CSE 303: Introduction to the Theory of Computation
(Algorithmic Solvability)

Pramod Ganapathhi
Department of Computer Science
State University of New York at Stony Brook

January 14, 2020
Problem

- What is an algorithm?
How do we compute?

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>• What is an algorithm?</td>
<td>• An algorithm is an effective/systematic/mechanical method for achieving the desired result for a given problem.</td>
</tr>
<tr>
<td>• What are the properties of an algorithm?</td>
<td></td>
</tr>
</tbody>
</table>
How do we compute?

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is an algorithm?</td>
<td>An algorithm is an effective/systematic/mechanical method for achieving the desired result for a given problem.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
</table>
| What are the properties of an algorithm? | It has a **finite number of instructions**.
If carried out without error, it produces the **desired result** in a **finite number of steps**.
It can be carried out by a human with only **paper and pen**.
It requires **no insight, intuition, or ingenuity**, on the part of the human carrying out the method. |
Problem

- Are Turing machines powerful enough to model any conceivable algorithm?

Approach

- To solve this problem, we need to formally define algorithm.
- Before attempting to define algorithm, we need to understand the capabilities and limitations of Turing machines.
What are the types of computational problems?

Types

- **Decision problems:**
 Problems with input \(w \) and output “yes” or “no” answer. (“yes”: \(w \in L \). “no”: \(w \notin L \).)

 e.g.: Given a specific chess configuration and it is your turn, can you win the chess game?

- **Function computation:**
 Problems with input \(w \) and output \(f(w) \).

 e.g.: Given the Facebook graph, what is the minimum number of people connected between you and your role model?
What are Turing-decidable languages?

Definitions

- A Turing machine M accepts (or rejects) a given input string w iff the initial configuration yields the accepting (or rejecting) configuration for the given string w.
- A Turing machine M decides a language $L \subseteq \Sigma^*$ iff for all strings $w \in \Sigma^*$,

$$
\begin{cases}
M \text{ accepts } w, & \text{ if } w \in L, \\
M \text{ rejects } w, & \text{ if } w \notin L.
\end{cases}
$$

- A language is called **Turing-decidable** or **recursive** iff there exists a TM that decides it.

- Does this mean that a Turing machine that decides a language never enters an infinite loop?
What are Turing-decidable languages?

| Σ^* | \checkmark, \times | N | IsPrime? | \checkmark, \times
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$w_1 \in L$</td>
<td>\checkmark</td>
<td>2</td>
<td>\checkmark</td>
<td></td>
</tr>
<tr>
<td>$w_2 \notin L$</td>
<td>\times</td>
<td>3</td>
<td>\checkmark</td>
<td></td>
</tr>
<tr>
<td>$w_3 \notin L$</td>
<td>\times</td>
<td>4</td>
<td>\times</td>
<td></td>
</tr>
<tr>
<td>$w_4 \in L$</td>
<td>\checkmark</td>
<td>5</td>
<td>\checkmark</td>
<td></td>
</tr>
<tr>
<td>$w_5 \in L$</td>
<td>\checkmark</td>
<td>6</td>
<td>\times</td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td></td>
</tr>
<tr>
<td>$w_n \notin L$</td>
<td>\times</td>
<td>97</td>
<td>\checkmark</td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td></td>
</tr>
</tbody>
</table>

Note: \checkmark indicates membership in the language L, and \times indicates non-membership.
What are Turing-decidable languages?

<table>
<thead>
<tr>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>● All regular languages</td>
</tr>
<tr>
<td>● All context-free languages</td>
</tr>
<tr>
<td>● Several non-context-free languages such as:</td>
</tr>
<tr>
<td>[L = {a^n b^n c^n \mid n \geq 0}]</td>
</tr>
<tr>
<td>[L = {w \mid w = w^R \text{ and } w \in {a, b}^*}]</td>
</tr>
<tr>
<td>[L = {ww \mid w \in {a, b}^*}]</td>
</tr>
<tr>
<td>[L = {p \mid p \text{ is a prime}}]</td>
</tr>
</tbody>
</table>

● What languages are Turing-undecidable languages?
What are Turing-computable functions?

