi at
some level in the algorithm-tree. Throughout the section, we assume n and b are powers of
two and b is a constant.

Let R[i, j] represent the number of Fj(b) calls made from Fi(n). We are mainly interested
in the values of R[1, 1], R[1, 2], . . . , R[1,m]. The matrix R of size m×m can be computed using
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Figure 2.8: Finite automaton for representing the function calls for the R-DP of: Left:
Floyd-Warshall’s APSP, and Right: parenthesis problem.

the formula
R = H log(n/b) (2.7)

The time complexity to compute R is Θ (m3 log log n) using the most common matrix
multiplication algorithm and a standard technique called repeated squaring.

An another method to compute the number of function calls is as follows. Now, let T [i, j]
represent the number of calls to function Fi at a level j. We would like to compute the
values of T [1, log(n/b)], T [2, log(n/b)], . . . , T [m, log(n/b)]. The matrix T of size m×(1+log(n/b))
is computed using the recurrence

T [i, j] =


1 if i = 1 and j = 0
0 if i > 1 and j = 0
i−1∑
k=1

0∑
l=j−1

T [k, l] ·H[k, i] ·H[i, i]j−l−1 otherwise;
(2.8)

The time complexity to compute R in the naive way is Θ (m3 log n).

Complexity of the number of function calls
Let P = 〈Fr1 ,Fr2 , . . . ,F|P |〉 be a path in the algorithm-tree from its root (= Fr1) to a node
corresponding to Fri

(= F|P |). Let maxloop = max (H[r1, r1], H[r2, r2] . . . , H[ri, ri]). Let q out
of these |P | functions call themselves maxloop times and q is maximized over all possible
paths ending at Fri

. Using Master theorem repeatedly we can show that the complexity of
the number of function calls denoted by Si to a function Fi can be computed to be

Si = Θ
(
nlogmaxloop logq−1 n

)
(2.9)

2.5 Extensions of Autogen
In this section, we discuss how to extend Autogen to

O [One-way sweep property violation.] Find R-DP algorithms for an important class of
DP problems, given I-DP algorithms that do not satisfy the one-way sweep property.
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O [Space reduction.] Sometimes reduce the space usage of the generated R-DP algo-
rithms thereby improving the cache complexity.

O [Non-orthogonal regions.] Handle problems where dividing the DP table into non-
orthogonal regions leads to the minimum number of recursive functions.

2.5.1 One-way sweep property violation
We describe a strategy to find an R-DP indirectly for an I-DP that violates the one-way
sweep property (Property 2). The strategy works for dynamic programs for computing
paths over a closed semiring in a directed graph [Aho et al., 1974]. Floyd-Warshall’s algo-
rithm for finding all-pairs shortest path (APSP) [Floyd, 1962, Warshall, 1962] belongs to
this class, and will be used as an example. Our approach follows the following three steps.

We describe a strategy to find an R-DP indirectly for an I-DP that violates the one-
way sweep property (Prop. 2). Floyd-Warshall’s all-pairs shortest path (APSP) algorithm
shall be used as an example. In fact, for all problems that come under a closed semiring
sysem (S,⊕,�, 0̄, 1̄), where S is a set of elements, ⊕ and � are binary operations of S, and 0̄
and 1̄ are elements of S satisfying certain conditions, it can be proved (see [Cormen et al.,
2009]) that the strategy works provided each of the three operations T⊕, T�, and T∗ takes
O (1) time. If an I-DP algorithm violates the one-way sweep property, we use the following
strategy to find its R-DP:

While our Autogen algorithm does not work on update functions that use values from
partially updated cells, it turns out that handling such update functions in not difficult
either. Our approach involves removing explicit dependences on partially updated cells
from the code by allowing it to retain all intermediate values of each cell. This effectively
lifts the DP to a higher dimensional space. Now our Autogen algorithm can be applied
on this modified DP to obtain an R-DP algorithm. We then project this R-DP algorithm
back to the original lower dimensional space, and prove that the projected algorithm cor-
rectly implements the original I-DP with dependences on partially updated cells. An I-DP

algorithm that violates the one-way sweep property (Property 2).
(i) [Project I-DP to higher dimension.] Violation of the one-way sweep property means

that some cells of the DP table are computed from cells that are not yet fully updated.
By allocating space to retain each intermediate value of every cell, the problem is
transformed into a new problem where the cells depend on fully updated cells only.
The technique effectively projects the DP on to a higher dimensional space leading to
a correct I-DP that satisfies the one-way sweep property.

(ii) [Autogenerate R-DP from I-DP.] Autogen is applied on the higher dimensional I-DP

that satisfies Property 2 to generate an R-DP in the same higher dimensional space.
(iii) [ProjectR-DP back to original dimension.] The autogeneratedR-DP is projected back

to the original dimensional space. One can show that the projected R-DP correctly
implements the original I-DP [Cormen et al., 2009,Chowdhury and Ramachandran,
2010].

Example. Figure 2.9 shows the widely used quadratic-space I-DP (LOOP-FLOYD-WARSHALL-
APSP) for Floyd-Warshall’s APSP. This algorithm violates the one-way sweep property,
and hence does not belong to the Fractal-dp class. Therefore, Autogen cannot be applied
on this I-DP directly to get an R-DP. However, the strategy described in Section 2.5.1
produces an R-DP as follows.
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(i) [Project I-DP to higher dimension.] The 2-D version of the I-DP in Figure 2.9(b) is
projected on to 3-D space to get its 3-D version in Figure 2.9(a) that updates the 3-D
matrix D[1..n, 1..n, k], where k ∈ [1, n]. One can show that both the implementations
produce the same final output, e.g., see Exercise 25.2-4 in Cormen et al. [Cormen
et al., 2009].

(ii) [Autogenerate R-DP from I-DP.] Autogen is applied on the 3-D I-DP that satisfies
Property 2, to get a 3-D cache-inefficient R-DP as shown in Figure 2.9(a) that has a
cache complexity of O (n3/B).

(iii) [Project R-DP back to original dimension.] Finally, the 3-D R-DP is projected on
to 2-D by projecting each D[i, j, k], i, j, k ∈ [1, n] onto D[i, j, 0], and performing all
reads/writes on D[1..n, 1..n, 0]. The resulting R-DP is shown in Figure 2.9(b). It can
be proved that the 2-D R-DP is a correct implementation of the 2-D I-DP [Chowd-
hury and Ramachandran, 2010]. The 2-D R-DP has O

(
n log2 n

)
span and incurs

O
(
n3/(B

√
M)

)
cache misses (assuming M = Ω (B2)).

2.5.2 Space reduction

Autogen can be extended to analyze and optimize the functions of an autogenerated R-DP

for a possible reduction in space usage. We explain through an example.

Example. The LCS problem [Hirschberg, 1975, Chowdhury and Ramachandran, 2006]
asks one to find the longest of all common subsequences [Cormen et al., 2009] between two
strings. LCS is a typical example of a class of DP problems known as local dependency
DP [Chowdhury and Ramachandran, 2008]. , which in turn is a subset of a more general
class known as stencils [Frigo and Strumpen, 2005,Frigo and Strumpen, 2007,Tang et al.,
2011]. In LCS, a cell depends on its three adjacent cells. Here, we are interested in finding
the length of the LCS and not the LCS itself. Starting from the standard Θ (n2) space
I-DP, we generate an R-DP for the problem that contains four recursive functions. The
autogenerated R-DP still uses Θ (n2) space and incurs O (n2/B) cache misses. The R-DP

algorithm is cache-inefficient as it has no temporal locality. Indeed, without any asymptotic
difference between the running time and the space usage (both are O (n2) for the LCS
R-DP) no cell in the DP table is reused more than O (1) times. Autogen can reason as
follows in order to reduce the space usage of this R-DP and thereby improving its cache
performance.

The autogeneratedR-DP has two functions of the form F(n) 7→ {F(n/2),F(n/2),G(n/2)},
where G is of the form G(n) 7→ {G(n/2)}. Given their dependencies, it is easy that in G,
the top-left cell of bottom-right quadrant depends on the bottom-right cell of the top-left
quadrant. Also, in F, the leftmost (resp. topmost) boundary cells of one quadrant depends
on the rightmost (resp. bottommost) quadrant of adjacent quadrant. When there is only
a dependency on the boundary cells, we can copy the values of the boundary cells, which
occupies O (n) space, between different function calls and we no longer require quadratic
space. At each level of the recursion tree O (n) space is used, and the total space for the
parallelR-DP algorithm isO (n log n). This newR-DP algorithm will have a single function
and its cache complexity improves to O (n2/(BM)). Space usage can be reduced further
to O (n) by simply reusing space between parent and child functions. Cache complexity
remains O (n2/(BM)).
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LOOP-FLOYD-WARSHALL-APSP-3D(D,n)
1. for k ← 1 to n
2. for i← 1 to n
3. for j ← 1 to n

4. D[i, j, k]←− min (D[i, j, k − 1], D[i, k, k − 1] + D[k, j, k − 1])

A3D
F W (〈X,Y,X,X〉)

1. if X is a small matrix then A3D
loop-F W

(〈X, Y, X, X〉)
else

2. A3D
F W

(〈X111, Y112, X111, X111〉)
3. par: B3D

F W
(〈X121, Y122, X111, X121〉), C3D

F W
(〈X211, Y212, X211, X111〉)

4. D3D
F W

(〈X221, Y222, X211, X121〉)
5. A3D

F W
(〈X222, X221, X222, X222〉)

6. par: B3D
F W

(〈X212, X211, X222, X212〉), C3D
F W

(〈X122, X121, X122, X222〉)
7. D3D

F W
(〈X112, X111, X122, X212〉)

B3D
F W (〈X,Y, U,X〉)

1. if X is a small matrix then B3D
loop-F W

(〈X, Y, U, X〉)
else

2. par: B3D
F W

(〈X111, Y112, U111, X111〉), B3D
F W

(〈X121, Y122, U111, X121〉)
3. par: D3D

F W
(〈X211, Y212, U211, X111〉), D3D

F W
(〈X221, Y222, U211, X121〉)

4. par: B3D
F W

(〈X212, X211, U222, X212〉), B3D
F W

(〈X222, X221, U222, X222〉)
5. par: D3D

F W
(〈X112, X111, U122, X212〉), D3D

F W
(〈X122, X121, U122, X222〉)

C3D
F W (〈X,Y,X, V 〉)

1. if X is a small matrix then C3D
loop-F W

(〈X, Y, X, V 〉)
else

2. par: C3D
F W

(〈X111, Y112, X111, V111〉), C3D
F W

(〈X211, Y212, X211, V111〉)
3. par: D3D

F W
(〈X121, Y122, X111, V121〉), D3D

F W
(〈X221, Y222, X211, V121〉)

4. par: C3D
F W

(〈X122, X121, X122, V222〉), C3D
F W

(〈X222, X221, X222, V222〉)
5. par: D3D

F W
(〈X112, X111, X122, V212〉), D3D

F W
(〈X212, X211, X222, V122〉)

D3D
F W (〈X,Y, U, V 〉)

1. if X is a small matrix then D3D
loop-F W

(〈X, Y, U, V 〉)
else

2. par: D3D
F W

(〈X111, Y112, U111, V111〉), D3D
F W

(〈X121, Y122, U111, V121〉),
D3D

F W
(〈X211, Y212, U211, V111〉), D3D

F W
(〈X221, Y222, U211, V121〉)

3. par: D3D
F W

(〈X112, X111, U122, V212〉), D3D
F W

(〈X122, X121, U122, V222〉),
D3D

F W
(〈X212, X211, U222, V212〉), D3D

F W
(〈X222, X221, U222, V222〉)

(a)

LOOP-FLOYD-WARSHALL-APSP(D,n)
1. for k ← 1 to n
2. for i← 1 to n
3. for j ← 1 to n
4. D[i, j]← min (D[i, j], D[i, k] + D[k, j])

AF W (〈X,X,X〉)

1. if X is a small matrix then A
loop-F W

(〈X, X, X〉)
else

2. AF W (〈X11, X11, X11〉)
3. par: BF W (〈X12, X11X12〉), CF W (〈X21, X21, X11〉)
4. DF W (〈X22, X21, X12〉)
5. AF W (〈X22, X22, X22〉)
6. par: BF W (〈X21, X22, X21〉), CF W (〈X12, X12, X22〉)
7. DF W (〈X11, X12, X21〉)

BF W (〈X,U,X〉)

1. if X is a small matrix then B
loop-F W

(〈X, U, X〉)
else

2. par: BF W (〈X11, U11, X11〉), BF W (〈X12, U11, X12〉)
3. par: DF W (〈X21, U21, X11〉), DF W (〈X22, U21, X12〉)
4. par: BF W (〈X21, U22, X21〉), BF W (〈X22, U22, X22〉)
5. par: DF W (〈X11, U12, X21〉), DF W (〈X12, U12, X22〉)

CF W (〈X,X, V 〉)

1. if X is a small matrix then C
loop-F W

(〈X, X, V 〉)
else

2. par: CF W (〈X11, X11, V11〉), CF W (〈X21, X21, V11〉)
3. par: DF W (〈X12, X11, V12〉), DF W (〈X22, X21, V12〉)
4. par: CF W (〈X12, X12, V22〉), CF W (〈X22, X22, V22〉)
5. par: DF W (〈X11, X12, V21〉), DF W (〈X21, X22, V12〉)

DF W (〈X,U, V 〉)

1. if X is a small matrix then D
loop-F W

(〈X, U, V 〉)
else

2. par: DF W (〈X11, U11, V11〉), DF W (〈X12, U11, V12〉),
DF W (〈X21, U21, V11〉), DF W (〈X22, U21, V12〉)

3. par: DF W (〈X11, U12, V21〉), DF W (〈X12, U12, V22〉),
DF W (〈X21, U22, V21〉), DF W (〈X22, U22, V22〉)

(b)
Figure 2.9: (a) An autogenerated R-DP algorithm from the cubic space Floyd-Warshall’s
APSP algorithm. In the initial call to A3D

FW (〈X, Y,X,X〉), X points to D[1..n, 1..n, 1..n] and Y
points to an n3 matrix whose topmost plane is initialized with D[1..n, 1..n, 0]. (b) An R-DP

algorithm obtained by projecting the 3D matrix D[1..n, 1..n, 0..n] accessed by the algorithm
in column (a) to its 2D base D[1..n, 1..n, 0].

2.5.3 Non-orthogonal regions

In this section, we generalize the definition of a region to include non-rectangular areas
as well. As per Definition 2, the entire DP table was divided orthogonally into four equal
quadrants and the quadrants were recursively subdivided into four equal subquadrants
until each of the subquadrants contained only a single cell. Each quadrant was called a
region at a particular level. This definition of a region can create many more functions than
necessary. Though the number of functions are upper bounded by a constant as shown in
Section 2.3.3, the number of functions can be reduced by generalizing the definition of a
region.

We define a term called compute-shape that will be used subsequently.

46



Definition 17 (Compute-cells, compute-shape). The set of all cells that will be computed
in a DP table for a given DP problem by its DP algorithm is called compute-cells. The
geometric shape and area the compute-cells represents is called compute-shape.

Given a DP problem that does not violate Rule 2, the fixed polygonal compute-shape
S with q vertices p1, p2, . . . , pq is found. The shape S is scaled down by a factor of two to
S ′ having vertices p′1, p′2, . . . , p′q such that ∀i, p′i corresponds to pi. The shape S ′ can move
as opposed to S, which is fixed on the DP table. The shape S ′ is moved inside the fixed
shape S without rotating such that S ′ is completely contained in S and for some i, pi = p′i
and that common area is denoted by S ′i. If all the cells inside S ′i, for some i, depend on
cells inside S ′i alone, then the area S ′i is called a region, more specifically a self-dependent
region. The disjoint areas when all self-dependent regions are removed from S are also
called regions. If we obtain parallelograms for regions, then they can be divided into four
equal parallelograms using lines parallel to the sides of the parallelogram and each of
those smaller parallelograms will be regions at the next level.

(a) (b)
Figure 2.10: Non-orthogonal regions for the first three levels depicted for: (a) CYK algo-
rithm, and (b) Spoken word recognition.

As an example, in the Cocke-Younger-Kasami (CYK) algorithm, the division of the
compute-shape into regions at three levels, using the generalized definition of region, is
shown in Figure 2.10.

2.6 The deductive Autogen algorithm
In mathematical logic, we come across two types of arguments: deductive and inductive. A
deductive argument is an argument in which if all premises are true, then the conclusion
is true. On the other hand, an inductive argument is an argument in which if all premises
are true, then it is likely that the conclusion is true, but it is not logically necessary that
the conclusion be true. Good references to logic are [Hurley, 2014] and [Gensler, 2010].

Any kind of formal mathematical proof automatically is a deductive argument or de-
ductive reasoning. Examples include direct proof, proof by mathematical induction, proof
by contraposition, proof by construction, proof by exhaustion, probabilistic proof, combina-
torial proof, non-constructive proof, and so on. On the other side, an inductive argument is
like a guess, in fact an intelligent guess. It may or may not be true depending on circum-
stances. It is important to note the mathematical induction is not an inductive argument
but a deductive argument because it is a formal mathematical proof.

Premises
Derive

conclusion
Deductive
argument

Rules of
logic

Premises
Infer

conclusion
Inductive
argument

Rules of

probability
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Deductive reasoning is very powerful. Starting with the premises, and using axioms of
logic and mathematics, we can build a new theory or derive new conclusion(s) in a step-by-
step fashion. Most of the mathematical logic field deals with deductive logic. Only in case
if we cannot derive deductively, we can go for inductive arguments.

In Section 2.2, we developed the Autogen algorithm using an inductive approach. In
Section 2.3, we proved Autogen correct using mathematical induction (deductive approach).
Though, overall, the entire argument of Autogen is deductive, it is not purely deductive.
This is because, in the first stage (inductive) we constructed Autogen from data dependency
patterns and in the second stage (deductive) we proved that Autogen indeed is correct.

The major limitations of the impure deductive Autogen are:
O [Space/time complexity.] When the number of recursive functions in an R-DP is

very high, say 100, the problem parameter needed for the impure deductive Autogen
will be q > 2100. Hence, both the space and time complexities of the Autogen can be
unimaginably high and hence impractical.

O [Problem size.] Initially we select a small problem with parameter, say, q = 64. If all
the functions are not expressed in the algorithm-tree then we need to increase the
problem size and this process continues.

In this section, we present a purely deductive method to construct the Autogen algo-
rithm. It addresses the limitations of the impure deductive Autogen. Each step in this
method logically follows from its previous step. We call this method deductive Autogen
algorithm and the algorithm we discussed in Section 2.2 as inductive Autogen (though it
is not completely inductive). The deductive Autogen differs from inductive Autogen in the
first two steps only.

Algorithm
The four main steps of deductive Autogen are:

(1) [Generic iterative algorithm construction.] A very general iterative algorithm is con-
structed from the given iterative algorithm. See Section 2.6.1.

(2) [Algorithm-tree construction.] An algorithm-tree is constructed from the generic iter-
ative algorithm. See Section 2.6.2.

(3) [Algorithm-tree labeling.] Same as Section 2.2.3.
(4) [Algorithm-DAG construction.] Same as Section 2.2.4.

2.6.1 Generic iterative algorithm construction
In this step, we construct a generic iterative algorithm from the given iterative algorithm.

The intuition behind the generic kernel is that it can replace all the iterative kernels of
all recursive functions in a standard 2-way R-DP. We explain in more details the meaning
and use of the generic kernel.

Let the total work of the iterative algorithm be Θ
(
nh
)
. Then the iterative algorithm

can be written in a generic structure as shown in Figure 2.11. The structure consists
of h loops with loop parameters `1 to `h, each running from either 1 to n or from n to
1. In the innermost loop, we have a series of conditional and assignment statements.
Each conditional statement can be a collection of simple inequalities involving the loop
variables, e.g.: condition1 can be (n/2 + `2 ≥ `1 or `3 < n/8 − `2). If conditioni is true, then
W [w], where w is the cell to be written of the submatrix W , is updated using the generic
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update relation (see Definition 18) GENERIC-UPDATEi. We call such an algorithm a generic
iterative algorithm.

GENERIC-ITERATIVE-ALGORITHM(W,R1, .., Rs, n)

1. for [`1 ← 1 to n] or [`1 ← n to 1] do
2. for [`2 ← 1 to n] or [`2 ← n to 1] do

...
3. for [`h ← 1 to n] or [`h ← n to 1] do
4. for every tuple (W,R1, . . . , Rs) do
5. if condition1 then
6. GENERIC-UPDATE1(W [w])
7. elif condition2 then
8. GENERIC-UPDATE2(W [w])

...
9. elif conditionlast then

10. GENERIC-UPDATElast(W [w])

GENERIC-LOOP-PARENTHESIS(X,U, V, n)

1. for i← n− 1 to 0 do
2. for j ← 0 to n− 1 do
3. for k ← 0 to n− 1 do
4. for every tuple (X,U, V ) do
5. XI ← xr + i; XJ ← xc + j
6. UI ← ur + i; V J ← vc + j
7. K ← uc + k
8. if XJ ≥ XI + 1 and K ≥ XI and XJ > K − 1 then
9. C[XI,XJ ] ← min{C[XI,XJ ], C[UI,K] + C[K,V J ] +

w(XI,XJ,K)}

Figure 2.11: Left: The generic iterative algorithm structure consisting of a set of loops
and a series of conditional statements. Right: The generic iterative algorithm for the
parenthesis problem.

We extend the definition of update relation from Definition 4 as follows.

Definition 18 (Generic update relation). A generic update function is an update that has
any of the two forms:

W [wd1 + `d1 , . . . , wdh
+ `dh

]← f(R1[r1d1 + Aff(`1, . . . , `h)], . . . , Rs[rsd1 + Aff(`1, . . . , `h)])
W [wd1 + `d1 , . . . , wdh

+ `dh
]← W [wd1 + `d1 , . . . , wdh

+ `dh
]

⊕ f(R1[r1d1 + Aff(`1, . . . , `h)], . . . , Rs[rsd1 + Aff(`1, . . . , `h)])

where, W,R1, . . . , Rs are different matrices / submatrices, W means the write matrix and R
means the read matrix; d1, . . . , dh are the dimensions where di ∈ [1, h]; w, r1, . . . , rs are the
write and read regions; (wd1 , . . . , wdh

) is the coordinate of the starting cell of submatrix W ,
Aff(`1, . . . , `h) is the affine function involving the loop parameters `1, . . . , `h; ⊕ is an associa-
tive operator; and f is any function.

From the structure of the generic iterative algorithm, as shown in Figure 2.11, it is
clear that when all the loops execute, the program control touches all points on the nh

hypercube grid, W . At each point of the grid, we check whether the point satisfies any of
the conditions condition1, . . . , conditionlast. Each point is updated based on the condition it
satisfies.

Consider the parenthesis problem as an example. Its generic kernel is shown in Figure
2.11. There is one write region X and two read regions U and V . There are three loops with
indices i, j, and k that vary between 0 and n − 1 or between n − 1 and 0. There are three
conditions and when they are satisfied, an assignment statement is run. The assignment
statement depends on xr, xc, ur, uc, vc and i, j, k, where (zr, zc) represents the first row and
first column of submatrix Z.

The Θ
(
nh
)

work required for a DP problem can be mapped to a Θ
(
nh
)

hypercube grid.
Then, the conditions that the indices satisfy are like the half-spaces in the hypercube grid.
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The grid points that satisfy all the conditions form a polyhedron in the h-dimensional inte-
ger space. For all the points in the polyhedron, the assignment statement will be executed

For the parenthesis problem, we have a 3-D n3 table i.e., i, j, k ∈ [0, n − 1] with three
half-spaces:

O xc + j ≥ xr + i
O uc + k ≥ xr + i
O xc + j > uc + k − 1

where, (zr, zc) is the starting coordinate of region Z, and all coordinates are functions of n.
We can also consider that we have an infinite integer grid Zd and we have nine half-

spaces: i ≥ 0, i ≤ n− 1, j ≥ 0, j ≤ n− 1, k ≥ 0, k ≤ n− 1, xc + j ≥ xr + i, uc + k ≥ xr + i, and
xc + j > uc + k − 1.

2.6.2 Algorithm-tree construction

If there are h dimensions, we divide the nh DP table into 2h orthants, each of size (n/2)h.
Each region-tuple writes to one orthant and reads from s othants. Hence, there can be a
total of 2h(1+s) region-tuples. Assuming we can check whether each region-tuple dependency
holds inO (1) time, we can check all the region-tuple dependencies inO

(
2h(1+s)

)
time, which

is upper bounded by a constant.
Consider the parenthesis problem. Let X denote the DP table. Let A(〈X,X,X〉) be the

first main function. Divide the DP table X into four quadrants: X11, X12, X21, and X22. In
this problem, we use 2-D for analysis instead of 3-D. We could also have used 3-D with
slight changes. The total number of possible quadrant dependencies are 4 × 4 × 4 = 64,
as shown in Figure 2.3. Among these 64 possible quadrant dependencies, only 4 of them
exist.

The region-tuple dependencies can be recursively broken down into subregion-tuple
dependencies. Also, when we want to analyze the functions called by another function,
we combine region-tuples using Rule 1. Continuing in this way, we can create the entire
algorithm-tree.

We will now focus on computing the existence of a region dependency. Consider the
quadrant dependency 〈X11, X12, X22〉. Let’s say the DP table dimension length is n. Each
quadrant dimension length will be n/2. Let’s set (X,U, V ) = (X11, X12, X22). For this de-
pendency, (xr, xc) = (0, 0), (ur, uc) = (0, n/2), and (vr, vc) = (n/2, n/2). Now, the region
dependency (X11, X12, X22) can be written as code as shown in Figure 2.12. If there is at
least one cell dependency that satisfies the three conditions in line 7, then we can say that
the region dependency 〈X11, X12, X22〉 exists. If the three conditions are not satisfied at all
or in other words if line 8 is never executed, then the region dependency 〈X11, X12, X22〉 does
not exist. It can be verified that the line 8 will never be executed and hence we have a cross
mark for the region dependency in Table 2.3.

Please note that to check the existence of a given region dependency for the parenthesis
problem, we need to check whether all the three conditions are satisfied for some values of
i, j, k. The algorithm as shown in Figure 2.12 can be written in an integer programming
format as follows. Does there exist (i, j, k) such that:

1. i, j, k ∈ [0, n/2− 1]; and
2. j ≥ i+ 1; n/2 + k ≥ i; and j > n/2 + k − 1
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Dependency Exists? Dependency Exists? Dependency Exists? Dependency Exists?
〈X11, X11, X11〉 3 〈X12, X11, X11〉 7 〈X21, X11, X11〉 7 〈X22, X11, X11〉 7

〈X11, X11, X12〉 7 〈X12, X11, X12〉 3 〈X21, X11, X12〉 7 〈X22, X11, X12〉 7

〈X11, X11, X21〉 7 〈X12, X11, X21〉 7 〈X21, X11, X21〉 7 〈X22, X11, X21〉 7

〈X11, X12, X22〉 7 〈X12, X12, X22〉 3 〈X21, X12, X22〉 7 〈X22, X12, X22〉 7

〈X11, X12, X11〉 7 〈X12, X12, X11〉 7 〈X21, X12, X11〉 7 〈X22, X12, X11〉 7

〈X11, X12, X12〉 7 〈X12, X12, X12〉 7 〈X21, X12, X12〉 7 〈X22, X12, X12〉 7

〈X11, X12, X21〉 7 〈X12, X12, X21〉 7 〈X21, X12, X21〉 7 〈X22, X12, X21〉 7

〈X11, X12, X22〉 7 〈X12, X12, X22〉 7 〈X21, X12, X22〉 7 〈X22, X12, X22〉 7

〈X11, X21, X11〉 7 〈X12, X21, X11〉 7 〈X21, X21, X11〉 7 〈X22, X21, X11〉 7

〈X11, X21, X12〉 7 〈X12, X21, X12〉 7 〈X21, X21, X12〉 7 〈X22, X21, X12〉 7

〈X11, X21, X21〉 7 〈X12, X21, X21〉 7 〈X21, X21, X21〉 7 〈X22, X21, X21〉 7

〈X11, X21, X22〉 7 〈X12, X21, X22〉 7 〈X21, X21, X22〉 7 〈X22, X21, X22〉 7

〈X11, X22, X11〉 7 〈X12, X22, X11〉 7 〈X21, X22, X11〉 7 〈X22, X22, X11〉 7

〈X11, X22, X12〉 7 〈X12, X22, X12〉 7 〈X21, X22, X12〉 7 〈X22, X22, X12〉 7

〈X11, X22, X21〉 7 〈X12, X22, X21〉 7 〈X21, X22, X21〉 7 〈X22, X22, X21〉 7

〈X11, X22, X22〉 7 〈X12, X22, X22〉 7 〈X21, X22, X22〉 7 〈X22, X22, X22〉 3

Table 2.3: Dependencies of quadrants in the parenthesis problem.

REGION-DEPENDENCY (X11, X12, X22, n)

1. for i← n/2− 1 to 0 do
2. for j ← 0 to n/2− 1 do
3. for k ← 0 to n/2− 1 do
4. XI ← i; XJ ← j
5. UI ← i; V J ← n/2 + j
6. K ← n/2 + k
7. if XJ ≥ XI + 1 and K ≥ XI and XJ > K − 1 then
8. C[XI,XJ ]← min{C[XI,XJ ], C[UI,K] + C[K,V J ] + w(XI,XJ,K)}

Figure 2.12: The looping code for the region-dependency 〈X11, X12, X22〉.

There are methods solve the problem in time independent of n, i.e., O (1) time. In this way,
we can verify whether a region dependency exists or not in O (1) time.

2.6.3 Space/time complexity of deductive Autogen

We analyze the space and time complexities of the deductive Autogen using the three pa-
rameters h, s, and t, where h is the number of dimensions, 1 + s is the cell-tuple size, and t
is the threshold level. Let the total number of functions in the output R-DP be m.

The number of subregion dependencies for a given region dependencies at any level is
2h(1+s). If we consider a total of t threshold levels, then the number of region dependen-
cies will be Θ

(
m2h(1+s)

)
. The time taken to check one region dependency is g(h) for some

function g. Hence, the total time taken to construct the algorithm tree is Θ
(
m2h(1+s)g(h)

)
,

which is a constant. The time taken to construct DAGs is lesser compared to the time
taken to create the algorithm tree. Therefore, the total time taken for a deductive Autogen
algorithm to generate an R-DP is Θ

(
m2h(1+s)g(h)

)
. If we run this algorithm serially, then

the space usage is Θ (m21+s).
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2.7 Experimental results
This section presents empirical results showing the performance benefits and robustness
of Autogen-discovered algorithms.

Autogen prototype. Given an I-DP implementation for a small problem size of n = 64 as
input, our prototype implementation outputs an R-DP pseudocode. Note that developing
such an R-DP is a one-time process. Our prototype constructs correct R-DPs for several
problems listed in Table 2.1.

We ran Autogen on Intel Core i5-2410M 2.3 GHz machine with 6GB RAM. Several
processes were running along with Autogen. For the parenthesis problem, the time taken
by Autogen to generate R-DP (not including printing) pseudocodes is as follows. For input
DP table of size 32× 32, time taken (average of 5 runs) to generate R-DP was 0.04 seconds.
For input DP table of size 64 × 64, time taken (average of 5 runs) to generate R-DP was
0.292 seconds. The present Autogen program is not optimized at all. With optimizations,
Autogen can be made to run even faster.

(a) L1 Cache Misses (b) L3 Cache Misses
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Figure 2.14: The plots show the L1 and L3 cache misses incurred by the three algorithms
for solving the parenthesis problem. L2 cache misses are shown in Figure 6.5(b).

2.7.1 Experimental setup
The tiled I-DP and the R-DP algorithms were implemented by Jesmin Jahan Tithi. The
implementations All our experiments were performed on a multicore machine with dual-
socket 8-core 2.7 GHz6 Intel Sandy Bridge processors (2× 8 = 16 cores in total) and 32 GB
RAM. Each core was connected to a 32 KB private L1 cache and a 256 KB private L2 cache.
All cores in a processor shared a 20 MB L3 cache. All algorithms were implemented in C++.
We used Intel Cilk Plus extension to parallelize and Intelő C++ Compiler v13.0 to compile
all implementations with optimzation parameters -O3 -ipo -parallel -AVX -xhost. PAPI
5.3 [PAP, ] was used to count cache misses, and the MSR (Model-Specific Register) module

6All energy, adaptivity and robustness experiments were performed on a Sandy Bridge machine with a
processor speed 2.00GHz.
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Figure 2.13: Performance comparison of I-DP, R-DP and tiled I-DP: (a) runtime perfor-
mance: giga updates per second achieved by all algorithms, (b) L2 cache misses for each
program, (c) strong scalability with #cores, p when n is fixed at 8192 (in this plot T l1 denotes
the running time of I-DP when p = 1), and (d) energy profile: ratios of total joule energy
consumed by Package (PKG) and DRAM. Here, tiled I-DP is an optimized version of the
parallel tiled code generated by Pluto [Bondhugula et al., 2008].

and likwid [Treibig et al., 2010] were used for energy measurements. We used likwid for
the adaptivity (Figure 2.15) experiments. All likwid measurements were end-to-end (i.e.,
captures everything from the start to the end of the program).

Given an iterative description of a DP in the Fractal-dp class, our Autogen prototype
generates pseudocode of the corresponding R-DP algorithm in the format shown in Figure
3.1. We implemented such autodiscovered R-DP algorithms for the parenthesis problem,
gap problem, and Floyd-Warshall’s APSP (2-D). In order to avoid overhead of recursion and
increase vectorization efficiency the R-DP implementation switched to an iterative kernel
when the problem size became sufficiently small (e.g., when problem size reached 64× 64).
All ourR-DP implementations were the straightforward implementation of the pseudocode
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with only trivial hand-optimizations, since we wanted to imitate what a potential future
Autogen compiler with the capability of implementing the algorithm would generate. With
nontrivial hand-optimizationsR-DP algorithms can achieve even more speedup (see [Tithi
et al., 2015]).

Trivial optimizations include:
O [copy-optimization.] – copying transpose of a column-major input matrix inside a

basecase to a local array, so that it can be accessed in unit stride during actual com-
putation.

O [registers.] using registers for variables that are accessed many times inside the loops.
O [write optimization in the basecase.] – if each iteration of an innermost loop updates

the same location of the DP table we perform all those updates in a local variable
instead of modifying the DP table cell over and over again, and update that cell only
once using the updated local variable after the loop terminates.

O [using #pragma directives.] to auto-vectorize / auto-parallelize code.
Nontrivial optimizations that we did not apply include:

O [using Z-morton row-major layout.] (see [Tithi et al., 2015]) to store the matrices.
O [using pointer arithmetic.] and converting all multiplicative indexing to additive in-

dexing.
O [using explicit vectorization.].
The major optimizations applied on I-DP codes include the following: parallelization,

use of pragmas (e.g., #pragma ivdep and #pragma parallel), use of 64 byte-aligned matri-
ces, write optimizations, pointer arithmetic, and additive indexing.

We used Pluto [Bondhugula et al., 2008] – a state-of-the-art polyhedral compiler – to
generate parallel tiled iterative codes for the parenthesis problem, gap problem, and Floyd-
Warshall’s APSP (2-D). Optimized versions of these codes are henceforth called tiled I-DP.
After analyzing the autogenerated codes, we found that the parenthesis implementation
had temporal locality as it was tiled across all three dimensions, but FW-APSP and gap
codes did not as the dependence-based standard tiling conditions employed by Pluto al-
lowed tiling of only two of the three dimensions for those problems. While both paren-
thesis and FW-APSP codes had spatial locality, the gap implementation did not as it was
accessing data in both row- and column-major orders. Overall, for any given cache level the
theoretical cache-complexity of the tiled parenthesis code matched that of parenthesis R-
DP assuming that the tile size was optimized for that cache level. But tiled FW-APSP and
tiled gap had nonoptimal cache complexities. Indeed, the cache complexity of tiled FW-
APSP turned out to be Θ (n3/B) matching the cache complexity of its I-DP counterpart.
Similarly, the Θ (n3) cache complexity of tiled gap matched that of I-DP gap.

The major optimizations we applied on the parallel tiled codes generated by Pluto in-
clude (i) use of #pragma ivdep, #pragma parallel, and #pragma min loop count(B) direc-
tives; (ii) write optimizations (as was used for basecases of R-DP); (iii) use of empirically
determined best tile sizes, and (iv) rigorous optimizations using pointer arithmetic, addi-
tive indexing, etc. The type of trivial copy optimization we used in R-DP did not improve
spatial locality of the autogenerated tiled I-DP for the gap problem as the code did not
have any temporal locality. The code generated for FW-APSP had only one parallel loop,
whereas two loops could be parallelized trivially. In all our experiments we used two paral-
lel loops for FW-APSP. The direction of the outermost loop of the autogenerated tiled code
for the parenthesis problem had to be reversed in order to avoid violation of dependency
constraints.
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All algorithms we have tested are in-place, that is, they use only a constant number of
extra memory/register locations in addition to the given DP table. The copy optimization
requires the use of a small local submatrix per thread but its size is also independent of the
input DP table size. None of our optimizations reduces space usage. The write optimization
avoids directly writing to the same DP table location in the memory over and over again
by collecting all those updates in a local register and then writing the final value of the
register to the DP cell.

In the following part of the section, we first show performance of R-DP, I-DP and
tiled I-DP implementations for all three problems when each of the programs runs on a
dedicated machine. We show thatR-DP outperforms I-DP in terms of runtime, scalability,
cache-misses, and energy consumption. Next, we show the how the performance of R-DP,
I-DP and tiled I-DP implementations change in a multiprogramming environment when
multiple processes share cache space and bandwidth.

2.7.2 Single-process performance
Figure 6.5 shows detailed performance results of I-DP, tiled I-DP and R-DP implementa-
tions. For each of the three problems, our R-DP implementations outperformed its I-DP

counterpart, and for n = 8192, the speedup factors w.r.t. parallel I-DP on 16 cores were
around 18, 17 and 6 for parenthesis, gap and Floyd-Warshall’s APSP, respectively. For pa-
thenthesis and gap problems I-DP consumed 5.5 times more package energy and 7.4 times
more DRAM energy than R-DP when n = 8192. For Floyd-Warshall’s APSP those two
factors were 7.4 and 18, respectively.

For the parenthesis problem tiled I-DP (i.e., our optimized version of Pluto-generated
parallel tiled code) andR-DP had almost identical performance for n > 6000. For n ≤ 6000,
R-DP was slower than tiled I-DP, but for larger n, R-DP was marginally (1 - 2%) faster
on average. Observe that though tiled I-DP and R-DP had almost similar L2 cache per-
formance, Figure 2.14 shows that R-DP incurred noticably fewer L1 and L2 cache misses
than those incurred by tiled I-DP which helped R-DP to eventually fully overcome the
overhead of recursion and other implementation overheads. This happened because the
tile size of tiled I-DP was optimized for the L2 cache, but R-DP being cache-oblivious was
able to adapt to all levels of the cache hierarchy simultaneously [Frigo et al., 1999].

As explained in Section 2.7.1 for the gap problem tiled I-DP had suboptimal cache
complexity matching that of I-DP. As a result, tiled I-DP’s performance curves were closer
to those of I-DP than R-DP, and R-DP outperformed it by a wide margin. Similarly for
Floyd-Warshall’s APSP. However, in case of gap problem tiled I-DP incurred significantly
fewer L3 misses than I-DP (not shown in the plots), and as a result, consumed less DRAM
energy. The opposite was true for Floyd-Warshall’s APSP.

2.7.3 Multi-process performance
R-DP algorithms are more robust than both I-DP and tiled I-DP. Our empirical results
show that in a multiprogramming environment R-DP algorithms are less likely to signifi-
cantly slowdown when the available shared cache/memory space reduces (unlike tiled code
with temporal locality), and less likely to suffer when the available bandwidth reduces
(unlike standard I-DP code and tiled I-DP without temporal locality). Figures 2.15 and
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Figure 2.15: The plots show how the performances of standard looping, tiled looping and
recursive codes for the parenthesis problem (for n = 213) are affected as multiple instances
of the same program are run on an 8-core Intel Sandy Bridge with 20MB shared L3 cache.
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Figure 2.16: The plots show how changes in the available shared L3 cache space affect (a)
the number of L3 cache misses, and (b) the serial running time of the tiled looping code
and the recursive code solving the parenthesis problem for n = 213. The code under test
was run on a single core of an 8-core Intel Sandy Bridge processor with 20MB shared L3
cache. A multi-threaded Cache Pirate [Eklov et al., 2011] was run on the remaining cores.

2.16 show the results. For lack of space we have included only results for the parenthesis
problem. We have seen similar trends for our other benchmark problems (e.g., FW-APSP).

We have performed experimental analyses of how the performance of a program (R-
DP, I-DP, and tiled I-DP) changes if multiple copies of the same program are run on the
same multicore processor (Figure 2.15). We ran up to 4 instances of the same program on
an 8-core Sandy Bridge processor with 2 threads (i.e., cores) per process. The block size
of the tiled code was optimized for best performance with 2 threads. With 4 concurrent
processes I-DP slowed down by 82% and tiled I-DP by 46%, but R-DP lost only 17% of its
performance (see Figure 2.15). The slowdown of the tiled code resulted from its inability to
adapt to the loss in the shared cache space which increased its L3 misses by a factor of 4
(see Figure 2.15). On the other hand, L3 misses incurred by R-DP increased by less than
a factor of 2.5. Since I-DP does not have any temporal locality, loss of cache space did not
significantly change the number of L3 misses it incurred. But I-DP already incurred 90
times more L3 misses thanR-DP, and with 4 such concurrent processes the pressure on the
DRAM bandwidth increased considerably (see Figure 2.15) causing significant slowdown
of the program.

We also report changes in energy consumption of the processes as the number of concur-
rent processes increases (Figure 2.15). Energy values were measured using likwid-perfctr

(included in likwid) which reads them from the MSR registers. The energy measurements
were end-to-end (start to end of the program). Three types of energy were measured:
package energy which is the energy consumed by the entire processor die, PP0 energy

which is the energy consumed by all cores and private caches, and finally DRAM energy

which is the energy consumed by the directly-attached DRAM. We omitted the PP0 energy
since the curves almost always look similar to that of package energy. A single instance
of tiled I-DP consumed 5% less energy than an R-DP instance while I-DP consumed 9
times more energy. Average package and PP0 energy consumed by tiled I-DP increased at
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a faster rate than that by R-DP as the number of processes increased. This happened be-
cause both its running time and L3 performance degraded faster than R-DP both of which
contribute to energy performance. However, since for I-DP L3 misses did not change much
with the increase in the number of processes, its package and PP0 energy consumption
increased at a slower rate compared to R-DP’s when number of processes is less than 3.
However, as the number of processes increases, energy consumption increases for I-DP at
a faster rate, and perhaps because of the DRAM bandwidth contention its DRAM energy
increased significantly.

We have measured the effect on running times and L3 cache misses of serial R-DP and
serial tiled I-DP7 when the available shared L3 cache space is reduced (shown in Figure
2.16). In this case, the serial tiled-I-DP algorithm was running around 50% faster than the
serialR-DP code. The Cache Pirate tool [Eklov et al., 2011] was used to steal cache space8.
When the available cache space was reduced to 50%, the number of L3 misses incurred by
the tiled code increased by a factor of 22, but for R-DP the increase was only 17%. As
a result, the tiled I-DP slowed down by over 50% while for R-DP the slowdown was less
than 3%. Thus R-DP automatically adapts to cache sharing [Bender et al., 2014], but the
tiled I-DP does not. This result can be found in the second column of Figure 2.15.

2.8 Conclusion and open problems
We presented the Autogen algorithm to autogenerate highly efficient recursive algorithms
for a wide variety of DP problems from their iterative algorithms. We believe that Autogen
is the first step towards building a system to automate the process of developing efficient
algorithms for DP problems.

Here are a few open problems:
O [Autogen for distributed systems.] Design Autogen to autogenerate R-DP algorithms

for distributed systems.
O [Autogen for planar graphs.] The real-life graphs such as routing networks in Inter-

net, transport networks of geographical information systems, and telephone networks
are almost planar graphs and it seems possible that we can develop algorithms to ex-
ploit temporal locality by working on a localized set of nodes. Design Autogen to
autogenerate algorithms for planar graphs.

O [Autogen for r-wayR-DPs.] Design Autogen to autogenerate r-wayR-DPs. Note that,
here, r is not a fixed constant but a parameter that can be set at the runtime.

O [Autogen for irregular DPs.] Design Autogen to handle irregular dependencies. E.g.:
Viterbi algorithm, knapsack problem, and sieve of Eratosthenes.

O [Autogen for tiled I-DPs.] Design Autogen to autogenerate tiled-iterative DP algo-
rithms.

O [Autogen for wavefront I-DPs.] Design Autogen to autogenerate iterative wavefront
DP algorithms.

O [Autogen for partitioned global address space (PGAS) model.] Design Autogen to
autogenerate algorithms for the PGAS model.

O [Autogen for graphics processing units (GPUs).] Design Autogen to autogenerate al-
gorithms that can be run on GPUs.

7with tile size optimized for best serial performance
8Cache Pirate allows only a single program to run, and does not reduce bandwidth.
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O [Autogen for MapReduce.] Design Autogen to autogenerate algorithms that can use
MapReduce.

O [Autogen of Autogen.] Autogen automatically discovers algorithms for a class of prob-
lems. Hence, it can be thought of as a level-2 algorithm. What we want is to design
a level-2 Autogen or a level-3 algorithm. Is it possible to design an Autogen that can
autogenerate Autogens for specific classes of problems and/or hardware?
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Chapter 3

Semi-Automatic Discovery of Efficient
Divide-&-Conquer Wavefront DP
Algorithms

Iterative wavefront algorithms for evaluating dynamic programming recurrences exploit
very high parallelism but show poor cache performance. Tiled-iterative wavefront algo-
rithms achieve optimal cache complexity and high parallelism but are cache-aware and
hence are not portable and not cache-adaptive. On the other hand, standard cache-oblivious
recursive divide-and-conquer algorithms have optimal serial cache complexity but often
have low parallelism due to artificial dependencies among subtasks.

Very recently we introduced cache-oblivious recursive divide-and-conquer wavefront
(COW) algorithms that do not have any artificial dependencies, but they are too compli-
cated to develop, analyze, implement, and generalize. Though COW algorithms are based
on fork-join primitives, they extensively use atomic operations for ensuring correctness,
and as a result, performance guarantees (i.e., parallel running time and parallel cache com-
plexity) provided by state-of-the-art schedulers (e.g., the randomized work-stealing sched-
uler) for programs with fork-join primitives do not apply. Also extensive use of atomic locks
may result in high overhead in implementation.

In this chapter, we show how to systematically transform standard cache-oblivious re-
cursive divide-and-conquer algorithms into recursive divide-and-conquer wavefront algo-
rithms to achieve optimal parallel cache complexity and high parallelism under state-of-
the-art schedulers for fork-join programs. Unlike COW algorithms these new algorithms do
not use atomic operations. Instead they use timing functions to compute at what time each
divide-and-conquer function must be launched in order to achieve high parallelism without
losing cache performance. The resulting implementations are arguably much simpler than
those of known COW algorithms. We present theoretical analyses and experimental per-
formance and scalability results showing superiority of these new algorithms over existing
algorithms.

3.1 Introduction
For good performance on a modern multicore machine with a cache hierarchy, algorithms
must have good parallelism and should be able to use the caches efficiently at the same
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time. Iterative wavefront algorithms for solving DP problems have optimal parallelism
but often suffer due to bad cache performance. On the other hand, though standard cache-
oblivious [Frigo et al., 1999] recursive divide-and-conquer DP algorithms have optimal
serial cache complexity, they often have low parallelism. The tiled-iterative wavefront
algorithms achieve optimality in cache complexity and achieve high parallelism but are
cache-aware, and hence are not portable and do not adapt well when available cache space
fluctuates during execution in a multiprogramming environment. Very recently, the cache-
oblivious wavefront (COW) algorithms [Tang et al., 2015] have been proposed that have op-
timal parallelism and optimal serial cache complexity. However, though those algorithms
are based on fork-join primitives, they extensively use atomic operations for correctness.
But current theory of scheduling nested parallel programs with fork-join primitives do not
allow such atomic operations. As a result, no bounds on parallel running time and parallel
cache complexity could be proved for those algorithms. Those algorithms are also very dif-
ficult to implement since they require hacking into a parallel runtime system. Extensive
use of atomic locks causes too much overhead for very large and higher dimensional DPs.

In this chapter, we present a provably efficient method for scheduling cache-oblivious
recursive divide-and-conquer wavefront algorithms on a multicore machine which opti-
mizes parallel cache complexity and achieves high parallelism. Our algorithms are based
on fork-join primitives, but do not use atomic operations. As a result, we are able to analyze
their parallel running times and parallel cache complexities easily under state-of-the-art
schedulers for fork-join based parallel programs. Our algorithms are also much simpler to
implement compared to COW algorithms.

Iterative algorithms. Traditionally, DP algorithms are implemented iteratively using a
series of (nested) loops and they can be parallelized easily. They are called I-DPs. These
algorithms often have good spatial locality, no temporal locality, and standard implemen-
tations may not have optimal parallelism as well. For example, an iterative algorithm for
the parenthesis problem (explained in Section 2.2) has T∞(n) = Θ (n2) and Q1(n) = Θ (n3).

Iterative algorithms are also implemented as tiled loops, in which case the entire DP
table is blocked or tiled and the tiles are executed iteratively. They are called T I-DPs.
For example, for a tiled iterative algorithm for the parenthesis problem with r × r tile
size, where r ∈ [2, n], we have T∞(n) = Θ ((n/r)2) · Θ (r2) = Θ (n2), and Q1(n, r) = (n/r)3 ·
O (r2/B + r) = O (n3/(rB) + n3/r2).

Fastest iterative DP implementations have the following wavefront-like property. Say
a cell x in a DP table is written by reading from the cell 〈y1, y2, . . . , ys〉. When the cells
y1, y2, . . . , ys are completely updated, then the cell x can immediately get updated, either
partially or fully. This property leads to the computation of a DP table in a wavefront
manner. We call wavefront iterative algorithmsWI-DPs. For example, for the parenthesis
problem, an iterative wavefront algorithm has the shortest span of T∞(n) = Θ (n log n), but
has the worst possible cache complexity of Q1(n) = O (n3). The Θ (log n) factor in the span
comes from the parallel for construct.

Recursive divide-and-conquer algorithms. Cache-oblivious recursive divide-and-conquer
parallel DP algorithms can overcome many of the limitations of their iterative counter-
parts. While iterative algorithms often have poor or no temporal locality, recursive algo-
rithms have excellent and often optimal temporal locality. One problem with recursive
divide-and-conquer algorithms is that they trade off parallelism for cache optimality, and
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thus may end up with high parallelism.
For example, a 2-way recursive divide-and-conquer algorithm (where, each dimension

of the subtask will be half the dimension of its parent task) for the parenthesis problem has
a span of T∞(n) = Θ

(
nlog2 3

)
and Q1(n) = Θ

(
n3/(B

√
M)

)
, that is, it has optimal serial cache

complexity but high span. For n-way recursive algorithm, T∞(n) = Θ (n log n) and Q1(n) =
O (n3). This time, the algorithm has very low span but worse serial cache complexity.
Ideally we want to have a balance between cache complexity and span by choosing r-way
recursive algorithm in which case both the span and the parallel cache complexity will be
non-optimal, however will have best practical performance. For r-way recursive algorithm,
we get (from Section A.2)

Q1(n) = O
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Limitation(s) of the existing algorithms. The standard iterative algorithms often have
worse serial cache complexity and not high parallelism. The wavefront iterative algorithms
have highest parallelism but worse serial cache complexity. The tiled iterative algorithms
have excellent and often optimal serial cache complexity and very high parallelism. How-
ever, the tiled iterative algorithms are cache-aware and hence they are not portable across
different machine architectures.

The recursive divide-and-conquer algorithms have excellent and often optimal serial
cache complexity and have good but not very high parallelism. The algorithms and their
limitations are summarized in Table 3.1.

In Table 3.1, some bounds are excellent, which may or may not mean “optimal”. Proving
optimality require rigorous mathematical proofs.

Limitation of the recursive divide-and-conquer algorithms. We want to develop
algorithms that simultaneously achieves excellent serial cache complexity, excellent par-
allelism, and portability. To this end, we either need to improve the existing algorithms
inheriting their structures or develop new algorithms that have totally different structures
than the existing ones.

By careful observation it seems possible to develop new algorithms by improving upon
our standard 2-way recursive divide-and-conquer algorithms. If we can analyze the prob-

Algorithm Algorithm Q1(n) T1(n)/T∞(n) Portability
I-DP Standard iterative Worse Good Yes

WI-DP Wavefront iterative Worse Excellent Yes
T I-DP Tiled iterative Excellent Good No
R-DP Standard recursive Excellent Good Yes

WR-DP Wavefront recursive Excellent Excellent Yes

Table 3.1: Limitations of existing DP algorithms. Note that excellent does not necessarily
mean optimal.
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lem behind not very high parallelism for recursive divide-and-conquer algorithms and solve
that problem, it seems that we can develop new algorithms.

The low parallelism in 2-way recursive divide-and-conquer algorithms results from ar-
tificial dependencies among subproblems that are not implied by the underlying DP recur-
rence [Tang et al., 2015].

A 2-way recursive divide-and-conquer algorithm for the LCS problem splits the DP ta-
ble X into four equal quadrants: X11 (top-left), X12 (top-right), X21 (bottom-left), and X22
(bottom-right). It then recursively computes the quadrants in the following order: X11 first,
then X12 and X21 in parallel, and finally X22. As per the recursive structure, the top-left
quadrant of X12 and X21 i.e., X12,11 and X21,11, respectively, can only start executing when
the execution of the bottom-right quadrant of X11 i.e., X11,11 completes. This dependency be-
tween subproblems or subtasks is not defined by the underlying DP recurrence but defined
by the recursive structure of the algorithm. Such dependencies in a recursive algorithm
are called artificial dependencies. There are artificial dependencies at several different
granularities. Most often, these artificial dependencies asymptotically increase the span
thereby reducing parallelism. By removing such artificial dependencies but retaining the
recursive structure we can design algorithms to achieve high parallelism.

Recursive divide-and-conquer wavefront algorithms. The 2-way recursive algo-
rithms have optimal serial cache complexity and not very high parallelism. On the other
hand, the wavefront iterative algorithms have high parallelism and worse cache complex-
ity. Is it possible to inherit the best features from both the worlds? Yes.

By removing artificial dependencies from the recursive algorithms, it is possible to
develop algorithms that simultaneously achieve excellent cache-locality, excellent paral-
lelism, and cache-obliviousness. Such algorithms are called recursive wavefront or divide-
and-conquer wavefront or cache-oblivious wavefront algorithms.

Recursive wavefront algorithms were introduced in [Tang et al., 2015]. Such algorithms
keep several processors busy-waiting and hence wastes CPU resources. Also, those algo-
rithms are too complicated to develop, analyze, implement, and generalize. Atomic in-
structions were used extensively to identify and launch ready tasks, and implementations
required hacking into Cilk’s runtime system. No bounds on parallel cache complexities of
those algorithms are known.

The Autogen-Wave framework and scheduling algorithms. In this chapter, we present
a framework called Autogen-Wave to discover recursive wavefront algorithms based on tim-
ing functions. These algorithms have a structure similar to the standard recursive divide-
and-conquer algorithms, but each recursive function call is annotated with start-time and
end-time hints that are passed to the scheduler. Timestamps represent the relative time at
which a task starts or ends execution. Closed-form formulas or functions to get the exact
timestamps at which different recursive functions write to different regions of the DP table
are found. Such closed-form formulas or functions to compute the timestamps are plugged
into the recursive algorithm for all the function invocations to derive a recursive wavefront
algorithm.

The performance of a parallel algorithm does not depend on the algorithm alone, it also
depends on the scheduler that schedules different threads to work on different processors.
The recursive wavefront algorithms make use of timestamps and existing schedulers do not
understand timestamps. Hence, we present a space-efficient scheduling method to attain
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A(X,X,X)

1. if X is a cell then Acell(X,X,X)
2. else
3. parallel: A(X11, X11, X11), A(X22, X22, X22)
4. B(X12, X11, X22)

B(X,U, V )

1. if X is a cell then Bcell(X,U, V )
2. else
3. B(X21, U22, V11)
4. parallel: C(X11, U12, V21), C(X22, X21, V12)
5. parallel: B(X11, U11, V11), B(X22, X22, V22)
6. C(X12, U12, X22)
7. C(X12, X11, V12)
8. B(X12, U11, V22)

C(X,U, V )

1. if X is a cell then Ccell(X,U, V )
2. else
3. parallel: C(X11, U11, V11), C(X12, U11, V12),

C(X21, U21, V11), C(X22, U21, V12)
4. parallel: C(X11, U12, V21), C(X12, U12, V22),

C(X21, U22, V21), C(X22, U22, V22)

Programmer computes
the timing functions

SA (X,X,X)

1. return C(xr, xc)

SB (X,U, V )

1. return C(xr + n− 1, xc)

SC (X,U, V )

1. m← (xr + n− 1 + xc)/2; û← uc + n− 1
2. if uc > m then return max {C(ur + n− 1, uc),C(uc, xc)}+1
3. elif û < m then return max {C(ur + n− 1, û),C(û, xc)}+ 1
4. else return

(max {C(ur + n− 1,m),C(m,xc)}+ 1).[uc > (xr + xc)/2]

EA (X,X,X)

1. return C(xr, xc +n−1)

EB (X,U, V )

1. return C(xr, xc +n−1)

EC (X,U, V )

1. lval← max {C(ur, uc),C(uc, xc + n− 1)}
2. rval← max {C(ur, uc + n− 1),C(uc + n− 1, xc + n− 1)}
3. return (max {lval, rval}+ 1).[uc > (xr + xc)/2]

C(i, j)

1. if (j− i) ≤ 1 then return (j− i) else return 2× (j− i)− 1

Transformation by the
scheduler / programmer

RECURSIVE-WAVEFRONT-PARENTHESIS()

1. w ← 0
2. while w <∞ do w ← A(G,G,G,w)

A(X,X,X,w)

1. vi ←∞ for all i ∈ [1, 3]
2. if X is an n′ × n′ matrix then
3. if w = SA (X,X,X) then Achunk(X,X,X)
4. else
5. F1..3 ← {A,A,B}
6. arg1..3 ← {(X11, X11, X11), (X22, X22, X22), }

(X12, X11, X22)
7. parallel for i← 1 to 3 do
8. if w < SFi

(argi) then vi ← SFi
(argi)

9. elif w ≤ EFi
(argi) then vi ← Fi(argi, w)

10. sync
11. return min vi for all i ∈ [1, 3]

B(X,U, V,w)

1. vi ←∞ for all i ∈ [1, 8]
2. if X is an n′ × n′ matrix then
3. if w = SB (X,U, V ) then Bchunk(X,U, V )
4. else
5. F1..8 ← {B,C,C,B,B,C,C,B}
6. arg1..8 ← {(X21, U22, V11), (X11, U12, V21),

(X22, X21, V12), (X11, U11, V11),
(X22, X22, V22), (X12, U12, X22),
(X12, X11, V12), (X12, U11, V22)}

7. parallel for i← 1 to 8 do
8. if w < SFi

(argi) then vi ← SFi
(argi)

9. elif w ≤ EFi
(argi) then vi ← Fi(argi, w)

10. sync
11. return min vi for all i ∈ [1, 8]

C(X,U, V,w)

1. vi ←∞ for all i ∈ [1, 8]
2. if X is an n′ × n′ matrix then
3. if w = SC (X,U, V ) then Cchunk(X,U, V )
4. else
5. F1..8 ← {C,C,C,C,C,C,C,C}
6. arg1..8 ← {(X11, U11, V11), (X12, U11, V12),

(X21, U21, V11), (X22, U21, V12),
(X11, U12, V21), (X12, U12, V22),
(X21, U22, V21), (X22, U22, V22)}

7. parallel for i← 1 to 8 do
8. if w < SFi

(argi) then vi ← SFi
(argi)

9. elif w ≤ EFi
(argi) then vi ← Fi(argi, w)

10. sync
11. return min vi for all i ∈ [1, 8]

Figure 3.1: Left: The programmer derives the timing functions from a given standard 2-
way recursive divide-and-conquer DP algorithm for the parenthesis problem. A region Z
has its top-left corner at (zr, zc) and is of size n× n. Right: A recursive divide-and-conquer
wavefront algorithm is generated for the parenthesis problem. The programmer derives
the algorithm if work-stealing scheduler (see Section 3.4.1) is used and the scheduler de-
rives the algorithm if W-SB scheduler (see Section 3.4.2) is used. The algorithm makes use
of the timing functions derived by the programmer.

excellent parallel cache complexity and very high parallelism. Our approach makes use of
a combination of ideas from space-bounded scheduler and scheduling based on timestamps.
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We also analyze the complexities under a randomized work-stealing scheduler.
Our task schedulers make sure that the algorithms are executed in a wavefront fash-

ion using the timing functions. Indeed, the transformation the scheduler is expected to
do based on the timing functions is straightforward, and a programmer may choose to
do that herself and use a scheduler that do not accept hints. The transformed code is
still purely based on fork-join parallelism, and the performance bounds (e.g., parallel run-
ning time and parallel cache complexity) guaranteed by any scheduler supporting fork-join
parallelism apply. The recursive wavefront algorithm for the parenthesis problem has
T∞(n) = Θ (n log n) and Q1(n) = O

(
n3/(B

√
M)

)
. The bounds on Tp and Qp can be obtained

from the scheduler guarantees.
The theoretical performance of several algorithms for the parenthesis problem are sum-

marized in Table 3.2. In the table, I-DP represents standard iterative, T I-DP represents
tiled iterative, WI-DP represents iterative wavefront, R-DP represents recursive divide-
and-conquer, andWR-DP recursive divide-and-conquer wavefront algorithms.

