Predicate Logic
(First-Order Logic)
What is a propositional function or predicate?

Definition

- A propositional function or predicate is a sentence that contains one or more variables.
- A predicate is neither true nor false.
- A predicate becomes a proposition when the variables are substituted with specific values.
- The domain of a predicate variable is the set of all values that may be substituted for the variable.

Examples

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Predicate</th>
<th>Domain</th>
<th>Propositions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p(x)$</td>
<td>$x > 5$</td>
<td>$x \in \mathbb{R}$</td>
<td>$p(6), p(-3.6), p(0), \ldots$</td>
</tr>
<tr>
<td>$p(x, y)$</td>
<td>$x + y$ is odd</td>
<td>$x \in \mathbb{Z}, y \in \mathbb{Z}$</td>
<td>$p(4, 5), p(-4, -4), \ldots$</td>
</tr>
<tr>
<td>$p(x, y)$</td>
<td>$x^2 + y^2 = 4$</td>
<td>$x \in \mathbb{R}, y \in \mathbb{R}$</td>
<td>$p(-1.7, 8.9), p(-\sqrt{3}, -1), \ldots$</td>
</tr>
</tbody>
</table>
What is a truth set?

Definition

- A **truth set** of a predicate is the set of all values of the predicate that makes the predicate **true**.
- If $p(x)$ is a predicate and x has domain D, then the truth set of $p(x)$ is the set of all elements of D that makes $p(x)$ true when the values are substituted for x. That is,

$$\text{Truth set of } p(x) = \{ x \in D \mid p(x) \}$$

Examples

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Predicate</th>
<th>Domain</th>
<th>Truth set</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p(x)$</td>
<td>$x > 5$</td>
<td>$x \in \mathbb{R}$</td>
<td>${p(6), p(13.6), p(5.001), \ldots}$</td>
</tr>
<tr>
<td>$p(x, y)$</td>
<td>$x + y \text{ is odd}$</td>
<td>$x \in \mathbb{Z}, y \in \mathbb{Z}$</td>
<td>${p(4, 5), p(-4, -3), \ldots}$</td>
</tr>
<tr>
<td>$p(x, y)$</td>
<td>$x^2 + y^2 = 4$</td>
<td>$x \in \mathbb{R}, y \in \mathbb{R}$</td>
<td>${p(-2, 2), p(-\sqrt{3}, -1), \ldots}$</td>
</tr>
</tbody>
</table>
There are two methods to obtain propositions from predicates:
1. Assign specific values to variables
2. Add quantifiers
What are quantifiers?

Definition

- **Quantifiers** are words that refer to quantities such as “all” or “some” and they tell for how many elements a given predicate is true.

- Introduced into logic by logicians Charles Sanders Pierce and Gottlob Frege during late 19th century.

- Two types of quantifiers:
 1. Universal quantifier (∀)
 2. Existential quantifier (∃)
Universal quantifier \((\forall)\)

Definition

- Let \(p(x)\) be a predicate and \(D\) be the domain of \(x\)
- A universal statement is a statement of the form

\[
\forall x \in D, p(x)
\]

- Forms:
 - “\(p(x)\) is true for all values of \(x\)”
 - “For all \(x\), \(p(x)\)”
 - “For each \(x\), \(p(x)\)”
 - “For every \(x\), \(p(x)\)”
 - “Given any \(x\), \(p(x)\)”
- It is true if \(p(x)\) is true for each \(x\) in \(D\); It is false if \(p(x)\) is false for at least one \(x\) in \(D\)
- A counterexample to the universal statement is the value of \(x\) for which \(p(x)\) is false
Universal quantifier (∀)

Examples

<table>
<thead>
<tr>
<th>Universal st.s</th>
<th>Domain</th>
<th>Truth value</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>∀x ∈ D, x^2 ≥ x</td>
<td>D = {1, 2, 3}</td>
<td>True</td>
<td>Method of exhaustion</td>
</tr>
<tr>
<td>∀x ∈ (\mathbb{R}), x^2 ≥ x</td>
<td>(\mathbb{R})</td>
<td>False</td>
<td>Counterexample</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(x = 0.1)</td>
</tr>
</tbody>
</table>

Caution

- Method of exhaustion cannot be used to prove universal statements for infinite sets
Existential quantifier (∃)