<table>
<thead>
<tr>
<th>Definitions</th>
</tr>
</thead>
</table>
| • The **output** of a TM for input string \(w \) is string \(w' \) iff
 \[
(q_0, \triangleright w) \vdash^* (q_{\text{acc}}, \triangleright w')
\]
 • Let function \(f : \Sigma^* \rightarrow \Sigma^* \)
 • A Turing machine **computes a function** \(f \) iff
 for all strings \(w \in \Sigma^* \),
 \[
M \text{ outputs } f(w), \text{ i.e., } \
(q_0, \triangleright w) \vdash^* (q_{\text{acc}}, \triangleright f(w))
\]
 • A function \(f : \Sigma^* \rightarrow \Sigma^* \) is called **Turing-computable** or **recursive** iff there exists a TM that computes it.
 • Why do we use the term recursive to describe both the languages decided by and the functions computed by Turing machines? |
What are Turing-computable functions?

<table>
<thead>
<tr>
<th>Σ^*</th>
<th>f</th>
<th>Σ^*</th>
<th>\mathbb{N}</th>
<th>Cube</th>
<th>\mathbb{N}</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_1</td>
<td>\rightarrow</td>
<td>$f(w_1)$</td>
<td>1</td>
<td>\rightarrow</td>
<td>1</td>
</tr>
<tr>
<td>w_2</td>
<td>\rightarrow</td>
<td>$f(w_2)$</td>
<td>2</td>
<td>\rightarrow</td>
<td>8</td>
</tr>
<tr>
<td>w_3</td>
<td>\rightarrow</td>
<td>$f(w_3)$</td>
<td>3</td>
<td>\rightarrow</td>
<td>27</td>
</tr>
<tr>
<td>w_4</td>
<td>\rightarrow</td>
<td>$f(w_4)$</td>
<td>4</td>
<td>\rightarrow</td>
<td>64</td>
</tr>
<tr>
<td>w_5</td>
<td>\rightarrow</td>
<td>$f(w_5)$</td>
<td>5</td>
<td>\rightarrow</td>
<td>125</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>w_n</td>
<td>\rightarrow</td>
<td>$f(w_n)$</td>
<td>10</td>
<td>\rightarrow</td>
<td>1000</td>
</tr>
</tbody>
</table>
What are Turing-semidecidable languages?

Definitions

- A Turing machine M semidesides a language $L \in \Sigma^*$ iff for all strings $w \in \Sigma^*$,

 \[
 \begin{cases}
 M \text{ accepts } w, & \text{if } w \in L, \\
 M \text{ rejects } w \text{ or runs forever,} & \text{if } w \notin L.
 \end{cases}
 \]

- A language is called Turing-semidecidable or recursively enumerable iff there exists a TM that semidesides it.

- Does this mean that a Turing machine that semidesides a language can enter an infinite loop?
What are Turing-semidecidable languages?

<table>
<thead>
<tr>
<th>Programs</th>
<th>Correctness?</th>
</tr>
</thead>
<tbody>
<tr>
<td>$w_1 \in L$</td>
<td>\checkmark, run forever</td>
</tr>
<tr>
<td>$w_2 \notin L$</td>
<td>\times, run forever</td>
</tr>
<tr>
<td>$w_3 \notin L$</td>
<td>\checkmark, run forever</td>
</tr>
<tr>
<td>$w_4 \in L$</td>
<td>\checkmark, run forever</td>
</tr>
<tr>
<td>$w_5 \in L$</td>
<td>\times, run forever</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>$w_n \notin L$</td>
<td>\checkmark, run forever</td>
</tr>
</tbody>
</table>

P_1	\checkmark, run forever
P_2	\times, run forever
P_3	run forever
P_4	\checkmark, run forever
P_5	\times, run forever
\vdots	\vdots
P_n	run forever
The three types of computational problems solved by TM’s are:
- Turing-decidable languages
- Turing-computable functions
- Turing-semidecidable languages

Can we formalize the notion of an algorithm using the computation ideas described above?
What might be algorithms?