Related work. The tiled iterative algorithms [Wolf, 1992,Darte et al., 1997,Panda et al.,
1999, Sarkar and Megiddo, 2000, Goumas et al., 2001, Renganarayanan et al., 2012] have
been studied extensively as tiling is the traditional way of implementing dynamic pro-
gramming and other matrix algorithms. There are several frameworks to automatically
produce tiled codes such as PLuTo [Bondhugula et al., 2008], Polly [Grosser et al., 2012],
and PoCC [Pouchet et al., 2010]. However, these softwares are not designed to generate
correct parallel tiled code for non-trivial DP recurrences. The major concerns with tiled
programs are that they are cache-aware and sometimes processor-aware that sacrifices
portability across machines. Another disadvantage of being cache-aware is that the al-
gorithms are not cache-adaptive [Bender et al., 2014], i.e., the algorithms do not adapt
to changes in available cache/memory space during execution and hence may run slower
when multiple programs run concurrently in a shared-memory environment [Chowdhury
et al., 2016b]. For example in applications such as cloud technologies and virtual networks
in data centers, available memory changes continuously.

Several existing systems such as Bellman’s GAP compiler [Giegerich and Sauthoff,
2011], semi-automatic synthesizer [Pu et al., 2011], EasyPDP [Tang et al., 2012], EasyHPS
[Du et al., 2013], pattern-based system [Liu and Schmidt, 2004], and parallelizing plug-
ins [Reitzig, 2012] can be used to generate iterative and tiled loop programs. Parallel task
graph execution systems such as Nabbit [Agrawal et al., 2010] and BDDT [Tzenakis et al.,
2013] execute the DP tasks during runtime using unrolling. Due to this they might lose
cache efficiency.

The classic 2-way recursive divide-and-conquer algorithms having optimal serial cache
complexity and good (but, not always optimal) parallelism have been developed, analyzed,
and implemented in [Chowdhury and Ramachandran, 2008, Chowdhury and Ramachan-
dran, 2010], [Tithi et al., 2015]. Hybrid r-way algorithms are considered in [Chowdhury
and Ramachandran, 2008] but they are either cache- or processor-aware and complicated
to program. Pochoir [Tang et al., 2011] is used to generate cache-oblivious implementations
to stencils. However, the recursive algorithms often have low parallelism due to artificial
dependencies among subtasks. Recently Aga et al. [Aga et al., 2015] proposed a speculation
approach to alleviate the concurrency constraints imposed by the artificial dependencies in
standard parallel recursive divide-and-conquer programs and reported a speedup up to
1.6× on 30 cores over their baseline.
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Algorithm Sch. Q1(n) T∞(n) Qopt
1 (n) Qopt

p (n) High par.
I-DP WS O (n3) Θ (n2) 7 7 7

r-size T I-DP WS O (n3/(rB) + n3/r2) Θ (n2) 7 7 7√
M -size T I-DP WS O

(
n3/(B

√
M) + n3/M

)
Θ (n2) 3 7 7

WI-DP WS O (n3) Θ (n log n) 7 7 3

2-way R-DP WS O
(
n3/(B

√
M)

)
Θ
(
nlog2 3

)
3 7 7

r-way R-DP WS O

 n3/
(
Bb
√
M/rc

)
+ n3/

(
b
√
M/rc3

) O
(
rnlogr(2− 1

r ) + nr

+ (1/r)nlogr(2r−1)

)
7 7 7

WR-DP WS O
(
n3/(B

√
M)

)
Θ (n log n) 3 − 3

*WR-DP WS O
(
n3/(B

√
M)

)
Θ (n log n) 3 3 3

*WR-DP W-SB* O
(
n3/(B

√
M)

)
Θ (n log n) 3 3 3

Table 3.2: Different DP algorithms to solve the parenthesis problem using various sched-
ulers. In the r-way R-DP, r is a constant. The second column represents the schedulers:
WS means work stealing, W-SB means modified space bounded. * represents the algo-
rithms presented in this chapter. The last column means excellent parallelism. In the
last three columns, we use 3 to denote optimality or near-optimality and “−” to denote
non-applicability.

The recursive wavefront algorithms were introduced in [Tang et al., 2015] but they are
too complicated to develop, analyze, implement, and generalize. They make extensive use
of atomic instructions, and standard analysis model of fork-join parallelism does not apply.
In this paper we try to address these issues.

Our contributions. Our major contributions are as follows:
(1) [Framework.] We present a framework called Autogen-Wave to discover recursive

divide-and-conquer wavefront algorithms based on timing functions. The recursive
wavefront algorithms are superior to all existing algorithms for DP problems.

(2) [Divide-and-conquer wavefront algorithms.] We present several recursive divide-and-
conquer wavefront algorithms derived using the Autogen-Wave framework.

(3) [Schedulers.] We also present two scheduling methods to schedule a a recursive wave-
front algorithm: (i) the algorithm passes timing functions and space usage info to
modified version of a hint-accepting space-bounded scheduler, (ii) the programmer
appropriately transforms the algorithm to use the timing functions, and uses a stan-
dard randomized work-stealing scheduler to run the program.

Organization of the chapter. In Section 3.2, we present our Autogen-Wave framework
that can be used to discover recursive wavefront algorithms based on timing functions. Two
schedulers to schedule recursive wavefront algorithms and their analysis are presented in
Section 3.4.

3.2 The Autogen-Wave framework
In this section, we present a framework called Autogen-Wave that can be used to derive a
recursive divide-and-conquer wavefront algorithm from a standard recursive divide-and-
conquer DP algorithm. The method involves augmenting all recursive function calls with
timing functions to launch them as early as possible without violating any dependency
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R-DP WR-DP

Work Serial cache Span Best serial cache Best span
Problem (T1) comp. (Q1) (T∞) comp. (Q1) (T∞)
Parenthesis problem Θ (n3) Θ

(
n3/(B

√
M)

)
Θ
(
nlog 3

)
Θ
(
n3/(B

√
M)

)
Θ (n log n)

Floyd-Warshall’s APSP 3-D Θ (n3) Θ (n3/B) Θ
(
n log2 n

)
Θ (n3/B) Θ (n log n)

Floyd-Warshall’s APSP 2-D Θ (n3) Θ
(
n3/(B

√
M)

)
Θ
(
n log2 n

)
Θ
(
n3/(B

√
M)

)
Θ (n log n)

LCS / Edit distance Θ (n2) Θ (n2/(BM)) Θ
(
nlog 3

)
Θ (n2/(BM)) Θ (n log n)

Gap problem Θ (n3) Θ
(
n3/(B

√
M)

)
Θ
(
nlog 3

)
Θ
(
n3/(B

√
M)

)
Θ (n log n)

3-point stencil Θ (n2) Θ (n2/(BM)) Θ
(
nlog 3

)
Θ (n2/(BM)) Θ (n log n)

Protein accordion folding Θ (n3) Θ
(
n3/(B

√
M)

)
Θ (n log n) Θ

(
n3/(B

√
M)

)
Θ (n log n)

Spoken-word recognition Θ (n2) Θ (n2/(BM)) Θ
(
nlog 3

)
Θ (n2/(BM)) Θ (n log n)

Function approximation Θ (n3) Θ
(
n3/(B

√
M)

)
Θ
(
nlog 3

)
Θ
(
n3/(B

√
M)

)
Θ (n log n)

Binomial coefficient Θ (n2) Θ (n2/(BM)) Θ
(
nlog 3

)
Θ (n2/(BM)) Θ (n log n)

Bitonic traveling salesman Θ (n2) Θ (n2/(BM)) Θ (n log n) Θ (n2/(BM)) Θ (n log n)

Table 3.3: Work (T1), serial cache complexity (Q1), and span (T∞) of R-DP and WR-DP

algorithms for several DP problems. Here, n = problem size, M = cache size, B =
block size, and p = #cores. We assume that the DP table is too large to fit into the
cache, and M = Ω

(
Bd
)

when Θ
(
nd
)

is the size of the DP table. On p cores, the run-
ning time is Tp = O (T1/p+ T∞). The R-DP algorithms have a parallel cache complexity
is Qp = O (Q1 + p(M/B)T∞) with high probability when run under the randomized work-
stealing scheduler on a parallel machine with private caches. The WR-DP algorithms
have a parallel cache complexity of Qp = O (Q1) when run with the modified space-bounded
scheduler.

constraints implied by the DP recurrence. The timing functions are derived analytically,
and do not employ locks or atomic instructions.

Our transformation allows the updates to the DP table proceed in an order close to
iterative wavefront, but from within the structure of a recursive divide-and-conquer algo-
rithm. The goal is to reach the higher parallelism of an iterative wavefront algorithm while
retaining the better cache performance (i.e., efficiency and adaptivity) and portability (i.e.,
cache- and processor-obliviousness) of a recursive algorithm.

We had defined I-DP and R-DP in Section 2.2. Here, we define a more terms that we
will use throughout the chapter.

Definition 19 (T I-DP/WI-DP). Let P be a given DP problem. Then, a T I-DP is a par-
allel tiled iterative algorithm for solving P and WI-DP is a parallel wavefront iterative
algorithm for P.

Typically a T I-DP is autogenerated from a polyhedral compiler (parallelizer and local-
ity optimizer) such as Pluto. These T I-DPs will not have the highest parallelism. On the
other hand,WI-DPs have the highest parallelism.

Definition 20 (WR-DP/Autogen-Wave). Let P be a given DP problem. A WR-DP is a
recursive wavefront algorithm for P. Autogen-Wave is our framework that can be used to
derive aWR-DP from a given R-DP and its corresponding DP recurrence.

Autogen-WaveR-DP WR-DP
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Let us first define the wavefront order of applying updates to a DP table. Each update
writes to one DP table cell by reading values from other cells. An update becomes ready
when all cells it reads from are fully updated. We assume that only ready updates can
be applied and each such update can only be applied once. A wavefront order of updates
proceeds in discrete timesteps. In each step all ready updates to distinct cells are applied in
parallel. However, if a cell has multiple ready updates only one of them is applied, and the
rest are retained for future. A wavefront order does not have any artificial dependencies.

The Autogen-Wave framework. The Autogen-Wave framework consists of three major
steps:

(1) [Completion-time function construction.] A closed-form formula or function (that can
be evaluated in constant time) is derived based on the original DP recurrence that
gives the timestep at which each DP cell is fully updated in wavefront order. See
Section 3.2.1.

(2) [Start- and end-time functions construction.] Cell completion times are used to derive
closed-form formulas that give the timesteps in wavefront order at which each recur-
sive function call should start and end execution. See Section 3.2.2.

(3) [Divide-and-conquer wavefront algorithm derivation.] Each recursive function call in
the standard recursive algorithm is augmented with its start- and end-time functions
so that the algorithm can be used to apply only the updates in any given timestep in
wavefront order. We then use a variant of iterative deepening on top of this recursive
algorithm to execute all timesteps efficiently. See Section 3.2.3.

We describe our transformation for arbitrary d-dimensional (d ≥ 1) DP in which each
dimension of the DP table is of the same length and is a power of 2.

Example. We explain our approach by applying it on an R-DP algorithm for the paren-
thesis problem [Cherng and Ladner, 2005], which is defined as follows. Let G[i, j] denote
the minimum cost of parenthesizing si · · · sj. Then the 2D DP table G[0 : n, 0 : n] is filled up
using the following recurrence:

G[i, j] =


∞ if 0 ≤ i = j ≤ n,
vj if 0 ≤ i = j − 1 < n,
min
i≤k≤j

{G[i, k] + G[k, j] + w(i, k, j)} if 0 ≤ i < j − 1 < n;
(3.1)

where the vj ’s and function w(·, ·, ·) are given. The recurrence is evaluated by the recursive
algorithm [Tithi et al., 2015] given at the top of Figure 3.1. In the rest of the section, we
show how a recursive wavefront algorithm (shown in Figure 3.1) can be derived from the
given algorithm.

Fundamentals. We need to understand the fundamental concepts of timestamps, time
steps and races before understanding the Autogen-Wave framework.

Definition 21 (Timestamp). A timestamp, denoted by Ft(x, y1, . . . , ys), is an update by a
problem-specific function F writing to the cell x reading information from the cells y1, . . . , ys
at time t.

Sometimes we also specify time in the form of t.t′, where the term t′ is used to avoid
race conditions. If there are multiple updates that read information from different sets of
cells and write to the same cell at the same time there will be race. Each such update will
be performed at the same t value, but different t′ values. We do not require t′ for standard
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iterative and recursive algorithms. For fast iterative algorithm it becomes easier to find
patterns if we use t′.

For the parenthesis problem, the timestamps (without t′ term) for I-DP,R-DP,WI-DP,
andWR-DP algorithms are given in Table 3.4. The right column of the table gives the last
updated timestep for each cell of the DP table for different algorithms.

Consider the standard 2-way recursive algorithm for the parenthesis problem given in
the top-left corner of Figure 3.1. It has three functions that update the DP table. Initially,
function A(G,G,G) is called, where G is the entire DP table. Then the computation pro-
gresses by recursively breaking the table into quadrants, and calling functions A, B and
C on these smaller regions of G. At the base case (i.e., a 1 × 1 region of G), each function
updates a cell. When x is a cell, function A(x, x, x) updates x by reading x itself which
corresponds to the case i = k = j in the recurrence. Similarly, function B(x, u, v) updates
cell x by reading x itself and two other cells u and v which correspond to cases i = k , j
and i , k = j. Finally, function C(x, u, v) updates the cell x by reading the two cells u and v
which corresponds to i , k , j.

The middle part of Table 3.4 shows how the standard 2-way recursive algorithm with
1× 1 base case updates G[1 : n, 1 : n] when n = 8. We use Ft in a cell to denote that function
F updates the cell at timestep t, where F ∈ {A,B,C}. Using an unbounded number of
processors the standard recursive algorithm updates the entire table in 31 timesteps. In
contrast, the bottom part of Table 3.4 shows that an iterative wavefront algorithm will
update G in only 18 timesteps.

The top part of the Table 3.4 shows how I-DP updates an 8×8 DP table in 28 timesteps.
And the R-DP takes 31 timesteps to update the DP table. However, the span of I-DP is
Θ (n2) and that of R-DP is Θ

(
nlog 3

)
. For much larger DP tables it becomes clear that I-DP

takes many more timesteps than R-DP to update the entire DP table.
It is important to note the we have used three functions A,B,C for the updates of the it-

erative algorithms. Each function has a specific functionality as described in the preceding
paragraphs.

With a 1 × 1 base case the WR-DP algorithms will perform the updates in exactly the
same order as theWI-DP algorithm, and terminate in 18 steps. The timestamps are shown
in the bottom part of Table 3.4.

Our goal is to derive a recursive divide-and-conquer wavefront algorithm that has
timestamps identical to a fast iterative algorithm.

3.2.1 Completion-time function construction
In this section, we define completion-time, and show how to compute it in O (1) time for
any cell.

Definition 22 (Completion-time). The completion-time for a particular cell x, denoted by
C(x), is the timestep in wavefront order at which x is fully updated. More formally,

C(x) = max t | for all Ft(x, . . .); (3.2)

where Ft(x, . . .) means that cell x is updated by function F at timestep t.

Completion-time of a cell computed from the given DP recurrence is as follows.
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A0 B1 C2B3 C4C5B6 C7C8C9B10 C11C12C13C14B15 C16C17C18C19C20B21 C22C23C24C25C26C27B28
− A0 B1 C2B3 C4C5B6 C7C8C9B10 C11C12C13C14B15 C16C17C18C19C20B21
− − A0 B1 C2B3 C4C5B6 C7C8C9B10 C11C12C13C14B15
− − − A0 B1 C2B3 C4C5B6 C7C8C9B10
− − − − A0 B1 C2B3 C4C5B6
− − − − − A0 B1 C2B3
− − − − − − A0 B1
− − − − − − − A0

0 1 3 6 10 15 21 28
− 0 1 3 6 10 15 21
− − 0 1 3 6 10 15
− − − 0 1 3 6 10
− − − − 0 1 3 6
− − − − − 0 1 3
− − − − − − 0 1
− − − − − − − 0

I-DP

A0 B1 C3B4 C5C6B7 C14C15C17B18 C14C15C19C20B21 C22C23C24C25C27B28 C22C23C24C25C29C30B31
− A0 B2 C3B4 C14C15B16 C14C15C17B18 C22C23C24C25B26 C22C23C24C25C27B28
− − A0 B1 C9B10 C11C12B13 C14C15C17B18 C14C15C19C20B21
− − − A0 B8 C9B10 C14C15B16 C14C15C17B18
− − − − A0 B1 C3B4 C5C6B7
− − − − − A0 B2 C3B4
− − − − − − A0 B1
− − − − − − − A0

0 1 4 7 18 21 28 31
− 0 2 4 16 18 26 28
− − 0 1 10 13 18 21
− − − 0 8 10 16 18
− − − − 0 1 4 7
− − − − − 0 2 4
− − − − − − 0 1
− − − − − − − 0

R-DP

A0 B1 C2B3 C4C5B6 C4C7C8B9 C7C8C10C11B12 C7C10C11C13C14B15 C10C11C13C14C16C17B18
− A0 B1 C2B3 C4C5B6 C4C7C8B9 C7C8C10C11B12 C7C10C11C13C14B15
− − A0 B1 C2B3 C4C5B6 C4C7C8B9 C7C8C10C11B12
− − − A0 B1 C2B3 C4C5B6 C4C7C8B9
− − − − A0 B1 C2B3 C4C5B6
− − − − − A0 B1 C2B3
− − − − − − A0 B1
− − − − − − − A0

0 1 3 6 9 12 15 18
− 0 1 3 6 9 12 15
− − 0 1 3 6 9 12
− − − 0 1 3 6 9
− − − − 0 1 3 6
− − − − − 0 1 3
− − − − − − 0 1
− − − − − − − 0

WI-DP &WR-DP

Table 3.4: Left: Timesteps at which each DP table cell is updated (Ft means function F updates
at timestep t). Right: Timesteps at which each cell becomes fully updated (on the right) for the
parenthesis problem on a DP table of size 8 × 8. Top: standard I-DP which has a span of Θ

(
n2).

Middle: standard 2-way R-DP algorithm which has a span of Θ
(
nlog 3

)
. Bottom: WI-DP andWR-

DP algorithms which has a span of Θ (n log n) overall (including traversing the recursion tree) but
just Θ (n) to update the DP table. All recursive algorithms use a 1 × 1 base case. We assume that
the number of processors is unbounded.

A0.0 B1.0 C2.0B3.0 C4.0C4.1B5.0 C4.0C6.0C6.1B7.0 C6.0C6.1C8.0C8.1B9.0 C6.0C8.0C8.1C10.0C10.1B11.0 C8.0C8.1C10.0C10.1C12.0C12.1B13.0
− A0.0 B1.0 C2.0B3.0 C4.0C4.1B5.0 C4.0C6.0C6.1B7.0 C6.0C6.1C8.0C8.1B9.0 C6.0C8.0C8.1C10.0C10.1B11.0
− − A0.0 B1.0 C2.0B3.0 C4.0C4.1B5.0 C4.0C6.0C6.1B7.0 C6.0C6.1C8.0C8.1B9.0
− − − A0.0 B1.0 C2.0B3.0 C4.0C4.1B5.0 C4.0C6.0C6.1B7.0
− − − − A0.0 B1.0 C2.0B3.0 C4.0C4.1B5.0
− − − − − A0.0 B1.0 C2.0B3.0
− − − − − − A0.0 B1.0
− − − − − − − A0.0

Table 3.5: The timestamps for the parenthesis problem for a DP table size 8 × 8 using a WR-DP

algorithm.

C(x) =

initial values initial conditions,
smax(x) + flag(x) + su(x) otherwise;

(3.3)

where smax(x) is the maximum completion time of the cells on which x directly
depends, i.e., smax(x) = maxF(x,...,y,...) C(y) and y , x; flag(x) = 0 if the cell-tuple
(with maximum completion-time as smax(x)) is inflexible and flag(x) = 1 if the cell-
tuple is flexible; and the term su(x) is 1 if there is a self-update function that reads
from itself; and 0, otherwise.

In simple words, the last timestep at which a cell is updated/written is called the
completion-time of that cell. The term smax(x) is the maximum completion-time of all
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possible read cells of the cell x. The letter s in smax means start-time. It means that the
cell x gets completed only after all of its read cells are started and finish their execution.
This is also the reason to include the term 1. The term su(x) is required to avoid collisions
or race conditions. The idea for self-update function was given by Jesmin Jahan Tithi.

We need to find closed-form formulas to find the completion-time of the WR-DP algo-
rithm. The timestamps of theWR-DP algorithm for all cells of an 8× 8 DP table is shown
in Table 3.5. The completion-time for any cell (i, j) in the DP table can be found as follows.

C(i, j) =


0 if i = j,

C(i, j − 1) + 0 + 1 if i = j − 1,
C(i, j − 1) + 1 + 1 if i <= j − 2;

(3.4)

because smax(i, j) = C(i, j − 1) = C(i + 1, j); if i ≤ j − 1, then su(i, j) = 1 as the self-update
function B updates the cell (i, j) reading from itself. When i = j − 1, there is no cell-tuple
that does not read from (i, j) and when i ≤ j− 1, there is at least one flexible tuple. Solving
the recurrence, we get the following:

C(i, j) =

j − i if (j − i) = 0,
2(j − i)− 1 if (j − i) ≥ 1.

(3.5)

3.2.2 Start-time and end-time functions construction

In this section, we define start-time and end-time for a recursive function call, and show
how to derive them from completion-times.

In an R-DP, every function invokes one or more recursive functions. Each function call
will only be executed when all its read regions are completely updated. On the other hand,
in a WR-DP, a function will be executed when as soon as a single cell of the write region
is ready to execute. The relative timestep at which a function starts execution is called
start-time and the relative timestep when the function completes execution is termed end-
time. Closed-form formulas / mathematical functions are constructed to find the start- and
end-times.

Definition 23 (Start-time and end-time). The start-time (resp. end-time) of a recursive
function call in aWR-DP algorithm is the earliest (resp. latest) timestep in wavefront order
at which one of the updates to be applied by that function call (either directly or through a
recursive function call) becomes ready.

Let F(X, Y1, . . . , Ys) be a function call that writes to a region X by reading from re-
gions Y1, . . . , Ys of the DP table. Its start- and end-times, denoted by SF (X, Y1, . . . , Ys) and
EF (X, Y1, . . . , Ys), respectively, are computed as follows.
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SF (X, Y1, . . . , Ys)︸                    ︷︷                    ︸
X∈{Y1,...,Ys}

=

(C(X)).0 if X is a cell,
min SF′ (X ′, Y ′1 , . . . , Y ′s ) otherwise;

(3.6)

SF (X, Y1, . . . , Ys)︸                    ︷︷                    ︸
X<{Y1,...,Ys}

=

(min1≤i≤s{C(Yi)}+ 1).ra(X, Y1, . . . , Ys) if X is a cell,
min SF′ (X ′, Y ′1 , . . . , Y ′s ) otherwise;

(3.7)

EF (X, Y1, . . . , Ys)︸                    ︷︷                    ︸
X∈{Y1,...,Ys}

=

(C(X)).0 if X is a cell,
max EF′ (X ′, Y ′1 , . . . , Y ′s ) otherwise;

(3.8)

EF (X, Y1, . . . , Ys)︸                    ︷︷                    ︸
X<{Y1,...,Ys}

=

(max1≤i≤s{C(Yi)}+ 1).ra(X, Y1, . . . , Ys) if X is a cell,
max EF′ (X ′, Y ′1 , . . . , Y ′s ) otherwise;

(3.9)

where, in the non-cellular case minimization/maximization is taken over all functions
F′(X ′, Y ′1 , . . . , Y ′s ) recursively called by F(X, Y1, . . . , Ys). Also, ra(X, Y1, . . . , Ys) is the problem-
specific race avoidance condition used when two functions write to the same region. Though
we use real-valued timesteps for simplicity, the total number of distinct timesteps remain
exactly the same as that in theWI-DP algorithm.

For the parenthesis problem, the start-times for the three functions A,B, and C are
computed as below. Let (xr, xc), (ur, uc), and (vr, vc) denote the positions of the top-left cells
of regions X, U and V , respectively. Then,

SA (X,X,X) =

C(X).0 if X is a cell,
SA (X11, X11, X11) otherwise;

(3.10)

SB (X,U, V ) =

C(X).0 if X is a cell,
SB (X21, U22, V11) otherwise;

(3.11)

SC (X,U, V ) =

(max {C(U),C(V )}+ 1).[uc > xr+xc

2 ] if X is a cell,
min {SC (X21, U21, V11) ,SC (X21, U22, V21)} otherwise;

(3.12)

where [ ] is the Iverson bracket [Iverson, 1962] which denotes 1 if the condition in the
bracket is true and 0 otherwise. The idea for using the Iverson function to handle race
avoidance was given by Jesmin Jahan Tithi.

The start time for A follows directly from Definition 23 and instead of SA (X11, X11, X11)
we could have instead chosen SA (X22, X22, X22) because the completion-times of some of the
cells in X11 and X22 are the minimum.

Function B actually reads from and writes to X. This is because it writes to X reading
the pairs from U,X and from X, V , denoted by 〈X,U,X〉 and 〈X,X, V 〉, respectively. Hence,
the start-time recurrence for B matches with that of the first recurrence in Definition 23.

Function C follows the second recurrence from the definition. Among all the functions
invoked by C, the function call having the least start-time can be either C(〈X21, U21, V11〉) or
C(〈X21, U22, V21〉). As the function C writes to the same region twice, there is a race and to
avoid it we use the condition [uc > (xr + xc)/2] derived manually.

Similarly, the end-times are as follows.
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EA (X,X,X) =

C(X).0 if X is a cell,
EB (X12, X11, X22) otherwise;

EB (X,U, V ) =

C(X).0 if X is a cell,
EB (X12, U11, V22) otherwise;

EC (X,U, V ) =

(max {C(U),C(V )}+ 1).[uc > xr+xc

2 ] if X is a cell,
max {EC (X12, U11, V12) , EC (X12, U12, V22)} otherwise.

Solving the recurrences for the start-times and end-times above, we obtain the timing
functions shown in Figure 3.1.

3.2.3 Divide-and-conquer wavefront algorithm derivation
In this section, we describe how to use timing functions to derive aWR-DP algorithm from
a given standard R-DP algorithm. We use the parenthesis problem as an example.

Each recursive function makes O (1) function calls and each function call F(X, Y1, . . . , Ys)
writes to a region and reads from one or more regions Y1, . . . , Ys. The function call F has
to wait until all its read regions are completely updated and no other function call is up-
dating F’s write-region X. This means, the function call F(X, Y1, . . . , Ys) has to wait for its
execution until the start-time SF (X, Y1, . . . , Ys). Also, the function completes its execution
at EF (X, Y1, . . . , Ys). Therefore, a WR-DP algorithm can be easily derived from an R-DP

algorithm by simply specifying the start-times and end-times for each function invocation.
Such start- and end-time information is a hint to the task scheduler to execute the tasks
at the specified times.

A standard R-DP for the parenthesis problem is shown in the top-left corner of Figure
3.1. We modify it as follows, and the modified algorithm is shown on the right hand side of
the same figure.

First, we modify each function F to include a switching point n′ ≥ 1, and switch to the
original non-wavefront recursive algorithm by calling Fchunk when the size of each input
submatrix drops to n′ × n′ or below.

We augment each function to accept a timestep parameter w. We remove all serial-
ization among recursive function calls by making sure that all functions that are called
are launched in parallel. We do not launch a function unless w lies between its start-time
and end-time which means that a function is not invoked if we know that it does not have
an update to apply at timestep w in wavefront order. Observe that the function Fchunk at
switching does not accept a timestep parameter, but if we reach it we know that it has an
update to apply at timestep w. However, once we enter that function we do not stop until
we apply all updates that function can apply at all timesteps ≥ w.

Each function is also modified to return the smallest timestep above w for which it may
have at least one update that is yet to be applied. It finds that timestep by checking the
start-time of each function that was not launched because the start-time was larger than
w, and the timestep returned by each recursive function that was launched, and taking the
smallest of all of them.

Finally, we add a loop (see RECURSIVE-WAVEFRONT-PARENTHESIS in Figure 3.1) to
execute all timesteps of the wavefront using the modified functions. We start with timestep
w = 0, and invoke the main function A(G,G,G,w) which applies all updates at timestep
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w and depending on the value chosen for n′ possibly some updates above timestep w, and
returns the smallest timestep above w for which there may still be some updates that are
yet to be applied. We next call function A with that new timestep value, and keep iterating
in the same fashion until we are able to exhaust all timesteps.

Though the WR-DP algorithm has a recursive structure, it is really executed like a
wavefront. All the real computations in the algorithm will be performed in the Fchunk
kernels. Assume that the input DP table is subdivided into (n/n′) × (n/n′) matrix each
unit of size n′ × n′. Possibly several different recursive functions write to an n′ × n′ chunk
multiple times.

It is easy to prove that if two Fchunk functions can be executed in parallel, then they must
have the same start-times. Using this idea, the variant of iterative deepening logic makes
sure that in the first iteration, the Fchunk functions that have the smallest start-time will
be executed and the second smallest start-time (among all chunks) is found. In the second
iteration, all Fchunk functions that start at the computed start-time are executed and the
third smallest start-time (among all Fchunk functions) is found. This process continues until
all the tasks are complete.

3.3 Correctness
We prove the correctness of the principle used in deriving the recursive wavefront algo-
rithms in the following theorem.

Theorem 4 (Correctness). Given an R-DP for a DP problem P, the Autogen-Wave

framework can be used to design aWR-DP algorithm that is functionally equivalent
to the given R-DP, assuming the following:

(i) Initial values of the completion-time recurrence is correct.
(ii) Race avoidance function ra() is correct.

(iii) Update function su(x) is correct.
(iv) Completion-time, start-time, and end-time functions can be computed in O (1)

time.

Proof. We prove the theorem in three parts: (i) Completion-time function is correct, (ii)
Start-time and end-time functions are correct, (iii) WR-DP algorithm is correct. The as-
sumptions listed in the theorem are important because they are manually computed and
the results are problem-specific.
(i) Completion-time function is correct. The completion-time recurrence is based on the
original DP recurrence of P and is given in Definition 22. A cell x can only be updated
when all its read cells are completely updated. Hence, C(x) ≥ smax(x) + 1.

Consider all timestamps Ft(x, . . . , yi, . . .) that write to cell x. When the cell x has been
updated by strictly reading from other cells (i.e., yi , x for all i), the timestamp will
be Fsmax(x)+1(x, . . .) for some recursive function F. We do not consider decimal values of
timesteps for completion-time calculation. Due to Rule 1 of Section 2.2 there can be at
most one function that reads from and writes to the same region which is called the self-
update function. Therefore, there can be at most one more timestamp that updates cell x
reading from x. This means that C(x) ≤ smax(x) + flag(x) + su(x).
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Thus, C(x) = smax(x) + flag(x) + su(x) is correct.
(ii) Start-time and end-time functions are correct. We prove the correctness of start-time
functions. Similar arguments hold for end-time functions.

Start-time recurrences are given in Definition 23. A recursive function F(X, Y1, . . . , Ys)
invokes O (1) number of child functions F′(X ′, Y ′1 , . . . , Y ′s ) such that X ′ and Y ′i are d-D or-
thants of X and Yi, respectively. The start-time of F must be the minimum among child
functions F′ of F. Hence, the recurrence case that SF (X, . . . , Yi, . . .) = minSF′ (X ′, . . . , Y ′i , . . .)
is correct.

To compute the base cases of the start-time recurrence, we need to analyze two cases:
(i) F is an inflexible function i.e., x ∈ {y1, . . . , ys}, and (ii) F is a flexible function i.e., x <
{y1, . . . , ys}.

In the first case, the start-time of the inflexible function is same as the completion-
time of the write-cell, because inflexible function represents complete updates. In the sec-
ond case, the flexible function F(x, y1, . . . , ys) can immediately start once all the read cells
y1, . . . , ys have been updated completely i.e., SF (x, y1, . . . , ys) = max1≤i≤s{C(yi)} + 1. To avoid
race conditions, we add manually computed race avoidance condition ra(x, y1, . . . , ys). Thus,
the start-time function (resp. end-time function) is correct.
(iii) Recursive divide-and-conquer wavefront algorithm is correct. For all possible recursive
functions F and regions X, Y1, . . . , Ys such that each region has a dimension length of n′, let
w0 < w1 < · · · < wL−1 be all the start-times of F(X, Y1, . . . , Ys). As per the fundamental defini-
tion of a wavefront algorithm, initially, all those chunks X for which SF (X, Y1, . . . , Ys) = w0
will be executed. Then, chunks for which the start-times are w1 will be executed. This
process continues till wL−1. We need to prove the recursive wavefront algorithm too follows
this strategy.

Once the timing functions are found, we simply plug in the start-time and end-time
functions for every single recursive function call, as shown in an example in Figure 3.1, in
such a way that every recursive function is invoked at its start-time and finishes at its end-
time and this is true assuming that the timing functions are correct. Using contradiction
it is straightforward to prove that a function cannot start (resp. end) execution before or
later than its start-time (resp. end-time). It is up to the scheduler to schedule the recursive
functions based on the timing functions.

The generic scheduling method to schedule a hybrid recursive wavefront algorithm uses
a variant of iterative deepening technique to execute the base case tasks in a wavefront
manner satisfying the DP dependencies and retaining the recursive structure, as depicted
in an example in Figure 3.1. The scheduler (or programmer) adds conditional checks be-
fore every invocation of a recursive function call to check whether the executing wavefront
levels are in fact between the start-time and end-time of the function. If they are, then the
corresponding function is invoked to execute. As we do not execute a recursive function
before its start-time or after its end-time, we are not violating any original DP dependen-
cies. �

3.4 Scheduling algorithms
In this section, we show how to schedule recursive wavefront algorithms to achieve prov-
ably good bounds (optimal or near-optimal) for both parallelism and cache performance.
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Recall that our recursive wavefront algorithm switches to the original non-wavefront
recursive algorithm when the input parameter n drops to a value ≤ n′. While both recur-
sive (wavefront and non-wavefront) algorithms have the same serial work complexity T1
and same serial cache complexity Q1 (as they reduce to the same serial algorithm), their
spans are different. We use TR∞(n′) to denote the span of the non-wavefront algorithm for a
problem of size n′.

In this section, we present a provably efficient method of scheduling recursive wavefront
algorithms on a parallel machine based on iterative deepening. We analyze the scheduling
of the recursive wavefront algorithms using two schedulers: (a) work-stealing scheduler,
and (b) a variant of the space-bounded scheduler.

A scheduler maps parallel tasks of a multithreaded program to different processors in
a parallel machine. Several schedulers have been proposed, analyzed, and implemented in
literature. Table 3.6 gives a summary of several schedulers. Optimal algorithms scheduled
using bad schedulers does not lead to high-performance and similarly slow algorithms
scheduled using the best schedulers also do not lead to great performance. For the best
performance, we need parallel algorithms with good cache efficiency and good parallelism
and also scheduling algorithms (or schedulers) that exploit these characteristics.

It is not clear how to develop truly efficient cache-oblivious algorithms that have both
optimal parallel cache performance and optimal parallelism. Even if we have high-performing
algorithms, developing a scheduler that exploits the best from the two worlds is non-trivial.
The fundamental difficulty for solving the two problems above comes from two seemingly
paradoxical reasons:

(i) to get optimal parallel cache efficiency (majorly due to temporal locality), a task
should work on a localized data as much as possible and migration of tasks to dif-
ferent caches should be minimized.

(ii) to get optimal parallelism or at least good parallelism, the task migration should be
encouraged because more migration means more parallelism.

We prove that the span of the pure recursive wavefront algorithms is at most linear
(w.r.t the input parameter) in Lemma 1. We use the notations TR∞(n) and TW∞ (n) to de-
note the span of recursive and recursive wavefront algorithms, respectively. Consider a
recursive wavefront algorithm that switches to recursive kernels when the input param-
eter drops from n to less than or equal to n′. Such algorithms are called hybrid recursive
wavefront algorithms and in Sections 3.4.1 and 3.4.2 complexities of those algorithms when
scheduled using different schedulers are discussed.

Lemma 1 (Worst-case linear span of the recursive wavefront algorithms
(without scheduling overhead)). Given a DP problem, if the completion-time
(see Definition 22) of every cell (i1, . . . , im) can be written in the form

C(i1, . . . , im)← C(i1 − i′1, . . . , im − i′m) +O (1) (3.13)

where m is a constant; i1, . . . , im, i′1, . . . , i′m ∈ [0, n− 1] and at least one among i′1, . . . , i′m
is greater than or equal to 1. Then the number of wavefront levels in the recursive
wavefront algorithm is at most linear, i.e., NW

∞ (n) = O (n).

Proof. Let n denote the input parameter. Let a cell to be computed be represented using
m-dimensions (m is fixed). Let the cells (0, . . . , 0), (n − 1, . . . , n − 1)), (i1, . . . , im), and (i1 −

76



i′1, . . . , im − i′m) be denoted by first, last, x, and y, respectively. Let y be the cell such that
C(y) = rmax(x). Here, i1, . . . , im, i′1, . . . , i′m ∈ [0, n − 1] and at least one among i′1, . . . , i

′
m is

greater than or equal to 1. Without loss of generality, we assume that first and last cells
are the initial and final cells to be fully updated, respectively and the cell x depends on
y. We know that C(x) is more than C(y) by some non-negative constant. We need to prove
that the number of wavefront levels in the algorithm is at most linear i.e., C(last) is O (n).

Given that the cell x depends on y, it is easy to see there is difference in the coordinates
of x and y in at least one dimension and the index of that dimension decreases from cell x
to cell y by at least 1. The maximum number of times the reduction in index in a single
dimension can happen is n. As there are m dimensions, in the worst case, the maximum
number of times reduction in any dimension can occur is nm. In other words, starting
from final, it takes nm = O (n) time steps to reach first cell and in each timestep there
is a difference of a constant value in the completion times of the write and the read cells.
Therefore, C(last) is O (n) and hence NW

∞ (n) = O (n). �

3.4.1 Work-stealing scheduler

In this section, we analyze the complexity of the hybrid recursive wavefront algorithms
when scheduled using a randomized work-stealing (WS) scheduler [Blumofe and Leiserson,
1999].

The machine model for WS is a machine with several levels of distributed private
caches. The randomized WS presented and analyzed in [Blumofe and Leiserson, 1999] is
a distributed cache-oblivious scheduler that can schedule hybrid recursive wavefront algo-
rithms to get good parallel cache performance and good parallelism. We prove the following
theorem to analyze the complexities of the schedule.

Scheduler Qp Tp Comments
Greedy scheduler − O

(
T1
p

+ T∞
)

Random work-stealing O
(
Q1 + pM

B
T∞

)
O
(
T1
p

+ T∞
)

Non-optimal Qp

Priority work-stealing O
(
Q1 + pM

B
T∞

)
O
(
T1
p

+ T∞
)

Non-optimal Qp

Parallel depth-first Ω (Q1) O
(
T1
p

+ T∞
)

Mp = Ω (M1 + Θ (pT∞))
Space-bounded O (Q1) O

(
T1
p

+ T∞
)

Non-optimal T∞
W-SB O (Q1) O

(
T1
p

+ T∞
)

Optimal Qp and near-optimal T∞

Table 3.6: Parallel cache complexity (Qp) and parallel running time (Tp) of several sched-
ulers.
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Theorem 5 (WS complexity). Suppose a DP recurrence is evaluated by the WI-
DP in N∞(n) parallel steps with ∞ processors. When the WR-DP algorithm with
switching point n′ ≤ n (switching to n R-DP) evaluates the recurrence, we achieve
the following bounds while using a randomized work-stealing (WS) scheduler:

O work, T1(n) = O
(
TR1 (n)

)
,

O span, T∞(n) = O
(
N∞( n

n′
)
(
O (log n) + TR∞(n′)

))
,

O parallel time, Tp(n) = O
(
T1(n)
p

+ T∞(n)
)

w.h.p. in n,
O serial cache complexity, Q1(n) = T1(n/n′)QR

1 (n′),
O parallel cache complexity, Qp(n) = O

(
Q1(n) + p · M

B
· T∞(n)

)
w.h.p. in n, and

O extra space, Sp(n) = O (p log n).
We assume that N∞(n) and T1(n) (work) are polynomials of n, and choose n′ such

that T1(n′) = Ω (log n).

Proof. The theorem is proved in different parts.
Span. The total span is found by summing up the spans at every wavefront level. The
span is bounded using a simple formula: total span ≤ #(wavefront levels) × (worst-case
span of executing a chunk + worst-case span to reach a chunk). We know that there
are N∞(n/n′) wavefront levels in the algorithm as the outer loop (e.g., the loop inside
RECURSIVE-WAVEFRONT-PARENTHESIS of Figure 3.1) in the recursive wavefront algo-
rithm will iterate N∞(n/n′) times. The worst-case span of executing a chunk is TR∞(n′).
Also, the worst-case span to reach a chunk is O (log(n/n′)). Simplifying, we have the total
span as N∞(n/n′)(O (log n) + TR∞(n′)).
Total work. Similar to span, the total work can be found by summing up the work done at
every wavefront level. The total work can be bounded using a simple formula: total work
= #(chunks) ×(#computations inside a chunk + #computations required to reach a chunk).
The expression computes to T1(n/n′) (T1(n′) +O (log(n/n′))). We assume that the work is a
polynomial function of n, which implies T1(n/n′) = T1(n)/T1(n′). To not increase the work
compared to the original wavefront algorithm, we assume that every chunk does Ω (log n)
work, which implies T1(n′) + Θ (log n) = T1(n′). After substitutions and simplification, the
total work remains Θ (T1(n)) and does not increase.
Parallel running time. The parallel running time at a specific wavefront level is found
using the theorem from [Blumofe and Leiserson, 1999]. The parallel running time Tp(n) of
the entire algorithm is found by summing up the parallel running time at each wavefront
level. Let T (i)

1 , T (i)
∞ and Q

(i)
1 be the work, span and serial cache complexity, respectively, of

the ith iteration of the outer loop in the recursive wavefront algorithm. Then the parallel
running time of that iteration under the WS scheduler is O

(
1 + T

(i)
1 (n)/p+ T (i)

∞ (n)
)

(w.h.p.).
We sum up over all i, and obtain the claimed bound for Tp(n). Thus, we have

Tp(n) = O
 ∑

level i

(
1 + work at iteration i

p
+ span at iteration i

)
= O

#(wavefront levels) + 1
p
·
∑

level i
T

(i)
1 (n) +

∑
level i

T (i)
∞ (n)


= O

(
#(wavefront levels) + 1

p
· T1(n) + T∞(n)

)
= O

(
T1(n)
p

+ T∞(n)
)
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Serial cache complexity. The total serial cache complexity can be found using the for-
mula: Q1(n) = #(chunks) × (serial cache complexity of a chunk + serial cache complex-
ity of reaching a chunk) = T1(n/n′)

(
QR

1 (n′) + Θ ((log n)/B)
)
. As T1(n′) = Ω (log n), we have

QR
1 (n′) = Ω ((log n)/B) and on simplification we get Q1(n) = T1(n/n′)QR

1 (n′).
Parallel cache complexity. The parallel cache complexity at a particular level is found by a
result from [Acar et al., 2000] in terms of serial cache complexity. Similar to the argument
of parallel running time, the total parallel cache complexity Qp(n) comprises of the parallel
cache complexity at all levels. The parallel cache complexity of the i-th iteration of the
outer loop is O

(
Q

(i)
1 (n) + p(M/B)T (i)

∞ (n)
)

(w.h.p.) under the WS scheduler. Summing up
over all i gives us the claimed bound for Qp(n). We have

Qp(n) = O
 ∑

level i

(
Q

(i)
1 (n) + p · M

B
· T (i)
∞ (n)

)
= O (Q1(n) + p(M/B) · T∞(n))

To achieve Qp(n) as described above w.h.p. we set ε = 1/n2+λ for any λ > 0 in Lemma 16
of [Acar et al., 2000].
Extra-space complexity. For p processors, there can be at most p tasks running in parallel.
When the tasks reach the levels of the leaves of the recursion tree, they execute the logic
in the leaf functions. As each executing task is a leaf node in the recursion tree, we might
require a total extra space all along the path from the root to the p executing leaves of the
recursion tree. Hence, Sp(n) = O (p log n).

�

If n′ is a polynomial function of n with degree less than 1 and Lemma 1 is satisfied, then
we have the following corollary derived from Theorem 5.

Corollary 1 (WS complexity). In the hybrid recursive wavefront algorithm, if
n′ = nα for some constant α ∈ [0, 1) and if Lemma 1 is satisfied, then WS
schedules the algorithm on distributed cache machine to have Sp = O (p log n),
T∞(n) = O

(
n1−αTR∞(nα)

)
, Q1(n) = T1(n1−α)QR

1 (nα), Tp(n) = O (T1(n)/p+ T∞(n)), and
Qp(n) = Θ (Q1(n) + p(M/B)T∞(n)) and the latter two bounds are satisfied w.h.p. For
the Tp(n) and Qp(n) equations to hold, we assume that T1(n) is a polynomial of n, and
choose n′ such that T1(n′) = Ω (log n).

3.4.2 Modified space-bounded scheduler
In this section, we show how to modify a space-bounded scheduler(W-SB) [Chowdhury
et al., 2013] so that it can execute a recursive wavefront algorithm cache-optimally with
near-optimal parallelism.

The parallel memory hierarchy (PMH) [Blelloch et al., 2011] model models the memory
hierarchy of many real parallel systems. It is described in Section 1.4.2 and we use this
memory model for the scheduler. The W-SB scheduler combines two ideas: timing functions
presented in Section 3.2 and space-bounded scheduler introduced in [Chowdhury et al.,
2010,Chowdhury et al., 2013].
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For each recursive function call, our W-SB scheduler accepts three hints: start-time,
end-time and working set size (i.e., total size of all regions in the DP table accessed by
the function call). Given an implementation of a standard recursive algorithm with each
function call annotated with those three hints, the W-SB can automatically generate a re-
cursive wavefront implementation (similar to the one on the right hand side of Figure 3.1).
From the given start-times, the scheduler determines the lowest start-time and executes
the tasks that can be executed at that lowest start-time. Since the scheduler knows all the
cache sizes, as soon as the working set size of any function executing on a processor under
a cache fits into that cache, the scheduler anchors the function to that cache in the sense
that all recursive function calls made by that function and its descendants will only be ex-
ecuted by the processors under that anchored cache. This approach of limiting migration
of tasks ensures cache-optimality [Chowdhury et al., 2013,Blelloch et al., 2011].

The W-SB scheduler is centralized and cache-aware. It schedules recursive wavefront
algorithms in which the number of recursive function calls made by a function is upper
bounded by a constant. The complete information related to a function call is given by
by T = [SF (X, Y1, . . . , Ys) , EF (X, Y1, . . . , Ys)] : F(X, Y1, . . . , Ys). That is, this scheduler accepts
start-time, end-time and problems size for each function call. From the given start-times,
the scheduler determines the lowest start-time and executes the tasks that can be executed
at that lowest start-time. If there are p processors in the machine, then at any point in time
a maximum of p tasks can be executed in parallel. The subtask T of a task T′ is said to be
anchored to a cache at some level if T fits into the cache but not T′. When a task T is
anchored to a cache M, the task and all of its subtasks at all granularities will be in the
same cache and they will not be migrated to any other cache that is not part of the subtree
of caches rooted at M. A similar argument holds for all cache levels and hence when a task
fits into a cache as much useful work is done as possible.

A task is a subproblem that writes to a region of an input DP table and reads from one or
more regions. The complete information related to a task is denoted by T = [SF (X, Y1, . . . , Ys) ,
EF (X, Y1, . . . , Ys)] : F(X, Y1, . . . , Ys). That is, this scheduler accepts start-time, end-time and
problems size for each function call/task. From the given start-times, the scheduler de-
termines the lowest start-time and executes the tasks that can be executed at that lowest
start-time. If there are p processors in the machine, then at any point in time a maximum
of p tasks can be executed in parallel. The subtask T of a task T′ is said to be anchored
to a cache at some level if T fits into the cache but not T′. When a task T is anchored to a
cache M, the task and all of its subtasks at all granularities will be in the same cache and
they will not be migrated to any other cache that is not part of the subtree of caches rooted
at M. A similar argument holds for all cache levels and hence when a task fits into a cache
as much useful work is done as possible.

Example. For simplicity of exposition, we describe here the process by which W-SB sched-
ules a recursive wavefront algorithm for the LCS problem on a 16 × 16 DP table X with
a chunk size of 4 × 4 after which it switches to standard 2-way recursive algorithm. In
the PMH model, we assume h = 2, f2 = 2, f1 = 1, and M1 has just enough memory to
execute 4 × 4 subproblem. As per the scheduling method shown in Figure 3.1, the base
case size n′ will be chosen by the scheduler automatically such that it is equal to M1 as
LCS can be implemented in linear space. In the first iteration the wavefront level is 0 and
the only task that would be executed is {[0, 6] : A(X11,11)}. As this task fits in M1, it will be
executed completely before it is knocked off from the cache. During the execution of first
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iteration the second smallest start-time i.e., 4 will be computed. In the second iteration all
tasks that have start-time 4 will be executed. The two tasks that will be executed by the
two processors are {[4, 10] : A(X11,12); [4, 10] : A(X11,21)}. Following the process, one possible
scheduling of the tasks is shown in Table 3.7.

Iter. Processor 1 Processor 2
1 [0, 6] : A(X11,11) −
2 [4, 10] : A(X11,12) [4, 10] : A(X11,21)
3 [8, 14] : A(X11,22) [8, 14] : A(X21,11)
4 [8, 14] : A(X12,11) −
5 [12, 18] : A(X21,21) [12, 18] : A(X12,21)
6 [12, 18] : A(X21,12) [12, 18] : A(X12,12)
7 [16, 22] : A(X21,22) [16, 22] : A(X22,11)
8 [16, 22] : A(X12,22) −
9 [20, 26] : A(X22,21) [20, 26] : A(X22,12)

10 [24, 30] : A(X22,22) −

1 2 4 6
2 3 5 7
3 6 7 9
5 8 9 10

Table 3.7: W-SB scheduled LCS recursive wavefront algorithm on a 2-processor machine.
Left: Tasks executed by different processors. Right: Depiction of the tasks on the DP table.

Theorem 6 (W-SB complexity). Suppose a DP recurrence is evaluated by theWI-
DP in N∞(n) parallel steps with ∞ processors. When the WR-DP with switching
point n′ ≤ n (switching to a 2-way R-DP) evaluates the recurrence, we achieve the
following bounds under the modified space-bounded (W-SB) scheduler:

O span, T∞(n) = O
(
N∞(n/n′)

(
O (log n) + TR∞(n′)

))
,

O parallel cache complexity, Qp(n) = O (Q1(n)), and
O extra space, Sp(n) = O (p log n).

We assume that N∞(n) and T1(n) (work) are polynomials of n, and choose n′ such that
T1(n′) = Ω (log n).

Proof. The arguments for T∞(n) and Sp(n) are the same as those given in the proof of
Theorem 5. The parallel cache complexity is found as follows.

When the working set size of a function call fits into a cache M the W-SB scheduler does
not allow any recursive function calls made by that function or its descendants to migrate
to other caches that are not a part of the subtree of caches rooted at M. This implies the
data is read completely and as much work as possible is done on this loaded cache data
blocks in M before kicking them out of the cache. Hence, temporal cache locality is fully
exploited at M. As shown in [Chowdhury et al., 2013, Blelloch et al., 2011] being able to
achieve cache-optimality for working set sizes that are smaller than the cache size by at
most a constant factor guarantees Qp(n) = Θ (Q1(n)) for our algorithms. �

81



Corollary 2 (W-SB complexity). If Lemma 1 is satisfied, if Θ
(
nd
)

is the size of the
input DP table, then the W-SB scheduler schedules the hybrid recursive algorithm
algorithm on a PMH machine model to achieve the following bounds:

O If n′ = nα for some constant α ∈ [0, 1), then T∞(n) = O
(
n1−αTR∞(nα)

)
.

O If n′ = Θ
(
M 1/d

)
, where M is a cache-size, then T∞(n) =

O
(
(n/M 1/d)(log n+ TR∞(M 1/d))

)
.

In both the cases, we have Qp(n) = Θ (Q1(n)) and Sp(n) = O (p log n) or Sp(n) =
O (pS1(n)).

3.5 Further improvement of parallelism
We develop algorithms to asymptotically improve the parallelism of the divide-and-conquer
wavefront (WR-DP) algorithms. We explain the algorithm in simple words (without pseu-
docode) and then analyze it for its complexities.

The new algorithm works as follows. We set the switching point as n′ = f(n) where
f(n) = o (n). The standard WR-DP algorithms switches to an R-DP chunk when the
problem parameter n reduces to less than or equal to n′. In the new algorithm, when the
problem parameter n reduces to less than or equal to f(n), instead of calling the R-DP

algorithm we call the same divide-and-conquer wavefront algorithm. Now the divide-and-
conquer wavefront algorithm works on a subproblem with subproblem parameter f(n) and
switches the algorithm when the subprobem parameter reduces to less than or equal to
f(f(n)). This process continues recursively.

Complexity analysis. Let T∞(n, f(n)) denote the span of this new algorithm. Let T∞(n)
denote the span of the pureWR-DP algorithm with switch-point n′ = 1. Then,

T∞(n, f(n)) =

Θ (1) if n = 1,
Θ
(

n
f(n)

)
· (T∞ (f(n), f(f(n))) +O (log n) + Θ (1)) if n > 1.

Let T1(n, f(n)) denote the work of this new algorithm. Let T1(n) denote the work of the
pureWR-DP algorithm with switch-point n′ = 1. Then,

T1(n, f(n)) =

Θ (1) if n = 1,
T1

(
n

f(n)

)
· (T1 (f(n), f(f(n))) +O (log n) + Θ (1)) if n > 1.

When f(n) = log n, we have

T∞(n, log n) ≤ c

(
n

log n

)
· (T∞ (log n, log log n) + c′ log n)

≤ c

(
n

log n

)(
c

(
log n

log log n

)
· (T∞ (log log n, log log log n) + c′ log log n) + c′ log n

)

= c2
(

n

log log n

)
· T∞ (log log n, log log log n) + cc′ (c+ 1)n

= clog∗ n · n+ cc′
(
c(log∗ n)−1 + c(log∗ n)−2 + · · ·+ 1

)
n ≤ clog∗ n · n+ c(log∗ n)+1c′n

= Θ
(
clog∗ n · n

)

82



It is easy to see that this span is asymptotically better (or smaller) than Θ (n log n) as
Θ
(
clog∗ n

)
= o (log n).

Let Li(n) = log log · · · log n Assuming T1(n) is a polynomial function of n, the total work
T1(n, log n) can be computed as

T1(n, log n) = T1

(
n

log n

)
(T1 (log n, log log n) + c log n)

= T1

(
n

log n

)
· T1 (log n, log log n) + cT1

(
n

log n

)
· log n

= T1

(
n

log n

)
· T1

(
log n

log log n

)
· (T1 (log log n, log log log n) + c log log n) + cT1

(
n

log n

)
· log n

= T1

(
n

log n

)
· T1

(
log n

log log n

)
· T1 (log log n, log log log n)

+ cT1

(
n

log log n

)
· log log n+ cT1

(
n

log n

)
· log n

= T1

(
n

log n

)
· T1

(
log n

log log n

)
· · ·Θ (1) + c′T1(n)

= T1(n)
T1(log n) ·

T1(log n)
T1(log log n) · · ·Θ (1) + c′T1(n)

= Θ (T1(n))

3.6 Experimental results
In this section we present experimental results showing performance of recursive wave-
front algorithms for the parenthesis and the 2D FW-APSP problems. We also compare
performance of those algorithms with the corresponding standard 2-way recursive divide-
and-conquer and the original cache-oblivious wavefront (COW) algorithms [Tang et al.,
2015]. The recursive wavefront algorithms were implemented by Jesmin Jahan Tithi.

We used C++ with Intel Cilk™ Plus extension to implement all algorithms presented
in this section. Therefore, all implementations basically used the work-stealing scheduler
provided by Cilk™ runtime system. All programs were compiled with -O3 -ip -parallel

-AVX -xhost optimization parameters. To measure cache performance we used PAPI-5.3
[PAP, ]. Table 3.8 lists the systems on which we ran our experiments.

3.6.1 Projected parallelism
Since we still do not have shared-memory multi-core machines with thousands of cores,
we have used the Intel Cilkview scalability analyzer to compute the ideal parallelism and
burdened span of the following implementations:

(i) recursive wavefront algorithm that does not switch to the 2-way non-wavefront recur-
sive algorithm and instead directly uses an iterative basecase (wave),

(ii) recursive wavefront algorithm that switches to the 2-way recursive divide-and-conquer
at some point (wave-hybrid),

(iii) standard 2-way recursive divide-and-conquer algorithm (CO_2Way).
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Model E5-2680 E5-4650 E5-2680
Cluster Stampede [Sta, ] Stampede [Sta, ] Comet [Com, ]
#Cores 2x8 4x8 2x12
Frequency 2.70GHz 2.70GHz 2.50GHz
L1 32K 32K 32K
L2 256K 256K 256K
L3 20480K 20480K 30720K
Cache-line size 64B 64B 64B
Memory 64GB 1TB 64GB
Compiler 15.0.2 15.0.2 15.2.164
OS CentOS 6.6 CentOS 6.6 CentOS 6.6

Table 3.8: System specifications.
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Figure 3.2: Projected scalability of new recursive wavefront algorithms by Cilkview Scal-
ability Analyzer. The numbers basically denote till how many cores the implementation
should scale linearly.

For wave-hybrid, we have used n′ = max{256, power of 2 closest to n2/3}. In order to re-
duce overhead of recursion and to take advantage of vectorization we switch to an iterative
kernel when n becomes sufficiently small (e.g., 64 for wave, wave-hybrid and CO_2Way).

Figure 3.2 shows the scalability results reported by Cilkview for algorithms solving the
parenthesis problem and Floyd-Warshall’s APSP. These parallelism numbers show that
recursive wavefront algorithms scale much better than standard 2-way recursive divide-
and-conquer algorithms.

