Contents

- Deterministic Finite Automata (DFA)
- Regular Languages
- Non-Deterministic Finite Automata (NFA)
- Regular Expressions
- Transformations
- Pumping Lemma
Deterministic Finite Automata (DFA)
Electric bulb

<table>
<thead>
<tr>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Design the logic behind an electric bulb.</td>
</tr>
</tbody>
</table>
Electric bulb

Problem
- Design the logic behind an electric bulb.

Solution
- **Diagram.**
- **Analysis.**

 States = \{nolight, light\}, Input = \{off, on\}
- **Finite Automaton.**
Problem

- Design the logic behind a multispeed fan.
Multispeed fan

Problem

- Design the logic behind a multispeed fan.

Solution

- Diagram.
- Finite Automaton.

- Analysis.
 States = \{0, 1, 2, 3\}
 Input = \{⟳, ⟲\}
Automatic doors

Problem

• Design the logic behind automatic doors in Walmart.
Solution

- **Diagram.**

- **Analysis.**
 States = \{close, open\}, Input = \{left, right, neither\}

- **Finite Automaton.**
Basic features of finite automata

- A finite automaton is a simple computer with extremely limited memory.
- A finite automaton has a finite set of states.
- Current state of a finite automaton changes when it reads an input symbol.
- A finite automaton acts as a language acceptor i.e., outputs “yes” or “no.”
Why should you care?

Deterministic Finite Automata (DFA) are everywhere.
- ATMs
- Ticket machines
- Vending machines
- Traffic signal systems
- Calculators
- Digital watches
- Automatic doors
- Elevators
- Washing machines
- Dishwashing machines
- Thermostats
- Train switches
- (CS) Compilers
- (CS) Search engines
- (CS) Regular expressions
Why should you care?

Probabilistic Finite Automata (PFA) are everywhere, too.

- Speech recognition
- Optical character recognition
- Thermodynamics
- Statistical mechanics
- Chemical reactions
- Information theory
- Queueing theory
- PageRank algorithm
- Statistics
- Reinforcement learning
- Price changes in finance
- Genetics
- Algorithmic music composition
- Bioinformatics
- Probabilistic forecasting
What is a decision problem?

A decision problem is a computational problem with a ‘yes’ or ‘no’ answer. A computer that solves a decision problem is a decider.

Input to a decider: A string w

Output of a decider: Accept (w is in the language) or Reject (w is not in the language)
What is a decision problem?

- Language $= \text{English language} = \{\text{milk, food, sleep,} \ldots\} \quad \Rightarrow \text{Accept}
- \text{Not in language} = \{\text{zffgb, cdcapqw,} \ldots\} \quad \Rightarrow \text{Reject}
What is a decision problem?

Some strings → Accept

Other strings → Reject
How does a DFA work?

<table>
<thead>
<tr>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Does the DFA accept the string (bbab)?</td>
</tr>
</tbody>
</table>

\[
\begin{array}{c}
\text{start} \\
q_0 \xrightarrow{a} q_1 \\
q_1 \xrightarrow{b} q_1 \\
q_1 \xrightarrow{a} q_2 \\
q_2 \xrightarrow{a, b} q_1 \\
\end{array}
\]
How does a DFA work?

Problem
- Does the DFA accept the string $bbab$?

![DFA Diagram](image)

Solution
The DFA accepts the string $bbab$. The computation is:
1. Start in state q_0
2. Read b, follow transition from q_0 to q_1.
3. Read b, follow transition from q_1 to q_1.
4. Read a, follow transition from q_1 to q_2.
5. Read b, follow transition from q_2 to q_1.
6. Accept because the DFA is in an accept state q_1 at the end of the input.
How does a DFA work?

Problem

- Does the DFA accept the string $aaba$?