<table>
<thead>
<tr>
<th>Properties of algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intuitively, an algorithm has the following properties:</td>
</tr>
<tr>
<td>1. It is a sequence of steps that gives the correct result to</td>
</tr>
<tr>
<td>a computational problem.</td>
</tr>
<tr>
<td>2. It should work for all input instances from a given domain.</td>
</tr>
</tbody>
</table>

Describing algorithms

The properties imply that an algorithm always halts or an algorithm makes a total function.

Type of computation

- **Always halt?** / **Total function?**
- **TM’s for decidable languages**
- **TM’s for computable functions**
- **TM’s for semidecidable languages**

A TM for a Turing-decidable language or a Turing-computable function formalizes the intuitive notion of an algorithm.
What might be algorithms?

Properties of algorithms

Intuitively, an algorithm has the following properties:
1. It is a sequence of steps that gives the **correct result** to a computational problem.
2. It should work for **all input instances** from a given domain.

Describing algorithms

- The properties imply that an algorithm always halts or an algorithm makes a total function.

<table>
<thead>
<tr>
<th>Type of computation</th>
<th>Always halt? / Total function?</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM’s for decidable languages</td>
<td>✓</td>
</tr>
<tr>
<td>TM’s for computable functions</td>
<td>✓</td>
</tr>
<tr>
<td>TM’s for semidecidable languages</td>
<td>✗</td>
</tr>
</tbody>
</table>

- A TM for a Turing-decidable language or a Turing-computable function formalizes the intuitive notion of an algorithm.
What are algorithms?

Definitions

- **Algorithm:**
 Turing machine for a Turing-decidable language or Turing machine for a Turing-computable function.

- **Algorithmic solvability:**
 Turing-decidability or Turing-computability

- **Algorithmic unsolvability:**
 Turing-undecidability or Turing-noncomputability i.e.,
 Turing-semidecidability and not Turing-semidecidability
Examples of algorithms?

Examples

- Thousands of algorithms taught in the courses such as algorithms, data structures, programming, operating systems, networking, security, operations research, computer graphics, computer vision, etc.
- The notion of algorithm is extended to include randomized algorithms, parallel algorithms, distributed algorithms, machine learning (or self-learning) algorithms, self-improving algorithms, quantum algorithms, etc.

- Are Turing machines powerful enough to model any conceivable algorithm?
What is Church-Turing thesis?

Hypothesis

- Any algorithm can be executed by a Turing machine.
- Anything that can be computed can be computed by a Turing machine.
- A function on the natural numbers can be calculated by an effective method iff it is computable by a Turing machine.
- Turing machines can do anything that could be described as “purely mechanical”.

<table>
<thead>
<tr>
<th>Some questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Why do we call Turing-decidable and Turing-semidecidable languages as recursive and recursively enumerable, respectively?</td>
</tr>
<tr>
<td>• What is the intuition behind algorithmic unsolvability?</td>
</tr>
<tr>
<td>• What is the relationship between recursive and recursively enumerable languages?</td>
</tr>
<tr>
<td>• What are the techniques to prove algorithmic unsolvability?</td>
</tr>
<tr>
<td>• What are some real-world problems that cannot be solved by human minds or real computers (from past, present, future)?</td>
</tr>
</tbody>
</table>
Chomsky hierarchy

Regular languages
Context-free languages
Context-sensitive languages
Turing-decidable languages
Turing-semidecidable languages
Not Turing-semidecidable languages

Algorithmically solvable (finite time)
Algorithmically unsolvable (infinite time)
Properties

- If L is a Turing-decidable language, then \overline{L} is a Turing-decidable language, too.
- If L is both Turing-semidecidable and Turing-undecidable (algorithmically unsolvable), then \overline{L} is not Turing-semidecidable.
How can we prove algorithmic unsolvability?

Problem

- How can we prove that there are some computational problems that are algorithmically unsolvable?

