What are sequences?

Types of sequences

- **Finite sequence:** \(a_m, a_{m+1}, a_{m+2}, \ldots, a_n \)
 - e.g.: \(1^1, 2^2, 3^2, \ldots, 100^2 \)
- **Infinite sequence:** \(a_m, a_{m+1}, a_{m+2}, \ldots \)
 - e.g.: \(\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \ldots \)

Term

- **Closed-form formula:** \(a_k = f(k) \)
 - e.g.: \(a_k = \frac{k}{k+1} \)
- **Recursive formula:** \(a_k = g(k, a_{k-1}, \ldots, a_{k-c}) \)
 - e.g.: \(a_k = a_{k-1} + (k - 1)a_{k-2} \)
What are sequences?

Growth of sequences

- **Increasing sequence**
 e.g.: 2, 3, 5, 7, 11, 13, 17, ...
- **Decreasing sequence**
 e.g.: $\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \ldots$
- **Oscillating sequence**
 e.g.: 1, -1, 1, -1, ...

Problem-solving

- Compute a_k given a_1, a_2, a_3, \ldots
 e.g.: Compute a_k given $\frac{1}{n}$, $\frac{2}{n+1}$, $\frac{3}{n+2}$, \ldots
- Compute a_1, a_2, a_3, \ldots given a_k
 e.g.: Compute a_1, a_2, a_3, \ldots given $a_k = \frac{k}{k+1}$
Sums and products of sequences

Sum

- **Summation form:**

 \[
 \sum_{k=m}^{n} a_k = a_m + a_{m+1} + a_{m+2} + \cdots + a_n
 \]

 where, \(k = \text{index}, \ m = \text{lower limit}, \ n = \text{upper limit} \)

 e.g.: \(\sum_{k=m}^{n} (-1)^k \frac{k}{k+1} \)

Product

- **Product form:**

 \[
 \prod_{k=m}^{n} a_k = a_m \cdot a_{m+1} \cdot a_{m+2} \cdots \cdot a_n
 \]

 where, \(k = \text{index}, \ m = \text{lower limit}, \ n = \text{upper limit} \)

 e.g.: \(\sum_{k=m}^{n} \frac{k}{k+1} \)
Properties of sums and products

- Suppose $a_m, a_{m+1}, a_{m+2}, \ldots$ and $b_m, b_{m+1}, b_{m+2}, \ldots$ are sequences of real numbers and c is any real number.

<table>
<thead>
<tr>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sum_{k=m}^{n} a_k = \sum_{k=m}^{i} a_k + \sum_{k=i+1}^{n} a_k$ for $m \leq i < n$ where, i is between m and $n - 1$ (inclusive)</td>
</tr>
<tr>
<td>$c \cdot \sum_{k=m}^{n} a_k = \sum_{k=m}^{n} (c \cdot a_k)$</td>
</tr>
<tr>
<td>$\sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k = \sum_{k=m}^{n} (a_k + b_k)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(\prod_{k=m}^{n} a_k) \cdot (\prod_{k=m}^{n} b_k) = \prod_{k=m}^{n} (a_k \cdot b_k)$</td>
</tr>
</tbody>
</table>
Change of variable

\[
\sum_{k=0}^{99} \frac{(-1)^k}{k + 1} = \sum_{j=0}^{99} \frac{(-1)^j}{j + 1} \quad \text{(Set } j = k) \tag{1}
\]

\[
= \sum_{i=1}^{100} \frac{(-1)^{i-1}}{i} \quad \text{(Set } i = j + 1) \tag{2}
\]
Definitions

- The factorial of a whole number \(n \), denoted by \(n! \), is defined as follows:

\[
n! = \begin{cases}
1 & \text{if } n = 0, \\
 n \cdot (n - 1) \cdot \cdots \cdot 3 \cdot 2 \cdot 1 & \text{if } n > 0.
\end{cases}
\]

\(n! = \begin{cases}
1 & \text{if } n = 0, \\
 n \cdot (n - 1)! & \text{if } n > 0.
\end{cases} \qquad \text{ Recursive definition} \)
The combination function of whole numbers n and r ($r \leq n$), denoted by $\binom{n}{k}$, read as n choose k, is defined as the number of subsets of size r that can be chosen from a set with n elements.

The combination function is computed as:

$$
\binom{n}{k} = \begin{cases}
1 & \text{if } r > n, \\
\frac{n!}{r!(n-r)!} & \text{if } r \leq n.
\end{cases}
$$
Proof by mathematical induction

- Mathematical induction is **aesthetically beautiful and insanely powerful** proof technique
- Mathematical induction is probably the **greatest** of all proof techniques and probably the **simplest**

Core idea

- A starting domino falls. From the starting domino, every successive domino falls. Then, every domino from the starting domino falls.

Source: https://i.stack.imgur.com/Z3I92.jpg
Proposition

For all integers \(n \geq a \), a property \(P(n) \) is true.

<table>
<thead>
<tr>
<th>Proof</th>
</tr>
</thead>
</table>
| **1. Basis step.**
 Show that \(P(a) \) is true. |
| **2. Induction step.**
 Show that for all integers \(k \geq a \), if \(P(k) \) is true then \(P(k+1) \) is true.
To perform this step, suppose that \(P(k) \) is true, where \(k \) is any particular but arbitrarily chosen integer with \(k \geq a \). [This supposition is called the inductive hypothesis.]
Now, show that \(P(k+1) \) is true. |
Proof by mathematical induction: Example 0

Proposition

- \(1 + 2 + \cdots + n = \frac{n(n+1)}{2} \) for all integers \(n \geq 1 \).

Proof

Let \(P(n) \) denote \(1 + 2 + \cdots + n = \frac{n(n+1)}{2} \).

1. Basis step.
 \(P(1) \) is true. \(\triangleright \) How?

2. Induction step.
 Suppose that \(P(k) \) is true for any \(k \geq 1 \).
 Now, we want to show that \(P(k+1) \) is true.

 \[
P(k + 1) = 1 + 2 + \cdots + k + (k + 1)
 = P(k) + (k + 1)
 = \frac{k(k + 1)}{2} + (k + 1) = \frac{(k + 1)(k + 2)}{2}

 Hence, \(P(k + 1) \) is true.