![DFA Diagram]

Solution

The DFA rejects the string $aaba$. The computation is:

1. Start in state q_0
2. Read a, follow transition from q_0 to q_0.
3. Read a, follow transition from q_0 to q_0.
4. Read b, follow transition from q_0 to q_1.
5. Read a, follow transition from q_1 to q_2.
6. Reject because the DFA is in a reject state q_2 at the end of the input.
How does a DFA work?

Problem

• Does the DFA accept the string $aaba$?

Solution

The DFA rejects the string $aaba$. The computation is:
1. Start in state q_0
2. Read a, follow transition from q_0 to q_0.
3. Read a, follow transition from q_0 to q_0.
4. Read b, follow transition from q_0 to q_1.
5. Read a, follow transition from q_1 to q_2.
6. Reject because the DFA is in a reject state q_2 at the end of the input.
How does a DFA work?

DFA Diagram:
- **States:** q_0, q_1, q_2
- **Transitions:**
 - From q_0:
 - a to q_1
 - b to q_1
 - From q_1:
 - a to q_2
 - b to q_2
- **Accepting State:** q_2
- **Rejecting Input:** $aaba$
- **Accepting Input:** $bbab$
How does a DFA work?

Problem

- What language does the DFA accept?

The DFA accepts the following strings:
- b, ab, bb, aabbbb, ababababab, ...
- ba, ab, abaa, ababaaaaaa, ...

The DFA rejects the following strings:
- a, ba, babaaa, ...
How does a DFA work?

Problem

- What language does the DFA accept?

```
start → q0 → q1 → q2
```

- a → b
- b → a

<table>
<thead>
<tr>
<th>q_0</th>
<th>q_1</th>
<th>q_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>a, b</td>
</tr>
</tbody>
</table>

Examples

- The DFA accepts the following strings:
 - b, ab, bb, $aabbbb$, $ababababab$, \ldots ▶ ends with b
 - baa, $abaa$, $ababaaaaaa$, \ldots ▶ ends with b followed by even a’s
- The DFA rejects the following strings:
 - a, ba, $babaaa$, \ldots
- What language does the DFA accept?
Construct DFA for $\Sigma = \{a\}$

<table>
<thead>
<tr>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Construct a DFA that accepts all strings from the language $L = {\epsilon, a, aa, aaa, aaaa, \ldots}$</td>
</tr>
</tbody>
</table>
Construct DFA for $\Sigma = \{a\}$

Problem
- Construct a DFA that accepts all strings from the language $L = \{\epsilon, a, aa, aaa, aaaa, \ldots\}$

Solution
- **Language** L: $\Sigma^* = \{\epsilon, a, aa, aaa, aaaa, \ldots\}$
- **Expression**: a^*
- **Deterministic Finite Automaton (DFA) M**:

 ![DFA Diagram]

 \[q_0 \]

 \[\text{start} \rightarrow q_0 \]
Construct DFA for $\Sigma = \{a\}$

<table>
<thead>
<tr>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Construct a DFA that accepts all strings from the language $L = {}$.</td>
</tr>
</tbody>
</table>
Problem

- Construct a DFA that accepts all strings from the language $L = \emptyset$

Solution

- Language L: $\phi = \emptyset$
- Expression: ϕ
- DFA M:

```
start --- a ----> q₀
```

▷ Empty language
Construct DFA for $\Sigma = \{a\}$

Problem

- Construct a DFA that accepts all strings from the language $L = \{a, aa, aaa, aaaa, \ldots\}$
Problem

- Construct a DFA that accepts all strings from the language \(L = \{a, aa, aaa, aaaa, \ldots\} \)

Solution

- Language \(L: \Sigma^* - \{\epsilon\} = \{a, aa, aaa, aaaa, \ldots\} \)
- Expression: \(a^+ \)
- DFA \(M: \)

```
\begin{figure}
  \centering
  \begin{tikzpicture}
    \node[state, initial] (q0) at (0,0) {\(q_0\)};
    \node[state, accepting] (q1) at (1,0) {\(q_1\)};
    \draw (q0) edge[->] node {\(a\)} (q1);
    \draw (q1) edge[loop above] node {\(a\)} (q1);
  \end{tikzpicture}
\end{figure}
```
Construct DFA for $\Sigma = \{a\}$