Directions

A. **Show that there are languages that are Turing-semidecidable but not Turing-decidable:**

B. **Show that there are languages that are not Turing semidecidable:**

Approach

<table>
<thead>
<tr>
<th>Approach</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Show hypothetical examples</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Prove that the set of decision problems/languages is bigger than the set of computer programs/TM’s using uncountability</td>
<td>–</td>
<td>✓</td>
</tr>
<tr>
<td>Prove that the set of decision problems/languages is bigger than the set of computer programs/TM’s using diagonalization</td>
<td>–</td>
<td>✓</td>
</tr>
<tr>
<td>Show real-world practical examples</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Problem

- Let’s construct three non-halting Turing machines for \(\Sigma = \{a\} \) and \(\Gamma = \Sigma \cup \{\rhd, \square\} \) with the following transition tables. Explain the working of these non-halting TM’s \(M_1 \), \(M_2 \), and \(M_3 \).

<table>
<thead>
<tr>
<th>Current state</th>
<th>Current symbol ((\Gamma))</th>
<th>(\Gamma)</th>
<th>(a)</th>
<th>(\square)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>((q_0, \rhd))</td>
<td>((q_0, \rightarrow))</td>
<td>((q_0, \rightarrow))</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current state</th>
<th>Current symbol ((\Gamma))</th>
<th>(\Gamma)</th>
<th>(a)</th>
<th>(\square)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>((q_0, \rhd))</td>
<td>((q_0, a))</td>
<td>((q_0, \square))</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Current state</th>
<th>Current symbol ((\Gamma))</th>
<th>(\Gamma)</th>
<th>(a)</th>
<th>(\square)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>((q_0, \rhd))</td>
<td>((q_0, \leftarrow))</td>
<td>((q_0, \leftarrow))</td>
<td></td>
</tr>
</tbody>
</table>
Simple Turing machines that run forever

Solution for M_1

$$(\{\triangleright, a, \square\}, \rightarrow)$$

start $\rightarrow q_0$

<table>
<thead>
<tr>
<th>Time</th>
<th>State</th>
<th>Tape</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>q_0</td>
<td>\triangleright a a a □ □ ⋯</td>
</tr>
<tr>
<td>1</td>
<td>q_0</td>
<td>\triangleright a a a □ □ ⋯</td>
</tr>
<tr>
<td>2</td>
<td>q_0</td>
<td>\triangleright a a a □ □ ⋯</td>
</tr>
<tr>
<td>3</td>
<td>q_0</td>
<td>\triangleright a a a □ □ ⋯</td>
</tr>
<tr>
<td>4</td>
<td>q_0</td>
<td>\triangleright a a a □ □ ⋯</td>
</tr>
<tr>
<td>5</td>
<td>q_0</td>
<td>\triangleright a a a □ □ ⋯</td>
</tr>
</tbody>
</table>

- The TM’s tape head keeps moving right on the tape that has an infinite amount of memory.
- The TM never halts for any input string.
Simple Turing machines that run forever

Solution for M_2

$(\triangleright, \rightarrow), (a, a), (\square, \square)$

![Diagram of Turing machine]

<table>
<thead>
<tr>
<th>Time</th>
<th>State</th>
<th>Tape</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>q_0</td>
<td>△ a a a \square \square \cdots</td>
</tr>
<tr>
<td>1</td>
<td>q_0</td>
<td>△ a a a \square \square \cdots</td>
</tr>
<tr>
<td>2</td>
<td>q_0</td>
<td>△ a a a \square \square \cdots</td>
</tr>
<tr>
<td>3</td>
<td>q_0</td>
<td>△ a a a \square \square \cdots</td>
</tr>
<tr>
<td>4</td>
<td>q_0</td>
<td>△ a a a \square \square \cdots</td>
</tr>
<tr>
<td>5</td>
<td>q_0</td>
<td>△ a a a \square \square \cdots</td>
</tr>
</tbody>
</table>

- The TM’s tape head does not move, replaces the first character by itself, and stays in the same state.
- The TM never halts for any input string.
Simple Turing machines that run forever

Solution for \(M_3 \)

\[(\triangleright, \rightarrow), (a, \leftarrow), (\Box, \leftarrow)\]

\[\text{start} \rightarrow q_0\]