3.6.2 Running time and cache performance
Figure 3.3 shows performance of the following on a 16-core Sandy Bridge machine: (i)
wave, (ii) wave-hybrid, (iii) CO_2Way, and (iv) our original cache-oblivious wavefront (COW)
algorithms with atomic locks from [Tang et al., 2015]. For wave-hybrid, we have used
n′ = max{256, power of 2 closest to n2/3}. In order to reduce overhead of recursion and
to take advantage of vectorization we switch to an iterative kernel when n becomes suf-
ficiently small (e.g., 64 for wave, wave-hybrid and CO_2Way). It is clear from the figures
that wave and wave-hybrid algorithms perform better than CO_2Way and the COW algo-
rithms for all cases. For parenthesis problem, wave is 2.6×, and wave-hybrid is 2× faster
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than CO_2Way. Similarly, number of cache misses of CO_2Way is slightly higher than that
of both wave and wave-hybrid. For Floyd-Warshall’s APSP, wave is 18%, and wave-hybrid

is 10% faster than CO_2Way. Therefore, even with 16 cores, the impact of improvements in
parallelism and cache-misses is visible on the running time. On the other hand, though
COW algorithms have excellent theoretical parallelism, their implementations heavily use
atomic locks, which may have impacted their performance negatively for large n and for
DP dimension d > 1.

Figure 3.3: Runtime and cache misses in three levels of caches for classic 2-way recur-
sive divide-and-conquer, COW and recursive wavefront algorithms for Parenthesis and 2D
FW-APSP Problems. All programs were run on 16 core machines in Stampede. All imple-
mentations used Cilk Plus’s work-stealing scheduler.

We have obtained performance results on a 24-core Haswell machine (shown in Figure
3.4). Value of n′ and size of iterative kernel were determined in the same way as we did
on Stampede. For FW-APSP, wave is 15% and wave-hybrid is 10% faster than CO_2Way. Al-
though we see improvement in L1 and L2 cache misses, number of L3 misses is worse
probably due to the increased parallelism. For parenthesis problem, wave is 16% and
wave-hybrid is 18% faster than CO_2Way, and we see only improvement in the L3 cache
misses.

On a 32-core Sandy Bridge machine, wave for FW-APSP runs 73% faster and wave-hybrid

runs 69% faster than CO_2Way. On the other hand, for the parenthesis problem both wave

and wave-hybrid are 2.1× faster than CO_2Way.

3.7 Conclusion and open problems
In this chapter we presented a framework to semi-automatically discover divide-and-conquer
algorithms that achieve extremely high parallelism retaining excellent cache-efficiency
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Figure 3.4: Runtime and cache misses in three levels of caches for classic 2-way recur-
sive divide-and-conquer, COW and recursive wavefront algorithms for Parenthesis and 2D
FW-APSP Problems. All programs were run on 24 core machines in Comet. All implemen-
tations used cilk plus’s work-stealing scheduler.

(i.e., temporal locality). The presented WR-DP algorithms are theoretically fastest dy-
namic programming implementations.

Some open problems that could be investigated are as follows:
O [Full automation.] Completely automate the discovery of WR-DP algorithms (then

the Autogen-Wave framework will be transformed to Autogen-Wave algorithm) in-
cluding computing completion-time functions and computing ra() – race avoidance
condition.

O [Improve span to Θ (n).] TheWR-DP algorithms have the best-case span of Θ (n log n).
Is it possible to improve this best-case span to Θ (n)?

O [WR-DP algorithms for matrix problems.] Design WR-DP algorithms for several
non-DP matrix problems (e.g.: QR decomposition, SVD decomposition, etc). A very
good source of matrix algorithms is [Golub and Van Loan, 2012].
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Chapter 4

An Efficient Divide-&-Conquer Viterbi
Algorithm

The Viterbi algorithm is used to find the most likely path through a hidden Markov model
given an observed sequence, and has numerous applications. Due to its importance and
high computational complexity, several algorithmic strategies have been developed to par-
allelize it on different parallel architectures. However, none of the existing algorithms for
the Viterbi decoding problem is simultaneously cache-efficient and cache-oblivious. Be-
ing oblivious of machine resources (e.g., caches and processors) while also being efficient
promotes portability.

In this chapter, we present an efficient cache- and processor-oblivious Viterbi algorithm
based on rank convergence solving the two decade old open problem. The algorithm builds
upon the parallel Viterbi algorithm of Maleki et al. (PPoPP 2014). We provide empirical
analysis of our algorithm by comparing it with Maleki et al.’s algorithm. To the best of our
knowledge, this is the first work that presents a provably cache-efficient cache-oblivious
parallel Viterbi algorithm.

4.1 Introduction
The Viterbi algorithm [Viterbi, 1967,Viterbi, 1971,Forney Jr, 1973,Omura, 1969,Lou, 1995]
which was proposed by Andrew J. Viterbi (co-founder of Qualcomm) in 1967 is a dynamic
programming algorithm that finds the most probable sequence of hidden states from a
given sequence of observed events. As each observation is a probabilistic function of a hid-
den state, the discrete-time finite-state Markov process is modeled using a hidden Markov
model (HMM). An excellent tutorial on HMM can be found in [Rabiner, 1989].

The Viterbi algorithm has numerous real world applications. Viterbi developed his al-
gorithm as a decoding method for convolutional codes in noisy communication channels.
Since then, the algorithm has found wide applications in Qualcomm’s CDMA technol-
ogy [Gilhousen et al., 1991, Kand and Willson, 1998, Feldman et al., 2002], TDMA sys-
tem for GSM [Costello et al., 1998], television sets [Nam and Kwak, 1998], satellite and
space communication [Heller and Jacobs, 1971], speech recognition [Rabiner, 1989, Soong
and Huang, 1991,Franzini et al., 1990], handwritten word recognition [Kundu et al., 1988],
hand gesture recognition [Chen et al., 2003], modems [Ungerboeck, 1982], magnetic record-
ing systems [Kobayashi, 1971a, Kobayashi, 1971b], biological sequence analysis [Hender-

87



son et al., 1997, Durbin et al., 1998], parsing context-free grammars [Klein and Manning,
2003, Schmid, 2004], and part-of-speech tagging [Cutting et al., 1992, Taylor and Black,
1998]. In 2006, Forney [Forney Jr, 2005] asserted that the Viterbi decoder was being used
in about a billion cellphones and that approximately 1015 bits of data were being decoded
by the Viterbi algorithm in the digital television sets per second. Due to the immense sig-
nificance of the algorithm and other contributions, Viterbi received the National Medal of
Technology (US) in 2007 and the National Medal of Science (US) in 2008.

The 214-state big Viterbi decoder (BVD) [Collins, 1992] built by Jet Propulsion Labo-
ratory (JPL) in 1992 for Galileo space mission is the largest Viterbi decoder in use. It
is important to develop fast parallel Viterbi algorithms for gigantic number of states and
timesteps for multicore and many core machines. When the input data of an algorithm
is too large to fit into a cache, the time spent by the algorithm in block transfers (or IO)
between adjacent levels of caches becomes more significant than the time taken for the
CPU computations. In such cases, a cache-efficient Viterbi algorithm that minimizes the
number of cache misses is desired. Though there have been a lot of efforts and successes
in parallelizing the Viterbi algorithm, there is little work in the realm of designing cache-
efficient algorithms for the Viterbi problem. To the best of our knowledge, we present the
first cache-efficient Viterbi algorithm.

An algorithm that can be easily ported to different computing platforms from cellphones
to supercomputers should be cache-oblivious [Frigo et al., 1999] and processor-oblivious. A
cache-oblivious algorithm need not know the cache parameters such as cache size and block
size. Similarly, a processor-oblivious algorithm need not know the number of processors on
the machine it runs on. Several cache- and processor-oblivious algorithms for dynamic
programs that are majorly based on recursive divide-and-conquer have been developed,
analyzed, and implemented in [Cherng and Ladner, 2005,Chowdhury and Ramachandran,
2006, Chowdhury and Ramachandran, 2008, Chowdhury and Ramachandran, 2010, Tan
et al., 2006,Bille and Stckel, 2012].

Our contributions. The major contributions of this chapter are summarized as follows:
(1) We present an efficient cache- and processor-oblivious Viterbi algorithm based on

rank convergence.
(2) We present an efficient cache- and processor-oblivious recursive divide-and-conquer

Viterbi algorithm for multiple instances of the problem.
(3) We present experimental results comparing our algorithms with the existing fastest

Viterbi algorithms.

Organization of the chapter. In Section 4.2, we give a simple cache-inefficient Viterbi al-
gorithm based on recursive divide-and-conquer. In Section 4.3, we present a cache-efficient
Viterbi algorithm for multiple instances of the problem. A parallel Viterbi algorithm based
on rank convergence is described in Section 4.4. In Section 4.5, a cache-efficient parallel
Viterbi algorithm based on rank convergence is presented. Finally we conclude.

4.2 Cache-inefficient Viterbi algorithm
In this section, we give a formal specification of the Viterbi algorithm, and describe a simple
cache-inefficient Viterbi algorithm based on recursive divide-and-conquer.
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Formal specification
The Viterbi algorithm is described as follows. We are given an observation space O =
{o1, o2, . . . , om}, state space S = {s1, s2, . . . , sn}, observations Y = {y1, y2, . . . , yt}, transition
matrix A of size n × n, where A[i, j] is the transition probability of transiting from si to sj,
emission matrix B of size n × m, where B[i, j] is the probability of observing oj at si, and
initial probability vector (or initial solution vector) I, where I[i] is the probability that xi =
si. Let X = {x1, x2, . . . , xt} be a sequence of hidden states that generates Y = {y1, y2, . . . , yt}.
Then the matrices P and P ′ of size n × t, where P [i, j] is the probability of the most likely
path of getting to state si at observation oj and P ′[i, j] stores the hidden state of the most
likely path are computed as follows.

P [i, j] =
{
I[i] ·B[i, y1] if j = 1,
maxk∈[1,n](P [k, j − 1]× A[k, i]×B[i, yj]) if j > 1.

P ′[i, j] =
{

0 if j = 1,
argmaxk∈[1,n](P [k, j − 1]× A[k, i]×B[i, yj]) if j > 1.

There are two phases in the Viterbi algorithm. In the first phase called forward phase,
the matrices P and P ′ are computed. In the second phase called backward phase, the
sequence of hidden states X is computed from P ′ by traversing from the tth timestep of P ′
to its first timestep and recursively computing the argument max at each timestep. The
time complexity of the algorithm implemented naively is Θ (n2t).

Quite often, the forward phase dominates the execution time. Hence, in this paper,
we focus only on the forward phase of the algorithm, i.e., computing P and/or P ′. Also,
for all our algorithms, we assume that the matrices P, P ′, A, and B are stored in either
column-major order or z-Morton order.

Irregular data dependency
Viterbi algorithm is a dynamic programming (DP) algorithm having irregular dependency
as shown in Figure 4.1. It means that the data dependency does not follow a particular
pattern for all cells in the matrix. The irregular dependency is due to the memory access
B[i, yj] that depends on the value of yj, which in turn depends on a problem instance. We
believe the Viterbi problem is the first DP problem with irregular dependency for which an
efficient cache-oblivious algorithm is being presented.

The elements accessed in B changes depending on the value of yj. It is possible to
convert the problem with irregular data dependency to a problem with regular dependency
by transforming the matrix B of size n×m into another matrix C of size n×t. An algorithm
to construct matrix C from matrix B is given in Figure 4.2.

Figure 4.1: Dependency structure of the Viterbi DP with irregular dependency: cell (i, j)
depends on the green cells.
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CONVERT-B-TO-C(B,C)

1. for j ← 1 to t do
2. C[1 . . . n][j]← B[1 . . . n][yj ]

Figure 4.2: An algorithm to convert B matrix to C matrix.

After converting the B matrix to C, the Viterbi algorithm recurrence having regular
dependency can be written as

P [i, j] =
{
I[i]× C[i, 1] if j = 1,
maxk∈[1,n](P [k, j − 1]× A[k, i]× C[i, j]) if j > 1. (4.1)

The new dependency structure is given in Figure 4.3. The serial cache complexity to
construct C matrix is Θ (nt/B).

Cache-inefficient algorithm
An iterative parallel and a recursive divide-and-conquer-based parallel Viterbi algorithms
are given in Figure 4.4. The recursive divide-and-conquer algorithm was co-designed with
Vivek Pradhan. A visual depiction of the recursive algorithm is given in Figure 4.4. As per
the Viterbi recurrence, each cell (i, j) of matrix P depends on all cells of P at column j − 1,
all cells of A at column i, and the cell (i, yj) of B. The function Avit fills jth column of P
denoted by X using (j − 1)th column denoted by U using a divide-and-conquer approach.
To compute each column of P , the entire matrix of A should be read. Hence the recursive
algorithm is cache-inefficient. In both algorithms, the cells in each stage (or timestep) are
computed in parallel and the stages are computed sequentially.

Complexity analysis. The serial cache complexity of the iterative algorithm is computed
as
∑t
j=1

∑n
i=1O (n/B) = O (n2t/B) and that of the divide-and-conquer algorithm is computed

as follows. Let QA(n) denote the serial cache complexity of Avit on a matrix of size n × n.
Then

QA(n) =
{
O (n2/B + n) if n2 ≤ γAM ,
4QA (n/2) +O (1) otherwise.

where, γA is a suitable constant. Solving, QA(n) = O (n2/B + n). Thus, the serial cache
complexity of the recursive algorithm is O (n2t/B + nt) when n2 is too large to fit in cache.

Both the iterative and recursive algorithms have spatial locality, but they do not have
any temporal locality. Hence, these algorithms are not cache-efficient.

The span of the iterative algorithm is Θ (nt), as there are t time steps and it takes n time
steps to update a cell of P . The span of the recursive algorithm is computed as follows. Let

Figure 4.3: Dependency structure of the Viterbi DP with regular dependency: cell (i, j)
depends on the green cells.
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LOOP-VITERBI(P,A,B)

1. for j ← 2 to t do
2. parallel for i← 1 to n do
3. for k ← 1 to n do
4. P [i, j]← max (P [i, j], P [k, j − 1]×A[k, i]×B[i, yj ])

VITERBI-D&C(P,A,B)

1. for j ← 2 to t do
2. X ← P [.., j]; U ← P [.., j − 1]; V ← A; W ← B[.., yj ]
3. Avit(X,U, V,W )

Avit(X,U, V,W )

1. if V is a small matrix then
2. Aloop−vit(X,U, V,W )
3. else
4. parallel: Avit(X1, U1, V11,W1), Avit(X2, U1, V12,W2)
5. parallel: Avit(X1, U2, V21,W1), Avit(X2, U2, V22,W2)

Figure 4.4: (a) Parallel iterative Viterbi algorithm and cache-inefficient parallel recursive
divide-and-conquer-based Viterbi algorithm. Note that we need not store the entire matrix
P . We can keep a single column vector to compute the last column of matrix P . (b) A
parallel cache-inefficient recursive divide-and-conquer procedure for the Viterbi algorithm.
The initial call to the function is Avit(X,U, V,W ). The first array is the array of matrix P
at column j, the second array is the (j − 1)th column of P , the third matrix is the matrix A
and the last array is the array of B at column yj. The algorithm updates the red regions
using data from the blue regions.

TA(n) denote the span of Avit on a matrix of size n× n. Then

TA(n) =
{ Θ (1) if n = 1,

2TA (n/2) + Θ (1) otherwise.

Solving, TA(n) = Θ (n), which implies the span of the divide-and-conquer-based Viterbi
algorithm is Θ (nt).

The divide-and-conquer algorithm does not seem to improve the cache complexity over
the iterative algorithm. This is due to the fact that to update one column of matrix P , we
have to read the entire matrix A, which costs us Θ

(
n2

B

)
cache misses. If matrix A is taken

out of the Viterbi recurrence, then the total cache complexity would have been O
(
n2

BM
t
)
.

One might think that we can read the matrix A once and update many rows of P at once.
But, this is not possible because until the entire first column of P is updated, the second
column of P cannot be updated and until the entire second column of P is updated, the
third column of P cannot be updated. We cannot partially update the future columns of
P as in the case of Floyd-Warshall APSP algorithm, because in the Floyd-Warshall APSP
algorithm, the partial values are useful but here, the partial values are not useful and the
cells have to be updated again and again increasing the work asymptotically.
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4.3 Cache-efficient multi-instance Viterbi algorithm
In this section, we present a cache-efficient Viterbi algorithm for multiple instances of the
problem.

We saw in Section 4.2 that the recursive algorithm has no temporal locality because
to compute each column of P (Θ (n2) work), we have to scan the entire matrix A (Θ (n2)
space). It is unclear how exactly to get or if at all we can get temporal locality from the
time dimension. Therefore, we use a different approach to exploit temporal cache locality
from the divide-and-conquer Viterbi algorithm. Instead of solving only one instance of the
Viterbi problem, we solve q instances of the problem simultaneously. Two problems that
have the same transition matrix A and emission matrix B are termed two instances of
the same problem. The core idea of the algorithm comes from the fact that by scanning
the transition matrix A only once, a particular column of matrix P can be computed for
n instances of the problem. Figure 4.6 gives a cache-efficient and cache- and processor-
oblivious recursive divide-and-conquer-based parallel Viterbi algorithm that can be used
to solve q instances of the problem at once.

In Figure 4.6, in the function Avit(X,U, V,W ), the matrix U is an n× q matrix obtained
by concatenating (j − 1)th columns of q matrices P1, P2, . . . , Pq, where Pi is the most likely
path probability matrix of problem instance i. The algorithm computes X, which is a
concatenation of jth columns of the q problem instances. Each problem instance i has
a different observations vector Yi = {yi1, yi2, . . . , yit}. The matrix W is a concatenation of
yjth columns of matrix B obtained from different observations i.e., W is a concatenation of
B[y1j], B[y2j], . . . , B[yqj]. We use XT , XB, XL, and XR to represent the top half, bottom half,
left half, and right half of the matrix X, respectively. Executing the divide-and-conquer
algorithm once computes the second column of all matrices P1 to Pq. Executing the algo-
rithm again computes the third column of the q matrices. Executing the algorithm t times,
the last column of all problem instances would be filled. Note that for each time step, the
matrix W should be constructed again and again.

It is important to note that the structure of the function Avit is similar to the recursive
divide-and-conquer-based in-place matrix multiplication algorithm. When q = n, both the
algorithms have 8 recursive function calls in two parallel steps and the base case consist
of three loops. Therefore, the complexity analysis of the multi-instance Viterbi algorithm
will be similar to that of the matrix multiplication algorithm.

Complexity analysis. The serial cache complexity of the multi-instance recursive al-
gorithm given in Figure 4.6 is computed as follows. Let QA(n, q) denote the serial cache
complexity of Avit on a matrix of size n× q, and let n and q be powers of two. Then

QA(n, q) =


O (n2/B + n) if n2 + nq ≤ γAM ,
8QA (n/2, q/2) +O (1) if n = q,
2QA (n, q/2) +O (1) if n < q,
4QA (n/2, q) +O (1) if n > q.

where, γA is a suitable constant. Solving, we get

QA(n, q) = O
(

n2q

B
√
M

+ n2q

M
+ n(n+ q)

B
+ 1

)

Thus, the serial cache complexity of the divide-and-conquer Viterbi algorithm for q prob-
lem instances consisting of t timesteps is O

(
n2qt/(B

√
M) + n2qt/M + n(n+ q)t/B + t

)
. As
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VITERBI-MULTI-INSTANCE-D&C(P1, P2, . . . , Pq , A,B, t)

1. for j ← 2 to t do
2. X ← [P1[.., j], P2[.., j], . . . , Pq [.., j]]; U ← [P1[.., j − 1], P2[.., j − 1], . . . , Pq [.., j − 1]]
3. V ← A; W ← [B[.., y1j ], B[.., y2j ], . . . , B[.., yqj ]]
4. Avit(X,U, V,W )

Avit(Xn×q , Un×q , Vn×n,Wn×q)

1. if X and V are small matrices then
2. Aloop−vit(X,U, V,W )
3. else if q > n then
4. parallel: Avit(XL, UL, V,WL), Avit(XR, UR, V,WR)
5. else if q < n then
6. parallel: Avit(XT , UT , V11,WT ), Avit(XB , UT , V12,WB)
7. parallel: Avit(XT , UB , V21,WT ), Avit(XB , UB , V22,WB)
8. else
9. parallel: Avit(X11, U11, V11,W11), Avit(X12, U12, V11,W12), Avit(X21, U11, V12,W21), Avit(X22, U12, V12,W22)

10. parallel: Avit(X11, U21, V21,W11), Avit(X12, U22, V21,W12), Avit(X21, U21, V22,W21), Avit(X22, U22, V22,W22)

Figure 4.5: Cache-efficient parallel recursive divide-and-conquer-based Viterbi algorithm.
The matrix U is constructed by combining column j − 1 of each of the q problem instances
P1, . . . , Pq. Note that we need not store the entire matrices P1, . . . , Pq.

Figure 4.6: A multi-instance cache-efficient parallel recursive divide-and-conquer-based
procedure for the Viterbi algorithm that can be used to solve q instances of the problem.
We have chosen q = n for simplicity. The initial call to the function is Avit(X,U, V,W ). The
first matrix is a collection of jth columns of matrix P of n instances of the problem, the
second matrix is a collection of (j− 1)th columns of P of n instances, the third matrix is the
matrix A that is assumed same for every instance of the problem and the last matrix W
is a matrix of column yj for n different instances. The algorithm updates the red regions
using data from the blue regions.

the algorithm exploits temporal locality, it is cache-efficient.
The span of the algorithm is still Θ (nt), and its analysis is similar to that in Section

4.2.
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4.4 Viterbi algorithm using rank convergence
In this section, we briefly describe and improve Maleki et al.’s approach [Maleki et al.,
2014] to parallelize the Viterbi algorithm.

There have been several approaches to exploit the intra-stage (inside a timestep) paral-
lelism, also called wavefront parallelism, from the Viterbi recurrence using different algo-
rithms and architectures. Recently, Maleki et al. [Maleki et al., 2014] gave the first tech-
nique to exploit the inter-stage (across different timesteps) parallelism from the Viterbi
recurrence using rank convergence.

Preliminaries. Before describing the algorithm, we provide a few important definitions
from Maleki et al. paper. In the original Viterbi algorithm, if we compute the logarithm
of all probabilities called log-probabilities initially then we can use additions instead of
multiplications. The Viterbi recurrence can be rewritten as

P [i, j] =
{
I[i] +B[i, y1] if j = 1,
maxk∈[1,n](P [k, j-1] + A[k, i] +B[i, yj]) if j > 1.

The above recurrence can be modified and written as

s[t− 1] = s[0]� A1 � A2 � · · · � At−1

where s[j] is the jth solution vector (or column vector P [.., j]) of matrix P , the n×nmatrix Ai
is a suitable combination of A and B, and � is a matrix product operation defined between
two matrices Rn×n and Sn×n as

(R� S)[i, j] = max
k∈[1,n]

(R[i, k] + S[k, j])

The rank of a matrix Am×n is r if r is the smallest number such that A can be written
as a product of two matrices Cm×r and Rr×n, i.e., Am×n = Cm×r �Rr×n. Two vectors v1 are v2
are parallel if v1 and v2 differ by a constant offset.

4.4.1 Original algorithm
The algorithm (see Figure 4.7) consists of two phases: (i) parallel forward phase, and (ii)
fix up phase. In the forward phase, the t stages are divided into p segments, where p is the
number of processors, each segment having dn/pe stages (except possibly the last stage).
The stages in the ith segment are from li to ri. The initial solution vector of the entire
problem is the initial vector of the first segment and it is known. The initial solution vectors
of each of the other segments are initialized to non-zero random values. A sequential
Viterbi algorithm is run in all the segments in parallel. A stage i is said to converge if the
computed solution vector s[i] is parallel to the actual solution vector si. A segment i is said
to converge if rank(Ali � Ali+1 � · · · � Aj) is 1 for j ∈ [li, ri − 1].

In the fix up phase, as in the forward phase a sequential Viterbi algorithm is executed
for all segments simultaneously. The solution vectors computed in different segments (ex-
cept the first) might be wrong. But, eventually they will become parallel to the actual
solution vectors if rank convergence occurs. If rank convergence occurs at every segment
then the solution vectors at every stage will be parallel to the actual solution vectors. On
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Figure 4.7: The pictorial representation of
the rank convergence appproach. Color
coding: white: correct solution, dark red:
incorrect solution, light blue: parallel to
correct.

VITERBI-RANK(s[0..t− 1], A,B)

1. p← #processors

2. 〈 Forward phase 〉
3. parallel for i← 1 to p do
4. li ← t(i− 1)/p; ri ← ti/p
5. if i > 1 then s[li]← random vector
6. for j ← li to ri − 1 do
7. s[j + 1]← VITERBI(s[j], A,B[.., yj+1])
8. 〈 Fix up phase 〉
9. converged← false

10. while !converged do
11. parallel for i← 2 to p do
12. convi ← false; s← s[li]
13. for j ← li to ri − 1 do
14. s← VITERBI(s,A,B[.., yj+1])
15. if s is parallel to s[j + 1] then
16. convi ← true; break
17. s[j + 1]← s
18. converged← ∧i convi

Figure 4.8: Processor-aware parallel
Viterbi algorithm using rank convergence
as given in Maleki et al. paper [Maleki
et al., 2014]. The algorithm is not cache-
efficient.

the other hand, if the rank convergence does not happen at every segment, the fix up
phase is run again and again until rank convergence occurs at some point. In the worst
case, which rarely happens in practice, if rank convergence does not occur, then the fix up
phase will be executed a total of p − 1 times because in each run of a fix up phase, all the
stages in exactly one segment is fixed up.

Please refer to Maleki et al.’s paper [Maleki et al., 2014] for a proof of why the method
works.

4.4.2 Improved algorithm
The algorithm described above is processor-aware and can be made processor-oblivious by
setting p to some constant, 10 or 100. The problem with setting a particular value to p is
as follows. If p is set to a small value, the segment size will be large and if the rank of the
matrix A1�A2�· · ·�At is small, the algorithm does not exploit the full parallelism inherent
in the problem. On the other hand, if p is large, there will be many segments of small size
and if rank convergence does not happen the total work of the algorithm increases to at
least pn2t, where p is large.

We can improve the algorithm by making it processor-oblivious and also solving the
problem mentioned above, using the following technique as shown in Figure 4.9. Instead of
dividing the t stages into p segments, we divide the stages into t/2i segments each of size 2i
where i ∈ [log c, log t] and c is a small fixed value, say 256. In the forward phase, all solution
vectors at positions multiples of c, except the 0th solution vector are initialized to non-zero
random values and serial Viterbi algorithm is run in each segment of size c + 1. In the fix
up phase, in the first iteration, from the first solution vector of every segment of size 2c the
first solution vector of its next segment is computed through the serial Viterbi algorithm
running for 2c + 1 timesteps. Generalizing, when the segment size is 2i, from the first
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Figure 4.9: The pictorial representation of
the improved rank convergence algorithm.
Color coding: white: correct solution, dark
red: incorrect solution, light blue: parallel
to correct.

VITERBI-RANK-IMPROVED(s[0..t− 1], A,B)

1. n← 2k; t← 2k+k′ ; c← 28

2. 〈 Forward phase 〉
3. size← c; q ← t/size
4. parallel for i← 0 to q − 1 do
5. li ← i× size, ri ← li + size− 1
6. if i > 0 then s[li]← random vector
7. for j ← li to ri do
8. s[j + 1]← VITERBI(s[j], A,B[.., yj+1])
9. 〈 Fixup phase 〉

10. u[0..t− 1]← s[0..t− 1]; converged← false
11. for (j ← log c to (log t)− 1) and !converged do
12. size← 2j ; q ← t/(2× size)
13. parallel for i← 0 to q − 1 do
14. li ← (2i+ 1)× size
15. ri ← li + size− 1; convi ← false
16. for j ← li to ri do
17. u[j + 1]← VITERBI(u[j], A,B[.., yj+1])
18. if u[j + 1] is parallel to s[j + 1] then
19. convi ← true; break
20. s[j + 1]← u[j + 1]
21. for i← 0 to q − 1 do
22. converged← converged ∧ convi

23. if converged = true then break

Figure 4.10: Processor-oblivious parallel
Viterbi algorithm using rank convergence.
The algorithm is not cache-efficient.

solution vector of every segment the first solution vector of its next segment is computed
through the standard serial Viterbi algorithm running for a total of 2i + 1 timesteps.

The algorithm can be optimized to cut the total computations by a factor of two through
a technique as follows. Assume that the numbering of the different segments starts from 0.
We say that a set of stages s[i . . . j] is fixed when a serial Viterbi algorithm is run with s[i]
as the initial vector and the results have been propagated till s[j]. In the fix up phase, to
fix up an ith segment of size 2j+1, it is enough to fix the (2i+ 1)th segment of size 2j because
the (2i)th segment has already been fixed. The improved parallel Viterbi algorithm along
with the optimization described above is given in Figure 4.10.

Complexity analysis. For F ∈ {O, I}, let T F1 (n, t), QF
1 (n, t), T F∞(n, t), and SF (t) denote the

work, serial cache complexity, span, and the steps for convergence, respectively, of the F
algorithm. The symbolO represents the original rank convergence algorithm and I denotes
the modified algorithm. In the O algorithm, let there are f(t) segments. Let the number of
times the fix up phase is executed in O and I be λO and λI , respectively. Then λO ∈ [1, f(t)]
and λI ∈ [1, log (t/c)].
Work. TO1 (n, t) = Θ (n2t · λO). In the worst case, TO1 (n, t) is Θ (n2t · f(t)). On the other hand,
T I1 (n, t) = Θ (n2t · λI). In the worst case, T I∞(n, t) is Θ (n2t · log t).
Serial cache complexity. It is easy to see that as there is no temporal locality, QO

1 (n, t) =
O
(
TO1 (n, t)/B

)
and QI

1 (n, t) = O
(
T I1 (n, t)/B

)
, when n2 does not fit in cache. The analysis is

similar to that of Section 4.2.
Span. TO∞(n, t) = Θ (n(t/f(t)) · λO), as the span of executing all the stages is Θ (t/f(t)) and
the span of executing each stage is Θ (n). In the worst case, TO∞(n, t) is Θ (nt). T I∞(n, t) is
computed as follows. When the fix up phase is executed for the ith iteration, the number of
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stages in each segment is 2i. This implies the span of executing all stages for λI iterations
in the fix up phase is Θ

(∑(log c)+λI

i=log c 2i
)

= Θ
(
2λI

)
. Then, T I∞(n, t) = Θ

(
n2λI

)
. In the worst

case, T I∞(n, t) is Θ (nt).
Steps for convergence. Let the rank of the matrix A1 � A2 � · · · � At be k. For the original
algorithm, (SO(t) − 1) × (t/f(t)) < k ≤ SO(t) × (t/f(t)), which implies SO(t) = dkf(t)/te.
In the worst case, when f(t) = t and k ≥ t, SO(t) = t. Similarly, for the improved al-
gorithm, 2SI(t)−1+log c < k ≤ 2SI(t)+log c, which implies SI(t) = dk/ce. In the worst case,
SI(t) = dlog(t/c)e.
Conditions for no rank convergence. If we do not want rank convergence to happen for a
particular problem instance, then we want rank (A1 � A2 � · · · � At) > 1. For simplicity,
assume A1 = A2 = · · · = At. This means, we want rank((A1)t) > 1. If the two properties of
rank(A1) > 1 and rank((A1)2) = rank(A1) are satisfied, then we can recursively apply these
properties to show that rank((A1)t) > 1. It is easy to see that one solution to rank((A1)2) =
rank(A1) is when (A1)2 = A1, which implies A1 = In, where In is the identity matrix of
size n × n. When we say A1, it really means A1 = A � B[k], where A is the transition
probability matrix and B[k] is a vector in the emission matrix B for some k ∈ [1,m]. If we
want A� B[k] = In, we can have A = In and B = Jn,m, where Jn,m is the unit matrix of size
n × m. Also, rank(In) = n > 1 for n > 1. Therefore, when A = In and B = Jn,m, the rank
convergence does not happen.

4.5 Cache-efficient Viterbi algorithm
In this section, we present a cache-efficient cache-oblivious processor-oblivious recursive
divide-and-conquer based parallel Viterbi algorithm derived by combining ideas from the
cache-efficient multi-instance Viterbi algorithm (see Section 4.3) and the improved parallel
Viterbi algorithm (see Section 4.4) based on rank convergence. The beautiful idea that the
different segments of a single-instance Viterbi problem can be considered as the multiple
instances of the same problem was given by Vivek Pradhan.

The multi-instance Viterbi algorithm works on the ith solution vectors, s[i], of different
instances of the problem and generates the (i+1)th solution vectors, s[i+1], of the instances
cache-efficiently. The improved parallel Viterbi algorithm (see Figure 4.9) that uses rank
convergence divides the stages into t/2i segments each of size 2i in the ith iteration. Let the
base case segment consist of c stages. As each base case segment is run independently, we
can assume that these segments are different instances of the same problem. Divide the t
stages into t/c base case segments each of size c. The first solution vectors of all except the
first segment are initialized to non-zero random values.

In the forward phase, a multi-instance Viterbi algorithm is run on the first solution
vectors of t/c segments to generate the remaining solution vectors. In the fix up phase,
in the log c iteration, the first solution vectors of each of the t/c − 1 segments (excluding
the first segment) is found by applying the multi-instance Viterbi algorithm on the last
solution vectors of the t/c − 1 segments (excluding the last segment). In general, in the
ith iteration, where i ∈ [log c, log t], each segment will be of size 2i and there will be t/2i
segments. In every iteration, a multi-instance Viterbi algorithm is used to find the initial
solution vectors of all segments (except the first) from the final solution vectors of their
previous segments. Then, a multi-instance Viterbi algorithm is run on the initial solution
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VITERBI-CACHE-EFFICIENT(s[0..t− 1], A,B)

1. n← 2k; t← 2k+k′ ; c← 28

2. 〈 Forward phase 〉
3. size← c; q ← t/size
4. parallel for i← 0 to q − 1 do
5. li ← i× size, ri ← li + size
6. if i > 0 then s[li]← random vector
7. VITERBI-MULTI-INSTANCE-D&C(s[l0..r0], s[l1..r1], .., s[lq-1..rq-1], A,B, c+ 1)
8. 〈 Fixup phase 〉
9. u[0..t− 1]← s[0..t− 1]; converged← false

10. for (j ← log c to (log t)− 1) and !converged do
11. size← 2j , q ← t/(2× size)
12. parallel for i← 0 to q − 1 do
13. li ← (2i+ 1)× size; ri ← li + size; convi ← false
14. VITERBI-MULTI-INSTANCE-D&C(u[l0..r0], u[l1..r1], .., u[lq-1..rq-1], A,B, size+ 1)
15. parallel for i← 0 to q − 1 do
16. ri ← 2(i+ 1)× size− 1
17. if u[ri] is parallel to s[ri] then convi ← true
18. else s[ri]← u[ri]
19. for i← 0 to q − 1 do
20. converged← converged ∧ convi

Figure 4.11: An efficient cache- and processor-oblivious parallel Viterbi algorithm using
rank convergence. VITERBI-MULTI-INSTANCE-D&C is the algorithm presented in Section
4.3.

vectors of the t/2i segments to generate the last solution vectors of those segments. The fix
up phase is similar to that of Section 4.4. The fix up phase is executed for λ (∈ [1, log(t/c)]
number of iterations depending on whether rank convergence happens or not.

Complexity analysis. Let T1(n, t), Q1(n, t), and T∞(n, t) be the work, serial cache complex-
ity, and span of the cache-efficient Viterbi algorithm, respectively. Let λ ∈ [1, log(t/c)] be
the number of iterations the fix up phase is executed.

T1(n, t) = Θ (n2t · λ). In the worst case, T1(n, t) = Θ (n2t · log t). T∞(n, t) = Θ
(
n2λ

)
. The

analysis for computing the span is similar as in Section 4.4. The serial cache complexity
Q1(n, t) is computed as follows.

Q1(n, t) = O
(log c)+λ∑

i=log c

(
QA

(
n,

t

2i
)
· 2i
)

= O
(log c)+λ∑

i=log c

(
n2t

B
√
M

+ n2t

M
+ n(n2i + t)

B
+ 2i

)
= O

(
n2tλ

B
√
M

+ n2tλ

M
+ n(n2λ + tλ)

B
+ 2λ

)

If n2, t = Ω
(√

M
)

and convergence happens after λ = O (1) iterations of the fix up phase,
Q1(n, t) reduces to O

(
n2tλ
B
√
M

+ n2tλ
M

)
which further reduces to O

(
n2tλ
B
√
M

)
when the cache is tall

(i.e., M = Ω (B2)).
On the other hand, the worst case serial cache complexity of the iterative Viterbi algo-

rithm is O (n2t/B).
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Theorem 7 (Complexity analysis of the Viterbi algorithm). The cache-efficient
single-instance parallel Viterbi algorithm that uses rank convergence has the work
of T1(n, t) = Θ (n2t · λ), span of T∞(n, t) = Θ

(
n2λ

)
and a serial cache complexity of

Q1(n, t, B,M) = O
(
n2tλ

B
√
M

+ n2tλ

M
+ n(n2λ + tλ)

B
+ 2λ

)
(4.2)

where λ ∈ [1, log(t/c)] is the steps for rank convergence and c is a power of 2 and
constant, such as, 256.

New cache-efficient Viterbi algorithms
The intuition behind the cache-efficient algorithm described above leads to an important
observation. Any variant of the Viterbi algorithm that exploits parallelism across stages
by dividing the t stages into p segments and running them in parallel can be made cache-
efficient by considering the segments as different instances of the same problem and exe-
cuting the multi-instance Viterbi algorithm.

4.6 Lower bound
In this section, we prove the lower bound on the number of cache misses incurred by any
algorithm to compute a general Viterbi recurrence that satisfies Property 4.

Property 4 (One-way sweep). An algorithm for a DP table C is said to satisfy the one-way
sweep property if the following holds: ∀ cells x, y ∈ C, if x depends on y, then y is fully
updated before x reads from y.

An algorithm is cache-efficient when it has both spatial and temporal locality, among
which temporal locality is harder to achieve. To exploit temporal locality, there must be
asymptotic difference between work (serial running time) and space complexity of the al-
gorithm. For the Viterbi algorithm, work is Θ (n2t) and space complexity is Ω (n2) where
the asymptotic difference comes from the time dimension. This means, if there is temporal
locality, it should come from the time dimension only. In other words, when we load a few
DP table cells to cache, we must be able to perform ω (1) number of updates to those cells
before evicting them from cache, then we can get temporal locality.

Assume that all the cells at timestep (or stage) i are fully updated. Let all cells except
one at timestep i+ 1 be fully updated. Denote the only cell that is not updated at stage i+ 1
by x. None of the cells at timestep i + 2 can be fully updated because of x, which implies
none of the cells at timestep i+j for j ≥ 3 can be computed as per Property 4. As we cannot
fully update a set of cells for non-constant number of timesteps without evicting the cells
from the cache, we cannot make use of the time dimension to get temporal locality. Reading
the entire state-transition matrix A incurs Ω (n2/B) cache misses using any algorithm. For
Θ (t) time steps, the cache complexity will be Ω (n2t/B).

Theorem 8 (Lower bound for the Viterbi algorithm). The number of cache misses
incurred by any algorithm to solve the Viterbi recurrence that satisfies Property 4
i.e., the one-way sweep property is Ω (n2t/B).
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The cache-efficient algorithm described in Section 4.5 has a better cache complexity
than the lower bound presented in this section. This is because the algorithm does not
satisfy the one-way sweep property and hence the lower bound does not apply to the cache-
efficient algorithm.

4.7 Experimental results
In this section, we briefly describe our implementation details and performance results.
The multi-instance Viterbi algorithm was implemented by Yunpeng Xiao and Jesmin Ja-
han Tithi. The single-instance Viterbi algorithm was implemented by Jesmin Jahan Tithi.

We implemented all algorithms presented in the paper in C++ with Intel Cilk Plus [Int,
] extension and compiled them using Intel C++ Compiler v13.0. We used PAPI 5.2 [PAP, ]
to count the cache misses and likwid [Treibig et al., 2010] to measure energy and power
consumption of the program. We used a hybrid recursive divide-and-conquer algorithm
where the recursive implementation switched to an iterative kernel when the problem
size became smaller than a predefined base case size (e.g., 64 × 64) to amortize the over-
head of recursion. All programs were compiled with -03 -parallel -AVX -ansi-alias

-opt-subscript-in-range optimization parameters and were auto vectorized by the com-
piler.
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Figure 4.12: Running time and L3 miss of our cache-efficient multi-instance Viterbi algo-
rithm along with the multi-instance iterative Viterbi algorithm.

We used a dual socket 16-core (= 2× 8-cores) 2 GHz Intel Sandy Bridge machine to run
all experiments presented in the paper. Each core of this machine was connected to a 32
KB private L1 cache and a 256 KB private L2 cache. All the cores in a socket shared a 20
MB L3 cache, and the machine had 32 GB RAM shared by all cores. The matrices A,B, and
I were initialized to random probabilities. We used log-probabilities in all implementations
and hence used addition instead of multiplication in the Viterbi recurrence. All matrices
were stored in column-major order. We performed two sets of experiments to compare our
cache-efficient algorithms with the iterative and the fastest known Viterbi (Maleki et al.’s)
algorithms. They are as follows.
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4.7.1 Multi-instance Viterbi algorithm
We compared our cache-efficient multi-instance recursive Viterbi algorithm with the multi-
instance iterative Viterbi algorithm. Both algorithms were optimized and parallelized. To
construct matrix Wn×q (we chose q to be n in this case), instead of copying all the relevant
columns of B, only the pointers to the respective columns were used. Wherever possible,
pointer swapping was used to interchange previous solution vector (or matrix) and current
solution vector (or matrix).

The running time and the L3 cache misses for the two algorithms are plotted in Figure
4.12. The number of stages n, which is also the number of instances was varied from 32
to 4096. Note that in the cache-efficient multi-instance Viterbi algorithm, the number of
stages does not need to be the same as the number of instances. The variable m was fixed
to 32 and the number of timesteps t was also kept the same as n (hence overall complexity
is O(n4)). The recursive algorithm ran slightly faster than the iterative algorithm in most
cases when the number of instances increase. When n was 4096, our recursive algorithm
ran around 2.26 times faster than the iterative algorithm.

For a big difference between the performance of the multi-instance recursive and multi-
instance iterative algorithms, the algorithms should be run for large n and large t. But, if
n and t are too large the time taken to run experiments also increases by several orders of
magnitude as the total work of the multi-instance algorithm is Θ (n3t), when the number
of instances is n. We believe that for applications that can use multiple instance Viterbi
algorithm and need to compute on large data (e.g., multiple sequence alignment problems),
using cache-efficient multi-instance Viterbi algorithm will be very beneficial.

4.7.2 Single-instance Viterbi algorithm
We compared our cache-efficient parallel Viterbi algorithm with Maleki et al.’s parallel
Viterbi algorithm. Both implementations were optimized and parallelized and the reported
statistics are average of 4 independent runs. In all our experiments, the number of proces-
sors p was set to 16. The plots of Figure 4.13 shows the graphs of the running time and L3
cache misses for the two algorithms for n = 4096.

When n = 4096, the number of timesteps t was varied from 212 to 218 and m was set
to 32. Our algorithm ran faster than Maleki et al.’s original rank convergence algorithm
throughout, and for t = 218 our algorithm ran approximately 33% faster. Our algorithm’s
L3 cache misses were also lower by a significant amount, and for t = 218, Maleki et al.’s
algorithm incurred 6 times more cache misses than ours. The impact shows up in DRAM
energy consumption and bandwidth utilization.

Energy consumption. We also ran experiments to analyze the energy consumption (tak-
ing average over three runs) of our cache-efficient recursive and Maleki et. al.’s algorithm.
Our algorithm consumed relatively less DRAM energy compared to the other algorithm.

We used the likwid-perfctr tool to measure CPU, Power Plane 0 (PP0), DRAM energy,
and DRAM power consumption during the execution of the programs. The energy mea-
surements were end-to-end, i.e., included all costs during the entire program execution.
Note that the DRAM energy consumption is somewhat related to the L3 cache miss of a
program as each L3 cache miss results in a DRAM access. Similarly, since CPU energy
gives the energy consumed by the entire package (all cores, on chip caches, registers and
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Figure 4.13: Running time, L3 miss and energy/power consumption of our cache-efficient
Viterbi algorithm along with the existing algorithms.

their interconnections), it is related to a program’s running time. PP0 is basically a sub-
set of CPU energy since it captures energy consumed by only the cores and their private
caches.

For n = 2048, the timesteps was increased from 2048 to 16384 keeping m = 32. Figure
4.13 shows that the DRAM energy as well as power consumption of our algorithm was
significantly less because of the reduced L3 cache misses. When t = 16384, Maleki et al.’s
algorithm consumed 60% more DRAM energy and 30% more DRAM power than ours.

4.8 Conclusion and open problems
This chapter presented the first provably cache-efficient cache- and processor-oblivious par-
allel Viterbi algorithm solving the two decade old open problem. The algorithm combines
the ideas of our cache-efficient multi-instance Viterbi algorithm with Maleki et al.’s paral-
lel Viterbi algorithm. The significance of our algorithm lies mainly in its improved cache
complexity (exploiting temporal locality), and cache- and processor-obliviousness.

Some open problems are:
O [Cache-efficient cache-oblivious algorithms.] Is it possible to design other cache-efficient

cache-oblivious parallel Viterbi algorithms?
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O [Lower bound.] What is the tight lower bound for serial cache complexity for the
Viterbi algorithm?
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Chapter 5

Semi-Automatic Discovery of Efficient
Divide-&-Conquer Tiled DP
Algorithms

Recursive divide-and-conquer is a very powerful design technique to develop efficient cache-
oblivious algorithms. But what if the computer architectures (e.g.: GPUs) do not imple-
ment automatic page replacement scheme, or if the computer architectures do not support
recursion, or if the programming languages do not support recursion? In such cases, cache-
aware tiling might be the only way to write efficient programs. Hence, it is important to
design a generic framework to design efficient tiled algorithms.

In this chapter, we present a generic framework for designing high-performing efficient
cache-aware fractiled1 algorithms for a class of fractal dynamic programming (DP) prob-
lems. These algorithms are based on recursive r-way divide and conquer, where r (≥ 2)
varies based on the current depth of the recursion. In addition to providing strong the-
oretical guarantees for the parallel running time of these algorithms, we show that they
perform asymptotically optimal number of data transfers between every two consecutive
levels of the memory hierarchy. If the computer architectures support recursion and im-
plements automatic page replacement scheme, then the algorithms can be oblivious of the
sizes of the memories in those machines. On the other hand, if the computer architectures
do not implement automatic page replacement scheme or if recursion is not supported, then
the algorithms have to be aware of the memory sizes. It is possible that the algorithms is
oblivious to a few levels of caches where automatic page replacement is implemented and
aware of the memory sizes of those levels where automatic page replacement is not imple-
mented.

We give the first general framework for designing provably efficient algorithms for solv-
ing a whole class of DP problems on GPUs. To the best of our knowledge, we present the
first GPU algorithms for solving DP problems I/O-optimally when the DP table does not fit
into the RAM. The major advantage of having a generic framework is that it can potentially
lead to automation of algorithm design for an entire class of problems.

We have implemented GPU algorithms derived using our framework for four DP/DP-
like problems: Floyd-Warshall’s APSP, parenthesis problem, gap problem, and Gaussian
elimination without pivoting. Our GPU implementations run significantly faster than all

1fractile – recursively TILEd algorithms for FRACtile-DP problems
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internal-memory multicore CPU implementations as well as all existing iterative tiled
GPU implementations. Also, our I/O-optimal external-memory implementations are compute-
bound for state-of-the-art GPUs, and as a result can effectively harness the superior com-
puting power of those GPUs to achieve significantly faster running times.

5.1 Introduction
Computer architecture is always changing. Designing algorithms for a specific architec-
ture requires expertise in various domains such as algorithms, data structures, parallel
programming, computer design, compiler design, and so on. While efficient algorithms
for important problems are being designed and implemented, new machine architectures
would have hit the market and programmers have to redesign and reimplement the key
algorithms. Furthermore, new problems are being encountered everyday. This necessi-
tates the development of generic frameworks to design fast algorithms for new machine
architectures.

In the initial years of the computing era, CPUs were used as processing elements for
general purpose programming tasks. Other processing elements such as graphics process-
ing units (GPUs) were used as coprocessors for parallel graphics computations. But, over
time these coprocessors are being used more for general purpose parallel computing tasks.
Typically, CPUs are used for complicated control logic and GPUs are used for highly data-
parallel and compute-intensive tasks.

The high performance computing (HPC) community is quickly moving towards hetero-
geneous computing, where each compute node consists of both multicore CPUs and many-
core GPUs connected through Peripheral Component Interconnect (PCI) express bus. The
hardware accelerators such as GPUs are being used [Cheng et al., 2014] in seismic pro-
cessing, biochemistry simulations, weather and climate modeling, signal processing, com-
putational finance, computer-aided engineering, computational fluid dynamics, and data
analysis. To aid in writing applications to use this heterogeneous architecture (CPUs and
GPUs) efficiently, simpler programming models and application programming interfaces
(APIs) are developed. Currently, the effective use of such heterogeneous systems is limited
by the increased complexity of efficient algorithm design.

Performance of a parallel algorithm can be measured using two major parameters: I/O
complexity and parallelism as described in Chapter 1. I/O complexity, used to measure
memory locality, represents the total number of I/O / memory / data transfers of an al-
gorithm. I/O complexity can be measured between external memory and CPU RAM, or
two adjacent levels of memories in a CPU, or CPU RAM and GPU global memory, or two
adjacent memory levels in a GPU. Often, better I/O complexity implies lower execution
time.

We use the ideal-cache model [Frigo et al., 1999] to compute serial I/O complexity be-
tween consecutive memory levels inside a CPU, denoted by Q1(n), where n is the problem
parameter. We use Least Recently Used (LRU) page replacement scheme for data transfer
between external memory and CPU RAM, which is 2-competitive to optimal page replace-
ment scheme. Also, between CPU RAM and GPU global memory and between memory
levels in GPU, there is no automatic page replacement scheme provided by the hardware
or the runtime system and hence, we explicitly copy the submatrices of the input DP table.

To measure parallelism, we use dynamic multithreading model [Cormen et al., 2009].
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Assuming a multithreaded program is modeled as a directed acyclic graph, the work T1(n)
and span T∞(n) of the parallel program can be defined as the runtime of the program on
one and an unbounded number of processor(s), respectively. Then, the parallelism is theo-
retically computed as T1(n)÷ T∞(n), which is defined as the maximum speedup achievable
running the program an any parallel machine.

Algorithm design in the ever-changing world of computer architecture must also take
portability into consideration. Portability is important because the underlying parallel
machine architecture keeps changing continually. If the algorithms are not portable, the
programmers have to keep redesigning and reimplementing their algorithms with the ar-
rival of every new machine architecture. Even if the algorithms are not completely portable
at least they must be easier to port to different architectures. The most common way to
design portable algorithms is to design resource-oblivious, where resources include caches,
processors, etc.

In this chapter, we present a generic framework to develop high-performing (having
excellent I/O complexity and good parallelism) and easily portable algorithms to be run on
GPU systems for a wide class of dynamic programming problems using r-way divide-and-
conquer.

Tiled iterative GPU algorithms. GPUs are one of the major architectures that do not
implement automatic page replace schemes. Hence, we concentrate most of our discussion
towards designing tiled algorithms for GPU systems. However, our approach can be used
for multicore systems and manycore architectures such as Intel MIC.

Most existing GPU implementations are based on tiling or blocking iterative algorithms
for global and shared memories of a GPU to exploit memory locality. There are several
limitations with this approach:

O [Generic approach is not developed.] No generic method exists for designing tiled-
iterative algorithms for dynamic programming problems.

O [Extremely complicated.] Existing standard tiling techniques are typically used for
tiling 1 or at most 2 levels of memories. When the number of memory levels to be
tiled is greater than 2, also called multi-level or hierarchical tiling, the process of
tiling becomes extremely complicated for algorithm design, complexity analysis, and
program implementation.
Existing work on tiled iterative algorithms do not analyze theoretical performance
guarantees for the I/O complexity or the parallelism involved.

O [External-memory implementations not developed.] Almost all existing implementa-
tions assume that the entire problem fits in the global memory of a GPU and do not
work for large data which fits in RAM / external memory.

Tiled recursive GPU algorithms. GPU implementations of a few DP problems are based
on tiling techniques derived from recursive divide-and-conquer algorithms that use only
matrix-matrix multiplications on a semiring, also called MM-like kernels. For example,
R-Kleene’s algorithm [Sibeyn, 2004, D’Alberto and Nicolau, 2007, Buluc et al., 2010] to
solve the Floyd-Warshall’s APSP problem can be both memory efficient and highly parallel
because of MM-like kernels. However, there are limitations of this recursive approach.

O The approach typically uses closure property and it is not clear how to generalize
this approach of transforming most recursive functions to MM-like kernels to a wide
variety of DP problems.
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O The R-Kleene algorithm works for only closed semirings where addition operation
is idempotent [Buluc et al., 2010, Tiskin, 2004] e.g.: tropical and Boolean semirings.
Due to this constraint, the approach cannot be used if we have arbitrary function
(see Figure 3 of [Chowdhury and Ramachandran, 2010]) in the innermost loop of the
iterative algorithm as in the case of Gaussian elimination without pivoting (or LU
decomposition) and other Floyd-Warshall-type problems.

The Autogen-Fractile framework. In this chapter, we present the Autogen-Fractile
framework that uses the r-way recursive divide-and-conquer method to design efficient
tiled algorithms. The r-way divide-and-conquer method, introduced in [Chowdhury and
Ramachandran, 2008], where r ∈ [2, n], is a generalization of the 2-way divide-and-conquer.
In this method, a d-dimensional hypercubic DP table of size nd for a given DP problem
is divided into rd hypercubic orthants each of size (n/r)d. Different recursive functions
are defined as per the read-write DP dependencies among the hypercubic orthants. The
functions are then invoked recursively to compute the entire DP table.

Disk

RAM

Global memory

Shared memory

…

Host

GPU

Figure 5.1: A simple representation of the CPU-GPU memory hierarchy.

The r-way divide-and-conquer method can overcome many limitations of the tiled iter-
ative method.

O [Generic framework.] We develop a generic framework to design tiled algorithms for
a wide class of dynamic programs based on recursive divide-and-conquer.

O [Strong theoretical bounds.] It is possible to give strong theoretical performance
bounds for both serial I/O complexity and parallelism for r-way divide-and-conquer
algorithms (see Section 5.4). The r-way algorithms, where r is set appropriately at
each recursion level based on the memory sizes, often have optimal serial I/O com-
plexity.

O [Easily extensible to any number of memory levels.] The r-way divide-and-conquer
algorithms are so generic that they work for any number of levels of memories. For
example, Figure 5.1 shows a simple version of the memory hierarchy of a GPU sys-
tem abstracting many intricate details. We can extend this system to include multiple
GPUs, multiple shared memories per GPU global memory, or multiple levels of mem-
ories inside both CPU and GPU. In all these cases, the r-way algorithms can be easily
ported to the GPU systems.
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The r-way divide-and-conquer method can also be used to overcome the limitations of
the recursive approach that uses the closure property and MM-like kernels [Tithi et al.,
2015].

O Our method can be used for a wide variety of DP problems.
O For Floyd-Warshall-type problems, using (n2 + n) extra space the r-way algorithms

can be made to work for arbitrary functions instead of only closed semirings where
the addition operator is idempotent [Chowdhury and Ramachandran, 2010].

Designing r-way divide-and-conquer algorithms for different dynamic programs is com-
plicated. However, this method is a generic and powerful approach to design efficient and
easily portable algorithms for heterogeneous systems with deep memory hierarchy.

Our contributions. The major contributions of this chapter are:
1. [Algorithmic.] We present a generic framework called Autogen-Fractile to develop

tiled algorithms using r-way recursive divide-and-conquer approach for a wide class
of DP problems. We present new r-way divide-and-conquer algorithms for Gaussian
elimination without pivoting and the gap problems.

2. [Experimental.] We implement GPU algorithms (derived from Autogen-Fractile frame-
work) for both internal and external memory and achieve an order of magnitude
speedup compared with the existing CPU and GPU tiled implementations.

Related work. Recursive cache-oblivious algorithms for DP and other matrix problems
exist: Floyd-Warshall’s-APSP-type problems [Sibeyn, 2004, D’Alberto and Nicolau, 2007,
Ullman and Yannakakis, 1990,Ullman and Yannakakis, 1991,Park et al., 2004], Gaussian
elimination without pivoting [Blumofe et al., 1996a], Cholesky, LDLT, LU with pivoting,
and QR [Gustavson, 1997, Elmroth and Gustavson, 2000, Elmroth et al., 2004], paren-
thesis problem [Cherng and Ladner, 2005, Chowdhury and Ramachandran, 2008], longest
common subsequence [Chowdhury and Ramachandran, 2006], sequence alignment with
gap penalty [Chowdhury, 2007], and protein folding [Tithi et al., 2015]. An algorithm for a
paradigm of Floyd-Warshall-type algorithms (including Floyd-Warshall’s APSP, transitive
closure, LU decomposition, Gaussian elimination without pivoting, parenthesis problem,
etc) is presented in [Chowdhury and Ramachandran, 2007, Chowdhury and Ramachan-
dran, 2010].

Several GPU implementations have been developed to solve data-intensive matrix prob-
lems: Floyd-Warshall’s APSP [Diament and Ferencz, 1999,Venkataraman et al., 2003,Har-
ish and Narayanan, 2007, Katz and Kider Jr, 2008, Matsumoto et al., 2011, Buluc et al.,
2010,Lund and Smith, 2010,Solomonik et al., 2013,Djidjev et al., 2014], parenthesis prob-
lem family (includes chain matrix multiplication, CYK algorithm, optimal polygon trian-
gulation, RNA folding, etc) [Steffen et al., 2009, Rizk and Lavenier, 2009, Solomon and
Thulasiraman, 2010, Nishida et al., 2011, Wu et al., 2012, Nishida et al., 2012], sequence
alignment [Liu et al., 2006,Liu et al., 2007,Manavski and Valle, 2008,Striemer and Akoglu,
2009,Xiao et al., 2009].

It is important to note that the existing GPU implementations are based on tiled-
iterative or closure property and therefore suffer from several limitations as discussed
before. Our r-way divide-and-conquer method overcomes these limitations.

Organization of the chapter. In Section 5.2, we give the importance, types, and mean-
ing of r-way recursive divide-and-conquer algorithms. In Section 5.3 we present several
approaches for the Autogen-Fractile framework to design tiled algorithms for DP prob-
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lems using r-way divide-and-conquer. The complexities of the r-way divide-and-conquer
algorithms are presented in Section 5.4. In Section 5.5, we give empirical results compar-
ing our implementations with the existing algorithms.

5.2 r-way R-DP algorithms
In this section, we define a few important terms, give the importance, types, and meaning
of r-way divide-and-conquer algorithms.

We define a few terms such as I-DP, 2-wayR-DP, r-wayR-DP, and T R-DP to represent
different algorithms. We will use these terms throughout the chapter.

Definition 24 (I-DP / 2-wayR-DP / r-wayR-DP / T R-DP). Let P be a given DP problem
specified through a DP recurrence. An iterative (or loop-based) algorithm for P is called I-
DP. A standard recursive divide-and-conquer algorithm for P that divides a d-dimensional
DP of size n× · · · × n into n

2 × · · · ×
n
2 orthants and then processes these orthants recursively

is called a 2-way R-DP. A recursive divide-and-conquer algorithm for P that divides a d-
dimensional DP of size n × · · · × n into rd submatrices each of size n

r
× · · · × n

r
and then

processes these submatrices recursively is called an r-way R-DP. A cache-aware parallel
tiled algorithm (if it exists) for P, derived from r-way R-DP is called a T R-DP.

In this chapter, we present a framework called Autogen-Fractile that can be used to
derive T R-DP algorithms.

Definition 25 (Autogen-Fractile). Let P be a given DP problem specified through a DP
recurrence. The framework that can be used to semi-automatically discover a T R-DP given
any implementation for P is called Autogen-Fractile.