Problem

- Construct a DFA that accepts all strings from the language $L = \{\epsilon\}$
<table>
<thead>
<tr>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Construct a DFA that accepts all strings from the language $L = {\epsilon}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Language L: ${\epsilon}$</td>
</tr>
<tr>
<td>• Expression: ϵ</td>
</tr>
<tr>
<td>• DFA M:</td>
</tr>
</tbody>
</table>

```
start \rightarrow q_0 \xrightarrow{a} q_1
```

```python
class DFA:
    def __init__(self, start, final):
        self.start = start
        self.final = final
        self.transitions = {}

    def add_transition(self, state, symbol, next_state):
        if state not in self.transitions:
            self.transitions[state] = {}
        self.transitions[state][symbol] = next_state

def construct_dfa(Sigma):
    dfa = DFA(None, None)
    dfa.add_transition(None, 'a', 1)
    dfa.final = 1
    return dfa
```
Construct DFA for $\Sigma = \{a\}$

<table>
<thead>
<tr>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Construct a DFA that accepts all strings from the language $L = {aaa}$</td>
</tr>
</tbody>
</table>
Construct DFA for $\Sigma = \{a\}$

Problem
- Construct a DFA that accepts all strings from the language $L = \{aaa\}$

Solution
- Language L: $\{aaa\}$
- Expression: aaa
- DFA M:

```
start  $\rightarrow$ q0  $\rightarrow$ q1  $\rightarrow$ q2  $\rightarrow$ q3  $\rightarrow$ q4
\hline
\hline
q0  $\xrightarrow{a}$ q1  $\xrightarrow{a}$ q2  $\xrightarrow{a}$ q3  $\xrightarrow{a}$ q4
```

\xrightarrow{a} loops back to q4
Construct DFA for $\Sigma = \{a\}$

Problem

- Construct a DFA that accepts all strings from the language $L = \{\text{strings with even size}\}$
Construct DFA for $\Sigma = \{a\}$

Problem

• Construct a DFA that accepts all strings from the language $L = \{\text{strings with even size}\}$

Solution

• Language L: $\{\epsilon, aa, aaaa, aaaaaa, \ldots\}$
• Expression: $(aa)^*$
• DFA M:

```
q0  --a-->  q1
```

Start q_0
Construct DFA for $\Sigma = \{a\}$

Problem

- Construct a DFA that accepts all strings from the language $L = \{\text{strings with odd size}\}$
Problem

- Construct a DFA that accepts all strings from the language $L = \{\text{strings with odd size}\}$

Solution

- Language L: $\{a, aaa, aaaaa, \ldots\}$
- Expression: $a(aa)^*$
- DFA M:
Construct DFA for $\Sigma = \{a\}$

Problem

- Construct a DFA that accepts all strings from the language $L = \{\text{strings of size divisible by 3}\}$
Construct DFA for $\Sigma = \{a\}$

Problem

- Construct a DFA that accepts all strings from the language $L = \{\text{strings of size divisible by } 3\}$

Solution

- Language L: $\{\epsilon, aaa, aaaaaaa, aaaaaaaaaa, \ldots\}$
- Expression: $(aaa)^*$
- DFA M:

$$
\text{start} \quad \xrightarrow{a} q_0 \quad \xrightarrow{a} q_1 \quad \xrightarrow{a} q_2
$$
Construct DFA for $\Sigma = \{a\}$

<table>
<thead>
<tr>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Construct a DFA that accepts all strings from the language $L = {\text{strings of size not divisible by 3}}$</td>
</tr>
</tbody>
</table>
Problem

- Construct a DFA that accepts all strings from the language $L = \{\text{strings of size not divisible by 3}\}$