<table>
<thead>
<tr>
<th>Time</th>
<th>State</th>
<th>Tape</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(q_0)</td>
<td>(\triangleright a a a \Box \Box \cdots)</td>
</tr>
<tr>
<td>1</td>
<td>(q_0)</td>
<td>(\triangleright a a a \Box \Box \cdots)</td>
</tr>
<tr>
<td>2</td>
<td>(q_0)</td>
<td>(\triangleright a a a \Box \Box \cdots)</td>
</tr>
<tr>
<td>3</td>
<td>(q_0)</td>
<td>(\triangleright a a a \Box \Box \cdots)</td>
</tr>
<tr>
<td>4</td>
<td>(q_0)</td>
<td>(\triangleright a a a \Box \Box \cdots)</td>
</tr>
<tr>
<td>5</td>
<td>(q_0)</td>
<td>(\triangleright a a a \Box \Box \cdots)</td>
</tr>
</tbody>
</table>

- The TM’s tape head oscillates between the left end symbol and the first character.
- The TM never halts for any input string.
Most problems are algorithmically unsolvable

<table>
<thead>
<tr>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Prove that the set of all decision problems or languages is bigger than the set of Turing machines or computer programs using countability/uncountability.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prove that the set of decision problems is uncountable.</td>
</tr>
<tr>
<td>2. Prove that the number of Turing machines is countable.</td>
</tr>
</tbody>
</table>

This proves that most decision problems or languages are not Turing-semidecidable.
Part 1. Prove that the set of decision problems is uncountable.

- A decision problem can be represented as a number in $[0, 1]$.
- E.g.: The function below represents $0.0110001 \ldots$.

<table>
<thead>
<tr>
<th>Strings</th>
<th>${0, 1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϵ</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>00</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>

- Set of all decision problems (or functions $\Sigma^* \rightarrow \{0, 1\}$) can be represented by the set of all real problems in $[0, 1]$.
- The set of all real numbers in $[0, 1]$ is uncountable.
- Hence, the set of all decision problems is uncountable.
Solution (continued)

Part 2. Prove that the set of all Turing machines is countable.

- A TM can be represented as a finite string.
- A finite string in ASCII can be represented as a binary string.
- The set of all TM’s represents the set of all binary strings.
- The set of all binary strings is countable.
- Hence, the set of all TM’s is countable.
<table>
<thead>
<tr>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Prove that the set of all decision problems or languages is bigger than the set of Turing machines or computer programs using diagonalization.</td>
</tr>
</tbody>
</table>
Most problems are algorithmically unsolvable

Problem

- Prove that the set of all decision problems or languages is bigger than the set of Turing machines or computer programs using diagonalization.

Solution

- Suppose M_1, M_2, M_3, \ldots are the TM’s.
- Suppose w_1, w_2, w_3, \ldots are strings in Σ^*.
- Construct a table with TM’s as rows and strings as columns.

<table>
<thead>
<tr>
<th>TM</th>
<th>Strings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>w_1</td>
</tr>
<tr>
<td>M_1</td>
<td>1</td>
</tr>
<tr>
<td>M_2</td>
<td>0</td>
</tr>
<tr>
<td>M_3</td>
<td>0</td>
</tr>
<tr>
<td>M_4</td>
<td>1</td>
</tr>
<tr>
<td>M_5</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Solution (continued)

- Construct a TM that accepts language
 \[L_d = \{ w_i \mid w_i \notin L(M_i) \} \] i.e., \(L_d = d_1 d_2 d_3 \ldots \), where
 \[d_i = \begin{cases}
 1 & \text{if } \text{table}_{ii} = 0, \\
 0 & \text{if } \text{table}_{ii} = 1.
 \end{cases} \]
- For the example below, \(L_d = 01001 \ldots \)