The input to Autogen-Fractile is a DP recurrence or an I-DP. As the simplest imple-
mentation of a DP recurrence is an iterative algorithm or I-DP, in this chapter we assume
I-DPs as inputs to Autogen-Fractile.

Autogen-FractileI-DP T R-DP

5.2.1 Importance of r-way R-DPs
Before delving into the process of derivation of r-way R-DPs, let’s understand the meaning
and importance of r-way R-DPs. An r-way R-DP is a generalization of a standard 2-way
R-DP. Though designing a 2-way R-DP is now in the realm of science for a large class
of dynamic programs, designing an r-way R-DP is still an art. Both 2-way and r-way R-
DPs have exactly the same recursive functions. In the case of an r-way R-DP, we divide
a d-dimensional nd-sized hypercubic DP table into rd hypercubic submatrices each of size
(n/r)d, analyze the dependencies between the submatrices, and recursively define functions
based on such dependencies.

The major reasons to use r-way R-DPs over 2-way R-DPs are:
O [More parallelism.] r-way R-DPs typically have more parallelism than their 2-way

counterparts (see Figure 3 in [Tang et al., 2014] for an example).
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O [Computer architectures that do not implement automatic page replacement or do not
support recursion.] r-way R-DPs can be used to design highly efficient cache-aware
algorithms for computer architectures with deep memory hierarchy that do not im-
plement automatic page replacement (e.g.: GPUs) or do not support recursion.

5.2.2 Types of r-way R-DPs
In the r-way R-DPs, the term r can be set to any of the three values as given below:

O r can be a constant.
O r can be a function of n.
O r can be the largest value tilesize[d] at every recursion level d based on a particular

cache or memory size such that the tile exactly fits in the memory.
Typically, r is set to tilesize[d]. If there are h levels of memories or caches, then there

are h levels of recursion and hence there are h tile sizes tilesize[1 . . . h]. When a subproblem
fits into a memory of the smallest size, we execute an iterative kernel.

If r is a constant or tilesize[d], then typically an r-way R-DP will have optimal serial
I/O complexity (see Theorem 9). On the other hand, if r is a function of n and r is super-
constant, then the r-way R-DP will have non-optimal serial I/O complexity. If r is a con-
stant or a function of n, then the R-DP is cache-oblivious. If r is set to tilesize[d], then
the R-DP is cache-aware. See Table 5.1 for a summary. In this paper, unless explicitly
mentioned r-way R-DP means R-DP where r is set to tilesize[d].

Feature r = Θ (1) r = f(n) & r = ω (1) r = tilesize[d]
Cache-obliviousness Yes Yes No
Serial I/O-optimality Yes (often) No Yes (often)

Table 5.1: Comparison of features of r-way R-DPs for different values of r.

5.2.3 GPU computing model
The r-way R-DPs are ideally suited for computer architectures that do not implement
automatic page replacement schemes. The best example of such an architecture are the
GPUs. Here, we give a brief overview of the GPU architecture, its programming model,
and the challenges encountered when writing high-performing programs for the current
generation GPUs.

General purpose computing on GPUs. GPUs attached to CPU using PCI bus are used
as hardware accelerators. They have a many-core architecture having cores in the range
of tens to hundreds. They are designed to have thousands of light-weight threads com-
pared with those of the CPUs, are optimized for highly data-parallel and compute-intensive
tasks, and are designed to maximize the throughput of the parallel programs. GPUs typ-
ically have multiple types of parallelism: multithreading, single-instruction multiple-data
(SIMD), and instruction-level parallelism. The GPU architecture is naturally suitable for
data-parallel scientific problems involving matrices of dimensions 1, 2, 3, or 4.

Figure 1 gives a simple representation of the memory hierarchy of the current genera-
tion GPUs. The CPU is connected to a disk (or external-memory) of a very large size and
a RAM (or internal-memory) of a decent size. The GPU consists of a global memory and
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several shared memories. Each shared memory is connected to a constant number of cores
that have their own registers. A GPU is connected to the CPU through a PCI bus. Multiple
GPUs can be connected to a single CPU.

Several application programming interfaces (APIs) have been developed so that pro-
grammers can use GPUs for general purpose computing without being experts in com-
puter graphics. The APIs are used to accelerate specific set of parallel computations on
GPUs. Some of the most commonly used APIs are Open Computing Language (OpenCL),
NVIDIA’s Compute Unified Device Architecture (CUDA), Microsoft’s DirectCompute, AMD’s
Accelerated Parallel Processing (APP) SDK, and Open Accelerators (OpenACC). To exploit
the GPU architecture fully, the compute kernels must make use of the memory efficiently
and the organization of the threads must be good.

GPU programming challenges. Writing good GPU programs is hard. The difficulty in
GPU programming is due to several factors.

O [Automatic page replacement is not implemented.] Automatic page replacement is
not implemented in GPUs. Recursive divide-and-conquer is a powerful tool to de-
sign efficient (I/O-efficient, energy-efficient, and highly parallel), portable (cache- and
processor-oblivious) and robust (cache- and processor-adaptive) algorithms. However
these design techniques involve complicated control logic and hence they are either
unsupported / unsuitable for GPUs, which forces programmers to search for other
approaches.

O [GPU optimization is hard.] Optimization on GPUs is harder than that on CPUs.
The key factors that have big influence on the performance on GPUs are: thread or-
ganization (threads can be organized in blocks of different dimensions with different
dimension lengths), warp size (the granularity at which the streaming multiproces-
sors can execute computations), memory coalescing (consecutive numbered threads
access consecutive memory locations), and streams and events (overlapping compute
kernel execution and data transfers). Depending on the mixture of optimizations used
the performance can be drastically different.

5.3 The Autogen-Fractile framework
In this section, we present the Autogen-Fractile framework to design efficient tiled algo-
rithms for a wide class of dynamic programs. From hereon, we call a recursive divide-
and-conquer algorithm as an R-DP algorithm. The 2-way and r-way algorithms are called
2-way and r-way R-DPs, respectively.

There are three major approaches in which the Autogen-Fractile framework could be
defined.

Example. For simplicity of exposition we explain the working of Autogen-Fractile by
designing a T R-DP algorithm for Floyd-Warshall’s all-pairs shortest path (APSP) from its
recurrence. The APSP is solved using the DP recurrence as described in Equation A.4 in
Appendix A.3.

5.3.1 Approach 1: Generalization of 2-way R-DP

This is the first approach that uses the generalization of 2-way R-DPs to get r-way R-DPs.
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The four main steps of Autogen-Fractile are:
1. [2-way R-DP derivation.] A 2-way R-DP is constructed from a given I-DP.
2. [3-way, 4-way, . . . R-DP derivation and visualizaton.] We derive r-way R-DP, where

r is a constant, and then visualize their working.
3. [r-way R-DP derivation.] An r-way R-DP algorithm is derived with the aid of visual-

ization.
4. [T R-DP derivation.] The T R-DP is derived for two consecutive memory levels from

the r-way R-DP by setting r based on the memory sizes.

2-way R-DP derivation

In this step, a 2-way R-DP algorithm is derived from a given I-DP. The major reason to
derive 2-way R-DP is to identify the recursive functions that will be present in the 2-way
R-DP as the recursive functions in both 2-way and r-way R-DPs are exactly the same.

The structure and design of 2-wayR-DPs gives clues to the design of r-wayR-DPs. The
standard 2-way R-DPs have been presented in [Chowdhury and Ramachandran, 2006,
Chowdhury and Ramachandran, 2008, Chowdhury and Ramachandran, 2010] and other
work. Such algorithms split a d-dimensional nd-sized hypercubic DP table into 2d hypercu-
bic orthants each of size (n/2)d. They consist of a fixed number of distinct recursive func-
tions and the functions are defined based on the dependencies between different orthants.
Manually deriving 2-way R-DPs for several dynamic programs is difficult.

The Autogen [Chowdhury et al., 2016b] algorithm can be used to automatically discover
standard 2-way (also r-way for small constant r) R-DPs for a wide class of dynamic pro-
grams.2 By using Autogen, we can easily determine the number of recursive functions that
are present in the 2-way R-DP of a given dynamic program. Each recursive function is
different from each other in the order in which it writes and reads from submatrices of the
input DP table.

For example, we use Autogen to derive a 2-way R-DP for the Floyd-Warshall’s APSP
problem as described in Section 2.5.1. The 2-way R-DP is also described with diagrams
in Section A.3. We see that there are four recursive functions A,B,C, and D. Each of the
recursive functions take three parameters (X,U, V ). They three regions / submatrices are
related to each other depending on which function calls them, as shown below.

O [Function A.] The relation is X = U and X = V .
O [Function B.] The relation is X , U and X = V .
O [Function C.] The relation is X = U and X , V .
O [Function D.] The relation is X , U and X , V and U , V .

3-way, 4-way, . . . R-DP derivation and visualization

The Autogen algorithm can be used to automatically discover 3-way, 4-way, so on up till
any r-way R-DP, where r is a constant. The number of unique recursive functions in each
of the r-way R-DP will be the same. We use visualization to analyze the pattern behind
how the recursive functions updates different regions / submatrices of the DP table.

2Other types of cache-oblivious recursive algorithms [Frigo et al., 1999,Sibeyn, 2004,Cherng and Ladner,
2005, D’Alberto and Nicolau, 2007] require problem-specific algorithm design logic and hence the approach
might not be generic enough to solve a large class of dynamic programs.
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Consider Figure 5.2. It shows the order in which the A function of the r-way R-DP

for FW-APSP problem updates an n × n DP table for r = 2, 3, and 4. Similarly, we can
write the updates of the B, C, and D functions. In the figure, the light pink, light red,
light yellow, and light blue regions represent the submatrices updated by A, B, C, and D

functions, respectively. The numbers represent the relative order in which the functions
write to regions. If two functions have the same numbers, it means they can write to their
respective regions at the same time. If the time of one function is lesser than the another,
then the former function must finish execution before the second function can start.

In the figure, when r = 2, then the ranges of k are
[
0, n2 − 1

]
, and

[
n
2 , n− 1

]
. Similarly,

when r = 3, the ranges of k will be
[
0, n3 − 1

]
,
[
n
3 ,

2n
3 − 1

]
, and

[
2n
3 , n− 1

]
. Similarly, k ranges

are defined for other values of r.
The visualization of the function updates makes algorithm design easy. By analyzing

the regions (denoted by colors) written by different recursive functions and times at which
different functions are invoked for different values of k and r, we can see the pattern.
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Figure 5.2: The execution of the different functions invoked by the A function in r-way
R-DP of FW-APSP for r = 2, r = 3, and r = 4.
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r-way R-DP derivation

Figure 5.2 gives a visualization of the updates of different functions invoked by the A

function of r-way R-DP in FW-APSP. We can derive an r-way R-DP from this visualization
by setting n = r and then analyzing. When we set r = 4, the updates of the four functions
are as shown in Figure 5.3.

In Figure 5.3, A,B,C, and D calls are shown in light pink, light red, light yellow, and
light blue. Consider the updates of the DP table by function A as shown in column 1 of the
entire figure. When we look at all the pink cells, we see a pattern. The position of the pink
cells clearly depend on the value of k. To be exact, function A writes to cells at position
(k, k). Immediately after A function call, functions B and C are invoked. Again, there is a
clear-cut pattern. The B function calls are called on cells on the same row as that of A i.e.,
(k, j), where j , k. Also, the C functions are called on cells on the same column as that of A
i.e., (i, k), where i , k. The function D is called on cells which have a different row and/or
column than k. That is the position of the D function calls are (i, j), where i , k and j , k.
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Figure 5.3: The updates of the four functions in r-way R-DP of FW-APSP for n = r = 4.

We show in Figure A.7 an r-way R-DP for Floyd-Warshall’s APSP with 4 functions
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A,B,C, and D. The initial invocation to the r-way R-DP is A(C,C,C, 1), where C is the
DP table for the APSP problem. The term m in all the functions represents the dimension
length at a particular recursion level. For function A, X = U = V . For function B, X , U
and X = V . Similarly, for function C, X = U and X , V . For function D, X , U , X , V ,
and U , V . The keyword parallel means that the functions can be invoked in parallel. In
this way, we design an r-way R-DP for Floyd-Warshall’s APSP.

T R-DP derivation

In this section, we explain how to port an r-way R-DP algorithm to a PMH model (see
Section 1.4.2) as shown in Figure 1.1. A similar kind of porting can be done for several
dynamic programs from the corresponding r-way R-DPs.

Let the r-way R-DP for a problem P consist of functions F1, . . . ,Fm such that any func-
tion Fi, where i ∈ [1,m] calls other functions F|, where j ∈ [i,m].

Consider Figure 1.1 in Section 1.4.2. Let the input DP table be present in the memory at
level h. This means that the data from the DP table has to pass through the memory levels
at h − 1, h − 2, . . . , 1 to reach the processors at level 0. We define the following functions:
M[h]_F[1]_P, M[h-1]_F[1]_P, . . ., M[h-1]_F[m]_P, M[h-2]_F[1]_P, . . ., M[h-2]_F[m]_P, so on
till M[1]_F[1]_P, . . ., M[1]_F[m]_P. The brackets [ ] are simply used to demarcate numbers
from alphabet and they are not considered as part of the function names. The terms F[1],
. . ., F[m] correspond to the m recursive functions. The functions with keyword M[i], where
i ∈ [1, h] denotes that the input and the output matrices of the functions are present in
memory at level i.

Initially, the function M[h]_F[1]_P is invoked with the entire DP table as input. The
function splits the entire d-dimensional n × · · · × n DP table into rh × · · · × rh submatrices
each of size (n/rh) × · · · × (n/rh), assuming rh divides n for simplicity (and without loss of
generality). The term rh is chosen such that the input submatrices for the function exactly
fits a memory at level h− 1. The function copies the relevant submatrices to a (h− 1)-level
memory and then invokes m other functions M[h-1]_F[1]_P, . . ., M[h-1]_F[m]_P as per the
r-way R-DP algorithm and sends the desired submatrices as input parameters to those
child functions. Note that we need not define functions M[h]_F[2]_P, . . ., M[h]_F[m]_P as
they will never be invoked.

The functions M[h-1]_F[1]_P, . . ., M[h-1]_F[m]_P split each of the (n/rh) × · · · × (n/rh)
sized matrices present in level-(h − 1) memory into rh−1 × · · · × rh−1 submatrices each
of size (n/(rhrh−1)) × · · · × (n/(rhrh−1)), assuming rh−1 divides (n/rh) for simplicity. The
functions copy the relevant matrices to the (h − 2)-level memory and invoke the func-
tions M[h-2]_F[1]_P, . . ., M[h-2]_F[m]_P. This process continues till we reach the functions:
M[1]_F[1]_P, . . ., M[1]_F[m]_P. In these functions we run the iterative or looping kernels
and make use of threads to perform several computations. This is a high-level overview
of the division of work across recursive functions and memory levels. In this way, we can
design T R-DP algorithms from r-way R-DPs for a PMH model.

T R-DP for a GPU system. We explain how to port the r-way Floyd-Warshall’s APSP
algorithm given in Figure A.7 to a GPU system. For simplicity, we assume that the memory
hierarchy of our GPU system is as shown in Figure 5.1. It is easy to design algorithms
for multiple levels, multiple GPUs, and multiple shared memories connected to a global
memory.
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Let the input DP table be present in the external memory. This means that the data
from the DP table has to pass through three levels of memory: CPU RAM, GPU global
memory, and GPU shared memory. We define the following functions: host_disk_A_FW,
host_RAM_A_FW, . . ., host_RAM_D_FW, device_global_A_FW, . . ., device_global_D_FW, device_shared_A_FW,
. . ., device_shared_D_FW. The terms A, B, C, and D correspond to the four recursive functions.
The functions with keywords host and device represent that the code for such functions
run on the CPU and GPU, respectively. The functions with keywords disk, RAM, global,
and shared denote that the input and the output matrices of the functions are present in
CPU disk, CPU RAM, GPU global memory, and GPU shared memory, respectively.

Initially, the function host_disk_A_FW is invoked with the entire DP table as input. The
function splits the entire n × n DP table into rd × rd submatrices each of size (n/rd) ×
(n/rd), assuming rd divides n for simplicity (and without loss of generality). The term
rd is chosen such that the input submatrices for the function exactly fits the RAM. The
function copies the relevant submatrices to RAM and then invokes four other functions
host_RAM_A_FW, . . ., host_RAM_D_FW as per the r-way R-DP algorithm and sends the desired
submatrices as input parameters to those child functions. Note that we need not define
functions host_disk_B_FW, . . ., host_disk_D_FW as they will never be invoked.

The functions host_RAM_A_FW, . . ., host_RAM_D_FW split each of the (n/rd) × (n/rd) sized
matrices present in RAM into rm × rm submatrices each of size (n/(rdrm)) × (n/(rdrm)),
assuming rm divides (n/rd) for simplicity. The functions copy the relevant matrices to the
GPU global memory and invoke the four functions device_global_A_FW, . . ., device_global_D_FW.
This process continues till we reach the functions: device_shared_A_FW, . . ., device_shared_D_FW.
In these functions we run the iterative or looping kernels and make use of threads to per-
form several computations. This is a high-level overview of the division of work across
recursive functions and memory levels. In this way, we can design CPU-GPU algorithms
from r-way R-DPs.

Now let’s assume that we do not know the size of the CPU RAM, but it is maintained as
fully associative memory with an automatic LRU page replacement policy. The input DP
table is stored in either the external memory or the RAM. Then instead of host_disk_A_FW
and host_RAM_A_FW we will only have host_A_FW, and similarly host_B_FW, host_C_FW and
host_D_FW. Initially, the function host_A_FW is invoked with the entire DP table as input.
The function splits the entire n× n DP table into 2× 2 subtables each of size (n/2)× (n/2),
assuming n is divisible by 2 for simplicity. Now if a (n/2) × (n/2) subtable fits into the
GPU global memory we invoke device_global_A_FW, . . ., device_global_D_FW, otherwise
we recursively invoke host_A_FW, . . ., host_D_FW.

5.3.2 Approach 2: Generalization of parallel iterative base cases

The five main steps of Autogen-Fractile are:
1. [2-way R-DP derivation.] A 2-way R-DP is constructed from a given I-DP.
2. [Serial iterative base cases construction.] Serial iterative base cases are constructed

for the recursive functions of the 2-way R-DP.
3. [Parallel iterative base cases visualization.] Serial iterative base cases are constructed

for the recursive functions of the 2-way R-DP.
4. [r-way R-DP derivation.] An r-way R-DP algorithm is derived with the aid of visual-

ization.
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5. [T R-DP derivation.] The T R-DP is derived for two consecutive memory levels from
the r-way R-DP by setting r based on the memory sizes.

2-way R-DP derivation

We derive a 2-way R-DP as explained in Section 5.3.1.

Serial iterative base cases construction

In this step, we construct the serial base cases for the recursive functions of the derived
2-way R-DP. The serial base cases of both 2-way and r-way R-DPs are exactly the same.
Also, the serial base cases give vital information regarding the recursive structure of the
r-way R-DP.

For example, for the FW-APSP problem, the serial base cases of the four recursive func-
tions A,B,C, and D of the 2-wayR-DP are shown in Figure 5.4. We assume that the initial
distance matrix consists of only non-negative values. It happened by luck that the serial
base cases for the four functions are the same. But, in general, the serial base cases of the
recursive functions can be very different from each other.

The function Floop-FW takes several parameters. The parameters (xrow, xcol) are the
starting row and starting column of write region X. Similarly, (urow, ucol) and (vrow, vcol)
are the starting rows and columns of read submatrices U and V , respectively. The value n
is the dimension length of the submatrix X (or U or V ).

Floop-F W (xrow, xcol, urow, ucol, vrow, vcol, n)

1. for k ← 0 to n− 1 do
2. for i← 0 to n− 1 do
3. for j ← 0 to n− 1 do
4. XI ← xrow + i;XJ ← xcol + j
5. UI ← urow + i;V J ← vcol + j;K ← ucol + k
6. D[XI,XJ ]← min {D[XI,XJ ], D[UI,K] +D[K,V J ]}

Figure 5.4: The serial base case of all recursive functions F ∈ {A,B,C,D} of 2-way R-DP

of FW-APSP assuming non-negative values for the initial distance matrix.

Constructing serial base cases for the recursive functions is majorly an art. By analyz-
ing relationship between regions of a recursive function, we could attempt to come up with
iterative kernels for updating the write regions from the read regions.

Parallel iterative base cases visualization

In this step, we visualize the execution of parallel iterative base cases of the recursive
functions of the derived 2-way R-DP. Finding parallel iterative base cases is important as
we want to find parallel r-way R-DP.

We design parallel iterative base cases using the help of computers. Through good
visualization we find the parallel versions of serial iterative base cases. Let every update
is of the form as given in Definition 4 in Section 2.2.1. Now, for each serial iterative base
case, for a specific value of n, we write the updates in the n×· · ·×n DP table using function
names and time steps. If a cell x is written by reading u and v cells, then the write Ft at cell
x, where F is the appropriate recursive function and t is the earliest time step at which F
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can write to cell x. More details of writing functions with timesteps can be found in Section
3.2.

For example, Figure 5.3 shows the execution of the parallel iterative base cases of the
four functions in r-way R-DP for FW-APSP for n = 4. For simplicity and space constraints,
only the regions where the data are updated are shown and not the regions from where the
data is read. We can extend the diagram with more details for better analysis. Similar di-
agrams can be written for n = 5, 6, 7, etc and we can easily see the pattern of how functions
are called.

r-way R-DP derivation

In this step, we derive an r-way R-DP from parallel iterative base case kernels.
We explain the design of r-way R-DP for the FW-APSP example. Figure 5.3 shows

the parallel execution of the four function calls for the FW-APSP R-DP. Columns are for
different functions and rows are for different values of k ∈ [0, 3], where each value of k
represents a plane number. The updates are shown for n× n DP table, where n = 4.

Once we have the visualization for the parallel base cases as shown in Figure 5.3, we
can derive an r-way R-DP as described in Section 5.3.1.

AF W (X,U, V, d)

1. r ← tilesize[d]
2. if r ≥ m then Aloop-F W (X,U, V )

else
3. for k ← 1 to r do
4. AF W (Xkk, Ukk, Vkk, d+ 1)
5. parallel: BF W (Xkj , Ukk, Vkj , d+ 1), CF W (Xik, Uik, Vkk, d+ 1) for i, j ∈ [1, r], i , k, and j , k
6. parallel: DF W (Xij , Uik, Vkj , d+ 1) for i, j ∈ [1, r], i , k, and j , k

BF W (X,U, V, d)

1. r ← tilesize[d]
2. if r ≥ m then Bloop-F W (X,U, V )

else
3. for k ← 1 to r do
4. parallel: BF W (Xkj , Ukk, Vkj , d+ 1) for j ∈ [1, r]
5. parallel: DF W (Xij , Uik, Vkj , d+ 1) for i, j ∈ [1, r] and i , k

CF W (X,U, V, d)

1. r ← tilesize[d]
2. if r ≥ m then Cloop-F W (X,U, V )

else
3. for k ← 1 to r do
4. parallel: CF W (Xik, Uik, Vkk, d+ 1) for i ∈ [1, r]
5. parallel: DF W (Xij , Uik, Vkj , d+ 1) for i, j ∈ [1, r] and j , k

DF W (X,U, V, d)

1. r ← tilesize[d]
2. if r ≥ m then Dloop-F W (X,U, V )

else
3. for k ← 1 to r do
4. parallel: DF W (Xij , Uik, Vkj , d+ 1) for i, j ∈ [1, r]

Figure 5.5: An r-way R-DP for Floyd-Warshall’s APSP.
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T R-DP derivation

We derive the T R-DP from the R-DP as explained in Section 5.3.1.

5.4 Complexity analysis
In this section, we present the serial I/O complexity of r-way R-DPs on a parallel memory
hierarchy (PMH) model, I/O complexity of GPU algorithms on a typical GPU architecture,
and the parallel running time of T R-DPs on the PMH model.

The parallel memory hierarchy (PMH) model was described in Section 1.4.2. Most of
our results are shown in the PMH model. The PMH model can be used in multi-cores or
many cores.

5.4.1 I/O complexity
We state the theorem for the I/O complexity of an r-way R-DP on a PMH model.

Theorem 9 (I/O complexity of r-way R-DPs on a PMH model). The serial I/O
complexity of an r-way R-DP on a PMH model for a d-dimensional hypercubic DP
table of size nd, where the parameter r is set to the best tile size at every recursion
level, is

Q1(n) = O
(

T1(n)
BM (w/d)−1 + S(n)

B
+ 1

)

where, T1(n) = total work = Õ (nw) , M = memory size, B = block size, M = Ω
(
Bd
)
,

and S(n) = input DP table size = O
(
nd
)
.

Proof. We prove the theorem in two stages:

(a) Q1(n) for r-way R-DP = Q1(n) for 2-way R-DP.
The metric Q1(n) for an R-DP is computed as the product of number of subproblems that
exactly fits the cache of size M and the I/Os required to scan the input and output matrices
for a subproblem. Say r = 2k for some k ∈ N. Then, to compare the I/O complexities of the
two algorithms, the r-way R-DP can be considered as simply the 2-way R-DP unrolled k
times. The number of subproblems that exactly fit a memory of size M will be asymptoti-
cally same for both 2-way and r-way R-DPs. Also, the I/Os required to scan the matrices
that exact fit the memory is asymptotically same for both 2-way and r-way R-DPs. Hence,
the I/O complexity of 2-way and r-way R-DPs are the same.

Alternate argument. The claim can be proved in two steps. First, both 2-way and r-way
R-DPs exploit temporal locality from some constant factor of M . The reason for this is
that the r-way R-DP makes sure that every subproblem takes a constant fraction of the
memory i.e., tile size is αM for some α ∈ (0, 1]. Similarly, the 2-way R-DP too exploits
temporal locality from constant fraction of the memory i.e., subproblem size is γM for
some γ ∈ (0, 1].

Second, both 2-way and r-way R-DPs are simply different scheduling of the same DP
recurrence and no DP cell update is applied more than once. Hence, the total work of the
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2-way and r-wayR-DPs are the same. In both 2-way and r-wayR-DPs the amount of work
done for a subproblem when it fits into a memory of size M is asymptotically same due to
the previous arguments. Hence the proposition.

(b) Compute Q1(n) for 2-way R-DP.
In a given r-way R-DP if we set r = 2 at every recursion level we get a 2-way R-DP. Once
we have a 2-way R-DP we can simply use Theorem 2 from [Chowdhury et al., 2016b]. �

Theorem 2 from [Chowdhury et al., 2016b] is defined for the cache-oblivious model
[Frigo et al., 1999]. The cache-oblivious model assumes automatic page replacement pol-
icy. The theoretically optimal page replacement algorithm replaces the page (or data block)
that will be used farthest in the future (which is difficult to predict). In practice, the least
recently used (LRU) and first-in-first-out (FIFO) are the most commonly used page re-
placement algorithms as they are within a factor of 2 of the optimal number of page re-
placements. The current operating systems do not support automatic page replacements
between CPU RAM and GPU global memory or between two adjacent memory levels of
GPU. Still, it is possible to implement customized LRU or FIFO algorithms and simulate
the automatic page replacement policy. Hence, the serial I/O complexity bounds of the
r-way R-DPs does not get affected without the automatic page replacement policies on
CPU-GPUs.

Consider Floyd-Warshall’s APSP as an example. For f ∈ {A,B,C,D}, let Qf (n) denote
the serial I/O complexity of fFW of the 2-way R-DP on a matrix of size n × n. Also, γ be
a constant such that γ ∈ (0, 1]. Then QA(n) = QB(n) = QC(n) = QD(n) = O (n2/B + n) if
n2 ≤ γM . On the other hand if n2 > γM , then

QA(n) = 2
(
QA

(
n
2

)
+QB

(
n
2

)
+QC

(
n
2

)
+QD

(
n
2

))
+ Θ (1)

QB(n) = 4
(
QB

(
n
2

)
+QD

(
n
2

))
+ Θ (1)

QC(n) = 4
(
QC

(
n
2

)
+QD

(
n
2

))
+ Θ (1)

QD(n) = 8QD

(
n
2

)
+ Θ (1)

Applying Theorem 9, the serial I/O complexity of the r-wayR-DP of Floyd-Warshall’s APSP
as shown in Figure A.7 is Q1(n) = O

(
n3/

(
B
√
M
)

+ n2/B + 1
)
.

We define a few terms before we present a theorem for the serial I/O complexity of GPU
algorithms. The theorem assumes that the core memory hierarchy of a GPU system is as
shown in Figure 5.1, excluding intricate details. Let Mm, Mg, and Ms be the size of the
CPU main memory, GPU global memory, and GPU shared memory, respectively. Let n,
nm, ng, and ns be the subproblem parameter (i.e., tile dimension) when the subproblem is
present in the disk, RAM, global, and shared memories, respectively. Then ndm = Θ (Mm),
ndg = Θ (Mg) and nds = Θ (Ms). Let B, Bm, Bg, and Bs denote the block size between disk and
RAM, RAM and global memory, global memory and shared memory, and shared memory
and processor, respectively. All M ’s, n’s, and B’s are natural numbers.
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Theorem 10 (I/O complexity of GPU algorithms). The I/O complexity (number
of data blocks transferred) of an external-memory GPU algorithm when run on a
GPU memory hierarchy as shown in Figure 5.1 between:

O disk & RAM is Θ
(

nw

BM
w
d
−1

m

+ nw

M
w+1

d
−1

m

)

O RAM & global memory is Θ
(

nw

BmM
w
d
−1

g

+ nw

M
w+1

d
−1

g

)

O global & shared memory is Θ
(

nw

BgM
w
d
−1

s

+ nw

M
w+1

d
−1

s

)
where, the total work of the GPU algorithm is Θ (nw).

Proof. First, we find the I/O complexity of the r-way R-DP between two adjacent levels of
memories and then we directly use this result to prove the theorem.

Let the larger and smaller adjacent memories be of sizes ML and MS, respectively.
Let the largest subproblem parameters that fit into ML and MS be integers nL and nS,
respectively. Let BL denote the block size between larger and smaller memories. The
number of write and read submatrices for each recursive function of the R-DP is 1 + s,
where s is a upper bounded by a constant. This is because there is only one region
to be written and there can be at most s distinct regions (not including the write re-
gion) to be read from. Without loss of generality, we assume that an element takes 1
byte. The space occupied by the (1 + s) read and write regions in the smaller memory is
(1 + s)ndS ≤ MS, where nS ≤ (ML/(1 + s))1/d < nS + 1. Then the I/O complexity to fill the
smaller memory once is computed as O

(
nd−1S (nS/BL + 1)

)
. The smaller memory will be

loaded Θ ((nL/nS)w) times. Hence, the I/O complexity between the larger and the smaller
memories is O

(
(nL/nS)wnd−1S (nS/BL + 1)

)
.

We now apply the result above to prove the theorem. The I/O complexity between disk
and RAM is O((n/nm)wnd−1m (nm/B + 1)). The I/O complexity between RAM and global
memory to work on all data present in RAM is O((nm/ng)wnd−1g (ng/Bm + 1)). However, the
RAM will be loaded Θ ((n/nm)w) times. Hence, the total I/O complexity between RAM and
global is O((n/ng)wnd−1g (ng/Bm + 1)). We use a similar reasoning to compute the total I/O
complexity between global and shared memories. Substituting ndm = Θ (Mm), ndg = Θ (Mg)
and nds = Θ (Ms) we obtain the claimed bounds. �

5.4.2 Parallel running time
We formalize a few ideas before we give a theorem on the parallel running time of the r-way
R-DPs on a parallel machine with deep memory hierarchy using space-bounded scheduler.

Let the recursive functions of an r-wayR-DP be F1, . . . ,Fm. Let us consider the recursive
function calls any Fj makes when the data is in level i and is tiled for level i− 1 of the PMH
hierarchy. Suppose Fj calls Fk a total of aij,k times from level i when pi = 1. If pi = ∞ then
Fj will call as many recursive functions as possible in parallel, and let the number of such
parallel steps in which Fj makes at least one call to Fk is bij,k. Let A(i) and B(i) denote the
level-i coefficient matrices (aij,k) and (bij,k), respectively. Let A and B be computed as:

A = A(h) ⊗A(h−1) ⊗ · · · ⊗A(1)

B = B(h) ⊗B(h−1) ⊗ · · · ⊗B(1)
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where, ⊗ is a matrix multiplication operator.

Theorem 11 (Parallel running time of r-way R-DPs on a PMH model us-
ing space bounded scheduler). Let the recursive functions of an r-way R-DP be
F1, . . . ,Fm, and let A and B be as defined above. Then the parallel running time of
the R-DP on a DP table of size nd under the PMH model with h+ 1 levels as defined
above will be:

T hPMH(n) = O
(∑m

i=1 A[i, i]
p

+
m∑
i=1

B[i, i]
)
· Πh

i=1Bi

Proof. Suppose there are h levels of recursion. Let rh, . . . , r1 be the best tile sizes for recur-
sion levels h to 1, respectively. This implies that n = rh × rh−1 × · · · × r1. The total space
complexity of the algorithm is assumed to be S(n) = Θ

(
nd
)
. Then,

ri =



Θ
 n

M
1
d

h−1

 if i = h,

Θ
((

Mi

Mi−1

) 1
d

)
if i ∈ [2, h− 1],

Θ
(
M

1
d
1

)
if i = 1.

We assume for generality that it takes B time to write cells to a block of size B if the
cells are computed from different processors.

An R-DP has only one recursive function. Let an r-way R-DP consist of only one
function. Let the work and span of the function be defined by: T1(n) = aT1(n/r) + Θ (1)
and T∞(n) = bT∞(n/r) + Θ (1) for a, b ≥ 1 and n ≥ r > 1. The work and span both are
Θ (1) if n = 1. Let TPMH(n) be the parallel running time of the algorithm on a parallel
machine with the PMH memory model. We define T iPMH(n) to be the parallel running time
of the recursive function at level i. This implies TPMH(n) = T hPMH(n). Then, T iPMH(n) can be
computed recursively as:

T iPMH(n) =

O
((

T1(r1)
p1

+ T∞(r1)
)
·B1

)
if i = 1,

O
((

T1(ri)
pi

+ T∞(ri)
)
·Bi

)
· T i−1PMH( n

ri
) if i ∈ [2, h].

Solving the recurrence, we get:

T hPMH(n) = Πh
i=1O

((
T1(ri)
pi

+ T∞(ri)
)
·Bi

)

An R-DP has multiple recursive functions. We extend the analysis above to multiple
functions. Let the recursive functions of the r-way R-DP be F1, . . . ,Fm. Let the work and
span of an r-way recursive function Fj at level i be defined as: T i,Fj

1 (n) = ∑m
k=1 a

i
j,kT

i−1,Fk
1 (n/ri)+

Θ (1) and T
i,Fj
∞ (n) = ∑m

k=1 b
i
j,kT

i−1,Fk
∞ (n/ri) + Θ (1). As base cases, T 1,Fj

1 (r1) = ∑m
k=1 a

1
j,k and

T
1,Fj
∞ (r1) = ∑m

k=1 b
1
j,k. It is important to note that if the span of a function has max{x, y}

term, then it is replaced with x+ y thereby this serves as an upper bound on span. Let the
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parallel running time of the function Fj at level i be denoted by T i,Fj

PMH(n). Then we compute
T
i,Fj

PMH(n) recursively as:

T
i,Fj

PMH(n) =


O
((

T
1,Fj
1 (r1)
p1

+ T
1,Fj
∞ (r1)

)
·B1

)
if i = 1,

∑m
k=1

(
O
((

ai
j,k

pi
+ bij,k

)
·Bi

)
· T i−1,Fk

PMH ( n
ri

)
)

if i ∈ [2, h].

Let A(i) and B(i) denote the level-i coefficient matrices (aij,k) and (bij,k), respectively. Let
A and B be computed as:

A = A(h) ⊗A(h−1) ⊗ · · · ⊗A(1)

B = B(h) ⊗B(h−1) ⊗ · · · ⊗B(1)

where, ⊗ is a matrix multiplication operator. Solving the parallel running time recurrence,
we get:

T hPMH(n) = O
(∑m

i=1 A[i, i]
p

+
m∑
i=1

B[i, i]
)
· Πh

i=1Bi

�

5.5 Experimental results
In this section, we present empirical results showing the performance benefits of our GPU
algorithms that are based on r-way R-DP. The internal-memory GPU algorithms are
implemented by Stephen Tschudi and the external-memory GPU algorithms are imple-
mented by Rathish Das.

5.5.1 Experimental setup
All our experiments were performed on a heterogeneous node of Stampede supercomputer.
The multicore machine had a dual-socket 8-core 2.7 GHz Intel Sandy Bridge processors
(2× 8 = 16 cores in total) and 32 GB RAM. Each core was connected to a 32 KB private L1
cache and a 256 KB private L2 cache. All cores in a processor shared a 20 MB L3 cache.
For GPGPU processing the Stampede compute nodes were attached with a single NVIDIA
K20 GPU on each node. Each GPU had an on-board GDDR5 memory of 5GB. The GPU
machine had 2496 CUDA cores for parallel processing.

All our algorithms were implemented in C++. We used Intel Cilk Plus extension to
parallelize and Intelő C++ Compiler v13.0 to compile the CPU implementations with opti-
mzation parameters -O3 -ipo -parallel -AVX -xhost. We used NVIDIA’s CUDA platform
to write our GPU programs. The programs were compiled with nvcc compiler with param-
eters -O3 -gencode arch=compute_35,code=sm_35.

5.5.2 Internal-memory GPU implementations
We focus on four DP problems: Floyd-Warshall’s APSP, Gaussian elimination without piv-
oting, parenthesis problem, and the gap problem. The programs with cpu and gpu keywords
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are run on CPU and GPU machines, respectively. The different types of programs we com-
pare are:

(i) cpu-idp: iterative serial program,
(ii) cpu-rdp: standard 2-way parallel R-DP,

(iii) gpu-rdp: r-way parallel R-DP.
For the FW problem, we also have

(iv) gpu-tidp-harish: Harish and Narayanan’s [Harish and Narayanan, 2007] tiled-iterative
program,

(v) gpu-tidp-lund: Lund and Smith’s [Lund and Smith, 2010] tiled-iterative program,
(vi) gpu-tidp-katz: Katz and Kider’s [Katz and Kider Jr, 2008] tiled-iterative program,

(vii) gpu-rec-buluc: Buluc et al.’s implementation of the 2-way R-Kleene algorithm with
Volkov and Demmel’s optimization [Volkov and Demmel, 2008] for the MM kernel,

(viii) gpu-rdp-opt: r-way R-DP replaced with Buluc et al.’s MM-like3 kernel for the MM-
like functions of the R-DP.

Optimizations. The common optimizations used for the programs, except cpu-idp, are as
follows.

(i) We use shared memory of the GPUs by setting BLOCK_SIZE = 32 so that 1024 threads
could work on square matrices of size 32 × 32 simultaneously. Also, two blocks with
1024 threads were run in parallel.

(ii) If a function kernel reads from submatrices it is not writing to (MM-like), then we do
not use synchronization inside the kernel.

(iii) Row-major order was used for all submatrices instead of column-major order. Flip-
ping a submatrix to column-major degrades performance. We used row-major or-
der for the grid and also inside each block inside a grid. Using row-major across
BLOCK_SIZE × BLOCK_SIZE worsens the performance.

(iv) Allocating memory using gpuMalloc() on GPU global memory is slow. Instead of
invoking this function multiple times we simply malloc once and then copy the sub-
matrices to the respective regions.

(v) We allocate directly in host’s pinned memory using cudaMallocHost(). This reduces
the block transfers between pageable host memory and pinned memory.

The cpu-idp was not optimized. The optimizations used for cpu-rdp include:
(i) #pragmas such as #pragma parallel, #pragma ivdep, and min loop count(B),

(ii) using 64 byte-aligned matrices,
(iii) write optimizations,
(iv) using pointer arithmetic,
(v) Z-morton layout (only for the gap problem).

The optimizations used for the gpu-rdp programs are: (i) block-row-major order (similar
as in the case of tiling) to reduce data transfers, (ii) GRID_SIZE was set to min {n, 16384},
where 16384 was the maximum size such that our subproblems can exactly fit into the
5GB of global memory, (iii) The data copy from RAM to global memory and vice versa
was synchronized. Using asynchronous copy (overlapping computations and data copy) is
extremely complicated.

There are a few important points related to the programs of the FW problem. The three
tiled-iterative implementations were blocked for 32 × 32 instead of 16 × 16 as set in the

3MM = Matrix Multiplication
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original versions. The A,B, and C functions in the tiled implementations were optimized
as much as possible, whereas the D function was already optimized.

Results. Figure 5.6 shows the speedup of various programs w.r.t. cpu-idp for four DP
problems. For each program, the DP table dimension n is varied from 210 to 215. When
n = 215, a subproblem fits in RAM, and in all other cases the subproblems fit in GPU
global memory. For FW-APSP, gpu-rdp-opt was the second fastest running program with a
speedup of 219×, whereas gpu-rec-buluc had a speedup of 330× for n = 215. This is because
unlike gpu-rec-buluc, all the kernels of gpu-rdp-opt were not MM-like and hence it ran
slower than Buluc et al.’s implementation.

For the Gaussian elimination, parenthesis and gap problems for n = 215, the speedup
of our gpu-rdp programs were 216×, 1762×, and 523×, respectively, way higher than their
cpu-rdp counterparts which were 169×, 162×, and 188×, respectively. The speedup of the
GPU algorithms for the parenthesis and gap problems is more than that for FW-APSP /
Gaussian elimination because of two reasons:

(i) cpu-idp for the former two problems do not have spatial locality whereas the latter
two have spatial locality,

(ii) gpu-rdp for the former two problems have higher parallelism than the latter two.

5.5.3 External-memory GPU implementations
It is easy to extend our algorithms to work for external-memory (or disks). We could use
either 2-way or r-way R-DPs for external-memory until a subproblem fits in GPU global
memory, after which we use r-way R-DPs. To make our algorithms RAM-oblivious, we use
2-way R-DPs in the external-memory until a subproblem fits in GPU global memory. We
have implemented algorithms for all four problems: Floyd-Warshall’s APSP, parenthesis,
gap, and Gaussian elimination. We use Standard Template Library for Extra Large Data
Sets (STXXL) [STX, ] 1.4.1 to implement our algorithms for external-memory. STXXL is
a C++ library for implementing containers and algorithms that can process vast amounts
of data that reside in disks. In STXXL, we set the external block size as 4MB, #pages as
1024, and #blocks per page as 1. This gives the RAM size as 4GB.

For each of the four DP problems we compare three programs:
(a) cpu-rdp-1: 2-way serial R-DP running on CPU,
(b) cpu-rdp-128: 2-way parallel R-DP running on CPU with 128 cores (the details of

which is explained shortly),
(c) gpu-rdp: r-way parallel R-DP running on the GPU machine.

The input DP table is stored in Z-morton-row-major layout in the external-memory such
that when a submatrix reaches a size that fits in the GPU global memory it is stored in row-
major order. Note that the input problem consists of a single matrix in external-memory.
On the other hand, a subproblem can consist of multiple submatrices (e.g. up to 3 matrices
for the R-DP of FW-APSP) of the input DP table and they all have to fit into the GPU
global memory and this is taken care by the recursive functions of the r-way R-DPs. Once
we compute a DP table submatrix, we write the output to the same location in the DP
table in the external-memory. For the CPU programs, the base case dimension length for
the algorithms was set to 256 and we run iterative kernels inside each base case.

The running time of cpu-rdp-1 and cpu-rdp-128 are approximated as follows. The DP
table is stored as a grid of blocks, each block is of size 16K×16K and it is stored in Z-morton
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order. We use r-way R-DP4 in external-memory and whenever a subproblem is brought to
RAM, we use 2-way R-DP to execute it on CPU.

Let nbase, n128
base, nchunk, tbase, tchunk represent the number of invocations to base case ker-

nels, number of parallel steps of execution of the base case kernels when we assume 128
cores, number of times RAM (of size 16K × 16K) is loaded and unloaded, minimum time
taken (among several runs) to execute a base case kernel, and time taken to copy data
between external-memory and RAM as given in STXXL I/O statistics, respectively. Then,
running time of cpu-rdp-1 is (nbase · tbase + nchunk · tchunk). The running time of cpu-rdp-128
is (n128

base · tbase + nchunk · tchunk).

Results. Figure 5.7 shows the speedup of various programs w.r.t. cpu-rdp-1 for four DP
problems. For each program, the DP table dimension n is varied from 215 to 217. In all cases,
the input matrices are stored in the external-memory. For FW-APSP, Gaussian elimina-
tion, parenthesis and gap problems for n = 217, the speedup of our gpu-rdp programs were
3072×, 1096×, 3376×, and 1122×, respectively, way higher than their cpu-rdp-128 counter-
parts which were 126×, 126×, 112×, and 122×, respectively.
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Figure 5.6: Speedup of cpu-rdp and gpu-rdp programs over cpu-idp for various dynamic
programs. For FW-APSP, the speedup of gpu-buluc-rec and gpu-rdp-opt are also shown.

5.6 Conclusion and open problems
We presented a framework called Autogen-Fractile to semi-automatically discover recur-
sively tiled algorithms based on r-way recursive divide-and-conquer that are efficient in

4We did not make the program RAM-oblivious to make the benchmark program run fastest.
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Figure 5.7: Speedup of cpu-rdp-128 and gpu-rdp programs w.r.t. cpu-rdp-1 for various
dynamic programs in external-memory.

computer architectures that do not support recursion. We develop several efficient algo-
rithms for GPUs using our framework and achieve high performance and beat almost all
the existing implementations.

A few open problems are:
O [Automation of Autogen-Fractile framework.] Completely automate the derivation of

formulas and looping constraints for designing the r-way R-DPs.
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Chapter 6

Semi-Automatic Discovery of
Divide-&-Conquer DP Algorithms with
Space-Parallelism Tradeoff

In chapter 2, we presented the Autogen algorithm to automatically discover divide-and-
conquer DP algorithms. In chapter 3, we presented the Autogen-Wave framework to im-
prove the parallelism of these auto-discovered algorithms to near-optimal. In this chapter,
we will see a framework called Autogen-Tradeoff that can be used to improve the paral-
lelism of certain class of the Autogen-discovered algorithms by increasing the space usage.

The standard in-place divide-and-conquer parallel matrix multiplication algorithm uses
Θ (p log n) extra space (in the worst case) including stack space (where p = #threads) and
has Θ (n2) parallelism. On the other hand, the not-in-place divide-and-conquer parallel
matrix multiplication algorithm uses Θ

(
p1/3n2

)
extra space, but achieves high parallelism

of Θ
(
n3/ log2 n

)
. The more space we use, the more parallelism we can exploit. So, there

exists a tradeoff between total space and parallelism.
We present the Autogen-Tradeoff framework that can be used to improve the paral-

lelism of a class of divide-and-conquer cache-oblivious matrix algorithms by increasing the
space. As an application of the framework, we present a hybrid matrix multiplication al-
gorithm, which is a careful mix of the two algorithms above, to achieve parallelism ω (n2)
using total space of Θ (n2+ε) for some ε ∈ (0, 1). Similarly, we give hybrid algorithms to
asymptotically increase the parallelism for other algorithms such as multi-instance Viterbi
algorithm, Floyd-Warshall’s all-pairs shortest path, and protein folding problems.

Our experiments show that when we have enough space and thousands of processors,
these hybrid algorithms will be able to harness more parallelism to achieve good perfor-
mance.

6.1 Introduction
Multicore machines often have a tree-like cache hierarchy consisting of different-sized
caches having various access times. The access times of caches farther from the proces-
sors are an order of magnitude times that of caches near to the processors. Reducing the
number of data movements for an algorithm across different levels of the cache hierarchy
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invariably reduces the running time of the algorithm. To achieve this, when programs
bring data to cache, they must do as much work as possible before evicting the data out of
cache. Hence, achieving good cache locality improves the overall performance of an algo-
rithm.

Present-day multicore machines have more than one processing element (ranging from
2 to 80) to execute a program in parallel decreasing its overall running time. More the
number of processors, the faster the algorithm runs. To exploit parallelism, it is not just
enough to have more processing elements but the algorithm must have asymptotically
more parallelism as well. Good cache locality and good parallelism are the two key factors
to increase the performance of a parallel algorithm. Also, if a parallel algorithm has to be
portable i.e., be able to run on machines from smart phones to compute nodes of supercom-
puters without modification then the algorithm has to be resource-oblivious (e.g.: cache-
and processor-oblivious).

The cache-oblivious recursive divide-and-conquer parallel algorithms highly parallel,
and exploit several optimization opportunities. By this virtue, if properly implemented,
they can be both high-performing and portable at the same time. But, one important
question remains. Can we increase the parallelism of these algorithms?

Space-parallelism tradeoff. We build on top of a simple space-parallelism tradeoff idea
to show that with extra space we can increase the parallelism of the cache-oblivious divide-
and-conquer parallel algorithms asymptotically. This idea works for several problems
such as matrix multiplication, multi-instance Viterbi algorithm, Floyd-Warshall’s all-pairs
shortest path, and protein accordion folding.

Consider an example. Given an array of n numbers, its sum can be found in a couple of
different ways without altering the input array (see Table 6.1):

1. [Sequential sum.] The sum is found by simply adding all the numbers using Θ (1)
extra space and it has a span of Θ (n) (or a parallelism of Θ (1)) as the algorithm is
inherently sequential.

2. [Parallel reduction.] The sum is found using parallel reduction using Θ (n) extra space
and it has a span of Θ (log n) (or a parallelism of Θ (n/ log n)). See Figure 6.1.

Work Span Parallelism Extra
Algorithm (T1) (T∞) (T1/T∞) space (S∞)
Sequential sum (in-place) Θ (n) Θ (n) Θ (1) Θ (1)
Parallel reduction (not-in-place) Θ (n) Θ (log n) Θ (n/ log n) Θ (n)
Hybrid algorithm 1 (not-in-place) Θ (n) Θ ((n/r) log r) Θ (r/ log r) Θ (r)
Hybrid algorithm 2 (not-in-place) Θ (n) Θ ((n/r) + log r) Θ (nr/(n+ r log r)) Θ (r)

Table 6.1: Space-parallelism tradeoff for sum of an array. For the hybrid algorithm, r ∈
[2, n].

It is straightforward to see that we can have a space-parallelism tradeoff for the algo-
rithm above. When we increase the extra space from Θ (1) to Θ (n), the span decreases from
Θ (n) to Θ (log n) or the parallelism increases from Θ (1) to Θ (n/ log n).

We can construct two types of hybrid algorithms using the basic algorithms. We assume
that we are allowed Θ (r) extra space, where r ∈ [2, n]. The two hybrid algorithms using
the allowed extra space are:
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Figure 6.1: Computing sum of an array using parallel reduction.

1. [Hybrid algorithm 1: Serial on parallel.] We divide the array of size n into Θ (n/r)
chunks. For each of the Θ (n/r) chunks we apply the parallel reduction method. The
sum of numbers in each chunk is computed in parallel. However, the chunks are pro-
cessed in a serial fashion. The span for computing sum in each chunk is Θ (log r).
There are Θ (n/r) chunks. Hence, the total span is Θ ((n/r) log r). Parallelism is
Θ (r/ log r).

2. [Hybrid algorithm 2: Parallel on serial.] We divide the array of size n into Θ (r)
chunks. For each of the Θ (r) chunks we apply the serial sum method. The sum of
numbers in each chunk is computed serially. However, the chunks are processed in
a parallel fashion using parallel reduction method. The span for computing sum in
each chunk is Θ (n/r). There are Θ (r) chunks. Using a parallel reduction method, the
total span will be Θ ((n/r) + log r). Parallelism is Θ (nr/(n+ r log r)).

Figure 6.2: Pictorial representation of the two hybrid algorithms to compute the sum of
elements of an array. Left: Hybrid algorithm 1: Serial on parallel. Right: Hybrid algorithm
2: Parallel on serial.

We extend this idea further to matrix multiplication. There are two major ways to
multiply matrices using divide-and-conquer (see Figure 6.3):

1. In-place algorithm denoted by AMM

2. Not-in-place algorithm denoted by AMM -N

The AMM algorithm has optimal Q1(n) = Θ
(
n3/(B

√
M)

)
, has decent span of T∞(n) =

Θ (n), and uses extra space of Θ (p log n) including stack space. On the other hand, the
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AMM -N algorithm has optimal Q1(n) = Θ
(
n3/(B

√
M)

)
but, has a small span of T∞(n) =

Θ
(
log2 n

)
, and uses extra space of O

(
p1/3n2

)
. Using the space-parallelism tradeoff idea, we

can get hybrid algorithms for matrix multiplication and other problems.
We develop a hybrid algorithm AMM -H following a careful combination of AMM and

AMM -N . We execute AMM -N for a few levels in the recursion tree (say, k levels) until the
problem size reduces to a threshold at which we switch and execute AMM . When we have
enough processors and space, the hybrid algorithm AMM -H is better than both AMM and
AMM -N in parallelism by guaranteeing a complexity of T∞(n) = O

(
k(2 log n− k) + n/2k

)
,

Sp(n) = O
(
min{p1/3, 2k}n2

)
, where Sp(n) denotes the total space when there are p pro-

cessors. This tradeoff can be applied to other problems such as multi-instance Viterbi
algorithm, Floyd-Warshall’s all-pairs shortest path, and protein accordion folding. The
complexities of all algorithms are summarized in Table 6.2.

In further sections, we present a framework called Autogen-Tradeoff that can be used
to derive hybrid algorithms that have asymptotically higher parallelism than that for stan-
dard divide-and-conquer matrix algorithms.

Algorithm Work Span Space
(T1) (T∞) (Sp)

MM in-place Θ (n3) Θ (n) O (n2)
MM not-in-place Θ (n3) Θ

(
log2 n

)
O
(
p1/3n2

)
MM hybrid Θ (n3) Θ

(
k(2 log n− k) + n

2k

)
O
(
min{p1/3, 2k}n2

)
VA in-place Θ (n3t) Θ (tn) O (n2)
VA not-in-place Θ (n3t) Θ

(
t log2 n

)
O
(
p1/3n2

)
VA hybrid Θ (n3t) Θ

(
t
(
k(2 log n− k) + n

2k

))
O
(
min{p1/3, 2k}n2

)
Table 6.2: Work (T1), serial cache complexity (Q1), and span (T∞) of in-place, not-in-place, and
hybrid algorithms for matrix problems. and parallelism (T1/T∞) of I-DP and R-DP algorithms for
several DP problems. Here, n = problem size, t = #timesteps, and p = #cores. We assume that the
DP table is too large to fit into the cache. On p cores, the running time is Tp = O (T1/p + T∞) with
high probability when run under the randomized work-stealing scheduler.

Our contributions. The major contributions of this chapter are:
1. [Algorithmic.] We present a generic framework called Autogen-Tradeoff to develop

recursive divide-and-conquer matrix algorithms that often have a tradeoff between
space and parallelism. We derive these hybrid algorithms from standard cache-
oblivious divide-and-conquer DP algorithms. We present four hybrid algorithms for
four problems: matrix multiplication, Floyd-Warshall’s all-pairs shortest path, and
protein accordion folding that exploit the tradeoff. See Table 6.2.

2. [Experimental.] We present empirical results to show that the hybrid algorithms
indeed increase parallelism with very small degradation in cache performance.

Organization of the chapter. Section 6.2 presents the space-parallelism tradeoff frame-
work Autogen-Tradeoff. The empirical evaluations for the algorithms are presented in
Section 6.3.
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6.2 The Autogen-Tradeoff framework
In this section, we describe the tradeoff between space and parallelism for cache-oblivious
recursive parallel algorithms considering matrix multiplication as an example. A similar
technique can be applied to other problems to asymptotically increase parallelism using
asymptotically more space.

Example. Consider matrix multiplication (MM). MM is one of the most fundamental and
well-studied problems in mathematics and computer science. Due to its extensive use
in scientific computing, several algorithms have been proposed to solve the problem in
parallel and distributed systems. In this paper, we focus on the square MM problem with
cubic computations.

The classic square MM problem is defined as follows. Given two n × n matrices A
and B containing real numbers and stored in row- and column-major orders, respectively,
the matrix product of A and B, denoted by C, is computed through C[i, j] = ∑n

1 A[i, k] ×
B[k, j]. The naive cache-inefficient iterative algorithm is in-place has a span of Θ (n) or a
parallelism of Θ (n2). The tiled cache-efficient cache-aware algorithm with tile size

√
M

has Θ (n) span or Θ (n2) parallelism.

Assumptions. We make the following assumptions:
O The cache is tall i.e., M = Ω (B2).
O Data layout is row-major order.
O Task scheduler is randomized work stealing.

Parallel cache complexity. If we use a randomized work stealing scheduler, the par-
allel cache complexity of a recursive divide-and-conquer algorithm on a p-processor ma-
chine can be found using the formula Qp(n) = O (Q1(n) + p(M/B)T∞(n)) w.h.p. in the
problem parameter. The maximum realistic value p can take is same as the parallelism
i.e., T1(n) ÷ Tp(n). When we substitute the maximum value of p in Qp equation, we get
Q∞(n) = O (Q1(n) + (T1(n)/T∞(n))(M/B)T∞(n)) = O (Q1(n) + T1(n)M/B) = O (T1(n)M/B) >
Q1(n). Hence, Q∞(n) will always be greater than Q1(n) and is bounded by O (T1(n)M/B).

Framework. The four main steps of Autogen-Tradeoff are:
1. [In-place algorithm construction.] An in-place divide-and-conquer algorithm is gener-

ated using Autogen for a given problem. See Section 6.2.1.
2. [Span analysis.] If the span recurrence of the in-place algorithm satisfies a particular

property then a hybrid algorthm can be found. See Section 6.2.2.
3. [Not-in-place algorithm construction.] A not-in-place algorithm is derived from the

in-place algorithm using extra space. See Section 6.2.3.
4. [Hybrid algorithm construction.] A hybrid algorithm with asymptotic increase in

parallelism is constructed with space usage somewhere between in-place and not-
in-place algorithms. See Section 6.2.4.

6.2.1 In-place algorithm construction
In this step, we construct an in-place divide-and-conquer algorithm to a given matrix prob-
lem.

We can generate in-place 2-way recursive divide-and-conquer algorithms to a wide class
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of dynamic programs and matrix problems, including matrix multiplication, using Auto-
gen. Please refer to Chapter 2 for more details.

Consider the matrix multiplication problem. The in-place cache-efficient cache-oblivious
recursive parallel algorithm for square matrices was developed in [Blumofe et al., 1996a]
and then extended to rectangular matrices in [Prokop, 1999]. From hereon, we consider
only square matrices unless explicitly mentioned. The in-place algorithm is shown in Fig-
ure 6.3, function AMM . The term ` in AMM represents the plane number. This means that
the algorithm updates the `th plane through the base case looping kernels (Aloop−MM). The
value of ` can be set to 0 when we are using the in-place algorithm independently. The
usage of term ` becomes clear when we analyze the hybrid algorithm. Lemma 2 gives the
complexity analysis of the in-place MM algorithm.

Lemma 2 (In-place MM). The in-place MM algorithm AMM , assuming a tall cache,
has a complexity of T1(n) = Θ (n3), Q1(n) = Θ

(
n3/(B

√
M) + n2/B + n

)
, T∞(n) =

Θ (n), S∞(n) = Θ (n2), and Ep(n) = Θ (p log n).

Proof. The recurrences for the complexities are as follows:

T1(n) =

Θ (1) if n = 1,
8T1(n2 ) + Θ (1) if n > 1. Q1(n) =

Θ
(
n2

B
+ n

)
if n2 ≤ αM,

8Q1(n2 ) + Θ (1) if n2 > αM.

T∞(n) =

Θ (1) if n = 1,
2T∞(n2 ) + Θ (1) if n > 1.

S∞(n) =

O (1) if n = 1,
4S∞(n2 ) + Θ (1) if n > 1.