Solution

- Language L: $\{a, aa, aaaa, aaaaaa, \ldots\}$
- Expression: $(a \mid aa)(aaa)^*$
- DFA M:
Problem

- Construct a DFA that accepts all strings from the language $L = \{\text{strings of size divisible by 6}\}$
Construct DFA for \(\Sigma = \{a\} \)

Problem

- Construct a DFA that accepts all strings from the language \(L = \{\text{strings of size divisible by 6}\} \)

Solution

- Language \(L: \{\epsilon, aaaaaa, aaaaaaaaaaaa, \ldots\} \)
- Expression: \((aaaaaa)^*\)
- DFA \(M:\)

\[
\begin{array}{cccccc}
 q_0 & \xrightarrow{a} & q_1 & \xrightarrow{a} & q_2 & \xrightarrow{a} & q_3 & \xrightarrow{a} & q_4 & \xrightarrow{a} & q_5 \\
 \text{start} & & & & & & & & & & \\
\end{array}
\]

Can you think of another approach?
Construct DFA for \(\Sigma = \{a\} \)

Problem

- Construct a DFA that accepts all strings from the language \(L = \{ \text{strings of size divisible by 6} \} \)

Solution

- Language \(L: \{ \epsilon, aaaaaa, aaaaaaaa, \ldots \} \)
- Expression: \((aaaaaa)^*\)
- DFA \(M: \)

```

\[
\begin{align*}
\text{start} & \rightarrow q_0 & a & \rightarrow q_1 & a & \rightarrow q_2 & a & \rightarrow q_3 & a & \rightarrow q_4 & a & \rightarrow q_5 \\
& & & & & & & & & & & & a
\end{align*}
\]
```

- Can you think of another approach?
Construct DFA for $\Sigma = \{a\}$

<table>
<thead>
<tr>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Construct a DFA that accepts all strings from the language $L = {\text{strings of size divisible by 6}}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solution</th>
</tr>
</thead>
</table>
| • Let $n = \text{string size}$
• Observation
 $n \mod 6 = 0 \iff n \mod 2 = 0 \text{ and } n \mod 3 = 0$
• Idea
 Build DFA M_1 for $n \mod 2 = 0$.
 Build DFA M_2 for $n \mod 3 = 0$.
 Run M_1 and M_2 in parallel.
 Accept a string if both DFAs M_1 and M_2 accept the string.
 Reject a string if at least one of the DFAs M_1 and M_2 reject the string.
• It is possible to build complicated DFAs from simpler DFAs |
Problem

- Construct a DFA that accepts all strings from the language $L = \{\text{strings with size } n \text{ where } n \mod 4 = 3\}$
Construct DFA for $\Sigma = \{a\}$

Problem
- Construct a DFA that accepts all strings from the language $L = \{\text{strings with size } n \text{ where } n \mod 4 = 3\}$

Solution
- Language L: $\{aaa, aaaaaaaa, aaaaaaaaaaaaa, \ldots\}$
- Expression: $aaa(aaaa)^*$
- DFA M:

```
start → q0 ← a → q1 → a → q2 → a → q3 ← a → q4
```

What about strings with size n where $n \mod k = i$?
Problem

- Construct a DFA that accepts all strings from the language
 \(L = \{ \text{strings with size } n \text{ where } n \mod 4 = 3 \} \)

Solution

- Language \(L: \{aaa, aaaaaaaa, aaaaaaaaaaaaa, \ldots\} \)
- Expression: \(aaa(aaaa)^* \)
- DFA \(M: \)

```
start \rightarrow q_0 \rightarrow a \rightarrow q_1 \rightarrow a \rightarrow q_2 \rightarrow a \rightarrow q_3 \rightarrow a \rightarrow q_4
```

- What about strings with size \(n \) where \(n \mod k = i \)?
Construct DFA for $\Sigma = \{a\}$

More Problems

Construct a DFA that accepts all strings from the language $L = \{\text{strings with size } n\}$ such that
1. $n^2 - 5n + 6 = 0$
2. $n \in [4, 37]$
3. n is a perfect cube
4. n is a prime number
5. n satisfies a mathematical function $f(n)$
The specification of DFA consists of:
- A (finite) alphabet
- A (finite) set of states
- Which state is the start state?
- Which states are the final states?
- What is the transition from each state, on each input character?
What is a deterministic finite automaton (DFA)?