Definition

- Let $p(x)$ be a predicate and D be the domain of x
- An existential statement is a statement of the form

$$\exists x \in D, p(x)$$

- Forms:
 - “There exists an x such that $p(x)$”
 - “For some x, $p(x)$”
 - “We can find an x, such that $p(x)$”
 - “There is some x such that $p(x)$”
 - “There is at least one x such that $p(x)$”
- It is true if $p(x)$ is true for at least one x in D; It is false if $p(x)$ is false for all x in D
- A counterproof to the existential statement is the proof to show that $p(x)$ is true is for no x
Existential quantifier (\exists)

Examples

<table>
<thead>
<tr>
<th>Universal st.s</th>
<th>Domain</th>
<th>Truth value</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\exists x \in D, x^2 \geq x$</td>
<td>$D = {1, 2, 3}$</td>
<td>True</td>
<td>Method of exhaust.</td>
</tr>
<tr>
<td>$\exists x \in \mathbb{R}, x^2 \geq x$</td>
<td>\mathbb{R}</td>
<td>True</td>
<td>Example</td>
</tr>
<tr>
<td>$\exists x \in \mathbb{Z}, x + 1 \leq x$</td>
<td>\mathbb{Z}</td>
<td>False</td>
<td>How?</td>
</tr>
</tbody>
</table>
Formal and informal languages

Example

- $\forall x \in \mathbb{R}, x^2 \geq 0$
 - Every real number has a nonnegative square
 - All real numbers have nonnegative squares
 - Any real number has a nonnegative square
 - The square of each real number is nonnegative
 - No real numbers have negative squares
 - x^2 is nonnegative for every real x
 - x^2 is not less than zero for each real number x
Universal conditional statement \((\forall, \rightarrow)\)

Definition

- A universal conditional statement is of the form

\[\forall x, \text{ if } p(x) \text{ then } q(x) \]

Examples

- \(\forall x \in \mathbb{R}, \text{ if } x > 2 \text{ then } x^2 > 4\)
- \(\forall \text{ real number } x, \text{ if } x \text{ is an integer then } x \text{ is rational}\)

 \(\forall \text{ integer } x, x \text{ is rational}\)

 \(\triangleright\) Logically equivalent

- \(\forall x, \text{ if } x \text{ is a square then } x \text{ is a rectangle}\)

 \(\forall \text{ square } x, x \text{ is a rectangle}\)

 \(\triangleright\) Logically equivalent

- \(\forall x \in U, \text{ if } p(x) \text{ then } q(x)\)

 \(\forall x \in D, q(x)\)

 (where, \(D = \{x \in U \mid p(x) \text{ is true}\}\))

\(\triangleright\) Logically equivalent

- Can be extended to existential conditional statement \((\exists, \rightarrow)\)
Implicit quantification \((\Rightarrow, \Leftrightarrow)\)

Examples

- **If a number** is an integer, then it is a rational number
 - Implicit meaning: \(\forall\) number \(x\), if \(x\) is an integer, \(x\) is rational
- **The number** 10 can be written as a sum of two prime numbers
 - Implicit meaning: \(\exists\) prime numbers \(p\) and \(q\) such that \(10 = p + q\)
- **If** \(x > 2\), then \(x^2 > 4\)
 - Implicit meaning: \(\forall\) real \(x\), if \(x > 2\), then \(x^2 > 4\)

Definition

- Let \(p(x)\) and \(q(x)\) be predicates and \(D\) be the common domain of \(x\). Then implicit quant. symbols \(\Rightarrow, \Leftrightarrow\) are defined as:

\[
\begin{align*}
p(x) \Rightarrow q(x) & \equiv \forall x, p(x) \rightarrow q(x) \\
p(x) \Leftrightarrow q(x) & \equiv \forall x, p(x) \leftrightarrow q(x)
\end{align*}
\]
Implicit quantification (\Rightarrow, \Leftarrow)

Problem

- $q(n)$: n is a factor of 8;
- $r(n)$: n is a factor of 4;
- $s(n)$: $n < 5$ and $n \neq 3$;

Domain of n is \mathbb{Z}^+ (i.e., positive integers)

- What are the relationships between $q(n)$, $r(n)$, and $s(n)$ using symbols \Rightarrow and \Leftarrow?
Implicit quantification \((\Rightarrow, \iff)\)

Problem
- \(q(n)\): \(n\) is a factor of 8; \(r(n)\): \(n\) is a factor of 4
- \(s(n)\): \(n < 5\) and \(n \neq 3\)
 - Domain of \(n\) is \(\mathbb{Z}^+\) (i.e., positive integers)
- What are the relationships between \(q(n)\), \(r(n)\), and \(s(n)\) using symbols \(\Rightarrow\) and \(\iff\)?