Also, for p processors, there can be at most p tasks running in parallel. When the tasks
reach the basecase, they execute Aloop-MM . As each executing task is a leaf node in the
recursion tree, we might require a total extra space all along the path from the root to the
p executing leaves of the recursion tree. Hence, Ep(n) = Θ (p log n). Solving the recurrences
and from Ep(n) argument, we have the lemma. �

6.2.2 Span analysis
In this section, we give a theorem that relates to the span of the in-place algorithm. If the
in-place algorithm satisfies a particular property as given in the span theorem (Theorem
12), then a hybrid algorithm can be designed to asymptotically increase the parallelism.

Theorem 12 (Span analysis). Let F1,F2, . . . ,Fm be the m functions of the autogen-
erated in-place R-DP. Let the span of the functions be computed as follows:

TFi
(n) =

1 if n = 1,∑m
j=i aijTFj

(n/2) + Θ (1) otherwise;
(6.1)

where, TFi
(n) is the span of Fi(n) and aij is the number of parallel steps in which

the function Fi(n) calls Fj(n). Suppose the function Fm be like matrix-multiplication
reading from submatrices it does not write to and also that Fm is dominating (see
Definition 16). Also, let maximum = max{a11, a22, . . . , amm}.

If maximum = 2, then there exist not-in-place and hybrid algorithms to asymp-
totically increase parallelism.
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Proof. Let P = Fr1 ,Fr2 , . . . ,F|P | be a path in the recursion tree of the root (= Fr1 = F1) to
a node corresponding to Fm(= F|P |). Let q out of these |P | functions call themselves in
(maximum = 2) parallel steps and q is maximized over all possible paths in the recursion
tree. Then the span of the in-place algorithm is

TF1(n) = Θ
(
n logq−1 n

)
(in-place algorithm) (6.2)

which is found by recursively applying the master theorem from the leaf of the recursion
tree to the root.

We know that Fm is matrix multiplication algorithm (or any matrix-multiplication-like
kernel) and there is a not-in-place algorithm for it whose span recurrence is

TFm(n) = TFm

(
n

2

)
+ Θ (1) if n > 1. (6.3)

It is important to note that replacing the in-place MM-like algorithm Fm with a not-in-
place algorithm, the value of q will be decremented by 1. This gives rise to the not-in-place
algorithm with span

TF1(n) =

Θ (log n) if q = 1,
Θ
(
n logq−1 n

)
if q > 1.

(6.4)

This implies that there is a not-in-place algorithm with asymptotic decrease in span (or
asymptotic increase in parallelism). Hence, there is a hybrid algorithm with asymptotic
increase in parallelism. �

Consider the MM example. We see that the in-place MM has only one function and it
calls itself in two parallel steps as shown in the proof of Lemma 2. It satisfies Theorem 1
and hence a not-in-place and a hybrid algorithm exist for MM.

6.2.3 Not-in-place algorithm construction
In this step, we show how to construct a not-in-place algorithm via the MM example.

For DP or DP-like divide-and-conquer algorithms, we can easily construct the not-in-
place algorithms by simply replacing the in-place MM-like functions with the not-in-place
versions of them.

Consider Figure 6.3. The AMM -N algorithm is the not-in-place algorithm. Instead of
computing the 8 matrix products in 2 parallel steps, we compute the 8 matrix products in
1 parallel step. This requires us to compute the products in a different matrix and once
we have the 8 matrix products in 2 different tables, we combine them to form the original
solution. This requires extra space that can be either dynamically allocated during exe-
cution or statically allocated at before the initial call to the algorithms. Dynamic memory
allocation inside the MM function calls is not recommended because of memory contention.
Lemma 3 gives the complexity analysis for the not-in-place MM.

Lemma 3 (Not-in-place MM). The not-in-place MM algorithm AMM -N , assuming
a tall cache, has a complexity of T1(n) = Θ (n3), Q1(n) = Θ

(
n3/(B

√
M) + n2/B + n

)
,

T∞(n) = Θ
(
log2 n

)
, Sp(n) = Θ

(
n2p1/3

)
.
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AMM (X,U, V, `)

1. if X is a small matrix then Aloop-MM (X,U, V, `)
2. else
3. par: AMM (X11, U11, V11, `), AMM (X12, U11, V12, `),

AMM (X21, U21, V11, `), AMM (X22, U21, V12, `)
4. par: AMM (X11, U12, V21, `), AMM (X12, U12, V22, `),

AMM (X21, U22, V21, `), AMM (X22, U22, V22, `)

AMM -N (X,U, V )

1. if X is a small matrix then Aloop-MM -N (X,U, V )
2. else
3. par: AMM -N (X11, U11, V11), AMM -N (X12, U11, V12),

AMM -N (X21, U21, V11), AMM -N (X22, U21, V12),
AMM -N (Y11, U12, V21), AMM -N (Y12, U12, V22),
AMM -N (Y21, U22, V21), AMM -N (Y22, U22, V22)

4. X ← X + Y

AMM -H(X,U, V, s,m)

1. if m = 1 or X is a small matrix then AMM (X,U, V, s)
2. else
3. par: AMM -H(X11, U11, V11, s,m/2),

AMM -H(X12, U11, V12, s,m/2),
AMM -H(X21, U21, V11, s,m/2),
AMM -H(X22, U21, V12, s,m/2),
AMM -H(X11, U12, V21, s+m/2,m/2),
AMM -H(X12, U12, V22, s+m/2,m/2),
AMM -H(X21, U22, V21, s+m/2,m/2),
AMM -H(X22, U22, V22, s+m/2,m/2)

Figure 6.3: Cache-oblivious recursive divide-and-conquer parallel matrix multiplication
algorithms. The terms `, s, and m denote the plane number, starting plane number, and
total number of planes that can be used, respectively.

Proof. The recurrences for the complexities are as follows:

T1(n) =

Θ (1) if n = 1,
8T1(n2 ) + Θ (1) if n > 1. Q1(n) =

Θ
(
n2

B
+ n

)
if n2 ≤ αM,

8Q1(n2 ) + Θ (1) if n2 > αM.

T∞(n) =

Θ (1) if n = 1,
T∞(n2 ) +O (log n) if n > 1.

Sp(m) =

O (m2) if
(
n
m

)3
≤ p,

8Sp(m2 ) + Θ (m2) if
(
n
m

)3
> p.

Solving the recurrences, we have the lemma. �

6.2.4 Hybrid algorithm construction
In this section, we show how to construct a hybrid algorithm for a given in-place divide-
and-conquer algorithm if it satisfies the span property (Theorem 12).

The AMM algorithm uses least extra space from Lemma 2 and the AMM -N algorithm has
very high parallelism from Lemma 3. Is it possible to develop a hybrid algorithm that uses
less space and has highest parallelism? We take a step in this direction to develop a hybrid
algorithm combining both AMM and AMM -N that uses relatively lesser space than that of
AMM -N and has asymptotically more parallelism than that of AMM .

There are fundamentally two different ways to combine AMM and AMM -N :
(i) [AMM on AMM -N .] Execute AMM until the size of the input submatrix drops to n/2k or

below and then execute AMM -N .
(ii) [AMM -N on AMM .] Execute AMM -N until the size of the input submatrix drops to n/2k

or below and then execute AMM .
The hybrid algorithm in case (ii) is interesting because it offers a tradeoff between space

and parallelism. From hereon, we term this hybrid algorithm AMM -H , where H refers to
hybrid. The increase in parallelism comes with increase in the extra space used. We call
this tradeoff the space-parallelism tradeoff.

The hybrid MM algorithm AMM -H is shown in Figures 6.4 and 6.3. The terms `, s,
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level = 0

level = k

level = log n

Execute

AMM

Execute

AMM-N

Figure 6.4: Hybrid matrix multiplication algorithm.

and m in AMM -H denote the starting plane number and total number of planes that can
be used, respectively. The way the algorithm works is that we execute the not-in-place
algorithm (i.e., AMM -N ) until the problem size or the task size reduces to a threshold value,
say (n/2k)× (n/2k) for some k, and then we execute the in-place algorithm (i.e., AMM ).

In AMM -H , the more number of levels we execute AMM -N initially, the more space we
consume, the more parallelism we have. Therefore, we need to carefully choose the level
k in which we need to shift from one algorithm to another. The complexity of the AMM -H
algorithm is given in Theorem 13.

Theorem 13 (Hybrid MM). The hybrid MM algorithm AMM -H , assuming a tall
cache, has a complexity of T1(n) = Θ (n3), Q1(n) = O

(
n3/(B

√
M) + n2/B + n

)
,

T∞(n) = O
(
k(2 log n− k) + n/2k

)
, and Sp(n) = O

(
min{p1/3, 2k}n2

)
.

Proof. In the hybrid MM algorithm AMM -H , when the size of each input matrix drops to
n/2k or below then we execute AMM . Hence, in the following recurrences, when the prob-
lem size reaches the base case (i.e., when m = n/2k), the complexities are same as the
complexities from Lemma 2 but n is replaced by n/2k. Also, the recursion cases are from
Lemma 3. Thus, we have:

T1(m) =

Θ
((

n
2k

)3)
if m = n

2k ,

8T1(m2 ) + Θ (1) if m > n
2k .

Q1(m) =

Θ
(

n3

8kB
√
M

+ n2

4kB
+ n

2k

)
if m = n

2k ,

8Q1(m2 ) + Θ (1) if m > n
2k .

T∞(m) =

Θ
(
n
2k

)
if m = n

2k ,

T∞(m2 ) +O (logm) if m > n
2k .

Sp(m) =

O (m2) if m = n
2k or

(
n
m

)3
≤ p,

8S(m2 ) + Θ (m2) if m > n
2k and

(
n
m

)3
> p.

Solving the recurrences and from Sp(n) argument, we have the theorem. �

Theorem 13 may or may not be cache-efficient depending on the value of k.
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6.3 Experimental results
In this section, we present empirical results1 showing the increased parallelism of our
hybrid algorithms.

Experimental setup. All our experiments were performed on a multicore machine with
dual-socket 8-core 2.7 GHz Intel Sandy Bridge processors (2 × 8 = 16 cores in total) and
32 GB RAM. Each core was connected to a 32 KB private L1 cache and a 256 KB private
L2 cache. All cores in a processor shared a 20 MB L3 cache. All algorithms were imple-
mented in C++. We used Intel Cilk Plus extension to parallelize and Intelő C++ Compiler
v13.0 to compile all implementations with optimzation parameters -O3 -ipo -parallel

-AVX -xhost. PAPI 5.3 [PAP, ] was used to count cache misses.

Implementations. We implement algorithms for the matrix multiplication (MM) prob-
lem. For all programs, the base case size B was set to 32. For MM, the DP table dimension
n varied from 26 = 64 to 212 = 2048.

For each problem, we compared five algorithms: in-place algorithm I, not-in-place algo-
rithm N, and three hybrid algorithms H(2), H(4), H(8). The hybrid algorithm H(m) means
that the algorithm uses a total of m planes each of size n × n. In other words, m − 1 extra
planes were used along with the input DP table. We can think of the in-place algorithm as
H(1) and not-in-place algorithm as H(n).

Matrix multiplication. The plots of MM are shown in Figure 6.5. The parallelism of I is
Θ (n2) and that of N is Θ

(
n3/ log2 n

)
. Hence, the difference between the values of I and N

increases significantly when n increases. The more number of planes we use in the hybrid
algorithm, the more parallelism we can exploit. The cache misses incurred by a hybrid
algorithm is almost the same as that of the in-place algorithm.

6.4 Conclusion and open problems
We presented a framework called Autogen-Tradeoff to semi-automatically design recur-
sive divide-and-conquer algorithms with very high parallelism using extra space. The
framework can be useful when we have enough number of processors and enough space.

A few open problems are:
O [Improve span analysis.] Improve the framework such that given a DP recurrence,

find whether the problem can have an algorithm with parallelism better than that of
the standard 2-way R-DP or not. If we can indeed get better parallelism, derive the
faster algorithm.

O [Tight lower bounds for optimal parallelism.] The optimal parallelism of an algo-
rithm can be different depending on the constraints. Identify different constraints for
an algorithm (e.g.: with and without using exra space), and prove lower bounds for
optimal parallelism.

O [Compute optimal parallelism.] For any given DP recurrence, compute the optimal
parallelism achievable by an algorithm (irrespective of all constraints) that can be
used to solve a DP recurrence.

1The matrix multiplication algorithm was implemented by Mohammad Mahdi Javanmard.
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Figure 6.5: Performance comparison of in-place algorithm - I, not-in-place algorithm - N,
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lelism, and (c) L3 cache misses; when DP table dimension increases and base case size B
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Appendix A

Efficient Divide-&-Conquer DP
Algorithms

In this section, we present several divide-and-conquer DP algorithms. By the virtue of
divide-and-conquer (see Section 1.7), these algorithms are cache-efficient, cache-oblivious,
processor-oblivious, and parallel. Standard 2-way divide-and-conquer algorithms for longest
common subsequence, parenthesis problem, sequence alignment with gap penalty (often
called the gap problem), and Floyd Warshall’s all-pairs shortest path already exist and we
include them here for completeness and we analyze them in more depth. The rest of the
algorithms are new.

We also discuss the divide-and-conquer variants of elementary sorting algorithms. Though
such algorithms are not DP algorithms, the core approach of designing those algorithms
comes from Autogen.

A.1 Longest common subsequence & edit distance
A sequence Z = 〈z1, z2, . . . zk〉 is called a subsequence of another sequence X = 〈x1, x2, . . . xm〉
if there exists a strictly increasing function f : [1, 2, . . . , k] → [1, 2, . . . ,m] such that for all
i ∈ [1, k], zi = xf(i). A sequence Z is a common subsequence of sequences X and Y if Z
is a subsequence of both X and Y . In the longest common subsequence (LCS) problem,
we are given two sequences X and Y , and we need to find a maximum-length common
subsequence of X and Y . The LCS problem arises in a wide variety of applications, and it
is especially important in computational biology in sequence alignment.

Given two sequences X = 〈x1, x2, . . . xm〉 and Y = 〈y1, y2, . . . yn〉, we define C[i, j] (0 ≤ i ≤
m, 0 ≤ j ≤ n) to be the length of an LCS of 〈x1, x2, . . . xi〉 and 〈y1, y2, . . . yj〉. Then C[m,n]
is the length of an LCS of X and Y , and can be computed using the following recurrence
relation (see, e.g., [Cormen et al., 2009]):

C[i, j] =


0 if i = 0 or j = 0,
C[i− 1, j − 1] + 1 if i, j > 0 and xi = yj,
max {C[i, j − 1], C[i− 1, j]} if i, j > 0 and xi , yj.

(A.1)

The classic dynamic programming solution to the LCS problem is based on this recur-
rence relation, and computes the entries of C[0 . . .m, 0 . . . n] in row-major order in Θ (mn)
time and space.
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LOOP-LCS(C)

1. for i← 0 to n do C[i, 0]← 0; C[0, i]← 0
2. for i← 1 to n do
3. for j ← 1 to n do
4. if xi = yj then C[i, j]← C[i− 1, j − 1] + 1
5. else C[i, j]← max (C[i, j − 1], C[i− 1, j])

PAR-LOOP-LCS(C)

1. C[0, 0]← 0
2. parallel for i← 1 to n do C[i, 0]← 0; C[0, i]← 0
3. for t← 1 to n do
4. parallel for j ← 1 to t do
5. i← t− j − 1
6. if xi = yj then C[i, j]← C[i− 1, j − 1] + 1
7. else C[i, j]← max (C[i, j − 1], C[i− 1, j])
8. for t← n+ 1 to 2n− 1 do
9. parallel for j ← t− n+ 1 to n do

10. i← t− j + 1
11. if xi = yj then C[i, j]← C[i− 1, j − 1] + 1
12. else C[i, j]← max (C[i, j − 1], C[i− 1, j])

ALCS(X)

1. if X is a small matrix then Aloop-LCS(X)
2. else
3. ALCS(X11)
4. parallel: ALCS(X12), ALCS(X21)
5. ALCS(X22)

Figure A.1: The dependency graph, serial iterative algorithm, parallel iterative algorithm,
and the divide-and-conquer algorithm for the LCS problem. Initial call to the algorithm is
ALCS(C), where C is the full DP table.

Please refer Figure A.1. It shows the dependency graph for the problem. A cell at
position (i, j) depends on three light green cells as per the recurrence. The figure contains
several algorithms for computing the LCS lengths. A simple iterative algorithm is given
as LOOP-LCS. A highly parallel iterative algorithm is given as PAR-LOOP-LCS.

The divide-and-conquer algorithm ALCS was presented in [Chowdhury and Ramachan-
dran, 2006, Chowdhury and Ramachandran, 2008]. A picture representation of algorithm
is shown in the right of Figure A.1. The algorithm splits the entire DP X table into four
quadrants: X11 (top-left), X12 (top-right), X21 (bottom-left), and X22 (bottom-right). Comput-
ing the LCS lengths in each of these quadrants are the independent subproblems of our
original problem (computing the entire DP table). Hence, we solve them recursively. First,
we fill X11. Then we fill quadrants X12 and X21 in parallel. Finally, we fill X22. Note that
the quadrants are filled recursively. More details on the algorithm can be found in the
corresponding paper(s).

The problem of converting one string to another string using three operations: inserts,
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deletes, and substitutions, and minimizing the overall cost is called the edit distance prob-
lem [Leiserson, 2010]. The applications of the edit distance problem include automatic
spelling correction and the longest common subsequence. The LCS problem is in fact a
special case of the edit distance problem. A quadratic-time algorithm to find the edit dis-
tance between two strings is given in [Wagner and Fischer, 1974]. A sub-quadratic time
algorithm for the problem was first presented in [Masek and Paterson, 1980]. The divide-
and-conquer algorithm presented for the LCS problem also works and retains its optimal
serial cache complexity for the edit distance problem provided cost for inserts, deletes,
and substitutions are fixed constants. If the costs for the three operations are extremely
generic, then no cache-efficient divide-and-conquer algorithm exists for the problem.

Linear space. Note that if we use Θ (n2) space for the DP table, as the total work (to-
tal number of computations) is also Θ (n2), we cannot get temporal locality and the serial
cache complexity will be Θ (n2/B). To exploit temporal locality, the total work complexity
must be asymptotically greater than the total space complexity. We can exploit temporal
locality if we asymptotically reduce the space. As described in the papers [Chowdhury
and Ramachandran, 2006,Chowdhury and Ramachandran, 2008], we store only the input
boundaries for different parallel tasks (or quadrants of the DP table) that are to be exe-
cuted. With this idea, the space can be reduced to Θ (n log n). To reduce the space further to
linear space i.e., Θ (n) space, we must reuse the input / output boundaries of the quadrants
across different levels of the recursion tree.

Complexity analysis for the PAR-LOOP-LCS algorithm
The parallel iterative algorithm makes use of a 2-D matrix C for simplicity. The algorithm
can be modified easily to make use of a 1-D array of size Θ (n).

For f ∈ {PAR-LOOP-LCS}, let Wf (n), Qf (n), Tf (n), and Sf (n) denote the total work,
serial cache complexity, span, and parallel space consumption of fLCS for the parameter
n. Then Wf (n) = Θ (n2). Qf (n) is same as scanning n anti-diagonals n times i.e., Qf (n) =
Θ
(
n
(
n
B

+ 1
))

= Θ
(
n2

B
+ n

)
. Each parallel for loop takes Θ (log n) time to divide the loop to

processors and there are Θ (n) such parallel for loops. Hence, Tf (n) = Θ (n log n). Space
Sf (n) is simply Θ (n).

For the edit distance and LCS problems, the PAR-LOOP-LCS algorithm achieves
T1(n) = Θ (n2), Q1(n) = Θ

(
n2

B
+ n

)
, T∞(n) = Θ (n log n), parallelism = Θ

(
n

logn

)
, and

S∞(n) = Θ (n).

Complexity analysis for the 2-way ALCS algorithm
For f ∈ {A}, let Wf (n), Qf (n), Tf (n), and Sf (n) denote the total work, serial cache complex-
ity, span, and parallel space consumption of fLCS for the parameter n. Then

WA(n) =
{
O (1) if n = 1,
4WA

(
n
2

)
+ Θ (1) otherwise; QA(n) =

 O
(
n
B

+ 1
)

if n ≤ γAM ,
4QA

(
n
2

)
+ Θ (1) otherwise;

TA(n) =
{ Θ (1) if n = 1,

3TA
(
n
2

)
+ Θ (1) otherwise; SA(n) =

{
O (n) if n ≤ γAM ,
2SA

(
n
2

)
+ Θ (n) otherwise;
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where, γA is a suitable constant. Solving, WA(n) = Θ (n2), QA(n) = Θ
(
n2

BM
+ n2

M2 + n
B

+ 1
)
,

TA(n) = Θ
(
nlog 3

)
, and SA(n) = Θ (n log n).

The space complexity is Θ (n log n) because there are Θ (log n) levels in the recursion tree
and at every level the input boundaries take Θ (n) space. In fact, we can reduce the space
to Θ (n) if at every level we reuse the input boundaries of the parent function call.

For the edit distance and LCS problems, the 2-way divide-and-conquer algorithm
achieves T1(n) = Θ (n2), Q1(n) = Θ

(
n2

BM
+ n2

M2 + n
B

+ 1
)
, T∞(n) = Θ

(
nlog 3

)
, parallelism

= Θ
(
n2−log 3

)
, and S∞(n) = Θ (n).

Complexity analysis for the r-way ALCS algorithm
In an r-way divide-and-conquer algorithm, we divide the entire n × n matrix into r × r
submatrices each of size (n/r)×(n/r) and solve them recursively. In Figure A.1, for an r-way
divide-and-conquer we will have r2 function calls inside the ALCS function. For simplicity
of exposition we assume that n is a power of r. When r increases, the number of cache misses
increases, the span decreases, and it gets more difficult to implement the program.

For f ∈ {A}, let Wf (n), Qf (n), Tf (n), and Sf (n) denote the total work, serial cache com-
plexity, span, and parallel space consumption of r-way fLCS for the parameter n. Then

WA(n) =
{
O (1) if n = 1,
r2WA

(
n
r

)
+ Θ (1) otherwise; QA(n) =

 O
(
n
B

+ 1
)

if n ≤ γAM ,
r2QA

(
n
r

)
+ Θ (1) otherwise;

TA(n) =
{ Θ (1) if n = 1,

(2r − 1)TA
(
n
r

)
+ Θ (1) otherwise; SA(n) =

{
O (n) if n ≤ γAM ,
rSA

(
n
r

)
+ Θ (n) otherwise;

where, γA is a suitable constant. Solving,WA(n) = Θ (n2),QA(n) = O
(

n2

BdM/re + n2

dM/re2 + n
B

+ 1
)

,

TA(n) = O
(
nlogr(2r−1)

)
, and SA(n) = Θ (n logr n).

The serial cache complexity is found as below

QA(n) ≤ r2QA

(
n

r

)
+ c = r2

(
r2QA

(
n

r2

)
+ c

)
+ c = (r2)2QA

(
n

r2

)
+ cr2 + c

= (r2)kQA

(
n

rk

)
+ c(r2)k−1 + · · ·+ c

(
say

n

rk
≤ γAM

)
= c(r2)k

(
n

rkB
+ 1

)
+ c

(
(r2)k−1 + · · ·+ 1

)
= crk

n

B
+ c

(
(r2)k + · · ·+ 1

)
= crk

n

B
+ c

(
(r2)k+1 − 1
r2 − 1

)
≤ crk

n

B
+ c′r2k (for some constant c′)

We would like to find the upper bound for QA(n). As
(
n/rk

)
≤ γAM , we have

(
n/rk−1

)
>

γAM , or rk−1 < (n/(γAM)). Substituting for the upper bound of rk−1 in the inequality above

142



we get

QA(n) ≤ c
n

B
· rk−1 · r + c′

(
rk−1

)2
· r2 ≤ c

n

B
· n

γAM
· r + c′

(
n

γAM

)2

· r2

= O
(
n2r

BM
+ n2r2

M 2

)
= O

 n2

B
⌈
M
r

⌉ + n2⌈
M
r

⌉2


When r increases, the temporal cache locality decreases, and hence the number of cache
misses increases. The amount of memory from which we can exploit temporal locality is
bM/rc for the r-way divide-and-conquer LCS algorithm. Hence, the serial cache complexity
is a function of n, B, and bM/rc.

The span can be computed easily

TA(n) ≤ (2r − 1)TA
(
n

r

)
+ c = (2r − 1)

(
(2r − 1)TA

(
n

r

)
+ c

)
+ c

= (2r − 1)2TA
(
n

r2

)
+ c ((2r − 1) + 1)

= (2r − 1)kTA
(
n

rk

)
+ c

(
(2r − 1)k−1 + · · ·+ 1

) (
say

n

rk
= 1

)
= (2r − 1)kc+ c′(2r − 1)k−1 = c′(2r − 1)k = c′(2r − 1)logr n = O

(
nlogr(2r−1)

)
The space complexity is Θ (n logr n) because there are Θ (logr n) levels in the recursion

tree and at every level the input boundaries take Θ (n) space. Again, we can reduce the
space to Θ (n) if at every level we reuse the input boundaries of the parent function call.

For the edit distance and LCS problems, the r-way divide-and-conquer algorithm
achieves T1(n) = Θ (n2), QA(n) = O

(
n2

BdM/re + n2

dM/re2 + n
B

+ 1
)

, TA(n) = O
(
nlogr(2r−1)

)
,

parallelism = Θ
(
n2−logr(2r−1)

)
, and S∞(n) = Θ (n).

A.2 Parenthesis problem
The parenthesis problem [Galil and Park, 1994] is defined by the following recurrence
relation:

C[i, j] =
{
xj if 0 ≤ i = j − 1 < n,
mini<k<j {(C[i, k] + C[k, j]) + w(i, j, k)} if 0 ≤ i < j − 1 < n; (A.2)

where xj ’s are assumed to be given for j ∈ [1, n]. We also assume that w(·, ·, ·) is a function
that can be computed in-core without additional memory accesses.

The class of problems defined by the recurrence relation above includes optimal chain
matrix multiplication, RNA secondary structure prediction, optimal binary search trees,
optimal polygon triangulation, string parsing for context-free grammar (CYK algorithm),
optimal natural join of database tables (Selinger algorithm), maximum perimeter inscribed
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polygon, and offline job scheduling minimizing flow time of jobs. A variant of this recur-
rence which does not include the w(i, k, j) term and is defined as the simple dynamic pro-
gram, was considered in [Cherng and Ladner, 2005].

As in [Cherng and Ladner, 2005], instead of recurrence A.2 we will use the following
slightly augmented version of A.2 which will considerably simplify the recursive subdivi-
sion process in our divide-and-conquer algorithm.

C[i, j] =


∞ if 0 ≤ i = j ≤ n,
xj if 0 ≤ i = j − 1 < n,
mini<k≤j {(C[i, k] + C[k, j]) + w(i, j, k)} if 0 ≤ i < j − 1 < n;

(A.3)

where w(i, j, k) is defined to be ∞ when k = i or k = j. It is straightforward to see that
recurrences A.2 and A.3 are equivalent, i.e., they compute the same values for any given
C[i, j], 0 ≤ i < j − 1 < n. In the rest of this section we will assume for simplicity that
n = 2` − 1 for some integer ` ≥ 0.

Please refer Figure A.2. It gives the dependency graph for the parenthesis problem. A
cell (i, j) depends on the light green cells. Cell numbered k on the horizontal light green line
is paired with cell numbered k on the vertical light green line during the update of cell (i, j).
A serial iterative algorithm LOOP-PARENTHESIS and a parallel iterative algorithm PAR-
LOOP-PARENTHESIS are also given in the figure. PAR-LOOP-PARENTHESIS completely
updates the cells of the diagonals (with slope -1) in the DP table from left to right.

A divide-and-conquer algorithm [Chowdhury and Ramachandran, 2008] (both pseu-
docode and pictorial representation) are shown in Figure A.2. The algorithm consists of
three recursive divide-and-conquer functions named Apar, Bpar and Cpar. The three func-
tions differ from each other in their functionalities. Function Apar(X) completely updates
a right-triangular region X by reading from itself; Bpar(X,U, V ) updates a square region
X by reading from itself and two other right-triangular regions U and V ; and finally the
function Cpar(X,U, V ) updates a square region X by reading from two other square regions
U and V .

The work done by each of the base case kernels: Aloop−par,Bloop−par, and Cloop−par is cubic
w.r.t. their input parameter. The number of function calls to Aloop−par,Bloop−par, and Cloop−par
are Θ (n) ,Θ (n2), and Θ (n3), respectively. This means that if we optimize only the base case
Cloop−par then we can get large performance gains. Another important point to note is that
the kernel Bloop−par is more flexible than Aloop−par. Similarly, kernel Cloop−par is more flexible
than Bloop−par.

Complexity analysis for the PAR-LOOP-PARENTHESIS algorithm
For f ∈ {PAR-LOOP-PARENTHESIS}, let Wf (n), Qf (n), Tf (n), and Sf (n) denote the work,
serial cache complexity, span, and space consumption of fpar on a matrix of size n × n.
The total work remains same compared to the serial algorithm Wf (n) = Θ (n3). Qf (n)
can be computed for the three loops as Qf (n) = Θ (n · n · (n)) = Θ (n3). The third loop
i.e., k-loop accesses data from both horizontal or vertical lines. Therefore, irrespective
of whether we use row-major order or column-major order, we cannot get spatial locality
for the innermost loop. The span is computed as Tf (n) = Θ (n · (log n+ n · (1))) = Θ (n2).
Finally, Sf (n) = Θ (n2).
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LOOP-PARENTHESIS(C, n)

1. for i← n− 1 to 0 do
2. for j ← i+ 2 to n do
3. for k ← i+ 1 to j do
4. C[i, j]← min

(
C[i, k] + C[k, j]

+w(i, j, k), C[i, j]

)
PAR-LOOP-PARENTHESIS(C, n)

1. for t← 2 to n− 1 do
2. parallel for i← 1 to n− t do
3. j ← t+ i
4. for k ← i+ 1 to j do
5. C[i, j]← min

(
C[i, k] + C[k, j]

+w(i, j, k), C[i, j]

)
Apar(X)

1. if X is a small matrix then Aloop-par(X)
2. else
3. parallel: Apar(X11), Apar(X22)
4. Bpar(X12, X11, X22)

Cpar(X,U, V )

1. if X is a small matrix then Cloop-par(X,U, V )
2. else
3. parallel: Cpar(X11, U11, V11), Cpar(X12, U11, V12),

Cpar(X21, U21, V11), Cpar(X22, U21, V12)
4. parallel: Cpar(X11, U12, V21), Cpar(X12, U12, V22),

Cpar(X21, U22, V21), Cpar(X22, U22, V22)

Bpar(X,U, V )

1. if X is a small matrix then Bloop-par(X,U, V )
2. else
3. Bpar(X21, U22, V11)
4. parallel: Cpar(X11, U12, X21), Cpar(X22, X21, V12)
5. parallel: Bpar(X11, U11, V11), Bpar(X22, U22, V22)
6. Cpar(X12, U12, X22)
7. Cpar(X12, X11, V12)
8. Bpar(X12, U11, V22)

Figure A.2: Top: Serial and parallel iterative algorithms for solving the parenthesis prob-
lem. Middle: A divide-and-conquer algorithm. Initial call to the algorithm is Apar(C),
where C is the DP table. Bottom: Dependency graph and pictorial representation of the
divide-and-conquer algorithm.
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Aloop−par(X,n)

1. for t← 2 to n− 1 do
2. for i← 0 to n− t− 1 do
3. j ← t+ i
4. for k ← i+ 1 to j do
5. X[i, j]← min (X[i, j], X[i, k] +X[k, j] + w(xi+ i, xj + j, xj + i+ 1))

Bloop−par(X,U, V, n)

1. for t← n− 1 to 0 do
2. for i← t to n− 1 do
3. j ← i− t
4. for k ← i to n− 1 do
5. X[i, j]← min (X[i, j], U [i, k] + V [k, j] + w(xi+ i, xj + j, uj + i))
6. for k ← 0 to j do
7. X[i, j]← min (X[i, j], U [i, k] + V [k, j] + w(xi+ i, xj + j, uj))

Cloop−par(X,U, V, n)

1. for i← 0 to n− 1 do
2. for j ← 0 to n− 1 do
3. for k ← 0 to n− 1 do
4. X[i, j]← min (X[i, j], U [i, k] + V [k, j] + w(xi+ i, xj + j, uj))

Figure A.3: Base cases (iterative kernels) of the three recursive functions of the divide-
and-conquer algorithm for the parenthesis problem.

For the parenthesis problem, the PAR-LOOP-PARENTHESIS algorithm achieves
T1(n) = Θ (n3), Q1(n) = Θ (n3), T∞(n) = Θ (n2), parallelism = Θ (n), and S∞(n) =
Θ (n2).

Complexity analysis for the 2-way Apar algorithm
For f ∈ {A,B,C}, let Wf (n), Qf (n), Tf (n), and Sf (n) denote the work, serial cache complex-
ity, span, and space consumption of fpar on a matrix of size n× n. Then

WA(n) = WB(n) = WC(n) = Θ (1) if n = 1,
WA(n) = 2WA

(
n
2

)
+WB

(
n
2

)
+ Θ (1) if n > 1;

WB(n) = 4
(
WB

(
n
2

)
+WC

(
n
2

))
+ Θ (1) if n > 1;

WC(n) = 8WC

(
n
2

)
+ Θ (1) if n > 1;

QA(n) = QB(n) = QC(n) = O
(
n2

B
+ n

)
if n2 ≤ γM ,

QA(n) = 2QA

(
n
2

)
+QB

(
n
2

)
+ Θ (1) if n2 > γAM ;

QB(n) = 4
(
QB

(
n
2

)
+QC

(
n
2

))
+ Θ (1) if n2 > γBM ;

QC(n) = 8QC

(
n
2

)
+ Θ (1) if n2 > γCM ;

TA(n) = TB(n) = TC(n) = O (1) if n = 1,
TA(n) = TA

(
n
2

)
+ TB

(
n
2

)
+ Θ (1) if n > 1;

TB(n) = 3
(
TB
(
n
2

)
+ TC

(
n
2

))
+ Θ (1) if n > 1;

TC(n) = 2TC
(
n
2

)
+ Θ (1) if n > 1;
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SA(n) = SB(n) = SC(n) = O (1) if n = 1,
SA(n) = 2SA

(
n
2

)
+ SB

(
n
2

)
+ Θ (1) if n > 1;

SB(n) = SB

(
n
2

)
+ 3max

(
SB

(
n
2

)
, SC

(
n
2

))
+ Θ (1) if n > 1;

SC(n) = 4SC

(
n
2

)
+ Θ (1) if n > 1;

where, γ, γA, γB and γC are suitable constants. Solving, QA(n) = O
(

n3

B
√
M

+ n3

M
+ n2

B
+ n

)
,

WA(n) = Θ (n3), TA(n) = O
(
nlog 3

)
, and SA(n) = Θ (n2).

For the parenthesis problem, the 2-way Apar algorithm achieves T1(n) = Θ (n3),
Q1(n) = O

(
n3

B
√
M

+ n3

M
+ n2

B
+ n

)
, T∞(n) = Θ

(
nlog 3

)
, parallelism = Θ

(
n3−log 3

)
, and

S∞(n) = Θ (n2).

Apar(X,U, V, d)

1. r ← tilesize[d]
2. if r > m then Aloop-par(X,U, V )

else
3. Let diagonal represent (j − i)
4. parallel: Apar(Xi,j , Ui,j , Vi,j , d+ 1) for i, j ∈ [1, r] and diagonal = 0
5. for k ← 1 to r − 1 do
6. parallel: Cpar(Xi,j , Ui,k+i−1, Vk+i−1,j , d+ 1) for i, j ∈ [1, r] and diagonal ∈ [k,min{2k − 2, r − 1}]
7. parallel: Cpar(Xi,j , Ui,1+i, V1+i,j , d+ 1) for i, j ∈ [1, r] and diagonal ∈ [k,min{2k − 3, r − 1}]
8. parallel: Bpar(Xi,j , Ui,i, Vj,j , d+ 1) for i, j ∈ [1, r] and diagonal = k

Bpar(X,U, V, d)

1. r ← tilesize[d]
2. if r > m then Bloop-par(X,U, V )

else

3. Let U ′i,` =
{
Xi,` if ` > 0,
Ui,`+r if ` ≤ 0.

and V ′`,j =
{
V`,j if ` > 0,
X`+r,j if ` ≤ 0.

4. Let diagonal represent (j − i)
5. for k ← 1 to 2r − 1 do
6. parallel: Cpar(Xi,j , U

′
i,k−r+i−1, V

′
k−r+i−1,j , d+ 1) for i, j ∈ [1, r] and diagonal + r ∈ [k,min{2k − 2, 2r − 1}]

7. parallel: Cpar(Xi,j , U
′
i,1+i−r, V

′
1+i−r,j , d+ 1) for i, j ∈ [1, r] and diagonal + r ∈ [k,min{2k − 3, 2r − 1}]

8. parallel: Bpar(Xi,j , Ui,i, Vj,j , d+ 1) for i, j ∈ [1, r] and diagonal + r = k

Cpar(X,U, V, d)

1. r ← tilesize[d]
2. if r > m then Cloop-par(X,U, V )

else
3. for k ← 1 to r do
4. parallel: Cpar(Xi,j , Ui,k, Vk,j , d+ 1) for i, j ∈ [1, r]

Figure A.4: r-way divide-and-conquer algorithm for the parenthesis algorithm.

Complexity analysis for the r-way Apar algorithm
For simplicity of exposition we assume that n is a power of r. For f ∈ {A,B,C}, let
Wf (n), Qf (n), Tf (n), and Sf (n) denote the total work, serial cache complexity, span, and
parallel space consumption of r-way fpar for the parameter n. Then
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WA(n) = WB(n) = WC(n) = Θ (1) if n = 1,
WA(n) = rWA

(
n
r

)
+ r(r−1)

2 WB

(
n
r

)
+ r(r−1)(r−2)

6 WC

(
n
r

)
+ Θ (1) if n > 1;

WB(n) = r2WB

(
n
r

)
+ r2(r − 1)WC

(
n
r

)
+ Θ (1) if n > 1;

WC(n) = r3WC

(
n
r

)
+ Θ (1) if n > 1;

QA(n) = QB(n) = QC(n) = O
(
n2

B
+ 1

)
if n2 ≤ γM ,

QA(n) = rQA

(
n
r

)
+ r(r−1)

2 QB

(
n
r

)
+ r(r−1)(r−2)

6 QC

(
n
r

)
+ Θ (1) if n2 > γAM ;

QB(n) = r2QB

(
n
r

)
+ r2(r − 1)QC

(
n
r

)
+ Θ (1) if n2 > γBM ;

QC(n) = r3QC

(
n
r

)
+ Θ (1) if n2 > γCM ;

TA(n) = TB(n) = TC(n) = O (1) if n = 1,
TA(n) = TA

(
n
r

)
+ TB

(
n
r

)
+ (r−2)(r−1)

2 TC
(
n
r

)
+ Θ (1) if n > 1;

TB(n) = (2r − 1)
(
TB
(
n
r

)
+ (r − 1)TC

(
n
r

))
+ Θ (1) if n > 1;

TC(n) = rTC
(
n
r

)
+ Θ (1) if n > 1;

where, γ, γA, γB and γC are suitable constants.

The serial cache complexity is computed as below.

QC(n) = r3QC

(
n

r

)
+ c = r3

(
r3QC

(
n

r2

)
+ c

)
+ c = (r3)2QC

(
n

r2

)
+ c

(
(r3)1 + 1

)
= (r3)kQC

(
n

rk

)
+ c

(
(r3)k−1 + · · ·+ 1

) (
say

(
n

rk

)2
≤ γM

)

= cr3k
((

n

rk

)2 1
B

+ 1
)

+ c
(
(r3)k−1 + · · ·+ 1

)
= crk

n2

B
+ c

(
(r3)k + · · ·+ 1

)
= crk

n2

B
+ cr3k

Let (n/rk)2 ≤ γM . This implies (n/rk−1)2 > γM or in other words rk−1 < n/
√
γM . Substi-

tuting the value of rk−1 in the above equation we have

QC(n) = crk−1r
n2

B
+ cr3k−3r3 ≤ cr

n3

B
√
M

+ cr3
n3

M
√
M

= O
(

n3r

B
√
M

+ n3r3

M
√
M

)

= O

 n3

B
⌈ √

M
r

⌉ + n3⌈ √
M
r

⌉3
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We now consider the cache complexity of the Bpar function using the complexity of Cpar.

QB(n) ≤ r2QB

(
n

r

)
+ r2(r − 1)QC

(
n

r

)
+ c

= r2
(
r2QB

(
n

r2

)
+ r2(r − 1)QC

(
n

r2

)
+ c

)
+ r2(r − 1)QC

(
n

r

)
+ c

= (r2)2QB

(
n

r2

)
+ (r2)2(r − 1)QC

(
n

r2

)
+ cr2 + r2(r − 1)QC

(
n

r

)
+ c

= (r2)kQB

(
n

rk

)
+ r2(r − 1)

(
(r2)k−1QC

(
n

rk

)
+ · · ·+QC

(
n

r

))
+ c

(
(r2)k−1 + · · ·+ 1

)
≤ cr2k

((
n

rk

)2 1
B

+ 1
)

+ r2(r − 1)
k∑
i=1

(
(r2)i−1QC

(
n

ri

))
+ c

(
(r2)k−1 + · · ·+ 1

)

= c
n2

B
+ cr2(r − 1)

k∑
i=1

(
(r2)i−1

((
n

ri

)3 r

B
√
M

+
(
n

ri

)3 r3

M
√
M

))
+ cr2k

= c
n2

B
+ c

n3

B
√
M
r(r − 1)

k∑
i=1

1
ri

+ c
n3

M
√
M
r3(r − 1)

k∑
i=1

1
ri

+ cr2k

= c
n2

B
+ c

n3

B
√
M
r(r − 1) rk − 1

rk(r − 1) + c
n3

M
√
M
r3(r − 1) rk − 1

rk(r − 1) + cr2k

= c
n2

B
+ c

n3

B
√
M

(
r − 1

rk−1

)
+ c

n3

M
√
M

(
r3 − r2

rk−1

)
+ cr2k−2r2

Substituting the upper bound of rk−1, we have

QB(n) ≤ c
n2

B
+ c

n3

B
√
M

(
r −
√
M

n

)
+ c

n3

M
√
M

(
r3 − r2

√
M

n

)
+ cr2k−2r2

≤ c
n2

B
+ c

n3r

B
√
M

+ c
n3r3

M
√
M

+ c
n2r2

M
= O

(
n3r

B
√
M

+ n3r3

M
√
M

+ n2

B
+ n2r2

M

)

= O

 n3

B
⌈ √

M
r

⌉ + n3⌈ √
M
r

⌉3 + n2

B
+ n2⌈ √

M
r

⌉2


With the cache complexity of Bpar and Cpar functions, we can easily find the cache com-
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plexity of the A function.

QA(n) ≤ rQA

(
n

r

)
+ r(r − 1)

2
QB

(
n

r

)
+ r(r − 1)(r − 2)

6
QC

(
n

r

)
+ c

= r

(
rQA

(
n

r2

)
+ r(r − 1)

2
QB

(
n

r2

)
+ r(r − 1)(r − 2)

6
QC

(
n

r2

)
+ c

)

+ r(r − 1)
2

QB

(
n

r

)
+ r(r − 1)(r − 2)

6
QC

(
n

r

)
+ c

= r2QA

(
n

r2

)
+ r(r − 1)

2

(
rQB

(
n

r2

)
+QB

(
n

r

))
+ r(r − 1)(r − 2)

6

(
rQC

(
n

r2

)
+QC

(
n

r

))
+ c(r + 1)

= rkQA

(
n

rk

)
+ r(r − 1)

2

(
rk−1QB

(
n

rk

)
+ · · ·+QB

(
n

r

))
+ r(r − 1)(r − 2)

6

(
rk−1QC

(
n

rk

)
+ · · ·+QC

(
n

r

))
+ c(rk−1 + · · ·+ 1)

= crk
((

n

rk

)2 1
B

+ 1
)

+ r(r − 1)
2

k∑
i=1

ri−1QB

(
n

ri

)

+ r(r − 1)(r − 2)
6

k∑
i=1

ri−1QC

(
n

ri

)
+ c(rk−1 + · · ·+ 1)

= c
1
rk
n2

B
+ c

r(r − 1)
2

k∑
i=1

(
ri−1

((
n

ri

)3 r

B
√
M

+
(
n

ri

)3 r3

M
√
M

+
(
n

ri

)2 1
B

+
(
n

ri

)2 r2

M

))

+ c
r(r − 1)(r − 2)

6

k∑
i=1

(
ri−1

((
n

ri

)3 r

B
√
M

+
(
n

ri

)3 r3

M
√
M

))
+ crk

= c
1
rk
n2

B
+ c

r(r − 1)
2

n3

B
√
M

k∑
i=1

1
r2i

+ c
r3(r − 1)

2
n3

M
√
M

k∑
i=1

1
r2i

+ c
(r − 1)

2
n2

B

k∑
i=1

1
ri

+ c
r2(r − 1)

2
n2

M

k∑
i=1

1
ri

+ c
r(r − 1)(r − 2)

6
n3

B
√
M

k∑
i=1

1
r2i

+ c
r3(r − 1)(r − 2)

6
n3

M
√
M

k∑
i=1

1
r2i

+ crk

After substituting
∑k
i=1(1/ri) = (rk − 1)/(rk(r − 1)) and

∑k
i=1(1/r2i) = (r2k − 1)/(r2k(r2 − 1))

in the equation above and simplifying, we have

QA(n) ≤ c
1

rrk−1
n2

B
+ c

2
r

r + 1

(
1− 1

r2r2k−2

)
n3

B
√
M

+ c

2
r3

r + 1

(
1− 1

r2r2k−2

)
n3

M
√
M

+ c

2

(
1− 1

rrk−1

)
n2

B
+ c

2

(
r2 − r

rk−1

)
n2

M
+ c

6
r(r − 2)
r + 1

(
1− 1

r2r2k−2

)
n3

B
√
M

+ c

6
r3(r − 2)
r + 1

(
1− 1

r2r2k−2

)
n3

M
√
M

+ crrk−1

150



Substituting the value of rk−1, we get

QA(n) ≤ c

√
M

nr

n2

B
+ c

2
r

r + 1

(
1− M

n2r2

)
n3

B
√
M

+ c

2
r3

r + 1

(
1− M

n2r2

)
n3

M
√
M

+ c

2

(
1−
√
M

nr

)
n2

B
+ c

2

(
r2 −

√
Mr

n

)
n2

M
+ c

6
r(r − 2)
r + 1

(
1− M

n2r2

)
n3

B
√
M

+ c

6
r3(r − 2)
r + 1

(
1− M

n2r2

)
n3

M
√
M

+ c
nr√
M

≤ c
n
√
M

rB
+ c

2
n3

B
√
M

+ c

2
n3r2

M
√
M

+ c

2
n2

B
+ c

2
n2r2

M
+ c

6
n3r

B
√
M

+ c

6
n3r3

M
√
M

+ c
nr√
M

= O
(

n3r

B
√
M

+ n3r3

M
√
M

+ n2

B
+ n2r2

M
+ n
√
M

rB
+ nr√

M

)

= O

 n3

B
⌈ √

M
r

⌉ + n3⌈ √
M
r

⌉3 + n2

B
+ n2⌈ √

M
r

⌉2 + n

B

⌈ √
M

r

⌉
+ n⌈ √

M
r

⌉


We now show the analysis for the span of the r-way divide-and-conquer algorithm. Sim-
ilar to the previous analysis we assume (n/rk) = 1, or rk = n or k = logr n.

TC(n) = rTC

(
n

r

)
+ c = r

(
rTC

(
n

r2

)
+ c

)
+ c = r2TC

(
n

r2

)
+ c(r + 1)

= rkTC

(
n

rk

)
+ c

(
rk−1 + · · ·+ 1

)
= crk(1) + c

(
rk−1 + · · ·+ 1

)
≤ c′rk = Θ (n)

TB(n) = (2r − 1)TB
(
n

r

)
+ (r − 1)(2r − 1)TC

(
n

r

)
+ c

= (2r − 1)
(

(2r − 1)TB
(
n

r2

)
+ (r − 1)(2r − 1)TC

(
n

r2

)
+ c

)
+ (r − 1)(2r − 1)TC

(
n

r

)
+ c

= (2r − 1)2TB
(
n

r2

)
+ (r − 1)(2r − 1)

(
(2r − 1)TC

(
n

r2

)
+ TC

(
n

r

))
+ c ((2r − 1) + 1)

= (2r − 1)kTB
(
n

rk

)
+ (r − 1)(2r − 1)

(
(2r − 1)k−1TC

(
n

rk

)
+ · · ·+ TC

(
n

r

))
+ c

(
(2r − 1)k−1 + · · ·+ 1

)
≤ (2r − 1)k(c) + (r − 1)(2r − 1)

k∑
i=1

(2r − 1)i−1TC
(
n

ri

)
+ c

(
(2r − 1)k−1 + · · ·+ 1

)

≤ (2r − 1)k(c) + c(r − 1)(2r − 1)
k∑
i=1

(2r − 1)i−1 n
ri

+ c
(
(2r − 1)k−1 + · · ·+ 1

)

= c(r − 1)(2r − 1)


(
2− 1

r

)k
− 1

r − 1

+ c′(2r − 1)k = c(2r − 1)
((

2− 1
r

)k
− 1

)
+ c′(2r − 1)k
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Substituting the value of k = logr n, we have

TB(n) ≤ c(2r − 1)
((

2− 1
r

)logr n

− 1
)

+ c′(2r − 1)logr n

= c(2r − 1)
(
nlogr (2− 1

r ) − 1
)

+ c′nlogr(2r−1) = Θ
(
rnlogr (2− 1

r ) + nlogr(2r−1)
)

TA(n) = TA

(
n

r

)
+ TB

(
n

r

)
+ (r − 2)(r − 1)

2
TC

(
n

r

)
+ c

=
(
TA

(
n

r2

)
+ TB

(
n

r2

)
+ (r − 2)(r − 1)

2
TC

(
n

r2

)
+ c

)
+ TB

(
n

r

)
+ (r − 2)(r − 1)

2
TC

(
n

r

)
+ c

= TA

(
n

r2

)
+ TB

(
n

r2

)
+ TB

(
n

r

)
+ (r − 2)(r − 1)

2

(
TC

(
n

r2

)
+ TC

(
n

r

))
+ 2c

= TA

(
n

rk

)
+
(
TB

(
n

rk

)
+ · · ·+ TB

(
n

r

))
+ (r − 2)(r − 1)

2

(
TC

(
n

rk

)
+ · · ·+ TC

(
n

r

))
+ kc

≤ c+
k∑
i=1

TB

(
n

ri

)
+ (r − 2)(r − 1)

2

k∑
i=1

TC

(
n

ri

)
+ kc

≤ c
k∑
i=1

r ( n
ri

)logr (2− 1
r )

+
(
n

ri

)logr(2r−1)
+ c

(r − 2)(r − 1)
2

k∑
i=1

n

ri
+ kc

≤ crnlogr (2− 1
r )

k∑
i=1

1(
rlogr (2− 1

r )
)i + cnlogr(2r−1)

k∑
i=1

1
(rlogr(2r−1))i

+ cn
(r − 2)(r − 1)

2

k∑
i=1

1
ri

+ kc

≤ crnlogr (2− 1
r )

k∑
i=1

1(
2− 1

r

)i + cnlogr(2r−1)
k∑
i=1

1
(2r − 1)i

+ cn
(r − 2)(r − 1)

2

k∑
i=1

1
ri

+ kc

≤ cnlogr (2− 1
r ) r2

r − 1

1− 1(
2− 1

r

)k
+ cnlogr(2r−1) 1

2(r − 1)

(
1− 1

(2r − 1)k

)
+ cn

(r − 2)
2

(
1− 1

rk

)
+ kc

Substituting the value of k = logr n and simplifying we have

TA(n) = O
(
rnlogr(2− 1

r ) + nlogr(2r−1)

r
+ nr

)

For the parenthesis problem, the r-way Apar algorithm achieves T1(n) =

Θ (n3), Q1(n) = O

 n3

B

⌈
√

M
r

⌉ + n3⌈
√

M
r

⌉3 + n2

B
+ n2⌈

√
M
r

⌉2 + n
B

⌈ √
M
r

⌉
+ n⌈

√
M
r

⌉
, T∞(n) =

Θ
(
rnlogr(2− 1

r ) + nlogr(2r−1)

r
+ nr

)
, parallelism = T1(n)

T∞(n) , and S∞(n) = Θ (n2).

A.3 Floyd-Warshall’s all-pairs shortest path
An algebraic structure known as a closed semiring [Aho et al., 1974] serves as a general
framework for solving path problems in directed graphs. In [Aho et al., 1974], an algorithm
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is given for finding the set of all paths between each pair of vertices in a directed graph.
Both Floyd-Warshall’s algorithm for finding all-pairs shortest paths [Floyd, 1962] and War-
shall’s algorithm for finding transitive closures [Warshall, 1962] are instantiations of this
algorithm.

Consider a directed graph G = (V,E), where V = {v1, v2, . . . , vn}, and each edge (vi, vj) is
labeled by an element `(vi, vj) of some closed semiring (S,⊕,�, 0, 1). If (vi, vj) < E, `(vi, vj)
is assumed to have a value 0. The path-cost of a path is defined as the product (�) of the
labels of the edges in the path, taken in order. The path-cost of a zero length path is 1. For
each pair vi, vj ∈ V , d[i, j] is defined to be the sum of the path-costs of all paths going from
vi to vj. By convention, the sum over an empty set of paths is 0. Even if there are infinitely
many paths between vi and vj (due to presence of cycles), d[i, j] will still be well-defined due
to the properties of a closed semiring.

For i, j ∈ [1, n] and k ∈ [0, n], let D[i, j, k] denote cost of the smallest cost path from vi
to vj with no intermediate vertex higher than vk. Then d[i, j] = D[i, j, n]. The following
recurrence computes all D[i, j, k].

D[i, j, k] =


1 if k = 0 and i = j,
l(vi, vj) if k = 0 and i , j,
D[i, j, k − 1]⊕ (D[i, k, k − 1]�D[k, j, k − 1]) if k > 0.

(A.4)

The dependency structure of the DP is shown in Figure A.5. Floyd-Warshall’s APSP
performs computations over a particular closed semiring (R,min,+,+∞, 0).

A serial and a parallel iterative algorithm for computing the path costs are given in
Figure A.5. The structure of the three loops seems similar to the matrix multiplication
algorithm but there are differences. In matrix multiplication, the i-j-k loops can be ordered
in any of the 3! = 6 ways. However, in the computation of path costs, the k-loop must always
be the outermost loop.

Figures A.5 and A.6 show a divide-and-conquer implementation [Chowdhury and Ra-
machandran, 2010] of the Floyd-Warshall’s APSP algorithm. The implementation consists
of four recursive divide-and-conquer functions. The number of times Aloop−FW , Bloop−FW ,
Cloop−FW , and Dloop−FW will be called are Θ (n) ,Θ (n2) ,Θ (n2), and Θ (n3) respectively. Hence,
function DFW is dominating.

Complexity analysis for the PAR-LOOP-PATH-COSTS algorithm
For f ∈ {PAR-LOOP-PATH-COSTS}, let Qf (n) and Tf (n) denote the serial cache complexity,
and span of fFW on a matrix of size n × n. Wf (n) is Θ (n3). Qf (n) is computed as Qf (n) =
Θ
(
n · n ·

(
n
B

+ 1
))

= Θ
(
n3

B
+ n2

)
. The span is Tf (n) = Θ (n · (log n+ (log n+ Θ (1)))) = Θ (n log n).

The properties of the given semiring implies that d[i, j] for all pairs of vertices vi, vj ∈ V
uses only Θ (n2) space as shown in Figure A.5.

For the Floyd-Warshall’s all-pairs shortest path algorithm, the PAR-LOOP-PATH-
COSTS implementation achieves T1(n) = Θ (n3), Q1(n) = Θ

(
n3

B
+ n2

)
, T∞(n) =

Θ (n log n), parallelism = Θ
(

n2

logn

)
, and S∞(n) = Θ (n2).

Complexity analysis for the 2-way AFW algorithm
For f ∈ {A,B,C,D}, let Qf (n) and Tf (n) denote the serial cache complexity, and span of
fFW on a matrix of size n× n. Then
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LOOP-PATH-COSTS(D)

1. for i← 1 to n do
2. for j ← 1 to n do
3. d[i, j]← D[i, j, 0]
4. for k ← 1 to n do
5. for i← 1 to n do
6. for j ← 1 to n do
7. d[i, j]← d[i, j]⊕ (d[i, k]� d[k, j])

PAR-LOOP-PATH-COSTS(D)

1. parallel for i← 1 to n do
2. parallel for j ← 1 to n do
3. d[i, j]← D[i, j, 0]
4. for k ← 1 to n do
5. parallel for i← 1 to n do
6. parallel for j ← 1 to n do
7. d[i, j]← d[i, j]⊕ (d[i, k]� d[k, j])

AF W (X)

1. if X is a small matrix then Aloop-F W (X)
else

2. AF W (X11)
3. par: BF W (X12, X11), CF W (X21, X11)
4. DF W (X22, X21, X12)
5. AF W (X22)
6. par: BF W (X21, X22), CF W (X12, X22)
7. DF W (X11, X12, X21)

BF W (X,U)

1. if X is a small matrix then Bloop-F W (X,U)
else

2. par: BF W (X11, U11), BF W (X12, U11)
3. par: DF W (X21, U21, X11), DF W (X22, U21, X12)
4. par: BF W (X21, U22), BF W (X22, U22)
5. par: DF W (X11, U12, X21), DF W (X12, U12, X22)

CF W (X,V )

1. if X is a small matrix then Cloop-F W (X,V )
else

2. par: CF W (X11, V11), CF W (X21, V11)
3. par: DF W (X12, X11, V12), DF W (X22, X21, V12)
4. par: CF W (X12, V22), CF W (X22, V22)
5. par: DF W (X11, X12, V21), DF W (X21, X22, V21)

DF W (X,U, V )

1. if X is a small matrix then Dloop-F W (X,U, V )
else

2. par: DF W (X11, U11, V11), DF W (X12, U11, V12),
DF W (X21, U21, V11), DF W (X22, U21, V12)

3. par: DF W (X11, U12, V21), DF W (X12, U12, V22),
DF W (X21, U22, V21), DF W (X22, U22, V22)

Figure A.5: Top left: Serial and parallel iterative algorithms to compute path costs over a
closed semiring (S,⊕,�, 0, 1). Top right: Dependency structure for Floyd-Warshall’s APSP
algorithm. Bottom: Divide-and-conquer algorithm.
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Figure A.6: A divide-and-conquer algorithm AFW for solving the Floyd-Warshall’s all-pairs
shortest path problem.
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where, γ, γA, γB, γC and γD are suitable constants. Solving, QA(n) = O
(

n3

B
√
M

+ n3

M
+ n2

B
+ n

)
and TA(n) = O

(
n log2 n

)
.

For the Floyd-Warshall’s all-pairs shortest path algorithm, the AFW implementa-
tion achieves T1(n) = Θ (n3), Q1(n) = O

(
n3

B
√
M

+ n3

M
+ n2

B
+ n

)
, T∞(n) = Θ

(
n log2 n

)
,

parallelism = Θ
(

n2

log2 n

)
, and S∞(n) = Θ (n2).