- Deterministic = Events can be determined precisely
- Finite = Finite and small amount of space used
- Automaton = Computing machine

Definition

A deterministic finite automaton (DFA) M is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$, where,

1. Q: A finite set (set of states).
2. Σ: A finite set (alphabet).
3. δ: $Q \times \Sigma \rightarrow Q$ is the transition function.
4. q_0: The start state (belongs to Q).
5. F: The set of accepting/final states, where $F \in Q$.

What is a deterministic finite automaton (DFA)?

- Deterministic = Events can be determined precisely
- Finite = Finite and small amount of space used
- Automaton = Computing machine

Definition

A **deterministic finite automaton (DFA)** M is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$, where,

1. Q: A finite set (set of states). ▶ **Space** (computer memory)
2. Σ: A finite set (alphabet).
3. $\delta: Q \times \Sigma \rightarrow Q$ is the transition function. ▶ **Time** (computation)
4. q_0: The start state (belongs to Q).
5. F: The set of accepting/final states, where $F \subseteq Q$.
We say that a DFA M accepts a language L if:

$$L = w | M \text{ accepts } w.$$

A language is called a **regular language** if some DFA accepts it.
What is a regular language?

Definition

- A DFA **accepts** a string $w = w_1w_2\ldots w_k$ iff there exists a sequence of states r_0, r_1, \ldots, r_k such that the current state starts from the start state and ends at a final state when all the symbols of w have been read.
- A DFA **rejects** a string iff it does not accept it.
Construct DFA for $\Sigma = \{a, b\}$

Problem
- Construct a DFA that accepts all strings from the language $L = \{\text{strings with odd number of } b\text{'s}\}$
Construct DFA for $\Sigma = \{a, b\}$

<table>
<thead>
<tr>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Construct a DFA that accepts all strings from the language $L = {\text{strings with odd number of } b\text{'s}}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>States</td>
</tr>
<tr>
<td>• q_{odd}: DFA is in this state if it has read odd b's.</td>
</tr>
<tr>
<td>• q_{even}: DFA is in this state if it has read even b's.</td>
</tr>
</tbody>
</table>
Construct DFA for $\Sigma = \{a, b\}$

Problem
- Construct a DFA that accepts all strings from the language $L = \{\text{strings with odd number of } b\'}s\}$

Solution
- Language L: $\{\text{strings with odd number of } b\'}s\}$
- Expression: $a^*b(a \mid ba^*)^* \text{ or } a^*ba^*(ba^*ba^*)^*$
- DFA M:

![DFA Diagram]

- States: q_{even} (even number of b's), q_{odd} (odd number of b's)
- Start state: q_{even}
- Accepting states: q_{odd}
- Transitions:
 - a: $q_{even} \rightarrow q_{even}$
 - b: $q_{even} \rightarrow q_{odd}$, $q_{odd} \rightarrow q_{even}$
Construct DFA for $\Sigma = \{ a, b \}$

Problem
- Construct a DFA that accepts all strings from the language $L = \{ \text{strings with odd number of } b's \}$

Solution (continued)
- DFA M is specified as:
 - Set of states is $Q = \{ q_{\text{even}}, q_{\text{odd}} \}$
 - Set of symbols is $\Sigma = \{ a, b \}$
 - Start state is q_{even}
 - Set of accept states is $F = \{ q_{\text{even}} \}$
 - Transition function δ is:

<table>
<thead>
<tr>
<th>δ</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>q_{even}</td>
<td>q_{even}</td>
<td>q_{odd}</td>
</tr>
<tr>
<td>q_{odd}</td>
<td>q_{odd}</td>
<td>q_{even}</td>
</tr>
</tbody>
</table>
Problem