<table>
<thead>
<tr>
<th>TM</th>
<th>Strings</th>
</tr>
</thead>
</table>
| \(M_1 \) | \[\begin{array}{cccccc}
 w_1 & w_2 & w_3 & w_4 & w_5 & \ldots \\
 1 & 0 & 0 & 1 & 0 & \ldots
 \end{array} \] |
| \(M_2 \) | \[\begin{array}{cccccc}
 w_1 & w_2 & w_3 & w_4 & w_5 & \ldots \\
 0 & 0 & 1 & 0 & 0 & \ldots
 \end{array} \] |
| \(M_3 \) | \[\begin{array}{cccccc}
 w_1 & w_2 & w_3 & w_4 & w_5 & \ldots \\
 0 & 1 & 1 & 1 & 1 & \ldots
 \end{array} \] |
| \(M_4 \) | \[\begin{array}{cccccc}
 w_1 & w_2 & w_3 & w_4 & w_5 & \ldots \\
 1 & 1 & 0 & 1 & 0 & \ldots
 \end{array} \] |
| \(M_5 \) | \[\begin{array}{cccccc}
 w_1 & w_2 & w_3 & w_4 & w_5 & \ldots \\
 0 & 1 & 0 & 0 & 0 & \ldots
 \end{array} \] |
| \(\vdots \) | \[\begin{array}{cccccc}
 \vdots & \vdots & \vdots & \vdots & \vdots & \vdots
 \end{array} \] |
| \(M_d \) | \[\begin{array}{cccccc}
 w_1 & w_2 & w_3 & w_4 & w_5 & \ldots \\
 0 & 1 & 0 & 0 & 1 & \ldots
 \end{array} \] |
Most problems are algorithmically unsolvable

Solution (continued)

Proof by contradiction.

- Suppose L_d is Turing-semidecidable. Then there exists TM M_k such that $L_d = L(M_k)$.
- Case 1. M_k accepts w_k.
 \[\implies w_k \not\in L_d \quad (\because \text{defn. of } L_d) \]
 \[\implies w_k \not\in L(M_k) \quad (\because L_d = L(M_k)) \]
 \[\implies M_k \text{ does not accept } w_k \quad (\because \text{defn. of } L(M_k)) \]
- Case 2. M_k does not accept w_k.
 \[\implies w_k \in L_d \quad (\because \text{defn. of } L_d) \]
 \[\implies w_k \in L(M_k) \quad (\because L_d = L(M_k)) \]
 \[\implies M_k \text{ accepts } w_k \quad (\because \text{defn. of } L(M_k)) \]
- Contradiction! Hence, L_d is not Turing-semidecidable.

There is a decision problem or language that is not Turing-semidecidable.
Simulate program is algorithmically impossible

Problem

- Prove that it is impossible to design an algorithm to simulate the working of a given computer program on a given input string.
Problem

- Prove that it is impossible to design an algorithm to simulate the working of a given computer program on a given input string.

Solution

Language

\[Language = \{ \langle M, w \rangle \mid \text{TM } M \text{ accepts input string } w \} \]

Let's call the hypothetical method as `SIMULATE`.

1. Prove that `SIMULATE` is Turing-semidecidable.
2. Prove that `SIMULATE` is algorithmically impossible.
Part 1. Prove that `SIMULATE` is Turing-semidecidable.

- Consider the following generic procedure.

<table>
<thead>
<tr>
<th><code>SIMULATE(⟨M, w⟩)</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Simulate TM <code>M</code> on input string <code>w</code></td>
</tr>
<tr>
<td>2. if <code>M</code> accepts <code>w</code> then</td>
</tr>
<tr>
<td>3. accept</td>
</tr>
<tr>
<td>4. elseif <code>M</code> rejects <code>w</code> then</td>
</tr>
<tr>
<td>5. reject</td>
</tr>
</tbody>
</table>

- Case 1: If `M` accepts `w`, then `SIMULATE` accepts.
- Case 2: If `M` rejects `w`, then `SIMULATE` rejects.
- Case 3: If `M` runs forever on `w`, then `SIMULATE` runs forever.

- So, `SIMULATE` is Turing-semidecidable.
Part 2. Prove that \textsc{Simulate} is algorithmically impossible.

Proof by contradiction.

1. Let’s assume that \textsc{Simulate} is algorithmically possible i.e., \textsc{Simulate} always halts giving a correct answer.
2. Then, we construct the \textsc{Paradox} algorithm as follows.