AF W (X,U, V, d)

1. r ← tilesize[d]
2. if r > m then Aloop-F W (X,U, V )

else
3. for k ← 1 to r do
4. AF W (Xkk, Ukk, Vkk, d+ 1)
5. parallel:

for j ← 1 to r do
if j , k then BF W (Xkj , Ukk, Vkj , d+ 1)

for i← 1 to r do
if i , k then CF W (Xik, Uik, Vkk, d+ 1)

6. parallel for i← 1 to r do
7. parallel for j ← 1 to r do
8. if i , k and j , k then
9. DF W (Xij , Uik, Vkj , d+ 1)

DF W (X,U, V )

1. r ← tilesize[d]
2. if r > m then Dloop-F W (X,U, V )

else
3. for k ← 1 to r do
4. parallel for i← 1 to r do
5. parallel for j ← 1 to r do
6. DF W (Xij , Uik, Vkj , d+ 1)

BF W (X,U, V, d)

1. r ← tilesize[d]
2. if r > m then Bloop-F W (X,U, V )

else
3. for k ← 1 to r do
4. parallel for j ← 1 to r do

BF W (Xkj , Ukk, Vkj , d+ 1)
5. parallel for i← 1 to r do
6. parallel for j ← 1 to r do
7. if i , k then DF W (Xij , Uik, Vkj , d+ 1)

CF W (X,U, V, d)

1. r ← tilesize[d]
2. if r > m then Cloop-F W (X,U, V )

else
3. for k ← 1 to r do
4. parallel for i← 1 to r do

CF W (Xik, Uik, Vkk, d+ 1)
5. parallel for i← 1 to r do
6. parallel for j ← 1 to r do
7. if j , k then DF W (Xij , Uik, Vkj , d+ 1)

Figure A.7: r-way divide-and-conquer algorithm for Floyd-Warshall algorithm.

Complexity analysis for the r-way AFW algorithm
The r-way divide-and-conquer for Floyd-Warshall algorithm is given in Figure A.7. For sim-
plicity of exposition we assume that n is a power of r. For f ∈ {A,B,C,D}, letWf (n), Qf (n), Tf (n),
and Sf (n) denote the total work, serial cache complexity, span, and parallel space consump-
tion of r-way fFW for the parameter n. Then

WA(n) = WB(n) = WC(n) = WD(n) = Θ (1) if n = 1,
WA(n) = rWA
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)
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)
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)
+ Θ (1) if n > 1;
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n
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)
+ r2(r − 1)WD

(
n
r

)
+ Θ (1) if n > 1;

WD(n) = r3WD

(
n
r

)
+ Θ (1) if n > 1;
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QA(n) = QB(n) = QC(n) = QD(n) = O
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where, γ, γA, γB, γC , and γD are suitable constants.

For the all-pairs shortest path problem, the r-way AFW algorithm achieves T1(n) =

Θ (n3), Q1(n) = O

 n3

B

⌈
√

M
r

⌉ + n3⌈
√

M
r

⌉3

, and S∞(n) = Θ (n2).

A.4 Gaussian elimination without pivoting
Gaussian elimination is a method to solve a system of linear equations with n equations
in n unknowns. The algorithm uses a series of divisions which leads to errors. Also, the
algorithm also does not work if some of the diagonal elements are zeros. A technique called
pivoting (either partial or complete) is typically used to make the algorithm more robust
and reduce rounding errors. Here, we only consider the version of the algorithm without
pivoting. Gaussian elimination without pivoting is the core component of LU factorization
without pivoting.

The system of n linear equations with n unknowns can be written in the form
∑
aijxi = bi

for all i, j ∈ [1, n], where aijs and bis are known real numbers and xis are unknown real
numbers. The system can also be written in the matrix form AX = B, where An×n, Xn×1,
and Bn×1 are matrices and vector X is to be computed.

A serial and a parallel iterative algorithm for the Gaussian elimination method (with-
out the backward substitution) are given in Figure A.8. The structure of the three loops
seems similar to the matrix multiplication algorithm but there are differences. In matrix
multiplication, the i-j-k loops can be ordered in any of the 3! = 6 ways. However, in the
computation of path costs, the k-loop must always be the outermost loop.
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LOOP-GAUSSIAN-ELIMINATION(D)

1. for k ← 1 to n− 1 do
2. for i← k + 1 to n do
3. for j ← k to n do
4. d[i, j]← d[i, j]− (d[i, k]× d[k, j]) /d[k, k]

PAR-GAUSSIAN-ELIMINATION(D)

1. for k ← 1 to n− 1 do
2. parallel for i← k + 1 to n do
3. parallel for j ← k to n do
4. d[i, j]← d[i, j]− (d[i, k]× d[k, j]) /d[k, k]

AGE(X)

1. if X is a small matrix then Aloop-GE(X)
else

2. AGE(X11)
3. par: BGE(X12, X11), CGE(X21, X11)
4. DGE(X22, X21, X12)
5. AGE(X22)

BGE(X,U)

1. if X is a small matrix then Bloop-GE(X,U)
else

2. par: BGE(X11, U11), BGE(X12, U11)
3. par: DGE(X21, U21, X11), DGE(X22, U21, X12)
4. par: BGE(X21, U22), BGE(X22, U22)

CGE(X,V )

1. if X is a small matrix then Cloop-GE(X,V )
else

2. par: CGE(X11, V11), CGE(X21, V11)
3. par: DGE(X12, X11, V12), DGE(X22, X21, V12)
4. par: CGE(X12, V22), CGE(X22, V22)

DGE(X,U, V )

1. if X is a small matrix then Dloop-GE(X,U, V )
else

2. par: DGE(X11, U11, V11), DGE(X12, U11, V12),
DGE(X21, U21, V11), DGE(X22, U21, V12)

3. par: DGE(X11, U12, V21), DGE(X12, U12, V22),
DGE(X21, U22, V21), DGE(X22, U22, V22)

Figure A.8: Top left: Serial and parallel iterative algorithms for Gaussian elimination.
Top right: Dependency structure for Gaussian elimination. Bottom: Divide-and-conquer
algorithm.

Figures A.8 and A.9 show a divide-and-conquer implementation of the Gaussian elimi-
nation algorithm. The implementation consists of four recursive divide-and-conquer func-
tions. The number of times Aloop−GE, Bloop−GE, Cloop−GE, and Dloop−GE will be called are
Θ (n) ,Θ (n2) ,Θ (n2), and Θ (n3) respectively. Hence, function DGE is dominating.

Complexity analysis for the PAR-GAUSSIAN-ELIMINATION algorithm
For f ∈ {PAR-GAUSSIAN-ELIMINATION}, let Qf (n) and Tf (n) denote the serial cache com-
plexity, and span of fFW on a matrix of size n × n. Wf (n) is Θ (n3). Qf (n) is computed as
Qf (n) = Θ

(
n · n ·

(
n
B

+ 1
))

= Θ
(
n3

B
+ n2

)
. The span is Tf (n) = Θ (n · (log n+ (log n+ Θ (1)))) =

Θ (n log n). The properties of the given semiring implies that d[i, j] for all pairs of vertices
vi, vj ∈ V uses only Θ (n2) space as shown in Figure A.5.

For the Gaussian elimination algorithm, the PAR-GAUSSIAN-ELIMINATION imple-
mentation achieves T1(n) = Θ (n3), Q1(n) = Θ

(
n3

B
+ n2

)
, T∞(n) = Θ (n log n), paral-

lelism = Θ
(

n2

logn

)
, and S∞(n) = Θ (n2).

Complexity analysis for the 2-way AGE algorithm
For f ∈ {A,B,C,D}, let Qf (n) and Tf (n) denote the serial cache complexity, and span of fGE
on a matrix of size n× n. Then
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Figure A.9: A divide-and-conquer algorithm AGE for Gaussian elimination.

QA(n) = QB(n) = QC(n) = QD(n) = O
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)
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QD(n) = 8QD
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+ Θ (1) if n2 > γDM ;
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TA(n) = TB(n) = TC(n) = TD(n) = O (1) if n = 1,
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)
+ TD
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)
+ Θ (1) if n > 1;
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)
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where, γ, γA, γB, γC and γD are suitable constants. Solving, QA(n) = O
(
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)
and TA(n) = O
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)
.

For the Gaussian elimination algorithm, the AGE implementation achieves T1(n) =
Θ (n3), Q1(n) = O

(
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)
, T∞(n) = Θ

(
n log2 n

)
, parallelism = Θ

(
n2

log2 n

)
,

and S∞(n) = Θ (n2).

AGE(X,U, V,W, d)

1. r ← tilesize[d]
2. if r > m then Aloop-GE(X,U, V,W )

else
3. for k ← 1 to r do
4. AGE(Xkk, Ukk, Vkk,Wk, d+ 1)
5. parallel:

for j ← k + 1 to r do
BGE(Xkj , Ukk, Vkj ,Wk, d+ 1)

for i← k + 1 to r do
CGE(Xik, Uik, Vkk,Wk, d+ 1)

6. parallel for i← k + 1 to r do
7. parallel for j ← k + 1 to r do
8. DGE(Xij , Uik, Vkj ,Wk, d+ 1)

DGE(X,U, V,W, d)

1. r ← tilesize[d]
2. if r > m then Dloop-GE(X,U, V,W )

else
3. for k ← 1 to r do
4. parallel for i← 1 to r do
5. parallel for j ← 1 to r do
6. DGE(Xij , Uik, Vkj ,Wk, d+ 1)

BGE(X,U, V,W, d)

1. r ← tilesize[d]
2. if r > m then Bloop-GE(X,U, V,W )

else
3. for k ← 1 to r do
4. parallel for j ← 1 to r do

BGE(Xkj , Ukk, Vkj ,Wk, d+ 1)
5. parallel for i← k + 1 to r do
6. parallel for j ← 1 to r do
7. DGE(Xij , Uik, Vkj ,Wk, d+ 1)

CGE(X,U, V,W, d)

1. r ← tilesize[d]
2. if r > m then Cloop-GE(X,U, V,W )

else
3. for k ← 1 to r do
4. parallel for i← 1 to r do

CGE(Xik, Uik, Vkk,Wk, d+ 1)
5. parallel for i← 1 to r do
6. parallel for j ← k + 1 to r do
7. DGE(Xij , Uik, Vkj ,Wk, d+ 1)

Figure A.10: An r-way divide-and-conquer algorithm for Gaussian elimination.

Complexity analysis for the r-way AGE algorithm
An r-way divide-and-conquer algorithm for Gaussian elimination is given in Figure D.3.
For simplicity of exposition we assume that n is a power of r. For f ∈ {A,B,C,D}, let
Wf (n), Qf (n), Tf (n), and Sf (n) denote the total work, serial cache complexity, span, and
parallel space consumption of r-way fGE for the parameter n. Then
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2 WD

(
n
r

)
+ Θ (1) if n > 1;

WD(n) = r3WD

(
n
r

)
+ Θ (1) if n > 1;
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QA(n) = QB(n) = QC(n) = QD(n) = O
(
n2

B
+ 1

)
if n2 ≤ γM ,

QA(n) = rQA

(
n
r

)
+ r(r−1)

2

(
QB

(
n
r

)
+QC

(
n
r

))
+ r(r−1)(2r−1)

6 QD

(
n
r

)
+ Θ (1) if n2 > γAM ;

QB(n) = r2QB

(
n
r

)
+ r2(r−1)

2 QD

(
n
r

)
+ Θ (1) if n2 > γBM ;

QC(n) = r2QC

(
n
r

)
+ r2(r−1)

2 QD

(
n
r

)
+ Θ (1) if n2 > γCM ;

QD(n) = r3QD

(
n
r

)
+ Θ (1) if n2 > γDM ;

TA(n) = TB(n) = TC(n) = O (1) if n = 1,
TA(n) = rTA

(
n
r

)
+ (r − 1) max{TB

(
n
r

)
, TC

(
n
r

)
}+ (r − 1)TD

(
n
r

)
+ Θ (1) if n > 1;

TB(n) = rTB
(
n
r

)
+ (r − 1)TD

(
n
r

)
+ Θ (1) if n > 1;

TC(n) = rTC
(
n
r

)
+ (r − 1)TD

(
n
r

)
+ Θ (1) if n > 1;

TD(n) = rTD
(
n
r

)
+ Θ (1) if n > 1;

SA(n) = SB(n) = SC(n) = SD(n) = O (1) if n = 1,
SA(n) = max{SA

(
n
r

)
, (r − 1)

(
SB

(
n
r

)
+ SC

(
n
r

))
, (r − 1)2SD

(
n
r

)
}+ Θ (1) if n > 1;

SB(n) = max{rSB

(
n
r

)
, r(r − 1)SD

(
n
r

)
}+ Θ (1) if n > 1;

SC(n) = max{rSC

(
n
r

)
, r(r − 1)SD

(
n
r

)
}+ Θ (1) if n > 1;

SD(n) = r2SD

(
n
r

)
+ Θ (1) if n > 1;

where, γ, γA, γB, γC , and γD are suitable constants.

For the Gaussian elimination algorithm, the r-way AGE algorithm achieves T1(n) =

Θ (n3), Q1(n) = O

 n3

B

⌈
√

M
r

⌉ + n3⌈
√

M
r

⌉3

, and S∞(n) = Θ (n2).

A.5 Sequence alignment with gap penalty

The sequence alignment problem with gap penalty or often called the gap problem [Galil
and Giancarlo, 1989, Galil and Park, 1994, Waterman et al., 1995] is a generalization of
the edit distance problem that arises in molecular biology, geology, and speech recognition.
When transforming a string X = x1x2 . . . xm into another string Y = y1y2 . . . yn, a sequence
of consecutive deletes corresponds to a gap in X, and a sequence of consecutive inserts
corresponds to a gap in Y . In many applications the cost of such a gap is not necessarily
equal to the sum of the costs of each individual deletion (or insertion) in that gap. In order
to handle this general case two new cost functions w and w′ are defined, where w(p, q)
(0 ≤ p < q ≤ m) is the cost of deleting xp+1 . . . xq from X, and w′(p, q) (0 ≤ p < q ≤ n) is the
cost of inserting yp+1 . . . yq into X. The substitution function S(xi, yj) is the same as that of
the standard edit distance problem.

Let G[i, j] denote the minimum cost of transforming Xi = x1x2 . . . xi into Yj = y1y2 . . . yj
(where 0 ≤ i ≤ m and 0 ≤ j ≤ n) under this general setting. Then
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G[i, j] =



0 if i = j = 0,
w(0, j) if i = 0, 1 ≤ j ≤ n,
w′(0, i) if j = 0, 1 ≤ i ≤ m,

min


G[i− 1, j − 1] + S(xi, yj),

min0≤q<j { G[i, q] + w(q, j) },
min0≤p<i { G[p, j] + w′(p, i) }

 if i, j > 0.
(A.5)

Assuming m = n, this problem can be solved in Θ (n3) time using Θ (n2) space [Galil and
Giancarlo, 1989]. In the rest of this section we will assume for simplicity that m = n = 2`
for some integer ` ≥ 0.

Figure A.11 shows the dependency structure of the DP. A serial and a parallel iterative
algorithm for the gap problem are also given in the figure. The two algorithms work for a
generic m× n DP table.

In Figures A.11 and A.12, a divide-and-conquer algorithm [Chowdhury and Ramachan-
dran, 2006] is given for solving the gap problem. The algorithm consists of three recursive
divide-and-conquer functions named Agap, Bgap and Cgap. The Cgap function has the struc-
ture of recursive matrix multiplication. The initial call to the algorithm is A(G), where G
is the n × n DP table. For simplicity, we consider square matrices. It is possible to modify
the algorithm to make it work for generic m× n matrices.

LOOP-GAP(G,n)

1. for i← 1 to m do
2. for j ← 1 to n do
3. G[i, j]← G[i− 1, j − 1] + S(xi, yi)
4. for k ← 0 to j − 1 do
5. G[i, j]← min (G[i, j], G[i, k] + w(k, j))
6. for k ← 0 to i− 1 do
7. G[i, j]← min (G[i, j], G[k, j] + w′(k, i))

PAR-LOOP-GAP(G,n)

1. for t← 2 to m+ n do
2. parallel for i← max (1, t− n) to min (t− 1,m) do
3. j ← t− i
4. G[i, j]← G[i− 1, j − 1] + S(xi, yi)
5. for k ← 0 to j − 1 do
6. G[i, j]← min (G[i, j], G[i, k] + w(k, j))
7. for k ← 0 to i− 1 do
8. G[i, j]← min (G[i, j], G[k, j] + w′(k, i))

Agap(X)

1. if X is a small matrix then Aloop-gap(X)
else

2. Agap(X11)
3. parallel: Bgap(X12, X11), Cgap(X21, X11)
4. parallel: Agap(X12), Agap(X21)
5. Bgap(X22, X21)
6. Cgap(X22, X12)
7. Agap(X22)

Bgap(X,U)

1. if X is a small matrix then Bloop-gap(X,U)
else

2. parallel: Bgap(X11, U11), Bgap(X12, U11),
Bgap(X21, U21), Bgap(X22, U21)

3. parallel: Bgap(X11, U12), Bgap(X12, U12),
Bgap(X21, U22), Bgap(X22, U22)

Cgap(X,V )

1. if X is a small matrix then Cloop-gap(X,V )
else

2. parallel: Cgap(X11, V11), Cgap(X12, V12),
Cgap(X21, V11), Cgap(X22, V12)

3. parallel: Cgap(X11, V21), Cgap(X12, V22),
Cgap(X21, V21), Cgap(X22, V22)

Figure A.11: Top: Serial and parallel iterative algorithms to solve the gap problem. Bot-
tom: Dependency graph and the divide-and-conquer algorithm.

Complexity analysis for the PAR-LOOP-GAP algorithm
For f ∈ {PAR-LOOP-GAP}, let Qf (n) and Tf (n) denote the serial cache complexity, and span
of fgap on a matrix of size m× n. The k-loop scans elements of the DP table in both vertical
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Figure A.12: A divide-and-conquer algorithm for solving the gap problem.
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and horizontal direction. Hence, Qf (n) = O
(
m · n ·

(
max (m,n)

B
+ min (m,n)

))
assuming that

we use row-major order if m > n and use column-major order if n > m. We find span
as follows. The first loop runs for Θ (m+ n) time. The second loop takes Θ (log(m+ n)) to
divide the work to processors. The third loop takes Θ (max (m,n)) time. Hence, Tf (n) =
Θ ((m+ n) · (log(m+ n) + max (m,n))) = Θ ((max (m,n))2).

For the sequence alignment with gap penalty problem (or gap prob-
lem), the PAR-LOOP-GAP algorithm achieves T1(n) = Θ (mn ·max (m,n)),
Q1(n) = O

(
mn ·

(
max (m,n)

B
+ min (m,n)

))
, T∞(n) = Θ ((max (m,n))2), parallelism

= Θ
(

mn
max (m,n)

)
, and S∞(n) = Θ (mn).

Complexity analysis for the 2-way Agap algorithm
For f ∈ {A,B,C}, let Qf (n) and Tf (n) denote the serial cache complexity, and span of fgap
on a matrix of size n× n. Then

QA(n) = QB(n) = QC(n) = O
(
n2

B
+ n

)
if n2 ≤ γM ,

QA(n) = 4QA

(
n
2

)
+ 2QB

(
n
2

)
+ 2QC

(
n
2

)
+ Θ (1) if n2 > γAM ;

QB(n) = 8QB

(
n
2

)
+ Θ (1) if n2 > γBM ;

QC(n) = 8QC

(
n
2

)
+ Θ (1) if n2 > γCM ;

TA(n) = TB(n) = TC(n) = O (1) if n = 1,
TA(n) = 3TA

(
n
2

)
+ max {TB

(
n
2

)
, TC

(
n
2

)
}+ TB

(
n
2

)
+ TC

(
n
2

)
+ Θ (1) if n > 1;

TB(n) = 2TB
(
n
2

)
+ Θ (1) if n > 1;

TC(n) = 2TC
(
n
2

)
+ Θ (1) if n > 1;

where, γ, γA, γB, and γC are suitable constants. Solving, QA(n) = O
(

n3

B
√
M

+ n3

M
+ n2

B
+ n

)
and TA(n) = O

(
nlog 3

)
.

For the sequence alignment with gap penalty problem (or gap problem), the 2-way
Agap algorithm achieves T1(n) = Θ (n3), Q1(n) = O

(
n3

B
√
M

+ n3

M
+ n2

B
+ n

)
, T∞(n) =

Θ
(
nlog 3

)
, parallelism = Θ

(
n3−log 3

)
, and S∞(n) = Θ (n2).

A.6 Protein accordion folding
A protein can be viewed as a string P [1 : n] over the alphabet { A, R, N, D, C, E, Q, G,
H, I, L, K, M, F, P, S, T, W, Y, V } of amino acids1. A protein sequence is never straight,
and instead it folds itself in a way that minimizes the potential energy. Some of the amino
acids (e.g., A, I, L, F, G, P, V)2 are called hydrophobic as they do not like to be in contact

1Amino acids: Alanine (A), Arginine (R), Asparagine (N), Aspartic acid (D), Cysteine (C), Glutamic acid
(E), Glutamine (Q), Glycine (G), Histidine (H), Isoleucine (I), Leucine (L), Lysine (K), Methionine (M), Pheny-
lalanine (F), Proline (P), Serine (S), Threonine (T), Tryptophan (W), Tyrosine (Y), Valine (V).

2Alanine (A), Isoleucine (I), Leucine (L), Phenylalanine (F), Glycine (G), Proline (P), Valine (V).
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Agap(X,U, d)

1. r ← tilesize[d]
2. if r > m then Aloop-gap(X,U)

else
3. Agap(X11, U11, d+ 1)
4. for k ← 1 to 2r − 2 do
5. parallel for i← max(1, k − r + 1) to min(k, r) do
6. parallel for j ← k − i+ 2 to r do
7. Bgap(Xij , Ui(k−i+1), d+ 1)
8. parallel for j ← max(1, k − r + 1) to min(k, r) do
9. parallel for i← k − i+ 2 to r do

10. Cgap(Xij , U(k−j+1)j , d+ 1)
11. parallel for i← max(1, k − r + 2) to min(k + 1, r) do
12. j = k − i+ 2
13. Agap(Xij , Uij , d+ 1)

Bgap(X,U, d)

1. r ← tilesize[d]
2. if r > m then Bloop-gap(X,U)

else
3. for k ← 1 to r do
4. parallel for i← 1 to r do
5. parallel for j ← 1 to r do
6. Bgap(Xij , Uik, d+ 1)

Cgap(X,V, d)

1. r ← tilesize[d]
2. if r > m then Cloop-gap(X,V )

else
3. for k ← 1 to r do
4. parallel for i← 1 to r do
5. parallel for j ← 1 to r do
6. Cgap(Xij , Vkj , d+ 1)

Figure A.13: An r-way divide-and-conquer algorithm for sequence alignment with gap
penalty problem.

with water (solvent). A desire to minimize the total hydrophobic area exposed to water is
a major driving force behind the folding process. In a folded protein hydrophobic amino
acids tend to clump together in order to reduce water-exposed hydrophobic area.

We assume for simplicity that a protein is folded into a 2-D square lattice in such a
way that the number of pairs of hydrophobic amino acids that are next to each other in the
grid (vertically or horizontally) without being next to each other in the protein sequence is
maximized. We also assume that the fold is always an accordion fold where the sequence
first goes straight down, then straight up, then again straight down, and so on (see Figure
A.14).

Figure A.14: A protein accordion fold
where each star represents a hydropho-
bic amino acid and each circle a hy-
drophilic one. The accordion score of
this folded sequence is 4 which is not
the maximum possible score for this se-
quence.

Figure A.15: SCORE-ONE-FOLD(i, j, k)
counts the number of aligned hydropho-
bic amino acids when the protein seg-
ment P[i : k] is folded only once at indices
(j, j + 1). In this figure, each star repre-
sents a hydrophobic amino acid and each
circle a hydrophilic one.

The recurrence below shows how to compute the optimal accordion score of the protein
segment P [i : j]. The optimal score for the entire sequence is given by max1<j≤n {SCORE[1, j]}.
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SCORE[i, j] =
{
0 if j ≥ n− 1,
maxj+1<k≤n {SCORE-ONE-FOLD(i, j, k) + SCORE[j + 1, k]} otherwise. (A.6)

The function SCORE-ONE-FOLD(i, j, k) counts the number of aligned hydrophobic amino
acids when the protein segment P [i : k] is folded only once at indices (j, j + 1). The function
is illustrated graphically in Figure A.15. Observe that

SCORE-ONE-FOLD(i, j, k) =
{

SCORE-ONE-FOLD(1, j, k) if k ≤ 2j − i+ 1,
SCORE-ONE-FOLD(1, j, 2j − i+ 1) otherwise. (A.7)

SCORE-ONE-FOLD(i, j, k, P )

1. c← 0
2. for l← 1 to min ( j − i, k − j − 1 ) do
3. if HYDROPHOBIC(P [j − l]) and HYDROPHOBIC(P [j + 1 + l]) then c← c+ 1
4. return c

Figure A.16: Count the number of aligned hydrophobic amino acids when a protein se-
quence is folded once.

Hence, in Θ (n2) time one can precompute an array SOF[1 : n, 1 : n] such that for all
1 ≤ i < j < k − 1 < n, SCORE-ONE-FOLD(i, j, k) = SOF[j + 1,min {k, 2j − i+ 1}]. Thus
Recurrence A.6 reduces to the following.

SCORE[i, j] =
{
0 if j ≥ n− 1,
maxj+1<k≤n {SOF[j + 1,min {k, 2j − i+ 1}] + SCORE[j + 1, k]} otherwise. (A.8)

In the rest of this section we will assume for simplicity that n = 2` for some integer ` ≥ 0.
Figure A.17 shows the dependency structure of the DP. Figures A.17 and A.18 show

a divide-and-conquer algorithm for solving the protein accordion folding problem. The
algorithm consists of four recursive functions named APF , BPF , CPF , and DPF .

Complexity analysis for the PAR-LOOP-PROTEIN-FOLDING algorithm
For f ∈ {PAR-LOOP-PROTEIN-FOLDING}, let Qf (n) and Tf (n) denote the serial cache com-
plexity, and span of fPF on a sequence of length n × n. Then Qf (n) = Θ

(
n · n ·

(
n
B

+ 1
))

=
Θ
(
n3

B
+ n2

)
. The span will be Tf (n) = Θ (n · (log n+ n · (1))) = Θ (n2).

For the protein accordion folding problem, the PAR-LOOP-PROTEIN-FOLDING al-
gorithm achieves T1(n) = Θ (n3), Q1(n) = O

(
n3

B
+ n2

)
, T∞(n) = Θ (n2), parallelism

= Θ (n), and S∞(n) = Θ (n2).

Complexity analysis for the APF algorithm
For f ∈ {A,B,C,D}, let Qf (n) and Tf (n) denote the serial cache complexity, and span of fPF
on a sequence of length n× n. Then

QA(n) = QB(n) = QC(n) = QD(n) = O
(
n2

B
+ n

)
if n2 ≤ γM ,

QA(n) = 2QA

(
n
2

)
+QB

(
n
2

)
+QC

(
n
2

)
+ Θ (1) if n2 > γAM ;

QB(n) = 4QB

(
n
2

)
+ 2QD

(
n
2

)
+ Θ (1) if n2 > γBM ;

QC(n) = 4QC

(
n
2

)
+ 2QD

(
n
2

)
+ Θ (1) if n2 > γCM ;

QD(n) = 8QD

(
n
2

)
+ Θ (1) if n2 > γDM ;
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LOOP-PROTEIN-FOLDING(S, n)

1. for i← n− 1 to 1 do
2. for j ← n− 1 to i+ 1 do
3. for k ← j + 2 to n do
4. S[i, j]← min

(
S[i, j], S[j + 1, k] +

F [j + 1,min (k, 2j − i+ 1)]

)
PAR-LOOP-PROTEIN-FOLDING(S, n)

1. for i← n− 1 to 1 do
2. parallel for j ← n− 1 to i+ 1 do
3. for k ← j + 2 to n do
4. S[i, j]← min

(
S[i, j], S[j + 1, k] +

F [j + 1,min (k, 2j − i+ 1)]

)
AP F (X)

1. if X is a small matrix then Aloop-P F (X)
else

2. AP F (X22)
3. BP F (X12, X22)
4. CP F (X11, X12)
5. AP F (X11)

BP F (X,V )

1. if X is a small matrix then Bloop-P F (X,V )
else

2. par: BP F (X11, V11), BP F (X12, V22),
BP F (X21, V11), BP F (X22, V22)

3. par: DP F (X11, V12), DP F (X21, V12)

CP F (X,U)

1. if X is a small matrix then Cloop-P F (X,U)
else

2. par: CP F (X11, U11), DP F (X12, U21), CP F (X22, U21)
3. par: CP F (X11, U12), DP F (X12, U22), CP F (X22, U22)

DP F (X,V )

1. if X is a small matrix then Dloop-P F (X,V )
else

2. par: DP F (X11, V11), DP F (X12, V21),
DP F (X21, V11), DP F (X22, V21)

3. par: DP F (X11, V12), DP F (X12, V22),
DP F (X21, V12), DP F (X22, V22)

Figure A.17: Top: Serial and parallel iterative algorithm for the protein accordion folding
problem. Bottom: Divide-and-conquer algorithm.

TA(n) = TB(n) = TC(n) = TD(n) = O (1) if n = 1,
TA(n) = 2TA

(
n
2

)
+ TB

(
n
2

)
+ TC

(
n
2

)
+ Θ (1) if n > 1;

TB(n) = TB
(
n
2

)
+ TD

(
n
2

)
+ Θ (1) if n > 1;

TC(n) = 2max
{
TC
(
n
2

)
, TD

(
n
2

)}
+ Θ (1) if n > 1;

TD(n) = 2TD
(
n
2

)
+ Θ (1) if n > 1;

where, γ, γA, γB, γC and γD are suitable constants. Solving, QA(n) = O
(

n3

B
√
M

+ n3

M
+ n2

B
+ n

)
and TA(n) = O (n log n).

For the protein accordion folding problem, the APF algorithm achieves T1(n) =
Θ (n3), Q1(n) = O

(
n3

B
√
M

+ n3

M
+ n2

B
+ n

)
, T∞(n) = Θ (n log n), parallelism = Θ

(
n2

logn

)
,

and S∞(n) = Θ (n2).

A.7 Function approximation
The function approximation problem is defined as follows. Let f(x) be a function and (xi, yi),
where i ∈ [1, n], be the n points generated by the function such that x1 < x2 < · · · < xn. Given
a positive integer q (∈ [2, n]), the function g(x) is constructed as follows. Choose q points
including the first point (x1, y1) and last point (xn, yn) and construct g(x) by connecting
each point to its next point with straight lines. Let E[i, j] denote the error of the best
approximation g(x) of the first i points using at most j line segments and e(p, q) = ∑q

i=p(yi−
g(xi))2. Then,
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Figure A.18: Top left: Dependency graph for the protein folding problem. Rest: A divide-
and-conquer algorithm for solving the protein folding problem. The initial call to the func-
tion is APF (SCORE).
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E[i, j] =


0 if i = 1,
∞ if i > 1 and j = 0,
min0<k<i {E(k, j − 1) + e(k, i)} if i > 1 and j > 0.

(A.9)

Figure A.20 shows the dependency structure for the problem DP. Figure A.19 show
serial and parallel iterative algorithms to solve the function approximation problem. A
divide-and-conquer algorithm for the problem is given in Figures A.19 and A.19. The algo-
rithm consists of four recursive functions named AFA, BFA, CFA and DFA.

LOOP-FUNCTION-APPROX(E)

1. for i← 1 to n do
2. for j ← 1 to n do
3. for k ← 1 to i− 1 do
4. E[i, j]← min (E[i, j], E[k, j − 1] + e(k, i))

AF A(X)

1. if X is a small matrix then Aloop−F A(X)
2. else
3. AF A(X11)
4. BF A(X12)
5. CF A(X22, X12)
6. AF A(X22)

BF A(X)

1. if X is a small matrix then Bloop−F A(X)
2. else
3. BF A(X11)
4. CF A(X21, X11)
5. parallel: BF A(X21),BF A(X12)
6. CF A(X22, X12)
7. BF A(X22)

PAR-LOOP-FUNCTION-APPROX(E)

1. for t← 1 to n do
2. parallel for j ← 1 to t do
3. i← t− j − 1
4. for k ← 1 to i− 1 do
5. E[i, j]← min (E[i, j], E[k, j − 1] + e(k, i))
6. for t← n+ 1 to 2n− 1 do
7. parallel for j ← t− n+ 1 to n do
8. i← t− j + 1
9. for k ← 1 to i− 1 do

10. E[i, j]← min (E[i, j], E[k, j − 1] + e(k, i))

CF A(X,U)

1. if X is a small matrix then Cloop−F A(X,U)
2. else
3. parallel: CF A(X11, U11),DF A(X12, U12),CF A(X22, U12)
4. parallel: CF A(X11, U21),DF A(X12, U22),CF A(X22, U22)

DF A(X,U)

1. if X is a small matrix then Dloop−F A(X,U)
2. else
3. parallel: DF A(X11, U11),DF A(X21, U11),

DF A(X12, U12),DF A(X22, U12)
4. parallel: DF A(X11, U21),DF A(X21, U21),

DF A(X12, U22),DF A(X22, U22)

Figure A.19: Serial iterative, parallel iterative, and divide-and-conquer algorithms to solve
the function approximation problem.

Complexity analysis for the PAR-LOOP-FUNCTION-APPROX algorithm
For f ∈ {PAR-LOOP-FUNCTION-APPROX}, let Qf (n) and Tf (n) denote the serial cache com-
plexity, and span of fFA on a matrix of size n × n. Then Qf (n) = Θ

(
n · n ·

(
n
B

+ 1
))

=
Θ
(
n3

B
+ n2

)
. Also, Tf (n) = Θ (n (log n+ n(1))) = Θ (n2).

For the function approximation problem, the PAR-LOOP-FUNCTION-APPROX al-
gorithm achieves T1(n) = Θ (n3), Q1(n) = Θ

(
n3

B
+ n2

)
, T∞(n) = Θ (n2), parallelism

= Θ (n), and S∞(n) = Θ (n2).

Complexity analysis for the AFA algorithm
For f ∈ {A,B,C,D}, let Qf (n) and Tf (n) denote the serial cache complexity, and span of fFA
on a matrix of size n× n. Then
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Figure A.20: Top left: Dependency structure of the function approximation DP. Rest: A
divide-and-conquer algorithm for solving the problem.
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QA(n) = QB(n) = QC(n) = QD(n) = O
(
n2

B
+ n

)
if n2 ≤ γM ,

QA(n) = 2QA

(
n
2

)
+QB

(
n
2

)
+QC

(
n
2

)
+ Θ (1) if n2 > γAM ;

QB(n) = 4QB

(
n
2

)
+ 2QC

(
n
2

)
+ Θ (1) if n2 > γBM ;

QC(n) = 4QC

(
n
2

)
+ 2QD

(
n
2

)
+ Θ (1) if n2 > γCM ;

QD(n) = 8QD

(
n
2

)
+ Θ (1) if n2 > γDM ;

TA(n) = TB(n) = TC(n) = TD(n) = O (1) if n = 1,
TA(n) = 2TA

(
n
2

)
+ TB

(
n
2

)
+ TC

(
n
2

)
+ Θ (1) if n > 1;

TB(n) = 3TB
(
n
2

)
+ 2TC

(
n
2

)
+ Θ (1) if n > 1;

TC(n) = 2max
{
TC
(
n
2

)
, TD

(
n
2

)}
+ Θ (1) if n > 1;

TD(n) = 2TD
(
n
2

)
+ Θ (1) if n > 1;

where, γ, γA, γB, γC and γD are suitable constants. Solving, QA(n) = O
(

n3

B
√
M

+ n3

M
+ n2

B
+ n

)
and TA(n) = O

(
nlog 3

)
.

For the function approximation problem, the AFA algorithm achieves T1(n) = Θ (n3),
Q1(n) = O

(
n3

B
√
M

+ n3

M
+ n2

B
+ n

)
, T∞(n) = Θ

(
nlog 3

)
, parallelism = Θ

(
n3−log 3

)
, and

S∞(n) = Θ (n2).

A.8 Spoken word recognition
The spoken word recognition problem [Sakoe and Chiba, 1978] is defined as follows. We
give one type of DP recurrence from the Sakoe and Chiba’s paper. There are many more
similar variants. Given two speech patterns expressed as a sequence of feature vectors
X = 〈x1, x2, . . . xm〉 and Y = 〈y1, y2, . . . yn〉, and a distance function d(i, j) = ||xi − yj||, we
define D[i,j]

|Xi|+|Xj | (0 ≤ i ≤ m, 0 ≤ j ≤ n) to be the time-normalized distance between the
speech patterns 〈x1, x2, . . . xi〉 and 〈y1, y2, . . . yj〉. Then D[m,n]

m+n is the time-normalized distance
between X and Y , and can be computed using the following recurrence relation:

D[i, j] =


d(i, j) if i ≤ 1 or j ≤ 1,

min


D[i− 1, j − 2] + 2d(i, j − 1) + d(i, j),
D[i− 1, j − 1] + 2d(i, j),
D[i− 2, j − 1] + 2d(i− 1, j) + d(i, j)

 otherwise. (A.10)

Figure A.21, a dependency graph, serial iterative and parallel iterative algorithms are
given for the spoken word recognition problem. In Figures A.21 and A.22, a divide-and-
conquer algorithm is given for solving the spoken word recognition problem. The algorithm
consists of three recursive functions named ASW , BSW and CSW .

Complexity analysis for the PAR-LOOP-SPOKEN-WORD-RECOGNITION algorithm
For f ∈ {PAR-LOOP-SPOKEN-WORD-RECOGNITION}, let Qf (n) and Tf (n) denote the serial
cache complexity, and span of fSW on a matrix of size n×n. Then Qf (n) = Θ

(
n ·
(
n
B

+ 1
))

=
Θ
(
n2

B
+ n

)
. The span is Tf (n) = Θ (n · (log n+ Θ (1))) = Θ (n log n).
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LOOP-SPOKEN-WORD-RECOGNITION

1. for i← 2 to n do
2. for j ← 2 to n do
3. D[i, j]← min (D[i− 1, j − 2] + 2d(i, j − 1) + d(i, j), D[i− 1, j − 1] + 2d(i, j), D[i− 2, j − 1] + 2d(i− 1, j) + d(i, j))

PAR-LOOP-SPOKEN-WORD-RECOGNITION

1. for t← 3 to n do
2. parallel for j ← 2 to t− 1 do
3. i← t− j − 1
4. D[i, j]← min (D[i− 1, j − 2] + 2d(i, j − 1) + d(i, j), D[i− 1, j − 1] + 2d(i, j), D[i− 2, j − 1] + 2d(i− 1, j) + d(i, j))
5. for t← n+ 1 to 2n− 1 do
6. parallel for j ← t− n+ 1 to n do
7. i← t− j + 1
8. D[i, j]← min (D[i− 1, j − 2] + 2d(i, j − 1) + d(i, j), D[i− 1, j − 1] + 2d(i, j), D[i− 2, j − 1] + 2d(i− 1, j) + d(i, j))

ASW (X)

1. if X is a small matrix then Aloop−SW (X)
2. else
3. ASW (X1)
4. parallel: BSW (X2),CSW (X3)
5. ASW (X4)

BSW (X)

1. if X is a small matrix then Bloop−SW (X)
2. else
3. BSW (X1)
4. parallel: BSW (X2),BSW (X3)
5. BSW (X4)

CSW (X)

1. if X is a small matrix then Cloop−SW (X)
2. else
3. CSW (X1)
4. parallel: CSW (X2),CSW (X3)
5. CSW (X4)

Figure A.21: Dependency graph, serial iterative, parallel iterative, and divide-and-conquer
algorithms for solving the spoken word recognition problem.

For the spoken word recognition problem, the
PAR-LOOP-SPOKEN-WORD-RECOGNITION algorithm achieves T1(n) = Θ (n2),
Q1(n) = O

(
n2

B
+ n

)
, T∞(n) = Θ (n log n), parallelism = Θ

(
n

logn

)
, and S∞(n) = Θ (n).

Complexity analysis for the ASW algorithm
For f ∈ {A,B,C}, let Qf (n) and Tf (n) denote the serial cache complexity, and span of fSW
on a matrix of size n× n. Then

QA(n) = QB(n) = QC(n) = O
(
n
B

+ 1
)

if n ≤ γM ,
QA(n) = 2QA

(
n
2

)
+QB

(
n
2

)
+QC

(
n
2

)
+ Θ (1) if n > γAM ;

QB(n) = 4QB

(
n
2

)
+ Θ (1) if n > γBM ;

QC(n) = 4QC

(
n
2

)
+ Θ (1) if n > γCM ;

TA(n) = TB(n) = TC(n) = O (1) if n = 1,
TA(n) = 2TA

(
n
2

)
+ max

(
TB
(
n
2

)
, TC

(
n
2

))
+ Θ (1) if n > 1;

TB(n) = 2TB
(
n
2

)
+ Θ (1) if n > 1;

TC(n) = 2TC
(
n
2

)
+ Θ (1) if n > 1;

where, γ, γA, γB, and γC are suitable constants. Solving, QA(n) = O
(
n2

BM
+ n

B
+ 1

)
and

TA(n) = Θ
(
nlog 3

)
.
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Figure A.22: A divide-and-conquer algorithm for solving the spoken word recognition prob-
lem.

For the spoken word recognition problem, the ASW algorithm achieves T1(n) =
Θ (n2), Q1(n) = O

(
n2

BM
+ n

B
+ 1

)
, T∞(n) = Θ

(
nlog 3

)
, parallelism = Θ

(
n2−log 3

)
, and

S∞(n) = Θ (n).

A.9 Bitonic traveling salesman
We define the bitonic traveling salesman problem [Cormen et al., 2009] as follows. We
are given n points p1, p2, . . . , pn with increasing x-coordinates. The term B[i, j] represents
the bitonic path length if we start from point pi and end at point pj and d(i, j) denotes the
euclidean distance between pi and pj. Then

B[i, j] =


d(1, 2) if i = 1 and j = 2,
B[i, j − 1] + d(i, j − 1) if i < j − 1,
mink∈[1,i−1](B[k, i] + d(k, i)) if j > 2 and i = j − 1.

(A.11)
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Figure A.24 shows the dependency structure of the DP. Serial and parallel iterative
algorithms are given in Figure A.23. In Figures A.23 and A.24, a divide-and-conquer al-
gorithm is given for solving the bitonic TSP problem. The algorithm consists of three
recursive functions named Abit, Bbit and Cbit.

LOOP-BITONIC-TSP

1. for j ← 3 to n do
2. for i← 1 to j − 2 do
3. B[i, j]← B[i, j − 1] + d(i, j − 1)
4. i← j − 1
5. for k ← 1 to i− 1 do
6. B[i, j]← B[k, i] + d(k, i)

PAR-LOOP-BITONIC-TSP

1. for j ← 3 to n do
2. parallel for i← 1 to j − 2 do
3. B[i, j]← B[i, j − 1] + d(i, j − 1)
4. i← j − 1
5. for k ← 1 to i− 1 do
6. B[i, j]← B[k, i] + d(k, i)

Abit(X)

1. if X is a small matrix then Aloop−bit(X)
2. else
3. Abit(X11)
4. Bbit(X12)
5. Cbit(X22, X12)
6. Abit(X22)

Bbit(X)

1. if X is a small matrix then Bloop−bit(X)
2. else
3. Bbit(X11)
4. parallel: Bbit(X21),Bbit(X12)
5. Bbit(X22)

Cbit(X,U)

1. if X is a small matrix then Cloop−bit(X,U)
2. else
3. parallel: Cbit(X11, U11),Cbit(X22, U12)
4. parallel: Cbit(X11, U21),Cbit(X22, U22)

Figure A.23: Serial iterative, parallel iterative, and divide-and-conquer algorithms for the
bitonic TSP problem.

Complexity analysis for the PAR-LOOP-BITONIC-TSP algorithm
For f ∈ {PAR-LOOP-BITONIC-TSP}, letQf (n) and Tf (n) denote the serial cache complexity,
and span of fbit on a matrix of size n× n. Then

For the bitonic traveling salesman problem, the PAR-LOOP-BITONIC-TSP algo-
rithm achieves T1(n) = Θ (n2), Q1(n) = O

(
n2

BM
+ n2

M2 + n
B

+ 1
)
, T∞(n) = Θ

(
nlog 3

)
,

parallelism = Θ
(
n2−log 3

)
, and S∞(n) = Θ (n).

Complexity analysis for the Abit algorithm
For f ∈ {A,B,C}, let Qf (n) and Tf (n) denote the serial cache complexity, and span of fbit on
a matrix of size n× n. Then

QA(n) = QB(n) = QC(n) = O
(
n
B

+ 1
)

if n ≤ γM ,
QA(n) = 2QA

(
n
2

)
+QB

(
n
2

)
+QC

(
n
2

)
+ Θ (1) if n > γAM ;

QB(n) = 4QB

(
n
2

)
+ Θ (1) if n > γBM ;

QC(n) = 4QC

(
n
2

)
+ Θ (1) if n > γCM ;

TA(n) = TB(n) = TC(n) = O (1) if n = 1,
TA(n) = 2TA

(
n
2

)
+ max

(
TB
(
n
2

)
, TC

(
n
2

))
+ Θ (1) if n > 1;

TB(n) = 3TB
(
n
2

)
+ Θ (1) if n > 1;

TC(n) = 2TC
(
n
2

)
+ Θ (1) if n > 1;
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Figure A.24: Top right: Dependency structure of the bitonic TSP DP. Rest: A divide-and-
conquer algorithm for solving the problem.

where, γ, γA, γB, and γC are suitable constants. Solving, QA(n) = O
(
n2

BM
+ n2

M2 + n
B

+ 1
)

and
TA(n) = Θ

(
nlog 3

)
.

For the bitonic traveling salesman problem, the Abit algorithm achieves T1(n) =
Θ (n2), Q1(n) = O

(
n2

BM
+ n2

M2 + n
B

+ 1
)
, T∞(n) = Θ

(
nlog 3

)
, parallelism = Θ

(
n2−log 3

)
,

and S∞(n) = Θ (n).

A.10 Cocke-Younger-Kasami algorithm
The CYK algorithm [Hays, 1962,Younger, 1967,Kasami, 1965] was invented by John Cocke,
Daniel Younger, and Tadao Kasami. It is a parsing algorithm used to parse context-free
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grammars (given in Chomsky normal form (CNF)) and was used in compilers. It is one of
the most efficient parsing algorithms.

We are given a string X = 〈x1, x2, . . . , xn〉 and a context-free grammar G = (V,∑, R, S),
where V is a set of variables (or non-terminal symbols),

∑
is a finite set of terminal symbols,

R = {R1, R2, . . . , Rt} : V → (V ∪∑)∗ is a finite set of rules, and S is a start variable chosen
from V . We set P [i, j, c] to true provided substring Xij = xixi+1 . . . xi+j−1 can be generated
from rule Rc ∈ R, and to false otherwise. Then

P [i, j, c] =


true if j = 1 and Rc → xi,
true if P [i, k, a] = P [i+ k, j − k, b] = true, k ∈ [1, i− 1] and Rc → RaRb,
false otherwise.

(A.12)
The dependency graph of the CYK algorithm is given in Figure A.25. A divide-and-

conquer algorithm (developed in collaboration with Jesmin Jahan Tithi) is given in Figure
A.25. Note that the divide-and-conquer structure is exactly identical to that of the paren-
thesis problem (Section A.2) and hence the complexity analysis similar as given in the
parenthesis problem. In fact, through a different parameterization of the DP recurrence,
we can end up with a DP recurrence that is very similar to that of the parenthesis problem.

For the CYK DP recurrence, the ACYK algorithm achieves T1(n) = Θ (n3), Q1(n) =
O
(

n3

B
√
M

+ n3

M
+ n2

B
+ n

)
, T∞(n) = Θ

(
nlog 3

)
, parallelism = Θ

(
n3−log 3

)
, and S∞(n) =

Θ (n2).

A.11 Binomial coefficient
A binomial coefficient, denoted C(n, k) is the number of combinations (or subsets) of k
elements taken fro a set of n elements. The term is called so because it comes from the
coefficients of the expansion of the binomial formula:

(a+ b)n = C(n, 0)an + · · ·+ C(n, k)an−kbk + · · ·+ C(n, n)bn.

Binomial coefficient can be computed with the recurrence

C(n, k) =

0 if k = 0 or k ≥ n,

C(n− 1, k − 1) + C(n− 1, k) if k ∈ [1, n− 1].

Figure A.26 shows the dependency graph for the problem. If we want to compute the
binomial coefficient C[n, k], then the part of the DP table that will be computed is shown
in the figure. The first part consists of the region C[0 . . . k, 0 . . . k] in which the lower right
triangular region will be filled. The second part consists of the rectangular region C[k +
1 . . . n, 0 . . . k].

Figure A.26 shows serial and parallel iterative algorithms to compute a binomial coeffi-
cient. A divide-and-conquer algorithm is also given to solve the problem. It consists of two
recursive functions ABC and BBC . The function ABC fills a lower right-triangular region
and the function BBC fills a square region. This function can be easily extended / modified
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Figure A.25: Top left: Dependency graph for the CYK algorithm Rest: A divide-and-
conquer algorithm.

to work for generic rectangular matrices. For simplicity and pedagogical reasons we show
the working of the BBC function for square matrices only.

Complexity analysis for the PAR-LOOP-BINOMIAL-COEFFICIENT algorithm
Let Qf (n, k) and Tf (n, k) denote the serial cache complexity, and span of
PAR-LOOP-BINOMIAL-COEFFICIENT with parameters n and k. ThenQf (n, k) = Θ

(
n ·
(
k
B

+ 1
))

=
Θ
(
nk
B

+ n
)

and Tf (n, k) = Θ (n · (log k + Θ (1))) = Θ (n log k).

For the binomial coefficient problem, the PAR-LOOP-BINOMIAL-COEFFICIENT al-
gorithm achieves T1(n, k) = Θ (nk), Q1(n, k) = Θ

(
nk
B

+ n
)
, T∞(n, k) = Θ (n log k), par-

allelism = Θ
(

k
log k

)
, and S∞(n) = Θ (k).

Complexity analysis for the D&C-BINOMIAL-COFFICIENT algorithm
Let QA(k) and QB(n, k) denote the serial cache complexities and TA(k) and TB(n, k) denote
the span of the respective functions for parameters n and k. Then
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LOOP-BINOMIAL-COEFFICIENT(C)

1. for i← 0 to n do
2. for j ← 0 to min (i, k) do
3. if j = 0 or j = i then C[i, j]← 1
4. else C[i, j]← C[i, j − 1] + C[i− 1, j]

PAR-LOOP-BINOMIAL-COEFFICIENT(C)

1. for i← 0 to n do
2. parallel for j ← 0 to min (i, k) do
3. if j = 0 or j = i then C[i, j]← 1
4. else C[i, j]← C[i, j − 1] + C[i− 1, j]

D&C-BINOMIAL-COEFFICIENT(X)

1. ABC(X1) B X1 is a k × k right triangle
2. BBC(X2) B X2 is a (n− k)× k rectangle

ABC(X)

1. if X is a small matrix then Aloop-BC(X)
2. else
3. ABC(X11)
4. BBC(X21)
5. ABC(X22)

BBC(X)

1. if X is a small matrix then Bloop-BC(X)
2. else
3. BBC(X11)
4. parallel: BBC(X12), BBC(X21)
5. BBC(X22)

Figure A.26: Top left: The dependency graph and the part of the DP table that will be filled
while computing the binomial coefficient C(n, k). Rest: Serial iterative algorithm, parallel
iterative algorithm, and the divide-and-conquer algorithm for the binomial coefficient.

QA(k) = O
(
k
B

+ 1
)

if k ≤ γM ,
QA(k) = 2QA

(
k
2

)
+QB

(
k
2 ,

k
2

)
+ Θ (1) if k > γAM ;

TA(k) = O (1) if k = 1,
TA(k) = 2TA

(
k
2

)
+ TB

(
k
2 ,

k
2

)
+ Θ (1) if k > 1;

where, γ, γA are suitable constants. The recursive structure of BBC is similar to that of the
LCS algorithm (see Section A.1). Hence the complexity of the BBC function derives from
that of the LCS algorithm. Therefore, QB(n, k) = Θ

(
nk
BM

+ nk
M2 + n+k

B
+ 1

)
and TB(n, k) =

Θ
(
max (n, k) · (min (n, k))(log 3)−1

)
. Using this result in the recurrence, we have, QA(k) =

O
(
k2

BM
+ k2

M2 + k
B

+ 1
)

and TA(n) = Θ
(
klog 3

)
.
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For the final complexities of the divide-and-conquer algorithm, we must computeQA(k)+
QB(n− k, k) and TA(k) + TB(n− k, k). Thus we have

For the binomial coefficient problem, the D&C-BINOMIAL-COEFFICIENT algo-
rithm achieves T1(n, k) = Θ (nk), Q1(n, k) = O

(
nk
BM

+ nk
M2 + n+k

B
+ 1

)
, T∞(n, k) =

Θ
(
klog 3 + max (n− k, k) · (min (n− k, k))(log 3)−1

)
, and S∞(n) = Θ (n+ k).

A.12 Egg dropping
The egg dropping problem is defined as follows. There is an n-floored building and we are
given k identical eggs. We define threshold floor of a building as the highest floor in the
building from and below which when the egg is dropped, the egg does not break, and above
which when the egg is dropped, the egg breaks.

We want to find the threshold floor of the k-floored building. The threshold floor of the
building can be anything in the range [0, n]. A threshold floor 0 means that when the egg is
dropped from floor 1, the egg breaks, which in turn means that there is no threshold floor
in the building.

What strategy finds the threshold floor minimizing the worst-case number of drops?

There are multiple ways to solve the problem. But, every single way of solving the
problem seems to use dynamic programming. We can formulate the dynamic programming
recurrence in majorly three different ways as follows to solve our original problem:

O [Drops.] What is the minimum number of drops to find the threshold floor when there
are n floors and k eggs?

O [Floors.] What is the maximum number of floors in which we can find the threshold
floor if we have k eggs and maximum number of drops allowed is d?

O [Eggs.] What is the minimum number of eggs required to find the threshold floor if
we have n floors and maximum number of drops allowed is d?

Drops DP recurrence
We denote the minimum number of drops required to find the threshold floor in first i floors
using j eggs as drops[i][j]. So, in this generalized problem, we are interested in calculating
drops[n][k], where n is the number of floors in the building and k is the number of eggs we
can use.

Minimum number of drops = drops[n][k]

We use a magical wand to solve this problem. That wand can turn stones into gold.
The magical wand we are talking about is an algorithm design technique called dynamic
programming. Before proceeding further, the reader is recommended to understand the
technique from a good algorithms textbook.

We compute drops[n][k] using the following recurrence.

drops[i][j] =


i if j = 1,
1 if i = 1,
1 + min x∈[1,i] (max (drops[x− 1][j − 1], drops[i− x][j])) otherwise.
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The base cases when j = 1 (1 egg) and i = 1 (1 floor) is straightforward. The recursion
case for i floors and j eggs goes like this. If we drop an egg from floor x ∈ [1, i], there can
be two cases: (i) the egg breaks, in which case we are left with j − 1 eggs and we need to
test floors in the range [1, i− 1]. Here, the total number of drops is 1+ drops[x− 1][j− 1]; and
(ii) the egg does not break, in which case we are left with j eggs and we need to test floors
in the range [x+ 1, i]. Here, the total number of drops is 1 + drops[i− x][j]. We consider the
maximum of the two cases (which represents the worst-case) and take the minimum of all
maximums by varying x in the range [1, i].

Figure A.28 gives the dependency structure of the drops[i][j] recurrence. Figure A.27
gives a serial iterative DP algorithm to compute drops[n][k]. In Figure A.28, we present
a divide-and-conquer algorithm to solve the drops[i][j] DP recurrence. For simplicity of
exposition, we consider n = k. In [Frigo et al., 1999], a divide-and-conquer algorithm
was presented to solve the matrix multiplication problem for generic matrices. Using the
ideas presented in that paper, it is possible to extend our divide-and-conquer algorithm to
compute drops[n][k] for generic values of n and k.

The divide-and-conquer algorithm consists of three functions AED,BED, and CED. The
BED function is special. It reads from the region it writes to. Hence, several possible
dependencies of cells are combined into that function. In the directed acyclic graph (DAG)
of the BED function, only two parameters X and V are shown in the diagram. The function
BED(〈X, V,X〉, 〈X,X, V 〉, 〈X,X,X〉) is represented as BED(X, V ) for simplicity.

Improved algorithm. The iterative DP algorithm from Figure A.27 computes only the
minimum number of drops required to find the threshold floor and not the information
about the threshold floor and which egg has to be dropped from which floor. The algorithm
can be modified suitably to find this extra information as well. Though the algorithm is cor-
rect and computes the optimum number of drops, it executes slow and its time complexity
is Θ (n2k).

The algorithm’s runtime can be reduced to Θ (nk log n). We can find min x∈[1,i](max (drops[x−
1][j−1], drops[i−x][j])) in Θ (log n) time using binary search. The reason is as follows. When
x is a variable, drops[x− 1][j − 1] is an increasing function and drops[i− x][j] is a decreasing
function and hence max (drops[x− 1][j − 1], drops[i− x][j]) will have a global minimum. This
global minimum can be found using a variant of binary search.

We can further reduce the runtime to Θ (nk). We store the optimal x for every cell of
the drops DP table. When we want to find the optimal x of a new cell, we make use of the
optimal x of its previous cells.

The plot of drops[n][k] for varying n is given in Figure A.29.

Complexity analysis for the AED algorithm
For f ∈ {A,B,C}, let Qf (n) and Tf (n) denote the serial cache complexity, and span of fED
on a matrix of size n× n. Then

QA(n) = QB(n) = QC(n) = O
(
n2

B
+ 1

)
if n2 ≤ γM ,

QA(n) = 2
(
QA

(
n
2

)
+QB

(
n
2

)
+QC

(
n
2

))
+ Θ (1) if n2 > γAM ;

QB(n) = 4
(
QB

(
n
2

)
+QC

(
n
2

))
+ Θ (1) if n2 > γBM ;

QC(n) = 8QC

(
n
2

)
+ Θ (1) if n2 > γCM ;

180



K-EGGS-PUZZLE(n, k) B Θ
(
n2k
)

Input: Number of floors n and number of eggs k
Output: Minimum number of drops drops[n][k]
1. for i← 1 to n do drops[i][1]← i
2. for j ← 1 to k do
3. drops[0][j]← 0; drops[1][j]← 1
4. for i← 2 to n do
5. for j ← 2 to k do
6. min← i
7. for x← 1 to i do
8. max← MAX(drops[x− 1][j − 1], drops[i− x][j])
9. if max < min then min← max

10. drops[i][j]← min+ 1
11. return drops[n][k]

drops[i][j]

drops[i− x][j]

drops[x− 1][j − 1]

i

x

n

(egg does not break)

(egg breaks)

1

Figure A.27: Left: An algorithm to solve the k eggs problem for n floors. Right: The core
idea for the algorithm.

TA(n) = TB(n) = TC(n) = O (1) if n = 1,
TA(n) = 2

(
TA
(
n
2

)
+ TB

(
n
2

))
+ TC

(
n
2

)
+ Θ (1) if n > 1;

TB(n) = 3TB
(
n
2

)
+ 4TC

(
n
2

)
+ Θ (1) if n > 1;

TC(n) = 2TC
(
n
2

)
+ Θ (1) if n > 1;

where, γ, γA, γB, and γC are suitable constants. Solving, QA(n) = O
(

n3

B
√
M

+ n3

M
+ n2

B
+ n

)
and TA(n) = Θ

(
nlog 3

)
.

For the egg dropping problem, the AED algorithm achieves T1(n) = Θ (n3), Q1(n) =
O
(

n3

B
√
M

+ n3

M
+ n2

B
+ n

)
, T∞(n) = Θ

(
nlog 3

)
, parallelism = Θ

(
n3−log 3

)
, and S∞(n) =

Θ (n2).

A.13 Sorting algorithms
Sorting is a computational process of rearranging a multiset of items in ascending or de-
scending order [Knuth, 1998]. It is one of the most fundamental problems in computer
science. Sorting is used in real-life scenarios. Smartphone contacts are sorted based on
names; students’ (resp. employees’ and patients’) profiles are sorted based on student ID
(resp. employee ID and patient ID); knock-out wrestling tournaments are like priority
queues to sort wrestlers based on muscle strength; passengers waiting in a queue to board
a bus sort themselves based on time-of-arrival; flight (or bus or train) information is sorted
based on time-of-departure; people posing for a group photo often sort themselves based on
height; importance given to different jobs and people are sorted based on priorities; to-be-
worn dresses are usually sorted based on least-recently-used; and, research papers to top
theory conferences are sorted based on incomprehensibility.