- Construct a DFA that accepts all strings from the language $L = \{\text{strings containing } bab\}$
Construct DFA for $\Sigma = \{a, b\}$

<table>
<thead>
<tr>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Construct a DFA that accepts all strings from the language $L = {\text{strings containing } bab}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>States</td>
</tr>
<tr>
<td>• q_b: DFA is in this state if the last symbol read was b, but the substring bab has not been read.</td>
</tr>
<tr>
<td>• q_{ba}: DFA is in this state if the last two symbols read were ba, but the substring bab has not been read.</td>
</tr>
<tr>
<td>• q_{bab}: DFA is in this state if the substring bab has been read in the input string.</td>
</tr>
<tr>
<td>• q: In all other cases, the DFA is in this state.</td>
</tr>
</tbody>
</table>
Construct DFA for $\Sigma = \{a, b\}$

Problem

- Construct a DFA that accepts all strings from the language $L = \{\text{strings containing } bab\}$

Solution (continued)

- Language L: \{strings containing bab\}
- Expression: $(a^+ b^+ a^+ a)bab(a \mid b)^*$
- DFA M:

```
  q_0 \rightarrow a \rightarrow q_0 \rightarrow b \rightarrow q_a \rightarrow b \rightarrow q_{bab} \rightarrow \bullet
  q_0 \rightarrow a \rightarrow q_b \rightarrow a \rightarrow q_{ba} \rightarrow b \rightarrow q_{bab} \rightarrow \bullet
  q_0 \rightarrow a \rightarrow q_b \rightarrow a \rightarrow q_{ba} \rightarrow b \rightarrow q_{bab} \rightarrow \bullet
  q_0 \rightarrow a \rightarrow q_b \rightarrow a \rightarrow q_{ba} \rightarrow b \rightarrow q_{bab} \rightarrow \bullet
  q_0 \rightarrow a \rightarrow q_b \rightarrow a \rightarrow q_{ba} \rightarrow b \rightarrow q_{bab} \rightarrow \bullet
  q_0 \rightarrow a \rightarrow q_b \rightarrow a \rightarrow q_{ba} \rightarrow b \rightarrow q_{bab} \rightarrow \bullet
```

Construct DFA for $\Sigma = \{a, b\}$

<table>
<thead>
<tr>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Construct a DFA that accepts all strings from the language $L = {\text{strings containing } bab}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solution (continued)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• DFA M is specified as</td>
</tr>
<tr>
<td>Set of states is $Q = {q, q_b, q_{ba}, q_{bab}}$</td>
</tr>
<tr>
<td>Set of symbols is $\Sigma = {a, b}$</td>
</tr>
<tr>
<td>Start state is q</td>
</tr>
<tr>
<td>Set of accept states is $F = {q_{bab}}$</td>
</tr>
<tr>
<td>Transition function δ is:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>δ</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>q</td>
<td>q_b</td>
</tr>
<tr>
<td>q_b</td>
<td>q_{ba}</td>
<td>q_b</td>
</tr>
<tr>
<td>q_{ba}</td>
<td>q</td>
<td>q_{bab}</td>
</tr>
<tr>
<td>q_{bab}</td>
<td>q_{bab}</td>
<td>q_{bab}</td>
</tr>
</tbody>
</table>
Properties of regular languages

Let L_1 and L_2 be regular languages. Then, the following languages are regular.