\textsc{Paradox}(\langle M \rangle)

1. \texttt{result} \leftarrow \textsc{Simulate}(\langle M, \langle M \rangle \rangle)
2. if \texttt{result} = \texttt{accept} then reject
3. elseif \texttt{result} = \texttt{reject} then accept
Part 2. Prove that \textsc{Simulate} is algorithmically impossible.

\texttt{Paradox}(\langle M \rangle)

\begin{itemize}
 \item \textbf{Input}: Source code of a computer program
 \item \textbf{Output}: Accept or reject
 \item \textbf{Require}: Invoke \texttt{Paradox}(\langle \texttt{Paradox} \rangle)
 \begin{enumerate}
 \item \texttt{result} ← \texttt{Simulate}(\langle M, \langle M \rangle \rangle)
 \item if \texttt{result} = accept then reject
 \item elseif \texttt{result} = reject then accept
 \end{enumerate}
\end{itemize}

\begin{itemize}
 \item Case 1. \texttt{Paradox} accepts \langle \texttt{Paradox} \rangle
 \begin{itemize}
 \item \implies \texttt{Simulate} rejects \langle \texttt{Paradox}, \langle \texttt{Paradox} \rangle \rangle
 \item \implies \texttt{Paradox} rejects \langle \texttt{Paradox} \rangle.
 \end{itemize}
 \item Case 2. \texttt{Paradox} rejects \langle \texttt{Paradox} \rangle
 \begin{itemize}
 \item \implies \texttt{Simulate} accepts \langle \texttt{Paradox}, \langle \texttt{Paradox} \rangle \rangle
 \item \implies \texttt{Paradox} accepts \langle \texttt{Paradox} \rangle.
 \end{itemize}
 \item Contradiction! Hence, \textsc{Simulate} is algorithmically impossible.
\end{itemize}
Problem

- Prove that it is impossible to design an algorithm to check if a given computer program halts on a given input string.
Problem

- Prove that it is impossible to design an algorithm to check if a given computer program halts on a given input string.

Solution

Language

\[\{ \langle M, w \rangle \mid \text{TM } M \text{ halts on input string } w \} \]

Let’s call the hypothetical method as **HALT**.

1. Prove that **HALT** is Turing-semidecidable.
2. Prove that **HALT** is algorithmically impossible.
Solution (continued)

Part 1. Prove that \(\text{HALT} \) is Turing-semidecidable.

- Consider the following generic procedure.

\[
\begin{align*}
\text{HALT}(\langle M, w \rangle) & \\
1. & \text{Simulate TM } M \text{ on input string } w \\
2. & \text{if } M \text{ accepts } w \text{ or } M \text{ rejects } w \text{ then} \\
3. & \quad \text{accept} \\
4. & \text{else if } M \text{ runs forever then} \\
5. & \quad \text{reject}
\end{align*}
\]

- Case 1: If \(M \) accepts \(w \), then \(\text{HALT} \) accepts.
- Case 2: If \(M \) rejects \(w \), then \(\text{HALT} \) accepts.
- Case 3: If \(M \) runs forever on \(w \), then \(\text{HALT} \) runs forever.

- So, \(\text{HALT} \) is Turing-semidecidable.
Part 2. Prove that Halt is algorithmically impossible.
Proof by contradiction.
- Let’s assume that Halt is algorithmically possible i.e., Halt always halts giving a correct answer.
- Then, we construct the Paradox algorithm as follows.

$\text{Paradox}(\langle M \rangle)$

1. $\text{result} \leftarrow \text{Halt}(\langle M, \langle M \rangle \rangle)$
2. if $\text{result} = \text{accept}$ then run forever
3. elseif $\text{result} = \text{reject}$ then accept
Part 2. Prove that \textsc{Halt} is algorithmically impossible.

\begin{itemize}
\item Case 1. \textsc{Paradox} accepts \langle\textsc{Paradox}\rangle
\quad \implies \textsc{Halt} rejects \langle\textsc{Paradox}, \langle\textsc{Paradox}\rangle\rangle
\quad \implies \textsc{Paradox} runs forever on \langle\textsc{Paradox}\rangle.
\item Case 2. \textsc{Paradox} runs forever on \langle\textsc{Paradox}\rangle
\quad \implies \textsc{Halt} accepts \langle\textsc{Paradox}, \langle\textsc{Paradox}\rangle\rangle
\quad \implies \textsc{Paradox} accepts \langle\textsc{Paradox}\rangle.
\item Contradiction! Hence, \textsc{Halt} is algorithmically impossible.
\end{itemize}
What is reduction?