Sorting is used as an intermediate step to solve several computer science problems
[Skiena, 1998, Knuth, 1998] such as: bringing all items with the same identification to-
gether, matching items in two or more files, searching for a specific value, testing if all ele-
ments are unique, deleting duplicates, finding the kth largest element (selection problem),
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Figure A.28: Top center: Dependency graph for the egg dropping problem. Rest: A divide-
and-conquer algorithm for solving the problem by computing drops[n][n].

finding the kth most frequently occurring element, finding set union/intersection, finding
the closest pair of points, finding a convex hull, and so on. Even if sorting was totally use-
less, it is an exceptionally interesting problem that leads to several stunning algorithms
and mind-blowing analyses. We remember a quote often credited to Richard Feynman,
“Science is like sex, sometimes something useful comes out, but that is not the reason why
we do it.” Due to the reasons mentioned above, sorting is a well studied problem and has a
large literature.

Several algorithms have been discovered to solve the sorting problem. More than six
decades of research has yielded over a hundred algorithms to solve the sorting problem,
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Figure A.29: Left: Plot for drops[n][k] when n is varying from 1 to 30 and k is fixed at 2, 3,
or 10. Right: Plot for floors[d][k] when d is varying from 1 to 20 and k is fixed at 2, 3, or 10.

many of which are either minor or major variations of tens of standard algorithms. The
sorting algorithms can be classified as in-place or not-in-place, stable or unstable, iterative
or recursive, serial or parallel [Akl, 2014,Cole, 1988], internal memory or external memory,
deterministic or randomized, adaptive [Estivill-Castro and Wood, 1992] or non-adaptive,
and self-improving [Ailon et al., 2011] or non-self-improving.

In this section, we present recursive divide-and-conquer variants of bubble, selection,
and insertion sorting algorithms.

Why care for divide-and-conquer algorithms?. Divide-and-conquer is an algorithm
design strategy used to solve problems by breaking them into one or more subproblems,
solving them, and combining their solutions to solve the original problem. Often, the sub-
problems are independent and the divide-and-conquer algorithms are implemented recur-
sively.

Divide-and-conquer algorithms have the following advantages:
O They can be represented succinctly and can be analyzed for its complexities using

recurrence relations [Bentley, 1980].
O They are usually efficient [Levitin, 2011] in the sense that they reduce the total num-

ber of computations.
O They can be parallelized easily [Mou and Hudak, 1988].
O They often are (or can be made) cache-efficient and cache-oblivious [Frigo et al., 1999,

Chatterjee et al., 2002,Frens and Wise, 1997].
For example, some of the fastest sorting algorithms such as merge sort and quicksort

are based on recursive divide-and-conquer.3.

Why care for bubble, selection, & insertion sorts?. Among all sorting algorithms,
bubble, selection, and insertion sorts [Levitin, 2011] are three of the most elementary al-
gorithms that are widely taught to computer science students. The algorithms are popular
majorly because they are arguably simple, easy-to-remember, and easy-to-program.

From unreliable sources, it is known that there is a tribe in the Amazon forests called
Zozo. Every night, a volunteer from the tribe makes sure that the people are sorted based
on age and they get their food share in that order. Interestingly, the tribe uses bubble sort
to sort the people.

3The fastest sorting algorithm runs in O (1) time – simply call a sort() function from a standard library.
:)
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We too use bubble, selection, and insertion sorts depending on our moods and occasions.
For stress management, we often recommend students to mentally sort the numbers from
100 to 1 using insertion sort, unlike counting numbers from 100 to 1.

Model. Analogous to cache-oblivious model (or ideal-cache model) [Frigo et al., 1999], we
develop a memory-oblivious model. In this model, a human mind is assumed to consist
of a constant number of processing elements (or processors) and a hierarchy of memories
(short-term and long-term), as shown in Figure A.30. The amount of information that can
be stored at memory levels near the processors are lesser than that those away from the
processors. Similarly, time to access information from memory levels near the processors
is smaller than that of higher memory levels. Also, the number of memory levels, memory
sizes, etc varies from person to person. It is important to note that the traditional cache-
aware or external-memory (or analogously memory-aware) model is not suitable because
people do not know their memory sizes or the number of levels of memory they have.

When a processing element looks for some information in a memory-level and that in-
formation is not found, that leads to a memory miss. The total number of memory misses is
measured as memory-complexity. The better the memory complexity for an algorithm, the
fewer the number of thoughts required to check different memory levels for information
and faster it is for the mind to execute the algorithm.

Divide-and-conquer variants of bubble, selection, & insertion sorts. Humans (i.e.,
minds) heavily use bubble, selection, and insertion sorts because these algorithms are sim-
ple and intuitive. On the other hand, computers (i.e., machines) heavily use merge sort and
quicksort because these algorithms are very fast. Our aim is to improve the performance
of the elementary sorting algorithms and save billions of minutes of time for millions of
people in their sorting business.

In this section, we present divide-and-conquer variants of the elementary sorting al-
gorithms. By the virtue of divide-and-conquer, such algorithms are memory-efficient and
memory-oblivious.

Shortest-term memory

……………

……………… …

…
…
…

…
…
…

…
…
…

Short-term memory

Longest-term memory

Processors

Figure A.30: Left: Place-holder of the human mind. Right: The memory-hierarchy of the human
mind.

Our divide-and-conquer algorithms are memory-oblivious. Any person can use it irre-
spective of her/his memory hierarchy. The algorithms are provably memory-efficient too.
This implies, the number of thoughts that accesses different memory levels to execute an
algorithm in mind is minimized asymptotically and hence sorting can be done asymptoti-
cally much faster.

Students complain about non-remembrance and older adults complain about forget-
fulness. Clinical observation [Kral, 1962] shows that memory loss occurs significantly in
aging individuals. In algorithmic terms, it can be called the memory-shrinkage problem.
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Using the results from [Bender et al., 2014], we can prove that our divide-and-conquer
variants of sorting algorithms are memory-adaptive in the sense that they work optimally
even if the memory size changes dynamically. This implies, the young and the old can use
the proposed algorithms and minimize the time they take to sort out things.

In this section, we present divide-and-conquer variants of bubble, selection, and inser-
tion sorts. Both recursive bubble and selection sorts use partition algorithms. On the other
hand, the recursive insertion sort uses a merge algorithm. We explain the logic of recursive
bubble sort in more details. The explanation to other two algorithms can be extended in a
similar way.

Notations & terminologies. For all algorithms, we sort the n-sized array A[0..n − 1].
For simplicity, we assume that n is a power of 2. In all recursive function calls, we use
notations such as `, h,m, ``, `h, r`, rh, etc, all of which represent the indices in the array A.
The notations `,m, h mean low, mid, and high, respectively. Terms `` and rm mean low
in the left array and mid in the right array, respectively. Other terms can be defined in a
similar way. When a subproblem size h − ` + 1 or `h − `` + 1 becomes less than or equal to
the base case size b, then we execute an iterative base case kernel having an algorithm-
dependent logic. The terms used in the section are summarized in Table A.1.

Symbol Meaning
A array to be sorted
n Input parameter

`, h,m Low, high, and mid
`` Left subarray’s low index
rh Right subarray’s high index

I-BS Iterative bubble sort
R-BS Recursive bubble sort
P-BS Partition in bubble sort
M-IS Merge in insertion sort

Table A.1: Standard notations used for the sorting algorithms. Other notations are such as I-SS,
R-SS, etc are similarly defined.

Related work. Bubble sort [Friend, 1956, Gotlieb, 1963] is also called sinking sort, ex-
change selection, shuttle sort, propagation, or push-down sort. Variations of bubble sort
exists such as cocktail sort [Knuth, 1998] (a.k.a shaker sort, bidirectional bubble sort,
shaker sort, ripple sort, or shuffle sort), where the direction of bubbling alternates be-
tween left-to-right and right-to-left, and odd-even sort [Habermann, 1972] (a.k.a odd-even
transposition sort or brick sort).

Selection sort has several variants such as cocktail sort (a.k.a shaker sort or dual selec-
tion sort), where both the minimum and maximum elements are found in every pass, and
bingo sort [Bin, ], which scans the remaining elements to find the greatest value and shifts
all elements with that value to their final locations.

Insertion sort variants include Shell sort [Shell, 1959], where elements separated by a
distance are compared; binary insertion sort, which uses binary search to find the exact
location of the new elements to be inserted; binary merge sort, which uses binary inser-
tion sort and merge sort; heap sort, where insertions and searches are performed with a
sophisticated data structure called a heap; and library sort [Bender et al., 2006b] (a.k.a
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gapped insertion sort), where small number of spaces are left unused to make gaps for the
elements to be inserted. Insertion sort is generally faster than selection sort which almost
always is faster than bubble sort.

The cache performance effects on sorting algorithms have been studied by [LaMarca
and Ladner, 1999]. The lower-bounds on sorting in external-memory model is given by
Aggarwal and Vitter [Aggarwal et al., 1988]. The serial cache-oblivious model was proposed
in [Frigo et al., 1999].

I-BS(A,n)

1. for i← 0 to n− 1 do
2. for j ← 0 to n− i− 1 do
3. if A[j] > A[j + 1] then
4. SWAP(A[j], A[j + 1])

I-SS(A,n)

1. for i← 0 to n− 1 do
2. min← i
3. for j ← i to n− 1 do
4. if A[j] < A[min] then
5. min← j
6. SWAP(A[i], A[min])

I-IS(A,n)

1. for i← 1 to n− 1 do
2. key ← a[i]
3. for j ← i− 1 to 0 do
4. if A[j] > key then
5. A[j + 1]← A[j]
6. A[j + 1]← key

Figure A.31: Standard iterative algorithms for bubble sort (I-BS), selection sort (I-SS), and in-
sertion sort (I-IS). Optimizations are not shown for pedagogical reasons.

A.13.1 Bubble sort

Bubble sort is one of the simplest sorting algorithms that is taught in an undergraduate
algorithms course. Though it is a very slow algorithm takingO (n2) time to sort n elements,
it is simple to understand and easy to program.

A simple iterative algorithm called I-BS is given in Figure A.31. It has n iterations. In
each iteration i (∈ [0, n− 1)), every two adjacent elements j and j+ 1, where j ∈ [0, n− i− 1],
are compared and sorted if they are not already in their sorted order. The number of
comparisons at iteration i is n− i and at the end of the iteration, the array (i+ 1)th largest
element will be in its correct position.

A recursive divide-and-conquer variant of bubble sort called R-BS is shown in Figure
A.32. The aim is to sort the entire array A[0..n− 1]. The function R-BS(A, `, h, n) sorts the
subarray A[`..h]. The initial invocation to the algorithm is by calling R-BS(A, 0, n − 1, n).
The function R-BS in turn calls the P-BS function. The P-BS function is the partition
function for bubble sort that brings the smallest n/2 elements to the left half and the
largest n/2 elements to the right half of array A. Once the array A is partitioned, then the
R-BS is recursively called onto the left and right halves in parallel to sort the two halves.
After the two halves are sorted recursively, the entire array A[0..n− 1] will be sorted. When
the subproblem reaches the base case, it is sorted using the standard iterative bubble sort
logic.

The partition function P-BS(A, ``, `h, r`, rh, n) partitions the elements such that after
the partition, the largest element in A[``..`h] will be less than or equal to the smallest
element in A[r`..rh]. The function works as follows.

In the base case, we use two loops: the outer-loop ranging over the right subarray and
the inner-loop ranging over the left subarray. Using a logic similar to that of iterative
bubble sort, the largest elements in the left subarray are pushed to the right subarray
after every iteration.
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R-BS(A, `, h, n)

1. if (h− `+ 1) ≤ b then
2. for i← ` to h do
3. for j ← ` to `+ h− i− 1 do
4. if A[j] > A[j + 1] then
5. SWAP(A[j], A[j + 1])
6. else
7. m← (`+ h)/2
8. P-BS(A, `,m,m+ 1, h, n)
9. parallel: R-BS(A, `,m, n),

R-BS(A,m+ 1, h, n)

P-BS(A, ``, `h, r`, rh, n)

1. if (`h− ``+ 1) ≤ b then
2. for i← r` to rh do
3. for j ← `` to `h− 1 do
4. if A[j] > A[j + 1] then
5. SWAP(A[j], A[j + 1])
6. if A[`h] > A[i] then SWAP(A[`h], A[i])
7. else
8. `m← (``+ `h)/2; rm← (r`+ rh)/2
9. parallel: P-BS(A, ``, `m, r`, rm, n),

P-BS(A, `m+ 1, `h, rm+ 1, rh, n)
10. parallel: P-BS(A, ``, `m, rm+ 1, rh, n),

P-BS(A, `m+ 1, `h, r`, rm, n)

Figure A.32: A recursive divide-and-conquer variant of bubble sort. Initial call to the recursive
algorithm is R-BS(A, 0, n− 1, n), where A[0..n− 1] is the array to be sorted.

In the recursion case, the P-BS calls itself four times. The reason for requiring four
function calls is simple. Let `m and rm be the midpoints of the left and right subarray,
respectively. The left subarray A[``..`h] can be divided into two subarrays A[``..`m] and
A[(`m + 1)..`h] and the right subarray A[r`..rh] can be divided into two subarrays A[r`..rm]
and A[(rm + 1)..rh]. This means there are a total of four possible combinations of left
and right subsubarrays. The P-BS function invokes two functions that work on different
regions of the array, in parallel. In the next step, two more functions are invoked in parallel
that work on disjoint regions. After the four invocations the larger elements would have
moved to the right subarray leaving the smaller elements in the left subarray.

Theorem 14 (Bubble sort correctness). The divide-and-conquer variant of bub-
ble sort algorithm i.e., R-BS correctly sorts the input array.

Proof. We use mathematical induction to prove the theorem. First we prove the correctness
of P-BS function. Then we prove R-BS correct. For simplicity, we assume that n and b
are powers of 2 such that n ≥ b. We term A[``..``h] and A[r`..rh] as left and right input
subarrays, respectively.
(1) [Correctness of P-BS.]
Basis. The logic of the base case when the input subarray is of size b is straightforward.
The external loop runs b times and in each iteration, one of the larger elements sifts to the
right subarray.
Induction. We assume that P-BS works correctly when the input subarrays are of size 2k
for some k, such that 2k ≥ b. We need to prove that P-BS works for input subarrays of size
2k+1.

LetQ1, Q2, Q3, andQ4, whereQ stands for “quarter”, represent the locationsA[``..`m], A[(`m+
1)..`h], A[r`..rm], and A[(rm + 1)..rh], respectively, where each subarray is of size 2k. Let
W,X, Y , and Z be the initial sets of numbers present at Q1, Q2, Q3, and Q4, respectively.
Let SMALL(S1, S2) (resp. LARGE(S1, S2)) of two sets S1 and S2 of numbers represent a set
consisting of the smallest half (resp. largest half) of the numbers from sets S1 and S2. Also,
let S1 ≤ S2 denote that all elements of S1 is less than or equal to all elements of S2.

After execution of line 8, the states of the four quarters of the array A are Q1 = W , Q2 =
X, Q3 = Y , and Q4 = Z. After execution of line 9, the states of the four quarters of the array
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A are: Q1 = SMALL(W,Y ), Q2 = SMALL(X,Z), Q3 = LARGE(W,Y ), and Q4 = LARGE(X,Z).
After execution of line 10, the states of the four quarters of the array A are:

O Q1 = SMALL(SMALL(W,Y ),LARGE(X,Z))
O Q2 = SMALL(SMALL(X,Z),LARGE(W,Y ))
O Q3 = LARGE(SMALL(X,Z),LARGE(W,Y ))
O Q4 = LARGE(SMALL(W,Y ),LARGE(X,Z))
It is easy to see that

O Q1 ≤ Q4
O Q2 ≤ Q3
O Q1 ≤ SMALL(W,Y ) ≤ LARGE(W,Y ) ≤ Q3
O Q2 ≤ SMALL(X,Z) ≤ LARGE(X,Z) ≤ Q4

As Q1 ≤ Q3, Q1 ≤ Q4, Q2 ≤ Q3, and Q2 ≤ Q4, the input subarrays of size 2k+1 have been
partitioned.
(2) [Correctness of R-BS.]
Basis. The base case when the input subarray is of size b is exactly same as the standard
iterative bubble sort and hence is correct.
Induction. We assume that R-BS works correctly when the input subarrays are of size
2k for some k, such that 2k ≥ b. We need to prove that R-BS works for input subarrays
of size 2k+1. We know that the P-BS function is correct and hence after line 8, the left
subarray (A[`..m]) and the right subarray (A[(m+ 1)..h]) would be partitioned such that the
largest element in the left subarray will not be greater than the smallest element in the
right subarray. Then after line 9, we recursively sort the subarrays without affecting the
partition constraint and hence the total subarray will be sorted. �

Complexity analysis
For function f ∈ {I-BS,R-BS,P-BS}, let Qf (n) and Tf (n) denote the serial cache complex-
ity and span of f , respectively, to sort an n-sized array. Then

QI-BS(n) = ∑n−1
i=0 Θ (((n− i)/B) + 1) = Θ (n2/B + n) .

QR-BS(n) = QP-BS(n) = O (n/B + 1) if n ≤ γM ,
QR-BS(n) = 2QR-BS (n/2) +QP-BS (n/2) +O (1) if n > γM ,
QP-BS(n) = 4QP-BS (n/2) +O (1) if n > γM .

TR-BS(n) = TP-BS(n) = O (1) if n = 1,
TR-BS(n) = TR-BS (n/2) + TP-BS (n/2) +O (1) if n > 1,
TP-BS(n) = 2TP-BS (n/2) +O (1) if n > 1.

where, γ is a suitable constant. The cache complexity of a subproblem of size n when it fits
cache i.e., n ≤ γM , is Θ (n/B + 1) = O (M/B + 1). The cache complexity of a subproblem
when it does not fit into cache is recursively computed using its subproblems. Solving the
recurrences we get QR-BS(n) = O (n2/(BM) + n2/M 2 + n/B + n/M + 1) and TR-BS(n) = Θ (n).

The R-BS algorithm achieves T1(n) = Θ (n2), Q1(n) = O
(
n2

BM
+ n2

M2 + n
B

+ 1
)
, T∞(n) =

Θ (n), parallelism = Θ (n), and S∞(n) = Θ (n).
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A.13.2 Selection sort
Selection sort is another slow running sorting algorithm that sorts n numbers in O (n2)
time.

An iterative algorithm called I-SS is given in Figure A.31. The algorithm has n itera-
tions. In each iteration i ∈ [0, n− 1], the position of the minimum element, denoted by min
is found in the range A[i..n − 1]. Then the elements A[min] and A[i] are swapped, which
makes sure that after iteration i, the ith smallest element is in its correct position.

R-SS(A, `, h, n)

1. if (h− `+ 1) ≤ b then
2. for i← ` to h− 1 do
3. min← i
4. for j ← i+ 1 to h do
5. if A[j] < A[min] then
6. min← j
7. if min , i then
8. SWAP(A[i], A[min])
9. else

10. m← (`+ h)/2
11. P-SS(A, `,m,m+ 1, h, n)
12. parallel: R-SS(A, `,m, n),

R-SS(A,m+ 1, h, n)

P-SS(A, ``, `h, r`, rh, n)

1. if (`h− ``+ 1) ≤ b then
2. for i← `` to `h do
3. min← i
4. for j ← r` to rh do
5. if A[j] < A[min] then min← j
6. if min , i then
7. SWAP(A[i], A[min])
8. else
9. `m← (``+ `h)/2; rm← (r`+ rh)/2

10. parallel: P-SS(A, ``, `m, r`, rm, n),
P-BS(A, `m+ 1, `h, rm+ 1, rh, n)

11. parallel: P-SS(A, ``, `m, rm+ 1, rh, n),
P-SS(A, `m+ 1, `h, r`, rm, n)

Figure A.33: A recursive divide-and-conquer variant of selection sort. Initial call to the recursive
algorithm is R-SS(A, 0, n− 1, n), where A[0..n− 1] is the array to be sorted.

A recursive divide-and-conquer variant of selection sort R-SS is shown in Figure A.33.
The initial invocation to the algorithm is by calling R-SS(A, 0, n − 1, n). The recursive
structure of the algorithm is exactly the same as that of bubble sort. The R-SS function
invokes P-SS function to partition the array A into two halves where the largest element
in the first half is lesser than or equal to the smallest element in the second half. After
the partition, the R-SS functions are invoked on the two halves to sort them recursively.
The partition function P-SS calls itself four times: two P-SS functions in two parallel
steps. The only difference between the bubble sort and selection sort divide-and-conquer
algorithms are the base cases of R-SS and P-SS functions.

The base case kernel of R-SS function is equivalent to that of the standard iterative
I-SS algorithm. The P-SS(A, ``, `h, r`, rh, n) function base case kernel in each iteration
finds an element that belongs to the left subarray and pushes it into the left subarray.
After several iterations, the elements in the two subarrays would be partitioned in such a
way that the largest element in the left subarray A[``..`h] would be lesser than or equal to
the smallest element in the right subarray A[r`..rh].

Theorem 15 (Selection sort correctness). The divide-and-conquer variant of se-
lection sort algorithm i.e., R-SS correctly sorts the input array.

Proof. We use mathematical induction to prove the theorem. First we prove the correctness
of P-SS function. Then we prove R-SS correct. For simplicity, we assume that n and b
are powers of 2 such that n ≥ b. We term A[``..``h] and A[r`..rh] as left and right input
subarrays, respectively.
(1) [Correctness of P-SS.]
Basis. The logic of the base case when the input subarray is of size b is straightforward.
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The external loop runs b times. In each iteration, we find the index of one the smallest
elements in the right subarray and if the element on the right subarray is less than an
element in the left subarray, then we swap it. In this way, the smallest b elements will sift
to the left subarray.
Induction. The argument is similar to that given in Theorem 14.
(2) [Correctness of R-SS.]
Basis. The base case when the input subarray is of size b is exactly same as the standard
iterative selection sort and hence is correct.
Induction. The argument is similar to that given in Theorem 14. �

Complexity analysis
For function f ∈ {I-SS,R-SS,P-SS}, letQf (n) and Tf (n) denote the serial cache complexity
and span of f , respectively, to sort an n-sized array. Then

QI-SS(n) = ∑n−1
i=0 Θ (((n− i)/B) + 1) = Θ (n2/B + n) .

QR-SS(n) = QP-SS(n) = O (n/B + 1) if n ≤ γM ,
QR-SS(n) = 2QR-SS (n/2) +QP-SS (n/2) +O (1) if n > γM ,
QP-SS(n) = 4QP-SS (n/2) +O (1) if n > γM .
TR-SS(n) = TP-SS(n) = O (1) if n = 1,
TR-SS(n) = TR-SS (n/2) + TP-SS (n/2) +O (1) if n > 1,
TP-SS(n) = 2TP-SS (n/2) +O (1) if n > 1.

where, γ is a suitable constant. Solving the recurrences we get TR-SS(n) = Θ (n) and
QR-SS(n) = O (n2/(BM) + n2/M 2 + n/B + n/M + 1).

The R-SS algorithm achieves T1(n) = Θ (n2), Q1(n) = O
(
n2

BM
+ n2

M2 + n
B

+ 1
)
, T∞(n) =

Θ (n), parallelism = Θ (n), and S∞(n) = Θ (n).

A.13.3 Insertion sort
Insertion sort is a pretty fast algorithm that sorts a set of n elements in O (n2) worst case
time and O (n log n) average case time.

An iterative insertion sort algorithm is given in Figure A.31. The algorithm has n − 1
iterations. In iteration i (∈ [1, n − 1), the array element A[i] will be inserted in a sorted
position in the range A[0 . . . i − 1]. After each iteration i, the subarray A[0 . . . i] will be
sorted. The runtime complexity is data-sensitive.

A recursive divide-and-conquer variant of the insertion sort is given in Figure A.34. The
initial invocation to the algorithm is by calling R-IS(A, 0, n− 1, n). The recursive structure
of the algorithm is similar to bubble and selection sorts but order of function calls are
different. The R-IS function calls itself twice to sort the left and right halves separately
and simultaneously. Then it invokes M-IS function to merge the elements from the two
halves using the logic of the iterative insertion sort. After the merge, the entire array
would have been sorted.

The merge function M-IS calls itself a total of three times: the first two calls in parallel
and then a third serial call. The first call M-IS(A, ``, `m, r`, rm, n) brings the smallest ele-
ments to A[``..`m] in sorted order. The second call M-IS(A, `m+1, `h, rm+1, rh, n) brings the
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R-IS(A, `, h, n)

1. if (h− `+ 1) ≤ b then
2. for i← `+ 1 to h do
3. key ← A[i]
4. j ← i− 1
5. while j ≥ ` & A[j] > key do
6. A[j + 1]← A[j]
7. j ← j − 1
8. A[j + 1]← key
9. else

10. m← (`+ h)/2
11. parallel: R-IS(A, `,m, n),

R-IS(A,m+ 1, h, n)
12. M-IS(A, `,m,m+ 1, h, n)

M-IS(A, ``, `h, r`, rh, n)

1. if (`h− ``+ 1) ≤ b then
2. if A[`h] > A[r`] then
3. for i← r` to rh do
4. key ← A[i]; j ← i− 1
5. while j ≥ r` & A[j] > key do
6. A[j + 1]← A[j]; j ← j − 1
7. if A[`h] > key then
8. A[r`]← A[`h]; j ← lh− 1
9. while j ≥ `` & A[j] > key do

10. A[j + 1]← A[j]; j ← j − 1
11. A[j + 1]← key
12. else
13. `m← (``+ `h)/2; rm← (r`+ rh)/2
14. parallel: M-IS(A, ``, `m, r`, rm, n),

M-IS(A, `m+ 1, `h, rm+ 1, rh, n)
15. M-IS(A, `m+ 1, `h, r`, rm, n)

Figure A.34: A recursive divide-and-conquer variant of insertion sort. Initial call to the recursive
algorithm is R-IS(A, 0, n− 1, n), where A[0..n− 1] is the array to be sorted.

largest elements to A[rm+ 1..rh] in sorted order. The third call M-IS(A, `m+ 1, `h, r`, rm, n)
brings the remaining elements to A[`m+ 1..rm] in the sorted order.

The base case kernel of R-IS function is equivalent to that of the I-IS algorithm. The
M-IS(A, ``, `h, r`, rh, n) function base case kernel merges two sorted subarrays into sorted
order (retaining the sorted elements in those two input subarrays). In iteration k, the
kth element of the right subarray gets merged with its previous elements (in the right
subarray) and with the elements of left subarray. After rh− r`+ 1 iterations, the elements
in the two subarrays would be merged into a sorted order – the left subarray will be sorted,
the right subarray will be sorted, and the last element of the left subarray will be less than
or equal to the first element of the right subarray.

Theorem 16 (Insertion sort correctness). The divide-and-conquer variant of in-
sertion sort algorithm i.e., R-IS correctly sorts the input array.

Proof. We use mathematical induction to prove the theorem. First we prove the correctness
of M-IS function. Then we prove R-IS correct. For simplicity, we assume that n and b are
powers of 2 such that n ≥ b. We termA[``..`h] andA[r`..rh] as left and right input subarrays,
respectively.
(1) [Correctness of M-IS.]
Basis. The logic of the base case when the input subarray is of size b is straightforward.
The external loop runs b times for all elements in the right subarray. In each iteration,
the element from the right subarray is inserted into its correct position towards it left by
shifting elements.
Induction. We assume that M-IS works correctly when the input subarrays are of size 2k
for some k, such that 2k ≥ b. We need to prove that M-IS works for input subarrays of size
2k+1.

LetQ1, Q2, Q3, andQ4, whereQ stands for “quarter”, represent the locationsA[``..`m], A[(`m+
1)..`h], A[r`..rm], and A[(rm + 1)..rh], respectively, where each subarray is of size 2k. Let
W,X, Y , and Z be the initial sets of numbers present at Q1, Q2, Q3, and Q4, respectively.
Let SMALL(S1, S2) (resp. LARGE(S1, S2)) of two sets S1 and S2 of numbers represent a set
consisting of the smallest half (resp. largest half) of the numbers from sets S1 and S2. Also,
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let S1 ≤ S2 denote that all elements of S1 is less than or equal to all elements of S2. As the
input subarrays are sorted we have W ≤ X and hence we can write W = SMALL(W,X)
and X = LARGE(W,X). Similarly, Y ≤ Z and therefore we can write Y = SMALL(Y, Z) and
Z = LARGE(Y, Z).

After execution of line 13, the states of the four quarters of the array A are Q1 = W ,
Q2 = X, Q3 = Y , and Q4 = Z. After execution of line 14, the states of the four quarters
of the array A are: Q1 = SMALL(W,Y ), Q2 = SMALL(X,Z), Q3 = LARGE(W,Y ), and Q4 =
LARGE(X,Z). After execution of line 15, the states of the four quarters of the array A are:

O Q1 = SMALL(W,Y )
O Q2 = SMALL(SMALL(X,Z),LARGE(W,Y ))
O Q3 = LARGE(SMALL(X,Z),LARGE(W,Y ))
O Q4 = LARGE(X,Z)
It is easy to see that

O Q1 = SMALL(SMALL(W,X), SMALL(Y, Z)) = SMALL(SMALL(W,Y ), SMALL(X,Z)) ≤
Q2

O Q2 ≤ Q3
O Q3 ≤ LARGE(LARGE(X,Z),LARGE(W,Y )) = LARGE(LARGE(W,X),LARGE(Y, Z)) =

Q4

As Q1 ≤ Q2 ≤ Q3 ≤ Q4, the input subarrays of size 2k+1 have been merged.
(2) [Correctness of R-IS.]
Basis. The base case when the input subarray is of size b is exactly same as the standard
iterative insertion sort and hence is correct.
Induction. We assume that R-IS works correctly when the input subarrays are of size 2k
for some k, such that 2k ≥ b. We need to prove that R-IS works for input subarrays of size
2k+1. We know that the R-IS function is correct and hence after line 11, the left subarray
(A[`..m]) would be sorted and the right subarray (A[(m+ 1)..h]) would be sorted. Then after
line 12, we merge the two subarrays. As we have shown that the merge function M-IS is
correct, the entire subarray of size 2k+1 would be merged and sorted. �

Complexity analysis
For function f ∈ {I-IS,R-IS,M-IS}, let Wf (n), Qf (n), and Tf (n) denote the work, serial
cache complexity, and span of f , respectively, to sort an n-sized array. We use the term W
instead of T1 for simplicity. Then

QI-IS(n) = ∑n−1
i=0 O (((n− i)/B) + 1) = O (n2/B + n) .

WR-IS(n) = WM-IS(n) = O (1) if n = 1,
WR-IS(n) = 2WR-IS (n/2) +WM-IS (n/2) + Θ (1) if n > 1,
WM-IS(n) = 3WM-IS (n/2) + Θ (1) if n > 1.

QR-IS(n) = QM-IS(n) = O (n/B + 1) if n ≤ γM ,
QR-IS(n) = 2QR-IS (n/2) +QM-IS (n/2) +O (1) if n > γM ,
QM-IS(n) = 3QM-IS (n/2) +O (1) if n > γM .

TR-IS(n) = TM-IS(n) = O (1) if n = 1,
TR-IS(n) = TR-IS (n/2) + TM-IS (n/2) +O (1) if n > 1,
TM-IS(n) = 2TM-IS (n/2) +O (1) if n > 1.
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where, γ is a suitable constant. Solving the recurrences we get WR-IS(n) = O
(
nlog 3

)
,

TR-IS(n) = O (n), and QR-IS(n) = O
(
nlog 3/(BM (log 3)−1) + nlog 3/M log 3 + n/B + n/M + 1

)
. All

logarithms are taken to the base 2.
We compute the serial cache complexity of R-IS. We initially find QM-IS and then use it

to compute QR-IS. We assume that n/2k = γM for some γ.

QM-IS (n) ≤ 3QM-IS

(
n

2

)
+ c = 3

(
3QM-IS

(
n

22
)

+ c
)

+ c = 32QM-IS

(
n

22
)

+ 3c+ c

= 3kQM-IS

(
n

2k
)

+ c
(
3k−1 + 3k−2 + · · ·+ 1

)
≤ 3k

(
QM-IS

(
n

2k
)

+ c
)
≤ c

(
n

M

)log 3 (M
B

+ 1
)

= O
(

nlog 3

BM log 3−1 + nlog 3

M log 3

)

Plugging in QM-IS value into the recurrence of QR-IS, we get

QR-IS (n) ≤ 2QR-IS

(
n

2

)
+QM-IS

(
n

2

)
+ c ≤ 2QR-IS

(
n

2

)
+ c

nlog 3

BM log 3−1 + c
nlog 3

M log 3 + c

≤ 2

2QR-IS

(
n

22
)

+ c

(
n
2

)log 3

BM log 3−1 + c

(
n
2

)log 3

M log 3 + c

+ c
nlog 3

BM log 3−1 + c
nlog 3

M log 3 + c

= 22QR-IS

(
n

22
)

+ 2c+ c+ 2c

(
n
2

)log 3

BM log 3−1 + 2c

(
n
2

)log 3

M log 3 + c
nlog 3

BM log 3−1 + c
nlog 3

M log 3

= 22QR-IS

(
n

22
)

+ c

(
nlog 3

BM log 3−1 + nlog 3

M log 3

)(
1 + 1

2log 3−1

)
+ c (2 + 1)

≤ 2kQR-IS

(
n

2k
)

+ c

(
nlog 3

BM log 3−1 + nlog 3

M log 3

)(
1 + · · ·+ 1

(2log 3−1)k−1

)
+ c

(
2k−1 + · · ·+ 1

)
≤ c

n

M

(
M

B
+ 1

)
+ c

nlog 3

BM log 3−1 + c
nlog 3

M log 3

= O
(

nlog 3

BM log 3−1 + nlog 3

M log 3 + n

B
+ n

M
+ 1

)

The R-IS algorithm achieves T1(n) = O
(
nlog 3

)
, Q1(n) =

O
(

nlog 3

BM(log 3)−1 + nlog 3

M log 3 + n
B

+ n
M

+ 1
)
, T∞(n) = O (n), parallelism = Θ

(
n(log 3)−1

)
,

and S∞(n) = Θ (n).

A.13.4 Experimental results
Table A.2 summarizes the theoretical complexities of our algorithms. This section presents
empirical results showing the performance improvements from high parallelism, better
cache complexity, and less work.
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Iterative algorithm Divide-and-conquer algorithm
Problem T1 Q1 T∞ T1/T∞ T1 Q1 T∞ T1/T∞

Bubble sort [Levitin, 2011] Θ (n2) Θ
(
n2

B

)
Θ (n2) Θ (1) Θ (n2) O

(
n2

BM

)
Θ (n) Θ (n)

Selection sort [Levitin, 2011] Θ (n2) Θ
(
n2

B

)
Θ (n2) Θ (1) Θ (n2) O

(
n2

BM

)
Θ (n) Θ (n)

Insertion sort [Levitin, 2011] O (n2) O
(
n2

B

)
O (n2) Θ (1) O

(
nlog 3

)
O
(

nlog 3

BM log 3−1

)
O (n) Ω (n)

Table A.2: Work (T1), serial cache complexity (Q1), span (T∞), and parallelism (T1/T∞) of
iterative and recursive divide-and-conquer algorithms for the bubble, selection, and inser-
tion sorts. For the cache complexity, only the most significant terms are shown.

Setup. Our experiments were performed on a multicore machine with dual-socket 8-core
2.7 GHz Intel Sandy Bridge processors (2 × 8 = 16 cores in total) and 32 GB RAM. Each
core was linked to a 32 KB private L1 cache and a 256 KB private L2 cache. All cores in a
processor shared a 20 MB L3 cache. With hyper-threading, we can simulate a total of 32
threads from 16 cores. The algorithms were implemented in C++. Intel Cilk Plus extension
was used to parallelize the programs. Intel C++ Compiler v13.0 (icc) was used to compile
the implementations with parameters -O3 -ipo -parallel -AVX -xhost. Apart from these
parameters no optimizations were used for the programs.

Implementations. The three standard iterative sorting algorithms: I-BS, I-SS, and I-IS
as shown in Figure A.31, were implemented without any optimization and the implemen-
tations were inherently serial.

The divide-and-conquer variants of the three algorithms i.e., R-BS, P-BS, R-SS, P-SS,
R-IS, and M-IS were also implemented without optimizations. When the subproblem size
(h−`+1 or `h−``+1) became less than or equal to a base case size b = 28 = 256, we switched
to an iterative kernel having an algorithm-dependent logic. The recursive algorithms were
run with 32 threads. We define speedup as follows:

Speedup = Runtime of iterative algorithm
Runtime of recursive algorithm with 32 threads

(A.13)

In our experiments, we used two types of input: (i) random input (using rand function),
and (ii) descending order input. The input size (n) was varied from 28 = 256 to 219 = 524288
and the speedup was found for different algorithms based on Equation A.13.

Results. Table A.35 shows the speedup graphs for the three sorting algorithms.
The speedup of the R-BS program increased from 0.7× to 76× for the random input

when n increased. For the descending order input, the speedup increased from 0.6× to
30.6×. The good speedup is majorly due to parallelism and to some extent by the cache
performance.

The R-SS program speedup increased from 1× to 23.9× for the random input when n
increased. When the input was in decreasing order, the speedup increased from 1× to 19.8×.
Compared to bubble sort, the speedup is less for selection sort. The reason is that R-SS
does more number of comparisons than I-SS.

For the random input, the speedup of the R-IS program increased from 1.1× to 280×.
For the decreasing order input, the speedup increased from 1.1× to 1314.7×. Note that
such a large speedup is not possible from parallelism and cache performance alone. The
factor that is increasing the speedup is the asymptotic less work that the R-IS performs
compared to I-IS as shown in the complexity analysis subsection of A.13.3.
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Figure A.35: Speedup of the divide-and-conquer bubble, selection, and insertion sorts for (i)
random input (left column) and (ii) descending order input (right column). The definition
of speedup is given in Equation A.13.

A.14 Conclusion and open problems
In this chapter we saw several divide-and-conquer DP algorithms. Each such algorithm is
distinct and significant in its own way. For example:

O Parenthesis and egg dropping problems require combining nodes.
O Floyd-Warshall’s APSP require handling one-way sweep property violation.
O Spoken-word recognition and CYK algorithms have non-orthogonal regions.
O Bitonic TSP has two types of dependencies in the DP table.
O Binomial coefficient has two types of divide-and-conquer algorithms for solving dif-

ferent regions of the DP table.
O Egg dropping problem can be solved using different divide-and-conquer algorithms.
O Irregular DP problems such as Sieve of Eratosthenes and Knapsack problems are
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Figure A.36: Speedup of the divide-and-conquer bubble, selection, and insertion sorts for
ascending order input. The definition of speedup is given in Equation A.13.

difficult to solve efficiently. A good way to solve such problems is by creating a data
structure and collecting all to-be-accessed DP table cells into the data structure.

O Elementary sorting algorithms are non-DP problems and we can solve them using
the core idea of Autogen.

Also, we showed that these auto-discovered divide-and-conquer algorithms have ex-
cellent and often optimal serial cache complexity and good span (for typically non-local
dependencies in high dimensions).

Some open problems are as follows:
O [Closed-form formula for recurrences.] Given any recurrence relation, is it possible to

check if the recurrence relation can be denoted using a closed-form formula?
O [Tight lower bounds for solving recurrences.] Given any recurrence relation, is it

possible to develop tight lower bounds to compute the recurrence?
O [Irregular dynamic programming problems.] Develop cache-efficient divide-and-conquer

algorithms for irregular (e.g.: data-dependent or data-sensitive) DP problems such as
knapsack problem.

O [Non-DP problems.] Develop divide-and-conquer algorithms to many more non-DP
problems.
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Appendix B

Efficient Divide-&-Conquer Wavefront
DP Algorithms

In this section, we present the recursive divide-and-conquer wavefront algorithms for ma-
trix multiplication, LCS, Floyd-Warshall’s APSP, and gap problem. The standard 2-way
recursive divide-and-conquer algorithms are presented in Chapter A. Here we give only
the timing functions and not the entire divide-and-conquer wavefront algorithm.

B.1 Matrix multiplication
The timing functions are computed as follows. The completion-time is found as:

C(i, j, k) = k

Similarly, the start- and end-time functions are as follows.

SA (X,U, V ) = EA (X,U, V ) = C(xr, xc, uc) if X is a n′ × n′ chunk,
SA (X,U, V ) = SA (X11, U11, V11) if X is not a n′ × n′ chunk,
EA (X,U, V ) = EA (X22, U22, V22) if X is not a n′ × n′ chunk.

Solving, we have

C(i, j, k) = k; SA (X,U, V ) = C(xr, xc, uc)
EA (X,U, V ) = C(xr + n− n′, xc + n− n′, uc + n− n′);

where, (xr, xc) is the top-left corner of X. Figure B.1 gives a WR-DP algorithm for
matrix multiplication. Figure B.3 shows the timestamps of the WR-DP on a 4 × 4 DP
table.

B.2 Longest common subsequence & edit distance
The LCS problem is described in Section A.1. The timing functions are computed as follows.
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RECURSIVE-WAVEFRONT-MM()

1. w ← 0
2. while w <∞ do w ← A(G1, G2, G3, w)

C(i, j, k)

1. return k

SA (X,U, V )

1. return C(xr, xc, uc)

EA (X,U, V )

1. return C(xr + n− n′, xc + n− n′, uc + n− n′)

A(X,U, V,w)

1. vi ←∞ for all i ∈ [1, 8]
2. if X is an n′ × n′ matrix then
3. if w = SA (X,U, V ) then Achunk(X,U, V )
4. else
5. F1..8 ← {A,A,A,A,A,A,A,A}
6. arg1..8 ← {(X11, U11, V11), (X12, U11, V12),

(X21, U21, V11), (X22, U21, V12),
(X11, U12, V21), (X12, U12, V22),
(X21, U22, V21), (X22, U22, V22)}

7. parallel for i← 1 to 8 do
8. if w < SFi

(argi) then vi ← SFi
(argi)

9. elif w ≤ EFi
(argi) then vi ← Fi(argi, w)

10. sync
11. return min vi for all i ∈ [1, 8]

Figure B.1: A recursive divide-and-conquer wavefront DP algorithm for matrix multiplica-
tion.

Completion-time is found from the LCS DP recurrence:

C(i, j) =

0 if i < 0 || j < 0 || i = j = 0,
max (C(i− 1, j),C(i, j − 1),C(i− 1, j − 1)) + 1 otherwise.

From Definition 22, we have smax(i, j) = max(C(i − 1, j),C(i, j − 1),C(i − 1, j − 1)) and
su(i, j) = 0 as there is no tuple writing on (i, j) and reading from itself. Similarly, the start-
and end-time functions are as follows.

SA (X) = EA (X) = (C(xr, xc)).0 if X is a n′ × n′ chunk,
SA (X) = SA (X11) if X is not a n′ × n′ chunk,
EA (X) = EA (X22) if X is not a n′ × n′ chunk.

Solving, we have

C(i, j) = i+ j; SA (X) = C(xr, xc); EA (X) = C(xr + n− n′, xc + n− n′);

where, (xr, xc) is the top-left corner of X. Figure B.2 gives a recursive wavefront algo-
rithm for the LCS / edit distance problem. Figure B.3 shows the timestamps of theWR-DP

on a 4× 4 DP table.

RECURSIVE-WAVEFRONT-LCS()

1. w ← 0
2. while w <∞ do w ← A(G1, G2, G3, w)

C(i, j)

1. return i+ j

SA (X)

1. return C(xr, xc, uc)

EA (X)

1. return C(xr + n− n′, xc + n− n′)

A(X,w)

1. vi ←∞ for all i ∈ [1, 4]
2. if X is an n′ × n′ matrix then
3. if w = SA (X) then Achunk(X)
4. else
5. F1..4 ← {A,A,A,A}
6. arg1..4 ← {(X11), (X12), (X21), (X22)}
7. parallel for i← 1 to 4 do
8. if w < SFi

(argi) then vi ← SFi
(argi)

9. elif w ≤ EFi
(argi) then vi ← Fi(argi, w)

10. sync
11. return min vi for all i ∈ [1, 4]

Figure B.2: A recursive divide-and-conquer wavefront DP algorithm for LCS / edit distance.
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Figure B.3: Timestamps of recursive wavefront algorithms for a 4 × 4 table. Left: matrix
multiplication problem. Right: LCS problem.

B.3 Floyd-Warshall’s all-pairs shortest path

A 2-way R-DP algorithm is given in Section A.3.
Let (xr, xc, xh) be the cell with the smallest coordinates in X. Then for each F ∈

{A,B,C,D}, we have

C(i, j, k) = 3k + [i , k] + [j , k],
SF (X, . . .) = C(xr, xc, xh), and

EF (X, . . .) = max


C(xr, xc, xh + n− n′),

C(xr, xc + n− n′, xh + n− n′),
C(xr + n− n′, xc, xh + n− n′),

C(xr + n− n′, xc + n− n′, xh + n− n′)

 .

where, [ ] is the Iversion bracket.
Figure B.4 shows the timestamps for the four planes (k represents the plane number).

The upper diagram shows the timestamps for a 4 × 4 × 4 table and the lower diagram
shows the timestamps for a 4 × 4 table. Figure B.5 shows a WR-DP algorithm for the
Floyd-Warshall’s APSP.

B.4 Sequence alignment with gap penalty

The gap problem and the R-DP algorithm to solve it is described in Section A.5.
Completion-time for theWR-DP algorithm is as follows.

C(i, j) =

0 if i = −1 || j = −1 || i = j = 0,
max (C(i− 1, j),C(i, j − 1)) + 2 otherwise.

From Definition 22, we have smax(i, j) = max(C(i − 1, j),C(i, j − 1)) and su(i, j) = 1 due
to function Agap.
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Figure B.4: Timestamps of recursive wavefront algorithm for FW problem for a 4×4 table.

RECURSIVE-WAVEFRONT-FW()

1. w ← 0
2. while w <∞ do w ← A(G,w)

C(i, j, k)

1. return 3k + [i , k] + [j , k]

SG (X,U, V ) G ∈ {A,B,C,D}

1. return C(xr, xc, xh)

EG (X,U, V ) G ∈ {A,B,C,D}

1. v1 ← C(xr, xc, xh + n− n′)
2. v2 ← C(xr, xc + n− n′, xh + n− n′)
3. v3 ← C(xr + n− n′, xc, xh + n− n′)
4. v4 ← C(xr + n− n′, xc + n− n′, xh + n− n′)
5. return max {v1, v2, v3, v4}

G(X,U, V,w) G ∈ {A,B,C,D}

1. vi ←∞ for all i ∈ [1, 8]
2. if X is an n′ × n′ matrix then
3. if w = SG (X,U, V ) then Gchunk(X,U, V )
4. else
5. if G = A then F1..8 ← {A,B,C,D,D,C,B,A}
6. elif G = B then F1..8 ← {B,B,D,D,D,D,B,B}
7. elif G = C then F1..8 ← {C,D,C,D,D,C,D,C}
8. elif G = D then F1..8 ← {D,D,D,D,D,D,D,D}
9. arg1..8 ← {(X11, U11, V11), (X12, U11, V12),

(X21, U21, V11), (X22, U21, V12),
(X11, U12, V21), (X12, U12, V22),
(X21, U22, V21), (X22, U22, V22)}

10. parallel for i← 1 to 8 do
11. if w < SFi

(argi) then vi ← SFi
(argi)

12. elif w ≤ EFi
(argi) then vi ← Fi(argi, w)

13. sync
14. return min vi for all i ∈ [1, 8]

Figure B.5: A recursive divide-and-conquer wavefront DP algorithm for Floyd-Warshall’s
APSP.

Start- and end-times are given by

SA (X,X) =

(C(xr, xc)).0 if X is a n′ × n′ chunk,
SA (X11, X11) otherwise.

SB (X,U) =

(C(ur, uc) + 1).0 if X is a n′ × n′ chunk,
SB (X11, U11) otherwise.

SC (X, V ) =

(C(vr, vc) + 1).[xc ≥ n′] if X is a n′ × n′ chunk,
SC (X11, V11) otherwise.

Function B does not have races and hence its ra(X) = 0. But when we add function
C, it will have race condition with B. Therefore, to avoid clashes with B, we use ra(X) =
[xc ≥ n′]. The way we compute ra(X) is that ra(X) = 1 if C(vr, vc) ≤ C(xr, xc − n′) and
xc ≥ n′. We know that if the second condition is true the first condition is always true.
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Hence ra(X) = [xc ≥ n′]. We can write similar recurrence for the end-times. Solving, we
have

C(i, j) = 2(i+ j),
SA (X,X) = C(xr, xc); EA (X,X) = C(xr + n− n′, xc + n− n′),
SB (X,U) = C(ur, uc) + 1; EB (X,U) = C(ur + n− n′, uc + n− n′) + 1,
SC (X, V ) = (C(vr, vc) + 1) .[xc ≥ n′]; EC (X, V ) = (C(vr + n− n′, vc + n− n′) + 1) .[xc ≥ n′];

RECURSIVE-WAVEFRONT-GAP()

1. w ← 0
2. while w <∞ do w ← A(G,G,w)

A(X,X,w)

1. vi ←∞ for all i ∈ [1, 8]
2. if X is an n′ × n′ matrix then
3. if w = SA (X,X) then Achunk(X,X)
4. else
5. F1..8 ← {A,B,C,A,A,B,C,A}
6. arg1..8 ← {(X11, X11), (X12, X11), (X21, X11),

(X12, X12), X21, X21), (X22, X21),
(X22, X12), (X22, X22)}

7. parallel for i← 1 to 8 do
8. if w < SFi

(argi) then vi ← SFi
(argi)

9. elif w ≤ EFi
(argi) then vi ← Fi(argi, w)

10. sync
11. return min vi for all i ∈ [1, 8]

B(X,U,w)

1. vi ←∞ for all i ∈ [1, 8]
2. if X is an n′ × n′ matrix then
3. if w = SB (X,U) then Bchunk(X,U)
4. else
5. F1..8 ← {B,B,B,B,B,B,B,B}
6. arg1..8 ← {(X11, U11), (X12, U11), (X21, U21),

(X22, U21), X11, U12), (X12, U12),
(X21, U22), (X22, U22)}

7. parallel for i← 1 to 8 do
8. if w < SFi

(argi) then vi ← SFi
(argi)

9. elif w ≤ EFi
(argi) then vi ← Fi(argi, w)

10. sync
11. return min vi for all i ∈ [1, 8]

C(i, j)

1. return 2(i+ j)

C(X,V,w)

1. vi ←∞ for all i ∈ [1, 8]
2. if X is an n′ × n′ matrix then
3. if w = SC (X,V ) then Cchunk(X,V )
4. else
5. F1..8 ← {C,C,C,C,C,C,C,C}
6. arg1..8 ← {(X11, V11), (X12, V12), (X21, V11),

(X22, V12), X11, V21), (X12, V22),
(X21, V21), (X22, V22)}

7. parallel for i← 1 to 8 do
8. if w < SFi

(argi) then vi ← SFi
(argi)

9. elif w ≤ EFi
(argi) then vi ← Fi(argi, w)

10. sync
11. return min vi for all i ∈ [1, 8]

SA (X,X)

1. return C(xr, xc)

EA (X,X)

1. return C(xr + n− n′, xc + n− n′)

SB (X,U)

1. return C(ur, uc) + 1

EB (X,U)

1. return C(ur + n− n′, uc + n− n′) + 1

SC (X,V )

1. return (C(vr, vc) + 1).[xc ≥ n′]

EC (X,V )

1. return (C(vr + n− n′, vc + n− n′) + 1).[xc ≥ n′]

Figure B.6: A recursive divide-and-conquer wavefront DP algorithm for sequence align-
ment with gap penalty.

Figure B.7 gives both the integral and decimal timestamps for the gap problem for 4×4
DP table. Figure B.6 gives aWR-DP algorithm for the gap problem.
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Figure B.7: Timestamps of recursive wavefront algorithm for gap problem for a 4×4 table.
Top: integral timestamps. Bottom: decimal timestamps.
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Appendix C

Efficient Divide-&-Conquer DP
Algorithms for Irregular Problems

In this section, we present divide-and-conquer algorithms for irregular DP problems. Here,
irregular means any kind of DP dependency that does not follow fractal property. For ex-
ample, data-sensitive DP problems such as Viterbi algorithm and Knapsack problem are
irregular, and DP problems which have weird DP dependencies such as Sieve of Eratos-
thenes are irregular.

C.1 Sieve of Eratosthenes

Let P [i] represent whether the integer i (i ≥ 2) is prime or not. Then P [i] is computed using
the sieve of Eratosthenes algorithm.

Figure C.1 shows the dependency structure for the sieve of Eratosthenes DP algorithm.
The figure shows the serial and parallel iterative sieve of Eratosthenes algorithms. Note
that the parallel algorithm has race conditions. A composite number is marked as compos-
ite by multiple threads which leads to race condition but does not hamper correctness of
the algorithm.

Figure C.1 shows a cache-oblivious divide-and-conquer algorithm to solve the DP re-
currence. The algorithm consists of three recursive functions: A, B, and C. The initial
invocation to the function is ASE(P [1 . . . n]). The ASE(X[1 . . . n]) function has two steps. In
the first step, it computes the first

√
n elements in the prime table recursively using the A

function. In the second step, using the first
√
n numbers of the prime table the rest of the

numbers in the prime table is computed.
In the B function for parameter n, we compute (n −

√
n) numbers in the prime table

using
√
n numbers. We do this in ((n−

√
n)/
√
n) steps and in each step we invoke function

C to compute
√
n numbers using

√
n numbers. The function C calls itself recursively four

times.

Complexity analysis for the PAR-LOOP-SE algorithm
LetWf (n), Qf (n), Tf (n), and Sf (n) denote the work, serial cache complexity, span, and space
consumption of PAR-LOOP-SE with parameter n. Then Wf (n) = ∑b√nc

i=2 bni c = Θ (n log log n),
Qf (n) = Wf (n) = Θ (n log log n), Tf (n) = Θ (log n+ log n) = Θ (log n), and Sf (n) = Θ (n).
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LOOP-SE(n)

1. P [1]← false
2. for i← 2 to n do P [i]← true
3. for i← 2 to b

√
nc do

4. if P [i] = true then
5. for j ← 2 to bn/ic do P [i× j]← false

PAR-LOOP-SE(n)

1. P [1]← false
2. parallel for i← 2 to n do P [i]← true
3. parallel for i← 2 to b

√
nc do

4. if P [i] = true then
5. parallel for j ← 2 to bn/ic do
6. P [i× j]← false

ASE(X)

1. if X is a small array then Aloop−SE(X)
2. else
3. ASE(b

√
Xc)

4. BSE(X − b
√
Xc, b

√
Xc)

BSE(X[1..m], U [1..`])

1. for i← 0 to dm/`e − 1 do
2. CSE(X[i× `+ 1..min ((i+ 1)`,m)], U [1..`])

CSE(X,U)

1. if X is small array then Cloop−SE(X,U)
2. else
3. parallel: CSE(X1, U1),CSE(X2, U1)
4. parallel: CSE(X1, U2),CSE(X2, U2)

Figure C.1: Top right: Dependency structure of Sieve of Eratosthenes DP: cell (i) affects the
thick bordered cells. Rest: Parallel iterative and recursive divide-and-conquer algorithm
for solving the sieve of Eratosthenes DP recurrence.

For the sieve of Eratosthenes DP recurrence, the PAR-LOOP-SE algorithm achieves
T1(n) = Θ (n log log n), Q1(n) = Θ (n log log n), T∞(n) = Θ (log n), parallelism =
Θ
(
n log logn

logn

)
, and S∞(n) = Θ (n).

Complexity analysis for the cache-inefficient cache-oblivious ASE algorithm
For f ∈ {A,B,C}, let Qf (n) and Tf (n) denote the serial cache complexity and span of fSE on
an array of size n. For B, function there are two parameters m and n. Then

QA(n) = QB(n) = QC(n) = O
(
n
B

+ 1
)

if n ≤ γM ,
QA(n) = QA (

√
n) +QB (n−

√
n,
√
n) + Θ (1) if n > γAM ;

QB(m,n) = m
n
QC (n) + Θ (1) if n > γBM ;

QC(n) = 4QC

(
n
2

)
+ Θ (1) if n > γCM ;

TA(n) = TB(n) = TC(n) = O (1) if n = 1,
TA(n) = TA (

√
n) + TB (n−

√
n,
√
n) + Θ (1) if n > 1;

TB(m,n) = m
n
TC (n) + Θ (1) if n > 1;

TC(n) = 2TC
(
n
2

)
+ Θ (1) if n > 1;

where, γ, γA, γB, and γC are suitable constants. Solving, we get WA(n) = Θ (n log log n),
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QA(n) = O
(
n1.5

BM
+ n1.5

M
+ n

B
+ 1

)
, TA(n) = Θ (n), and SA(n) = Θ (n).

The cache-oblivious divide-and-conquer ASE variant of the sieve of Eratosthenes
algorithm achieves T1(n) = Θ (n log log n), Q1(n) = Θ

(
n1.5

BM
+ n1.5

M
+ n

B
+ 1

)
, T∞(n) =

Θ (n), parallelism = Θ (log log n), and S∞(n) = Θ (n).

The serial cache complexity of the algorithm is horrible. We can modify the algorithm
to improve the cache complexity but the algorithm will become cache-aware. Here is the
cache-efficient cache-aware algorithm. We remove the C function and modify the B func-
tion. To implement the function B we store P [1 . . .M ] in memory. For simplicity we can as-
sume that the cache consists of (M/B+1) blocks. By simply scanning all blocks in the range
P [
√
n . . . n] we set to false all indices that are multiples of the prime numbers in the range

1 . . .M . The scan requires O
(
n
B

)
cache misses. Setting to false all indices in the range

P [
√
n . . . n] that are multiples of the primes in the range 1 . . .M requires O (n log logM n)

cache misses.

Complexity analysis for the cache-efficient cache-aware ASE algorithm
The terms used for the complexities are the same as explained in the previous paragraphs.
Let QB(P [`+ 1 . . . h], P [1 . . . `]) denote the serial cache complexity for the B function. We use
h and ` as the parameters for the B function. Then we have

QB(`, h) = O
max

(
1,
h−M
B

)
+

∑
p∈[M,`]

h− `
p

 .
TB(`, h) = Θ

 ∑
p∈[1,`]

h− `
i

 = Θ ((h− `) log log `) .

where p is a prime. Solving, QA(n) = Θ
(
n
B

+ n log logM n
)

and TA(n) = Θ (n log log n).

The cache-aware divide-and-conquer ASE variant of the sieve of Eratosthenes al-
gorithm achieves T1(n) = Θ (n log log n), Q1(n) = Θ

(
n
B

+ n log logM n
)
, T∞(n) =

Θ (n log log n), parallelism = Θ (1), and S∞(n) = Θ (n).

Cache-efficient cache-oblivious sieve of Eratosthenes algorithm
In this section, we give algorithms to generate primes from the sieve of Eratosthenes (hav-
ing Θ (n log log n) computations) using cache-efficient priority queues (PQ).

Due to the lack of locality of reference, the naive implementation of the sieve of Er-
atosthenes has a cache complexity of Θ (n log log n) and a work complexity of Θ (n log log n).
A more sophisticated approach – creating lists of the multiples of each prime, and then
sorting them together – improves the locality at the cost of additional computation, lead-
ing to a cache complexity of O

(
n log logn

B
log M

B

n log logn
B

)
and total work of O (n log n log log n).

We can sharpen this approach by using a (general) efficient data structure instead of the
sorting step, and then further by introducing a data structure designed specifically for this
problem.

The sieve of Eratosthenes can be implemented easily to get an amortized near-optimal
sorting I/O-complexity using a black-box priority queue. The priority queue can be any of
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the cache-aware structures such as M/B-way merger [Brodal and Katajainen, 1998a] and
heap with buffers [Fadel et al., 1999], or any of the cache-oblivious structures such as up-
down buffered priority queue [Arge et al., 2002b] and funnel heap [Brodal and Fagerberg,
2002], which all have the optimal amortized insert and deletemin cost. A priority queue
data structure stores a set of primes and their multiples – one multiple per prime. Simply
plugging in a theoretically good PQ (i.e., priority queues that have optimal amortized I/O
complexity for both INSERTs and DELETEMINs), the cache complexity of implementing the
sieve of Eratosthenes will be O

(
n
B

log M
B

n
B

log log n
)
.