<table>
<thead>
<tr>
<th>Properties</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complement</td>
<td>$\overline{L_1} = { x \mid x \in \Sigma^* \text{ and } x \notin L_1 }$</td>
</tr>
<tr>
<td>Union</td>
<td>$L_1 \cup L_2 = { x \mid x \in L_1 \text{ or } x \in L_2 }$</td>
</tr>
<tr>
<td>Intersection</td>
<td>$L_1 \cap L_2 = { x \mid x \in L_1 \text{ and } x \in L_2 }$</td>
</tr>
<tr>
<td>Concatenation</td>
<td>$L_1 \cdot L_2 = { xy \mid x \in L_1 \text{ and } y \in L_2 }$</td>
</tr>
<tr>
<td>Star</td>
<td>$L_1^* = { x_1x_2\ldots x_k \mid k \geq 0 \text{ and each } x_i \in L_1 }$</td>
</tr>
</tbody>
</table>
Construct DFA for $L_1 \cup L_2$

<table>
<thead>
<tr>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Construct a DFA that accepts all strings from the language $L = {\text{strings with size multiples of 2 or 3}}$ where $\Sigma = {a}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solution</th>
</tr>
</thead>
</table>
| • Language $L_1 = \{\text{strings with size multiples of 2}\}$
• Language $L_2 = \{\text{strings with size multiples of 3}\}$ |

![DFA Diagram]

DFA Diagram:
- Start state p_0
- Accept state q_0, q_1, q_2
- Transitions: a from p_0 to p_1, q_0 to q_1, q_1 to q_2
Construct DFA for $L_1 \cup L_2$

Solution (continued)

- Language $L_1 \cup L_2 = \{\text{strings with size multiples of 2 and 3}\}$

Start

Language $L_1 \cup L_2 = \{\text{strings with size multiples of 2 and 3}\}$
Construct DFA for \(L_1 \cup L_2\)

<table>
<thead>
<tr>
<th>Union</th>
</tr>
</thead>
</table>
| • Let \(M_1\) accept \(L_1\), where \(M_1 = (Q_1, \Sigma_1, \delta_1, q_1, F_1)\)
 Let \(M_2\) accept \(L_2\), where \(M_2 = (Q_2, \Sigma_2, \delta_2, q_2, F_2)\)
• Let \(M\) accept \(L_1 \cup L_2\), where \(M = (Q, \Sigma, \delta, q, F)\). Then
 \(Q = \{(r_1, r_2) \mid r_1 \in Q_1 \text{ and } r_2 \in Q_2\}\)
 \(\Sigma = \Sigma_1 \cup \Sigma_2\)
 \(\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))\)
 \(\forall (r_1, r_2) \in Q, a \in \Sigma\)
 \(q_0 = (q_1, q_2)\)
 \(F = \{(r_1, r_2) \mid r_1 \in F_1 \text{ or } r_2 \in F_2\}\) |
Construct DFA for $L_1 \cap L_2$

Problem
- Construct a DFA that accepts all strings from the language $L = \{\text{strings with size multiples of 2 and 3}\}$ where $\Sigma = \{a\}$

Solution
- Language $L_1 = \{\text{strings with size multiples of 2}\}$
- Language $L_2 = \{\text{strings with size multiples of 3}\}$
Construct DFA for $L_1 \cap L_2$

Solution (continued)

• Language $L_1 \cap L_2 = \{\text{strings with size multiples of 2 and 3}\}$
Construct DFA for $L_1 \cap L_2$

Intersection

- Let M_1 accept L_1, where $M_1 = (Q_1, \Sigma_1, \delta_1, q_1, F_1)$
- Let M_2 accept L_2, where $M_2 = (Q_2, \Sigma_2, \delta_2, q_2, F_2)$
- Let M accept $L_1 \cap L_2$, where $M = (Q, \Sigma, \delta, q, F)$. Then

 $Q = \{(r_1, r_2) \mid r_1 \in Q_1 \text{ and } r_2 \in Q_2\}$ \quad \triangledown \text{ Cartesian product}

 $\Sigma = \Sigma_1 \cup \Sigma_2$

 $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a)) \quad \forall (r_1, r_2) \in Q, a \in \Sigma$

 $q_0 = (q_1, q_2)$

 $F = \{(r_1, r_2) \mid r_1 \in F_1 \text{ and } r_2 \in F_2\}$