Definition

- Given two languages $L_{\text{old}}, L_{\text{new}} \in \Sigma^*$, we say that L_{old} **reduces to** L_{new}, meaning L_{new} is at least as hard as L_{old}, denoted as $L_{\text{old}} \leq_m L_{\text{new}}$ if there exists a **computable function** f such that for all $x \in \Sigma^*$

 $$x \in L_{\text{old}} \iff f(x) \in L_{\text{new}}$$

```
Σ*       f       Σ*
```

```
L_{\text{old}}
```

```
L_{\text{old}}^c
```

```
L_{\text{new}}
```

```
L_{\text{new}}^c
```
What is reduction?

Properties

- **Notation.** In $L_{\text{old}} \leq_m L_{\text{new}}$, the ‘$m$’ letter in \leq_m represents many-to-one function.

- **Meaning.** If $L_{\text{old}} \leq_m L_{\text{new}}$, then L_{new} is at least as hard as L_{old}.

- **Intuition.** If $L_{\text{old}} \leq_m L_{\text{new}}$, then the reduction should turn:
 - Instance of L_{old} with yes to instance of L_{new} with yes.
 - Instance of L_{old} with no to instance of L_{new} with no.

- **Consequences.** If $L_{\text{old}} \leq_m L_{\text{new}}$, then
 - If L_{old} is undecidable, then so is L_{new}.
 - If L_{old} is not Turing-semidecidable, then so is L_{new}.
 - If L_{new} is decidable, then so is L_{old}.
Problem

- Prove that it is impossible to design an algorithm to check if a given computer program halts on a given input string, using reduction.
Problem

• Prove that it is impossible to design an algorithm to check if a given computer program halts on a given input string, using reduction.

Solution

• \(L_{\text{sim}} = \{ \langle M, w \rangle \mid \text{TM } M \text{ accepts input string } w \} \)
• \(L_{\text{halt}} = \{ \langle M, w \rangle \mid \text{TM } M \text{ halts on input string } w \} \)
• Proof by contradiction and proof by reduction. Let’s call the hypothetical method as \(\text{HALT} \).
 We show that if \(\text{HALT} \) is algorithmically possible, then \(\text{SIMULATE} \) is algorithmically possible, too.
Halt program is algorithmically impossible

Solution (continued)

Prove that \textsc{Halt} is algorithmically impossible.

• Let’s assume that \textsc{Halt} is algorithmically possible. Then, we construct the \textsc{Simulate} algorithm as follows.

\begin{verbatim}
\textsc{Simulate}(\langle M, w \rangle)
1. \text{result} \leftarrow \text{Halt}(\langle M, w \rangle)
2. \textbf{if} \ \text{result} = \text{reject} \ \textbf{then} \ \text{reject} \quad \triangleright \ M \ \text{runs forever on} \ w
3. \textbf{elseif} \ \text{result} = \text{accept} \ \textbf{then}
4. \ \text{Simulate} \ M \ \text{on} \ w
5. \ \textbf{if} \ M \ \text{accepts} \ w \ \textbf{then} \ \text{accept} \quad \triangleright \ M \ \text{accepts} \ w
6. \ \textbf{elseif} \ M \ \text{rejects} \ w \ \textbf{then} \ \text{reject} \quad \triangleright \ M \ \text{rejects} \ w
\end{verbatim}

• If \textsc{Halt} is an algorithm, then \textsc{Simulate} is an algorithm too, which terminates in all cases.

• We know that \textsc{Simulate} is algorithmically impossible. Hence, \textsc{Halt} is algorithmically impossible, too.