The sieve of Eratosthenes problem has a special property that can be exploited to de-
sign better priority queues that can achieve optimal sorting I/O bounds. The important
observation is that there are more multiples of smaller primes than that of larger ones.
This means that the accesses to smaller primes are more frequent than larger ones. Using
an idea similar to Huffman coding (where, more common symbols are encoded with fewer
bits), we like to have separate priority queues for different primes such that the amortized
cost for a more frequently accessed smaller prime is relatively lesser than that of the rarely
accessed larger prime. Then, the total cost of access to many multiples of smaller primes
match the total cost of access to fewer multiples of larger primes. Thus, the sieve of Er-
atosthenes can be implemented using the standard priority queues having a complexity
O
(
n
B

log M
B

n
B

log log n
)

to achieve the optimal lower bound for sorting n numbers.

Using a standard priority queue
The priority queue Q used to sieve primes, as shown in Figure C.2, consists of 〈k, v〉 pairs,
where v is a prime and k is a multiple of v. That is, the prime multiples are the values and
the prime factors are the keys. It is important to note that the priority queue operations
such as INSERTs and DELETEMINs are based on the keys. E.g.: The minimum of the
priority queue is a pair with the minimum key (or prime multiple).

We start off by inserting the first pair 〈4, 2〉 into Q, and at each step, we extract (and
delete) the minimum composite 〈k, v〉 pair in Q. Any number less than k which has never
been inserted into Q must be prime. We keep track of the last deleted composite k′, and
check if k > k′ + 1. If so, we declare p = k′ + 1 as prime, and insert 〈p2, p〉 into Q. In each of
these iterations, we always insert the next multiple 〈k + v, v〉 into Q.

The black-box priority can be any cache- and/or work-efficient priority queue. A short
list of priority queues in the literature in the RAM, cache-aware, and cache-oblivious mod-
els are shown in Table C.1. We can use any of the cache-aware PQs such as M/B-way

SE-USING-PQ(n)

Input: n
Output: Primes ≤ n
1. p← 2; prevk ← 2; print p
2. Q.INSERT(〈4, 2〉)
3. while k ≤ n do
4. 〈k, v〉 ← Q.DELETEMIN()
5. if k = prevk + 2 then
6. p← k − 1; print p
7. Q.INSERT(〈p2, p〉)
8. prevk ← k
9. Q.INSERT(〈k + v, v〉)

Figure C.2: Sieve of Eratosthenes using a priority queue Q.
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merger PQ [Brodal and Katajainen, 1998a] and heap with buffers [Fadel et al., 1999] but
then the algorithm becomes cache-aware. As we are interested in cache-oblivious algo-
rithms, we use buffered PQ [Arge et al., 2002b] and funnel heap [Brodal and Fagerberg,
2002] in Table C.1.

Data structure INSERT DELETEMIN Reference
RAM (or internal-memory) model
Unsorted linked list O (1) O (n)
Sorted linked list O (n) O (1)
Heap O (log n) O (log n) [Williams, 1964]
Balanced search tree O (log n) O (log n) [Knuth, 1998]
Binomial heap O (log n) O (log n) [Vuillemin, 1978]
Pairing heap O (1) O (log n)∗ [Fredman et al., 1986]
Fibonacci heap O (1) O (log n)∗ [Fredman and Tarjan, 1987]
Relaxed heap O (1) O (log n) [Driscoll et al., 1988]
Meldable priority queue O (1) O (log n) [Brodal, 1995]
Brodal queue O (1) O (log n) [Brodal, 1996]
Cache-aware (or I/O or external-memory or cache-conscious
or DAM or cache-sensitive) model
Modified heap O (logB n) O (logB n) [Williams, 1964]
B-tree O (logB n) O (logB n) [Bayer and McCreight, 1972]
Tournament tree O

(
1
B

log n
B

)∗
O
(

1
B

log n
B

)∗
[Kumar and Schwabe, 1996]

M/B-way merger O
(

1
B

logM/B
n
B

)∗
O
(

1
B

logM/B
n
B

)∗
[Brodal and Katajainen, 1998b]

Heap with buffers O
(

1
B

logM/B
n
B

)∗
O
(

1
B

logM/B
n
B

)∗
[Fadel et al., 1999]

Buffer tree O
(

1
B

logM n
)∗

O
(

1
B

logM n
)∗

[Arge, 2003]
Buffer heap O

(
1
B

log n
M

)∗
O
(

1
B

log n
M

)∗
[Chowdhury and Ramachandran, 2004]

Cache-oblivious model
B-tree O (logB n)∗ O (logB n)∗ [Bayer and McCreight, 1972]
Buffered priority queue O

(
1
B

logM/B
n
B

)∗
O
(

1
B

logM/B
n
B

)∗
[Arge et al., 2007]

Funnel heap O
(

1
B

logM/B
n
B

)∗
O
(

1
B

logM/B
n
B

)∗
[Brodal and Fagerberg, 2002]

Buffer heap O
(

1
B

log n
B

)∗
O
(

1
B

log n
B

)∗
[Chowdhury and Ramachandran, 2004]

Bucket heap O
(

1
B

log n
B

)∗
O
(

1
B

log n
B

)∗
[Brodal et al., 2004]

Quick heap O
(

1
B

log n
M

)∗
O
(

1
B

log n
M

)∗
[Navarro and Paredes, 2010]

Table C.1: Priority queues in different models. Here, ∗ represents amortized values.

Complexity analysis of the SE-USING-PQ algorithm
By the prime number theorem [Hardy and Wright, 1979], the number of primes in the
range [1, . . . , n] is O

(
n

logn

)
.

The total number of INSERTs and DELETEMINs in the standard sieve of Eratosthenes
is O(n log log n). The amortized I/O cost for one insert or deletemin to a PQ that can have
a total of

√
n

log
√
n

primes using any of the PQs mentioned above is 1
B

log M
B

n
B

. Hence, the total

I/O complexity is O
(
n
B

log M
B

n
B

log log n
)
.
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The sieve of Eratosthenes implemented using a cache-efficient cache-oblivious
priority queue such as up-down buffered PQ [Arge et al., 2002b] or funnel
heap [Brodal and Fagerberg, 2002] achieves T1(n) = Θ (n log log n log n), Q1(n) =
O
(
n
B

log M
B

n
B

log log n
)
, T∞(n) = Θ (n log log n log n), and S∞(n) = Θ

( √
n

logn

)
.

Using a value-sensitive priority queue.
In the above algorithm, the key-value pairs corresponding to smaller values are accessed
more frequently because smaller primes have more multiples in a given range. Therefore,
a structure that prioritizes the efficiency of operations on smaller primes (values) outper-
forms a generic priority queue. We introduce a value-sensitive priority queue, in which the
amortized access cost of an operation with value v depends on v instead of the size of the
data structure.

primes in

  220
, 221

primes in

  221
, 222

primes in

  22(log log 𝑁)−1
, 22log log 𝑁

𝑄1

𝑄2

𝑄log log 𝑁

values in 𝑄′ are the minimum priority    
values from 𝑄1, 𝑄2, … , 𝑄log log 𝑁

𝑄′

𝑃

Figure C.3: Value-sensitive priority queue

A value-sensitive priority queue Q (see Figure C.3) has two parts – the top part con-
sisting of a single internal-memory priority queue Q′ and the bottom part consisting of
dlog log ne external-memory priority queues Q1, Q2, . . . , Qdlog logne.

Each Qi in the bottom-part of Q is a cache-efficient priority queue that stores 〈k, v〉
pairs, for v ∈ [22i

, 22i+1). Hence, each Qi contains fewer than ni = 22i+1 items. With a cache of
size M , Qi supports INSERT and DELETEMIN operations in O

(
(logM/B ni)/B

)
cache misses

(amortized). Moreover, in each Qi we have log v = Θ (log ni). Thus, the cost reduces to
O
(
(logM/B v)/B

)
cache misses for an item with value v. Though we divide the cache

equally among all Qi’s, the asymptotic cost per operation remains unchanged assuming
M > Ω (B(log log n)1+ε) for some constant ε > 0.

The queue Q′ in the top part only contains the minimum composite (key) item from each
Qi, and so the size of Q′ will be Θ (log log n). We use the dynamic integer set data struc-
ture [Patrascu and Thorup, 2014] to implementQ′ which supports INSERT and DELETEMIN
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operations on Q′ in O (1) time using only O (log n) space. We also maintain an array
A[1 : dlog log ne] such that A[i] stores Qi’s contributed item to Q′; thus we can access it
in constant time.

To perform a DELETEMIN, we extract the minimum key item from Q′, check its value
to find the Qi it came from, extract the minimum key item from that Qi and insert it into
Q′. To INSERT an item, we first check its value to determine the destination Qi, compare
it with the item in A[i], and depending on the result of the comparison we either insert the
new item directly into Qi or move Qi’s current item in Q′ to Qi and insert the new item into
Q′. The following lemma summarizes the performance of these operations.

Complexity analysis of the SE-USING-PQ algorithm

Using a value-sensitive priority queue Q as defined above, an item INSERT with
value v takes O

(
1
B

logM/B v
)

cache misses, and a DELETEMIN that returns an item
with value v takes O

(
1
B

logM/B v
)

cache misses, assuming M = Ω (B1+ε) for some
constant ε > 0.

We now use this value-sensitive priority queue to efficiently implement the sieve of
Eratosthenes. Each prime p is involved in Θ (n/p) priority queue operations, and by the
prime number theorem [Hardy and Wright, 1979], there are O

( √
n

logn

)
prime numbers in

[1,
√
n], and the ith prime number is approximately i ln i.

We use the symbol p to denote a prime number. We use the terms sortE(n) (resp.
sortI(n)) to denote the per-element I/O cost (resp. internal memory cost) required to sort
a set of n numbers. That is sortE(n) = Θ

(
1
B

logM/B
n
B

)
and from [Han, 2002] sortI(n) =

log log n. The serial cache complexity of the algorithm is computed as

Q1(n) =
∑
p≤
√
n

n

p
· I/Os for one INSERT or DELETEMIN in Q

=
∑
p≤
√
n

n

p
· (I/Os for Qi + I/Os for Q′) =

∑
p≤
√
n

n

p
· I/Os for Qi =

∑
p≤
√
n

n

p
· sortE(p)

= O
 n

B log M
B log logn

∑
p≤
√
n

log p
p

 = O
(

n

B log M
B

· lnn
)

= O
(
n

B
log M

B
n
)

The total work of the algorithm is computed as

T1(n) =
∑
p≤
√
n

n

p
· computations for one INSERT or DELETEMIN

=
∑
p≤
√
n

n

p
· (comp. for Qi + comp. for Q′) =

∑
p≤
√
n

n

p
· comp. for Qi +

∑
p≤
√
n

n

p
· comp. for Q′

=
∑
p≤
√
n

n

p
· O (log n) +

∑
p≤
√
n

n

p
· sortI(log log n) = O (n log n log log n)

The space complexity of the algorithm is O
( √

n
logn

)
as we store only the prime numbers

not greater than d
√
ne.
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The sieve of Eratosthenes implemented using a cache-efficient cache-oblivious
value-sensitive priority queue where the Qis are cache-efficient cache-oblivious
priority queues such as up-down buffered PQ [Arge et al., 2002b] or funnel
heap [Brodal and Fagerberg, 2002], where M = Ω (log n+B1+ε) for some con-
stant ε > 0, achieves T1(n) = Θ (n log log n log n), Q1(n) = O

(
n
B

log M
B
n
)
, T∞(n) =

Θ (n log log n log n), and S∞(n) = Θ
( √

n
logn

)
.

Though we reduced the cache complexity the total work increased. We can decrease
both the cache complexity and the total work using the priority queue of Arge and Tho-
rup [Arge and Thorup, 2013], which is simultaneously efficient in RAM and in external
memory. However, the data structure is cache-aware and is no longer cache-oblivious. In
particular, their priority queue can handle INSERTs with O

(
1
B

logM/B
n
B

)
amortized I/Os

and O
(
logM/B

n
B

)
amortized RAM operations. DELETEMIN requires O

(
1
B

logM/B
n
B

)
amor-

tized I/Os and O
(
logM/B

n
B

+ log logM
)

amortized RAM operations. They assume that each
element fits in a machine word and use integer sorting techniques to achieve this low RAM
cost while retaining optimal I/O complexity. The total work is computed as

T1(n) =
∑
p≤
√
n

n

p
· computations for one INSERT or DELETEMIN

=
∑
p≤
√
n

n

p
· (comp. for Qi + comp. for Q′) =

∑
p≤
√
n

n

p
· comp. for Qi +

∑
p≤
√
n

n

p
· comp. for Q′

=
∑
p≤
√
n

n

p
·
(
sortE(p) + sortI

(
M

log log n

))
+

∑
p≤
√
n

n

p
· sortI(log log n)

= O
 n

B log M
B log logn

∑
p≤
√
n

log p
p

+ n · log logM
∑
p≤
√
n

1
p

+ n · log log log log n
∑
p≤
√
n

1
p


= O

(
n

B log M
B

· lnn+ n · (log log log log n+ log logM) · log log n
)

= O
(
n

B
log M

B

n

B
+ n log log n · log logM

)

The sieve of Eratosthenes implemented using a cache-efficient cache-
aware value-sensitive priority queue where the Qis are cache-efficient
cache-aware priority queues of Arge and Thorup [Arge and Thorup,
2013], where M = Ω (log n+B(log log n)1+ε) for some constant ε > 0,
achieves T1(n) = O

(
n
B

log M
B

n
B

+ n log log n · log logM
)
, Q1(n) = O

(
n
B

log M
B
n
)
,

T∞(n) = O
(
n
B

log M
B

n
B

+ n log log n · log logM
)
, and S∞(n) = Θ

( √
n

logn

)
.

C.2 Knapsack problem
We are given a knapsack of capacity W , a set of n unique items, where item i has a value vi
and weight wi and the item can be used xi number of times. Then, the knapsack problem
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is defined as
maximize

n∑
i=1

vixi such that
n∑
i=1

wixi ≤ W

There are several variations of the problem:
O [Fractional knapsack.] When xi ∈ R+ and xi ∈ [0, 1] and, the problem is called frac-

tional knapsack.
O [0-1 knapsack.] When xi ∈ {0, 1}, the problem is called 0-1 knapsack.
O [Bounded knapsack.] When xi ∈ [0, ki], the problem is called bounded / limited knap-

sack.
O [Unbounded knapsack.] When xi ∈ [0,∞), the problem is called unbounded / unlim-

ited knapsack.
The knapsack problem is a problem in the domain of combinatorial optimization. The

book [Martello and Toth, 1990] contains several different algorithms and computer im-
plementations for the knapsack problems. The fractional knapsack can be solved in poly-
nomial time. However, 0-1 knapsack, bounded knapsack, and unbounded knapsack are
examples of integer programming problems. The decision versions of the problems are
NP-complete and the optimization versions of the problems are NP-hard. No known poly-
nomial time solutions exist for these problems. But, there are pseudo polynomial time
algorithms for solving integer knapsack problems, using our magical wand called dynamic
programming. In this section, we focus on 0-1 knapsack problem.

A simple dynamic programming recurrence for the 0-1 knapsack problem is as follows.
Let K[i, j] denote the maximum value of a subset of items {1, 2, . . . , i} whose total weight is
less than or equal to j. Then,

K[i, j] =


0 if j = 0,
K[i− 1, j] if wi > j,
MAX(K[i− 1, j], K[i− 1, j − wi] + vi) otherwise.

The dependency structure for the problem is given in Figure C.4.

Figure C.4: The dependency structure for the knapsack problem. The (i, j) call depends on
one of the cells in green color.

Several algorithms have been proposed to solve the knapsack problem. To the best of
our knowledge, there is no cache-efficient (exploiting temporal locality)

Standard looping algorithm. Algorithm KNAPSACK-01 in Figure C.5 shows a standard
looping algorithm to solve the knapsack problem. The algorithm fills a DP table of size
nW (space can be reduced to Θ (W )). The total work is Θ (nW ), serial cache complexity is
Θ (nW/B), span is Θ (n), and parallelism is Θ (W ).
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KNAPSACK-01(n W, w[1 . . . n], v[1 . . . n])

1. for j ← 0 to W do
2. K[0, j]← 0
3. for i← 1 to n do
4. for j ← 0 to W do
5. K[i, j]← K[i− 1, j]
6. if w[i] ≤ j and

K[i− 1, j − w[i]] + v[i] > K[i− 1, j] then
7. K[i, j]← K[i− 1, j − w[i]] + v[i]

KNAPSACK-01-QUEUES(n, W, w[1 . . . n], v[1 . . . n])

1. SORT(w[1], w[2], . . . , w[n])
2. Qprev .INSERT(0, 0)
3. for i← 1 to n do
4. for increasing index in Qprev do
5. 〈key, val〉 ← Qprev .GET(index)
6. if val + v[i] > W
7. break
8. Qcur.INSERT(key + w[i], val + v[i])
9. Qmerge ← MERGE(Qprev , Qcur) w.r.t. key

10. SWAP(Qprev , Qmerge)
11. return Qprev

KNAPSACK-01-BBST(n, W, w[1 . . . n], v[1 . . . n])

1. Tprev .INSERT(0, 0)
2. for i← 1 to n do
3. while !Tprev .EMPTY() do

{ val is the max value, key is the weight }
4. 〈key, val〉 ← Tprev .DELETEMIN()

{ Insert key into Tcur }
5. 〈key, val′〉 ← Tcur.SEARCH(key)
6. if 〈key, val′〉 exists then
7. Tcur.DELETE(key)
8. Tcur.INSERT(key,MAX(val, val′))

{ Insert k into Tcur }
9. k ← key + w[i]

10. if k ≤W then
11. 〈k, v〉 ← Tcur.SEARCH(k)
12. if 〈k, v〉 does not exist then
13. Tcur.INSERT(k, val + v[i])
14. else
15. Tcur.DELETE(k)
16. Tcur.INSERT(k,MAX(v, val + v[i]))
17. SWAP(Tprev , Tcur)
18. return Tprev

Figure C.5: Three algorithms to solve the knapsack problem: one using standard loops,
another using queues, and third using balanced binary search trees.

Algorithm using queues. Algorithm KNAPSACK-01-QUEUES in Figure C.5 shows an
algorithm to solve the knapsack problem. There are n iterations in the algorithm and in
each iteration we find the maximized values possible for different weights not greater than
W . Before the ith iteration, Qprev contains all 〈key, val〉 pairs, where, val is the maximum
value possible for weight key from a subset of items from {x1, x2, . . . , xi−1}. Each element
in Qprev assumes a subset that does not contain the element xi. Hence, we create another
queue Qcur from Qprev that considers subsets considering the element xi. We merge both
Qprev and Qcur into Qmerge. This Qmerge queue contains all 〈key, val〉 pairs, where, val is the
maximum value possible for weight key from a subset of items from {x1, x2, . . . , xi−1, xi}.

There are a total of 2n subsets of {x1, . . . , xn}. For each subset, take the sum of all
elements inside the it. Let the number of subsets whose subset-sums are less than or
equal to W be M . We know that M ∈ [0,W ]. This algorithm has better efficiency when M
is relatively much lesser than W . The work done by the algorithm is O (nM) or O (nW ).
The serial cache complexity is O (nM/B) or O (nW/B).

Algorithm using balanced binary search tree. The balanced binary search trees
(BBST) Tprev and Tcur, consists of 〈k, v〉 pairs, where v represents maximum value to for k
weight of items. It is important to note that the tree operations such as INSERT,DELETE,DELETEMIN,
and SEARCH are based on the keys. The working of this algorithm is similar to that using
queues. Using BBST can be useful when the number of subset-sums are relatively much
smaller than W .

Let the number of subset-sums of elements in {x1, . . . , xn} not greater than W be M .
The total work done by the algorithm is O (nM logM) and the serial cache complexity is
O
(
(nM/B) logM/B(M/B)

)
, assuming we use BBSTs that have I/O optimality in all its basic

operations. Note that the complexity of this algorithm is worse than that using queues and
the algorithm is more complicated.
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Tiled iterative algorithm
We assume that the weights are sorted. The entire DP table (of size nW ) is divided into
(n/n′)×(W/n′) chunks each of size (n′×n′), as shown in Figure C.6. We define two functions:
A(X,X) that both reads and writes to the same chunk X, and B(X,U) that reads from
chunk U and writes to a different region X, where X , U . The order of function calls
(timestamps) for a grid (of chunks) of size 4× 6 is shown in Figure C.7. The subscripts for
the functions represent the timesteps at which a function can update a particular region.

𝑛′

𝑊

𝑛

𝑤𝑛

𝑤𝑖

𝑤1

𝑛′

Figure C.6: Division of the DP table into chunks.

TILED-KNAPSACK()

1. for i← 1 to n/n′ do
2. for j ← 1 to W/n′ do
3. U ← chunk[i, j]; A(U,U)
4. for k ← 1 to n′ do
5. pos← (w(j−1)×n′+k)/n′
6. X ← chunk[i, j + pos]; B(X,U)
7. X ← chunk[i, j + pos+ 1]; B(X,U)

𝐴0 𝐵1𝐴2 𝐵1𝐵3𝐴4 𝐵1𝐵3𝐵5𝐴6 𝐵1𝐵3𝐵5𝐵7𝐴8 𝐵1𝐵3𝐵5𝐵7𝐵9𝐴10

𝐴2 𝐵3𝐴4 𝐵3𝐵5𝐴6 𝐵3𝐵5𝐵7𝐴8 𝐵3𝐵5𝐵7𝐵9𝐴10 𝐵3𝐵5𝐵7𝐵9𝐵11𝐴12

𝐴4 𝐵5𝐴6 𝐵5𝐵7𝐴8 𝐵5𝐵7𝐵9𝐴10 𝐵5𝐵7𝐵9𝐵11𝐴12 𝐵5𝐵7𝐵9𝐵11𝐵13𝐴14

𝐴6 𝐵7𝐴8 𝐵7𝐵9𝐴10 𝐵7𝐵9𝐵11𝐴12 𝐵7𝐵9𝐵11𝐵13𝐴14 𝐵7𝐵9𝐵11𝐵13𝐵15𝐴16

Figure C.7: Tiled knapsack algorithm.

The complexity of the tiled algorithm is given in Theorem 17.

Theorem 17 (Complexity of TILED-KNAPSACK). The cache-aware processor-
aware algorithm achieves T1(n) = Θ (nW ), Q1(n) = O

(
nW
B

+ n
)
, and Sp(n) =

Θ (pWn′), where p is the number of processors.

Proof. We prove the theorem in several parts.
Work. We will not write recurrence relations to compute the work. This is because the
number of function calls invoked at every level varies as a function call F(X,U), where
F ∈ {A,B} is invoked only if there is a dependency of any cell from X region to U region.
Hence, we use a different technique to compute the total work.

Consider Figure C.6. We define something called a dependency curve. It is the cells on
the path of the red curve shown in the figure on which the cells in the last column of the
DP table depends on. It is simply the graph of the increasing order of weights shown from
the rightmost column. Every column of blocks will have a dependency curve too. In total,
there can be at most O (nW/(n′)2) number of function calls.
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Every cell (i, j) in the DP table depends on cell (i − 1, j). Therefore, every chunk (I, J)
depends on itself, which requires an A function invocation. Hence, the total number of A
function calls will be (n/n′)× (W/n′) = nW/(n′)2.

A cell (i, j) depends on the cell (i − 1, j − wi) if j ≥ wi. Let the cell (i, j) be present in
chunk (I, J) and the cell (i − 1, j − wi) be present in chunk (I, J ′), where J ′ ≤ J − 1. Then,
a B function will be executed that writes to chunk (I, J) reading from chunk (I, J ′), where
J ′ ≤ J − 1. As we will never call a B function twice, that writes to a chunk X and reads
from a chunk U , the total number of B calls will be Θ ((n/n′)× (W/n′)) = Θ (nW/(n′)2).

The total work is the product of the number of function calls to A and B and the work
done by those functions. That is, the total work is Θ (nW/(n′)2)×Θ ((n′)2) = Θ (nW ).
Space complexity. In the serial case, we process the n′ × n′ chunks present in single row
of chunks. Hence, the serial space complexity is Θ (nn′). In the parallel version with p
processors, we run at most p rows of chunks. Hence, the parallel space complexity will be
Θ (pWn′).
Serial cache complexity. Temporal locality can be exploited as long as the work is asymp-
totically greater than the space. The B function takes O ((n′)2) space and does O ((n′)2). As
B function is invoked a total of O (nW/(n′)2) times it is a dominating function. Hence, there
cannot be any temporal locality. So, the serial cache complexity is O (nW/B). �

Divide-and-conquer wavefront (WR-DP) algorithm
Please refer Chapter 3 for a comprehensive introduction and analysis to divide-and-conquer
wavefront algorithms. Algorithm RECURSIVE-WAVEFRONT-KNAPSACK in Figure C.8 gives
a WR-DP algorithm for the knapsack problem. A diagrammatic representation of the
divide-and-conquer algorithm is given in Figure C.9. It is assumed that before calling our
divide-and-conquer algorithm, we would have a sorted list of item weights.

Suppose f ∈ {A,B} and f(X,U) be a function call. It is important to note that f will be
invoked if and only if DEPENDS(X,U) is true i.e., there is some cell in X that depends on
some cell in U .

Completion-time is found from the DP recurrence:

C(i, j) =


0 if i = 0 and j = 0,
C(i, j − 1) + 2 if j > 0,
C(i− 1, j) + 2 if i > 0.

The start- and end-time functions are computed as follows.

SA (X,X) = EA (X,X) = C(xr, xc) if X is a n′ × n′ chunk,
SA (X,X) = SA (X11, X11) if X is not a n′ × n′ chunk,
EA (X,X) = EA (X22, X22) if X is not a n′ × n′ chunk,
SB (X,U) = EB (X,U) = C(ur, uc) + 1 if X is a n′ × n′ chunk,
SB (X,U) = SB (X11, U11) if X is not a n′ × n′ chunk,
EB (X,U) = EB (X22, U22) if X is not a n′ × n′ chunk.

Solving the recurrences, we have
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RECURSIVE-WAVEFRONT-KNAPSACK()

1. w ← 0
2. while w <∞ do w ← A(G,G,w)

A(X,X,w)

1. vi ←∞ for all i ∈ [1, 6]
2. if X is an n′ × n′ matrix then
3. if w = SA (X,X) then Achunk(X,X)
4. else
5. F1..6 ← {A,B,A,A,B,A}
6. arg1..6 ← {(X11, X11), (X12, X11), (X12, X12),

(X21, X21), (X22, X21), (X22, X22)}
7. parallel for i← 1 to 6 do
8. if DEPENDS(argi) then
9. if w < SFi

(argi) then vi ← SFi
(argi)

10. elif w ≤ EFi
(argi) then vi ← Fi(argi, w)

11. sync
12. return min vi for all i ∈ [1, 6]

C(i, j)

1. return 2(i+ j)

SA (X,X)

1. return C(xr, xc)

SB (X,U)

1. return C(ur, uc) + 1

B(X,U,w)

1. vi ←∞ for all i ∈ [1, 8]
2. if X is an n′ × n′ matrix then
3. if w = SB (X,U) then Bchunk(X,U)
4. else
5. F1..8 ← {B,B,B,B,B,B,B,B}
6. arg1..8 ← {(X11, U11), (X12, U11), (X21, U21),

(X22, U21), (X11, U12), (X12, U12),
(X21, U22), (X22, U22)}

7. parallel for i← 1 to 8 do
8. if DEPENDS(argi) then
9. if w < SFi

(argi) then vi ← SFi
(argi)

10. elif w ≤ EFi
(argi) then vi ← Fi(argi, w)

11. sync
12. return min vi for all i ∈ [1, 8]

DEPENDS(X,U)

1. if some cell(s) in X depends on some cell(s) in U then
2. return true
3. else return false

EA (X,X)

1. return C(xr + n− n′, xc + n− n′)

EB (X,U)

1. return C(ur + n− n′, uc + n− n′) + 1

Figure C.8: A recursive divide-and-conquer wavefront DP algorithm for the knapsack prob-
lem. A region Z has its top-left corner at (zr, zc) and is of size n× n.

C(i, j) = 2(i+ j)
SA (X,X) = C(xr, xc); EA (X,X) = C(xr + n− n′, xc + n− n′)
SB (X,U) = C(ur, uc) + 1; EB (X,U) = C(ur + n− n′, uc + n− n′) + 1

Theorem 18 (Complexity of RECURSIVE-WAVEFRONT-KNAPSACK). The cache-
aware processor-aware algorithm achieves T1(n) = Θ (nW ), Q1(n) = O

(
nW
B

+ n
)
, and

Sp(n) = Θ (pWn′), where p is the number of processors.

Proof. The proof is similar to that of Theorem 17. �

Sliding window algorithm
Let w1, . . . , wn be sorted in increasing order and let wn = f(M), where f(M) = o (M). The
sliding window algorithm is given in Figure C.10. Let ` = 1. Let array output[0 . . .W ]
represent the 0th row of the knapsack DP table. We find the maximum value of h such
that w` + w`+1 + · · · + wh ≤ γM , for some constant γ. Then using w` + w`+1 + · · · + wh space
inside RAM, we can compute the rows ` . . . h of the DP table and output the hth row of the
knapsack DP table to the external-memory. We repeat the process by setting ` = h+ 1 and
reading again from the array output[0 . . .W ].
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Figure C.9: A recursive divide-and-conquer DP algorithm for the knapsack problem.

Theorem 19 (Complexity of SLIDING-WINDOW-KNAPSACK). The cache-aware
algorithm achieves T1(n) = Θ (nW ), Q1(n) = Θ

(
wcount ·

(
W
B

+ 1
))

, where wcount =

O
(

n

( M
f(M))

)
, and S1(n) = O

(
W
B

)
.

Proof. Only the required computations are performed by the algorithm and no extra com-
putations are done. Hence, the work remains Θ (nW ). At any time, the we use only con-
stant number of rows of the knapsack DP table. Hence, the space used is Θ (W/B). We
see that at a time (or any particular iteration), a bunch of ω (1) rows are computed in RAM
and the array is written to the external memory for that bunch only once. Every time we
write / overwrite a row to the disk, we increment the wcount (meaning write counter) by 1.
Hence, the total number of times we write a row is wcount. Hence, the total serial cache
complexity is Θ (wcount · ((W/B) + 1)). We know that wcount = o (n/ω (1)) and hence we
exploit temporal locality and the algorithm is cache-efficient.
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SLIDING-WINDOW-KNAPSACK()

1. `← 1
2. output[0 . . .W ]← ∅
3. wcount← 1
4. while ` < n do
5. Find largest h such that

∑h

i=`
wi ≤M

6. Read the data from output[0 . . .W ]
7. Compute the rows ` . . . h of the knapsack DP

table
8. Write output to output array
9. wcount← wcount+ 1

10. `← h+ 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0

7 0 0 1 1 0 1 0 1 1 1 1 0 1 0 1 1 0 1

10 0 0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 0 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0

7 0 0 1 1 0 1 0 1 1 1 1 0 1 0 1 1 0 1

10 0 0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 0 1

𝑤𝑙

𝑊

𝑤ℎ

Figure C.10: Sliding window knapsack algorithm. Left: The pseudocode. Right: An exam-
ple of subset sum problem.

Sliding merging window algorithm
This algorithm has similarities to the sliding window knapsack algorithm. Let w1, . . . , wn
be sorted in increasing order. Let si represent the maximum number of subset sums (using
weights {w1, . . . , wi}) in the range [a, a + wi], for all a ∈ [0,W − wi]. Let sn = f(M), where
f(M) = o (M).

Let ` = 1. Let array output[0 . . .W ] represent the 0th row of the knapsack DP table. We
find the maximum value of h such that m` + m`+1 + · · · + mh ≤ γM , for some constant γ.
Then using m`+m`+1+ · · ·+mh space inside RAM, we can compute the rows ` . . . h of the DP
table and output the hth row of the knapsack DP table to the external-memory. We repeat
the process by setting ` = h+ 1 and reading again from the array output[0 . . .W ].

Computing si. How can we find si? We can compute si using the formula si = (wi/di),
where di can be found by solving the integer programming problem. Let

∑i
j=1 xjwj = di,

where di ∈ [1, w1] and di is minimum possible value, and xj ∈ {−1, 0, 1}. The integer pro-
gramming problem might be hard to solve in polynomial time. But, probably there exist
constant factor approximation algorithms.

Variants of the problem
The Knapsack problem is similar to the change making problem and the subset-sum prob-
lem. All these problems have data-sensitive dependency. That is, the DP dependency
structure for the problem is dependent on each run / execution of the algorithm.

Change making problem. We have n coins of denominations c1, c2, . . . , cn. We need to
make a change for m amounts of money in minimum number of coins. We need to find the
number of coins of each denomination that makes a change for m. There are four versions
of the problem.
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O Greedy algorithm when there are unlimited number of coins of each denomination.
See Figure C.11.

O DP algorithm when there are unlimited number of coins of each denomination. See
Figure C.11.

O DP algorithm when there is exactly 1 coin of each denomination. The problem is also
called as 01 change making problem. See Figure C.11.

O DP algorithm when there are limited number of coins of each denomination, say
k1, k2, . . . , kn. See Figure C.11.

Subset-sum problem. In this problem, we are given a multiset S = {x1, x2, . . . , xn} of n
integers. We set P [i, j] to true if a subset of {x1, x2, . . . , xi} sums to j, and to false otherwise.
Then,

P [i, j] =


true if j = 0,
true if P [i− 1, j] = true or P [i− 1, j − xi] = true,
false otherwise.
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CM-UNLIMITED-GREEDY(n m, c[1 . . . n])

Require: c[1] > c[2] > · · · > c[n]
1. money ← m
2. for i← 1 to n do
3. a[i]←

⌊
money

c[i]

⌋
4. mc← mc+ a[i]
5. money ← money − a[i]c[i]
6. if money > 0 then
7. print Cannot make change
8. else return a[1 . . . n], mc

CM-UNLIMITED-DP(n m, c[1 . . . n])

{ Compute the minimum number of coins }
1. mc[0]← 0
2. for i← 1 to m do
3. mc[i]←∞
4. for j ← 1 to n do
5. if c[j] ≤ i and mc[i− c[j]] + 1 < mc[i] then
6. mc[i]← mc[i− c[j]] + 1; parent[i]← j

{ Compute #coins of each denomination }
7. if mc[m] =∞ then print Cannot make change
8. else
9. a[1 . . . n]← ∅; i← m

10. while i ≥ 1 do
11. a[parent[i]]← a[parent[i]] + 1; i← i− c[parent[i]]
12. return a[1 . . . n], mc[m]

CM-LIMITED-01-DP(n m, c[1 . . . n])

{ Compute the minimum number of coins }
1. mc[0, 0 . . .m]←∞; mc[0 . . . n, 0]← ∅
2. for i← 1 to n do
3. for j ← 1 to m do
4. mc[i, j]← mc[i− 1, j]; parent[i, j]← 0
5. if c[i] ≤ j and mc[i− 1, j− c[i]]+ 1 < mc[i, j] then
6. mc[i, j]← mc[i, j − c[i]] + 1; parent[i, j]← 1
{ Compute #coins of each denomination }

7. if mc[n,m] =∞ then print Cannot make change
8. else
9. a[1 . . . n]← ∅; j ← m

10. for i← n to 1 do
11. if parent[i, j] = 1 then
12. j = j − c[i]; a[i]← a[i] + 1
13. return a[1 . . . n], mc[n,m]

CM-LIMITED-DP(n, m, c[1 . . . n], k[1 . . . n])

Input: n number of denominations, m money to be
changed for, c[1 . . . n] coin denominations, k[1 . . . n]
number of coins available
Output: a[1 . . . n] number of coins used,
mincoins[nn][mm] minimum number of coins
Require: a[1] + a[2] + · · ·+ a[n] is minimized
{ Convert the limited change making problem to 0-1

change making problem }
1. mm← m; nn← 0
2. for i← 1 to n do
3. if k[i] > 0 then
4. count← 0; power ← 1
5. repeat
6. if count+ power > k[i] then
7. power ← k[i]− count
8. nn← nn+ 1
9. cc[nn]← power × c[i]

10. d[nn]← i;
11. v[nn]← power
12. count← count+ power
13. power ← 2× power
14. until count = k[i]
{ Compute the minimum number of coins }

15. mincoins[0 . . . nn][0]← ∅
16. mincoins[0][0 . . . nn]← ∅
17. for i← 1 to nn do
18. for j ← 1 to mm do
19. mincoins[i][j]← mincoins[i− 1][j]
20. parent[i][j]← 0
21. if cc[i] ≤ j and mincoins[i − 1][j − cc[i]] + v[i] <

mincoins[i][j] then
22. mincoins[i][j]← mincoins[i− 1][j − cc[i]] + v[i]
23. parent[i][j]← 1
{ Compute #coins of each denomination }

24. if mincoins[nn][mm] =∞ then
25. print Cannot make change
26. else
27. a[1 . . . nn]← ∅; j ← mm
28. for i← nn to 1 do
29. if parent[i][j] = 1 then
30. j ← j − cc[i]
31. a[d[i]]← a[d[i]] + v[i]
32. return a[1 . . . n], mincoins[nn][mm]

Figure C.11: Change making algorithms.
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Appendix D

Efficient Divide-&-Conquer Tiled DP
Algorithms

In this section, we present new r-way R-DP algorithms for several DP problems. Such
algorithms can be easily converted to cache-aware tiled algorithms by following the process
as described in Section 3.2.

D.1 Matrix multiplication
Though MM is not a DP problem, the approach followed to get a 2-way divide-and-conquer
algorithm is similar as for a DP problem. A 2-way divide-and-conquer algorithm for MM
was presented in [Frigo et al., 1999]. It is extremely easy to generalize it to an r-way
divide-and-conquer algorithm and it is presented in Figure D.1.

AMM (X,U, V, d)

1. r ← tilesize[d]
2. if r ≥ m then Aloop-MM (X,U, V )

else
3. for k ← 1 to r do
4. parallel: AMM (Xij , Uik, Vkj , d+ 1) for i, j ∈ [1, r]

Figure D.1: An r-way R-DP for matrix multiplication.

D.2 Longest common subsequence
The problem is described in detail in Section A.1. An r-way R-DP to solve the problem is
given in Figure D.2.

D.3 Floyd-Warshall’s all-pairs shortest path
The problem is described in detail in Section A.3. An r-way R-DP algorithm for Floyd-
Warshall’s APSP is described in Figure A.7.
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ALCS(X, d)

1. r ← tilesize[d]
2. if r ≥ m then Aloop-LCS(X)

else
3. for k ← 0 to 2r − 2 do
4. parallel: ALCS(Xij , d+ 1) for i ∈ [max(1, k − r + 2),min(k + 1, r)] and j = k − i+ 2

Figure D.2: An r-way R-DP for LCS.

D.4 Gaussian elimination without pivoting
The problem is described in detail in Section A.4. An r-way R-DP algorithm for Gaussian
elimination without pivoting is given in Figure D.3.

AGE(X,U, V,W, d)

1. r ← tilesize[d]
2. if r ≥ m then Aloop-GE(X,U, V,W )

else
3. for k ← 1 to r do
4. AGE(Xkk, Ukk, Vkk,Wk, d+ 1)
5. parallel: BGE(Xkj , Ukk, Vkj ,Wk, d+ 1), CGE(Xik, Uik, Vkk,Wk, d+ 1) for i, j ∈ [k + 1, r]
6. parallel: DGE(Xij , Uik, Vkj ,Wk, d+ 1) for i, j ∈ [k + 1, r]

BGE(X,U, V,W, d)

1. r ← tilesize[d]
2. if r ≥ m then Bloop-GE(X,U, V,W )

else
3. for k ← 1 to r do
4. parallel: BGE(Xkj , Ukk, Vkj ,Wk, d+ 1) for j ∈ [1, r]
5. parallel: DGE(Xij , Uik, Vkj ,Wk, d+ 1) for i ∈ [k + 1, r], j ∈ [1, r]

CGE(X,U, V,W, d)

1. r ← tilesize[d]
2. if r ≥ m then Cloop-GE(X,U, V,W )

else
3. for k ← 1 to r do
4. parallel: CGE(Xik, Uik, Vkk,Wk, d+ 1) for i ∈ [1, r]
5. parallel: DGE(Xij , Uik, Vkj ,Wk, d+ 1) for i ∈ [1, r], j ∈ [k + 1, r]

DGE(X,U, V,W, d)

1. r ← tilesize[d]
2. if r ≥ m then Dloop-GE(X,U, V,W )

else
3. for k ← 1 to r do
4. parallel: DGE(Xij , Uik, Vkj ,Wk, d+ 1) for i, j ∈ [1, r]

Figure D.3: An r-way R-DP for Gaussian elimination without pivoting algorithm.

D.5 Parenthesis problem
The problem is described in detail in Section A.2. An r-wayR-DP was presented in [Chowd-
hury and Ramachandran, 2008] and its complete pseudocode is given in Figure D.4.
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Apar(X,U, V, d)

1. r ← tilesize[d]
2. if r ≥ m then Aloop-par(X,U, V )

else
3. Let diagonal represent (j − i)
4. parallel: Apar(Xi,j , Ui,j , Vi,j , d+ 1) for i, j ∈ [1, r] and diagonal = 0
5. for k ← 1 to r − 1 do
6. parallel: Cpar(Xi,j , Ui,k+i−1, Vk+i−1,j , d+ 1) for i, j ∈ [1, r] and diagonal ∈ [k,min{2k − 2, r − 1}]
7. parallel: Cpar(Xi,j , Ui,1+i, V1+i,j , d+ 1) for i, j ∈ [1, r] and diagonal ∈ [k,min{2k − 3, r − 1}]
8. parallel: Bpar(Xi,j , Ui,i, Vj,j , d+ 1) for i, j ∈ [1, r] and diagonal = k

Bpar(X,U, V, d)

1. r ← tilesize[d]
2. if r ≥ m then Bloop-par(X,U, V )

else

3. Let U ′i,` =
{
Xi,` if ` > 0,
Ui,`+r if ` ≤ 0.

and V ′`,j =
{
V`,j if ` > 0,
X`+r,j if ` ≤ 0.

4. Let diagonal represent (j − i)
5. for k ← 1 to 2r − 1 do
6. parallel: Cpar(Xi,j , U

′
i,k−r+i−1, V

′
k−r+i−1,j , d+ 1) for i, j ∈ [1, r] and diagonal + r ∈ [k,min{2k − 2, 2r − 1}]

7. parallel: Cpar(Xi,j , U
′
i,1+i−r, V

′
1+i−r,j , d+ 1) for i, j ∈ [1, r] and diagonal + r ∈ [k,min{2k − 3, 2r − 1}]

8. parallel: Bpar(Xi,j , Ui,i, Vj,j , d+ 1) for i, j ∈ [1, r] and diagonal + r = k

Cpar(X,U, V, d)

1. r ← tilesize[d]
2. if r ≥ m then Cloop-par(X,U, V )

else
3. for k ← 1 to r do
4. parallel: Cpar(Xi,j , Ui,k, Vk,j , d+ 1) for i, j ∈ [1, r]

Figure D.4: An r-way R-DP for parenthesis problem.

D.6 Sequence alignment with gap penalty
The problem is described in detail in Section A.5. An r-way R-DP to solve the problem is
given in Figure D.5.
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Agap(X,U, d)

1. r ← tilesize[d]
2. if r ≥ m then Aloop-gap(X,U)

else
3. Agap(X11, U11, d+ 1)
4. for k ← 1 to 2r − 2 do
5. parallel: Bgap(Xij , Ui(k−i+1), d+ 1) for i ∈ [max(1, k − r + 1),min(k, r)] and j ∈ [k − i+ 2, r]
6. parallel: Cgap(Xij , U(k−j+1)j , d+ 1) for j ∈ [max(1, k − r + 1),min(k, r)] and i ∈ [k − j + 2, r]
7. parallel: Agap(Xij , Uij , d+ 1) for i ∈ [max(1, k − r + 2),min(k + 1, r)] and j = k − i+ 2

Bgap(X,U, d)

1. r ← tilesize[d]
2. if r ≥ m then Bloop-gap(X,U)

else
3. for k ← 1 to r do
4. parallel: Bgap(Xij , Uik, d+ 1) for i, j ∈ [1, r]

Cgap(X,V, d)

1. r ← tilesize[d]
2. if r ≥ m then Cloop-gap(X,V )

else
3. for k ← 1 to r do
4. parallel: Cgap(Xij , Vkj , d+ 1) for i, j ∈ [1, r]

Figure D.5: An r-way R-DP for sequence alignment with gap penalty problem.
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Appendix E

Efficient Divide-&-Conquer Hybrid DP
Algorithms

In this section, we develop hybrid divide-and-conquer algorithms for three problems: multi-
instance Viterbi algorithm, Floyd-Warshall’s all-pairs shortest path, and protein accordion
folding.

E.1 Matrix multiplication
Complexities for Lemma 3 is shown below.

Q1(n) = 8Q1
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n
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)
+ c = 8
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Q1

(
n

22
)

+ c
)
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(Set m = n)

The detailed derivation of the complexities of Theorem 13 is given here.

T1(n) = 8T1

(
n

2

)
+ c = 8

(
8T1

(
n

22
)

+ c
)

+ c = 82T1

(
n

22
)

+ c
(
81 + 1

)
= 8kT1

(
n

2k
)

+ c
(
8k−1 + · · ·+ 1

)
≤ 8kc′

(
n

2k
)3

+ 8kc = O
(
n3
)
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Q1(n) = 8Q1

(
n

2

)
+ c = 8

(
Q1

(
n

22
)

+ c
)

+ c = 82Q1

(
n

22
)

+ c
(
81 + 80

)
= 8kQ1

(
n

2k
)

+ c
(
8k−1 + · · ·+ 80

)
≤ 8kc′

((
n

2k
)3 1
B
√
M

)
+ c8k

≤ c′
n3

B
√
M

+ c8log4
n2
M = O

(
n3

B
√
M

+ n2

B
+ n

)

T∞(n) = T∞

(
n

2

)
+ c log n = T∞

(
n

22
)

+ c
(

log n+ log n
2

)
= T∞

(
n

2k
)

+ c
(

log n+ · · ·+ log n

2k−1
)

= c′
n

2k
+ c

(
(k − 1) log n− (k − 1)k

2

)
= O

(
n

2k
+ k(2 log n− k)

)

E.2 Multi-instance Viterbi algorithm
A multi-instance Viterbi algorithm is described in Section 4.3. An in-place divide-and-
conquer algorithm is given in . The AV A function in the algorithm will be called Θ (t) times
and the function is similar in recursive structure to AMM of Figure 6.3. In this Viterbi
problem, there is only one recursive function AV A and it is MM-like. Hence, it satisfies the
span property (Theorem 12) and we can replace it with its not-in-place / hybrid version of
the function.

Lemma 4 (In-place VA). The in-place VA Multi-Instance-Viterbi, assuming a tall
cache, has a complexity of T1(n) = Θ (n3t), Q1(n) = Θ

(
n3t/(B

√
M) + n2t/B + nt

)
,

T∞(n) = Θ (nt), and Sp(n) = Θ (n2).

Proof. The recurrences for the complexities of AV A is exactly the same as that in Lemma
2. Also, the function AV A is invoked t times as there are t timesteps. Hence, the lemma
follows. �

Following the argument of Lemma 4 and recurrences from Lemma 3, we can prove
Lemma 5. Similarly, following the argument of Lemma 4 and recurrences from Theorem
13, we can prove Theorem 20.

Lemma 5 (Not-in-place VA). The not-in-place multi-instance Viterbi algo-
rithm, assuming a tall cache, has a complexity of T1(n) = Θ (n3t), Q1(n) =
Θ
(
n3t/(B

√
M) + n2t/B + nt

)
, T∞(n) = Θ

(
t log2 n

)
, and Sp(n) = Θ

(
p1/3n2

)
.

Theorem 20 (Hybrid VA). The hybrid multi-instance Viterbi algorithm, as-
suming a tall cache, has a complexity of T1(n) = Θ (n3t), Q1(n) =
O
(
n3t/(B

√
M) + n2t/B + nt

)
, T∞(n) = O

(
kt(2 log n− k) + nt/2k

)
, and Sp(n) =

O
(
min{p1/3, 2k}n2

)
.
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E.3 Floyd-Warshall’s all-pairs shortest path
Floyd-Warshall’s all-pairs shortest path algorithm is described in Section A.3. Figures
A.5 and A.6 show an in-place 2-way divide-and-conquer algorithm. The D function in the
algorithm is matrix-multiplication-like and dominates the total work complexity. Hence,
by simply modifying the D function to use extra space, we end up with not-in-place FW
algorithm.

Lemma 6 (In-place FW). The in-place FW, assuming a tall cache, has a complex-
ity of T1(n) = Θ (n3), Q1(n) = Θ

(
n3/(B

√
M) + n2/B + n

)
, T∞(n) = Θ

(
n log2 n

)
, and

Sp(n) = Θ (n2).

Proof. The recurrences are as follows. For f ∈ {A,B,C,D}, let Qf (n) and Tf (n) denote the
serial cache complexity and span of fFW on a matrix of size n× n. Then

QA(n) = QB(n) = QC(n) = QD(n) = O
(
n2

B
+ n

)
if n2 ≤ γM ,

QA(n) = 2
(
QA

(
n

2

)
+QB

(
n

2

)
+QC

(
n

2

)
+QD

(
n

2

))
+ Θ (1) if n2 > γAM .

QB(n) = 4
(
QB

(
n

2

)
+QD

(
n

2

))
+ Θ (1) if n2 > γBM .

QC(n) = 4
(
QC

(
n

2

)
+QD

(
n

2

))
+ Θ (1) if n2 > γCM .

QD(n) = 8QD

(
n

2

)
+ Θ (1) if n2 > γDM .

TA(n) = TB(n) = TC(n) = TD(n) = O (1) if n = 1,

TA(n) = 2
(
TA

(
n

2

)
+ + max {TB

(
n

2

)
, TC

(
n

2

)
}+ TD

(
n

2

))
+ Θ (1) if n > 1.

TB(n) = 2
(
TB

(
n

2

)
+ TD

(
n

2

))
+ Θ (1) if n > 1.

TC(n) = 2
(
TC

(
n

2

)
+ TD

(
n

2

))
+ Θ (1) if n > 1.

TD(n) = 2TD
(
n

2

)
+ Θ (1) if n > 1.

where, γ, γA, γB, γC and γD are suitable constants, Q1(n) = QA(n), and T∞(n) = TA(n).
Solving, we have the lemma. �

Lemma 7 (Not-in-place FW). The not-in-place FW, assuming a tall cache, has a
complexity of T1(n) = Θ (n3), Q1(n) = Θ

(
n3/(B

√
M) + n2/B + n

)
, T∞(n) = Θ (n log n),

and Sp(n) = Θ
(
p1/3n2

)
.

Proof. The recurrences from Lemma 6 will be the same except the following.

TD(n) = TD

(
n

2

)
+ Θ (log n) if n > 1.

Solving the recurrences, the lemma follows. �

The recurrences for the hybrid algorithm are:
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QA(m) = QB(m) = QC(m) = QD(m) = O
(

(n/2k)3

B
√
M

+ (n/2k)2
B

+ (n/2k)
)

if m = n

2k
,

QA(m) = 2
(
QA

(
m

2

)
+QB

(
m

2

)
+QC

(
m

2

)
+QD

(
m

2

))
+ Θ (1) if m >

n

2k
.

QB(m) = 4
(
QB

(
m

2

)
+QD

(
m

2

))
+ Θ (1) if m >

n

2k
.

QC(m) = 4
(
QC

(
m

2

)
+QD

(
m

2

))
+ Θ (1) if m >

n

2k
.

QD(m) = 8QD

(
m

2

)
+ Θ (1) if m >

n

2k
.

TA(m) = Θ
(
(n/2k) log2(n/2k)

)
if m = n/2k,

TB(m) = TC(m) = Θ
(
(n/2k) log(n/2k)

)
if m = n/2k,

TD(m) = Θ
(
n/2k

)
if m = n/2k,

TA(m) = 2
(
TA

(
m

2

)
+ max {TB

(
m

2

)
, TC

(
m

2

)
}+ TD

(
m

2

))
+ Θ (logm) if m > n/2k.

TB(m) = 2
(
TB

(
m

2

)
+ TD

(
m

2

))
+ Θ (logm) if m > n/2k.

TC(m) = 2
(
TC

(
m

2

)
+ TD

(
m

2

))
+ Θ (logm) if m > n/2k.

TD(m) = TD

(
m

2

)
+ Θ (logm) if m > n/2k.

Sp(n) = min{p1/3, n2
k−1∑
i=0

8i
(
n

2i
× n

2i
)
} = Θ

(
min{p1/3, 2k}n2

)
Derivation of the cache complexity is given here.

QD(n) = 8QD

(
n

2

)
+ c = 8

(
8QD

(
n

22
)

+ c
)

+ c

= 82QD

(
n

22
)

+ c
(
81 + 80

)
= 8kQD

(
n

2k
)

+ c
(
8k−1 + 8k−2 + · · ·+ 80

)
≤ 8kc′

(
(n/2k)3

B
√
M

)
+ c8k = O

(
n3

B
√
M

)
It is important to note that

QD

(
n

2i
)

= O
(

(n/2i)3

B
√
M

)

QC(n) = 4QC

(
n

2

)
+ 4QD

(
n

2

)
+ c = 4

(
4QC

(
n

22
)

+ 4QD

(
n

22
)

+ c
)

+ 4QD

(
n

2

)
+ c

= 42QC

(
n

22
)

+ 42QD

(
n

22
)

+ 4QD

(
n

2

)
+ c

(
41 + 40

)
= 4kQC

(
n

2k
)

+ 4kQD

(
n

2k
)

+ · · ·+ 4QD

(
n

2

)
+ c

(
4k−1 + 4k−2 + · · ·+ 40

)
≤ 4kc′

(
(n/2k)3

B
√
M

)
+

k∑
i=1

(
4iQD

(
n

2i
))

+ c4k ≤ 4kc′
(

(n/2k)3

B
√
M

)
+ c′

k∑
i=1

(
4i
(

(n/2i)3

B
√
M

))
+ c4k

≤ c′
(

1
2k

n3

B
√
M

)
+ (c′ + 1)

(
n3

B
√
M

)
= O

(
n3

B
√
M

)
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The complexity QB(n) can be found in a similar method as described above.

QB(n) = 4QB

(
n

2

)
+ 4QD

(
n

2

)
+ c = O

(
n3

B
√
M

)

QA(n) = 2QA

(
n

2

)
+ 2QB

(
n

2

)
+ 2QC

(
n

2

)
+ 2QD

(
n

2

)
+ c = 2QA

(
n

2

)
+ 6QD

(
n

2

)
+ c

= 2
(
2QA

(
n

22
)

+ 6QD

(
n

22
)

+ c
)

+ 6QD

(
n

2

)
+ c

= 22QA

(
n

22
)

+ 2 · 6QD

(
n

22
)

+ 6QD

(
n

2

)
+ c

(
21 + 20

)
= 2kQA

(
n

2k
)

+ 6
(
2k−1QD

(
n

2k
)

+ · · ·+QD

(
n

2

))
+ c

(
2k−1 + 2k−2 + · · ·+ 20

)
≤ 2kc′

(
(n/2k)3

B
√
M

)
+ 6

(
2k−1QD

(
n

2k
)

+ · · ·+QD

(
n

2

))
+ c2k

≤ c′
(

1
4k

n3

B
√
M

)
+ 6

k∑
i=1

(
2i−1QD

(
n

2i
))

+ c2k ≤ c′
(

1
4k

n3

B
√
M

)
+ 6c′

k∑
i=1

(
2i−1

(
(n/2i)3

B
√
M

))
+ c2k

= c′
(

1
4k

n3

B
√
M

)
+ 3c′

(
n3

B
√
M

k∑
i=1

1
4i

)
+ c2k

= O
(

n3

B
√
M

+ n2

B
+ n

)

E.4 Protein accordion folding
The protein accordion folding (PF) is described in Section A.6. Figures A.17 and A.18
show an in-place divide-and-conquer algorithm. The D function in the algorithm is matrix-
multiplication-like and dominates the total work complexity. Hence, by simply modifying
the D function to use extra space, we end up with not-in-place PF algorithm.

Lemma 8 (In-place PF). The in-place PF, assuming a tall cache, has a complex-
ity of T1(n) = Θ (n3), Q1(n) = Θ

(
n3/(B

√
M) + n2/B + n

)
, T∞(n) = Θ (n log n), and

Sp(n) = Θ (n2).

Proof. The recurrences are as follows. For f ∈ {A,B,C,D}, let Qf (n) and Tf (n) denote the
serial cache complexity and span of fPF on a matrix of size n× n. Then

QA(n) = QB(n) = QC(n) = QD(n) = O
(
n2

B
+ n

)
if n2 ≤ γM ,

QA(n) = 2QA

(
n

2

)
+QB

(
n

2

)
+QC

(
n

2

)
+ Θ (1) if n2 > γAM .

QB(n) = 4QB

(
n

2

)
+ 2QD

(
n

2

)
+ Θ (1) if n2 > γBM .

QC(n) = 4QC

(
n

2

)
+ 2QD

(
n

2

)
+ Θ (1) if n2 > γCM .

QD(n) = 8QD

(
n

2

)
+ Θ (1) if n2 > γDM .
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TA(n) = TB(n) = TC(n) = TD(n) = O (1) if n = 1,

TA(n) = 2TA
(
n

2

)
+ TB

(
n

2

)
+ TC

(
n

2

)
+ Θ (1) if n > 1.

TB(n) = TB

(
n

2

)
+ TD

(
n

2

)
+ Θ (1) if n > 1.

TC(n) = 2max{TC
(
n

2

)
, TD

(
n

2

)
}+ Θ (1) if n > 1.

TD(n) = 2TD
(
n

2

)
+ Θ (1) if n > 1.

where, γ, γA, γB, γC and γD are suitable constants, Q1(n) = QA(n), and T∞(n) = TA(n).
Solving, we have the lemma. �

Lemma 9 (Not-in-place PF). The not-in-place PF, assuming a tall cache, has a
complexity of T1(n) = Θ (n3), Q1(n) = Θ

(
n3/(B

√
M) + n2/B + n

)
, T∞(n) = Θ (n), and

Sp(n) = Θ
(
min{p1/3, 2k}n2

)
.

Proof. The recurrences from Lemma 8 will be the same except the following.

TD(n) = TD

(
n

2

)
+ Θ (log n) if n > 1.

Solving the recurrences, the lemma follows. �

The recurrences for the hybrid algorithm are:

QA(m) = QB(m) = QC(m) = QD(m) = O
(

(n/2k)3

B
√
M

+ (n/2k)2
B

+ (n/2k)
)

if m = n

2k
,

QA(m) = 2QA

(
m

2

)
+QB

(
m

2

)
+QC

(
m

2

)
+ Θ (1) if m >

n

2k
.

QB(m) = 4QB

(
m

2

)
+ 2QD

(
m

2

)
+ Θ (1) if m >

n

2k
.

QC(m) = 4QC

(
m

2

)
+ 2QD

(
m

2

)
+ Θ (1) if m >

n

2k
.

QD(m) = 8QD

(
m

2

)
+ Θ (1) if m >

n

2k
.

TA(m) = Θ
(
(n/2k) log2(n/2k)

)
if m = n/2k,

TB(m) = TC(m) = Θ
(
(n/2k) log(n/2k)

)
if m = n/2k,

TD(m) = Θ
(
n/2k

)
if m = n/2k,

TA(m) = 2
(
TA

(
m

2

)
+ max {TB

(
m

2

)
, TC

(
m

2

)
}+ TD

(
m

2

))
+ Θ (1) if m > n/2k.

TB(m) = 2
(
TB

(
m

2

)
+ TD

(
m

2

))
+ Θ (logm) if m > n/2k.

TC(m) = 2
(
TC

(
m

2

)
+ TD

(
m

2

))
+ Θ (logm) if m > n/2k.

TD(m) = TD

(
m

2

)
+ Θ (logm) if m > n/2k.
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