Solution
- Truth set of \(q(n) = \{1, 2, 4, 8\}\); Truth set of \(r(n) = \{1, 2, 4\}\); Truth set of \(s(n) = \{1, 2, 4\}\)
- \(\forall n\) in \(\mathbb{Z}^+, r(n) \rightarrow q(n)\) i.e., \(r(n) \Rightarrow q(n)\)
 - i.e., “\(n\) is a factor of 4” \(\Rightarrow\) “\(n\) is a factor of 8”
- \(\forall n\) in \(\mathbb{Z}^+, r(n) \leftrightarrow s(n)\) i.e., \(r(n) \iff s(n)\)
 - i.e., “\(n\) is a factor of 4” \(\iff\) “\(n < 5\) and \(n \neq 3\)”
- \(\forall n\) in \(\mathbb{Z}^+, s(n) \rightarrow q(n)\) i.e., \(s(n) \Rightarrow q(n)\)
 - i.e., “\(n < 5\) and \(n \neq 3\)” \(\Rightarrow\) “\(n\) is a factor of 8”
Negation of quantified statements (\sim)

Definition

- Formally,

\[
\sim (\forall x \in D, p(x)) \equiv \exists x \in D, \sim p(x)
\]

\[
\sim (\exists x \in D, p(x)) \equiv \forall x \in D, \sim p(x)
\]

- Negation of a **universal** statement ("all are") is logically equivalent to an **existential** statement ("there is at least one that is not")

- Negation of an **existential** statement ("some are") is logically equivalent to a **universal** statement ("all are not")

Methods

Two methods to avoid errors while finding negations:

1. Write the statements formally and then take negations
2. Ask "What exactly would it mean for the given statement to be false?"
Negation of quantified statements (\sim)

Examples

- All mathematicians wear glasses
 - Negation (incorrect): No mathematician wears glasses
 - Negation (incorrect + ambiguous): All mathematicians do not wear glasses
 - Negation (correct): There is at least one mathematician who does not wear glasses

- Some snowflakes are the same
 - Negation (incorrect): Some snowflakes are different
 - Negation (correct): All snowflakes are different
Negation of quantified statements (\sim)

Examples

- \forall primes p, p is odd

 Negation: \exists primes p, p is even

- \exists triangle T, sum of angles of T equals 200°

 \forall triangles T, sum of angles of T does not equal 200°

- No politicians are honest

 Formal statement: \forall politicians x, x is not honest

 Formal negation: \exists politician x, x is honest

 Informal negation: Some politicians are honest

- 1357 is not divisible by any integer between 1 and 37

 Formal statement: $\forall n \in [1, 37]$, 1357 is not divisible by n

 Formal negation: $\exists n \in [1, 37]$, 1357 is divisible by n

 Informal negation: 1357 is divisible by some integer between 1 and 37
Definition

- Formally,

\[\sim (\forall x, p(x) \rightarrow q(x)) \equiv \exists x, \sim (p(x) \rightarrow q(x)) \equiv \exists x, (p(x) \land \sim q(x)) \]

Examples

- \(\forall \) real \(x \), if \(x > 10 \), then \(x^2 > 100 \).
 Negation: \(\exists \) real \(x \) such that \(x > 10 \) and \(x^2 \leq 100 \).
- If a computer program has more than 100,000 lines, then it contains a bug.
 Negation: There is at least one computer program that has more than 100,000 lines and does not contain a bug.
Relation between quantifiers (\forall, \exists) and (\land, \lor)

<table>
<thead>
<tr>
<th>Relation</th>
</tr>
</thead>
</table>
| • Universal statements are generalizations of and statements
 Existential statements are generalizations of or statements |
| • If $p(x)$ is a predicate and $D = \{x_1, x_2, \ldots, x_n\}$ is the domain of x, then |

\[
\forall x \in D, p(x) \equiv p(x_1) \land p(x_2) \land \cdots \land p(x_n)
\]

\[
\exists x \in D, p(x) \equiv p(x_1) \lor p(x_2) \lor \cdots \lor p(x_n)
\]
Vacuous truth of universal statements

Problem

- Consider the bowl and the balls
- Consider the statement: All the balls in the bowl are blue
- Is the statement true?

Solution

- The statement is false iff its negation is true
- Negation: There exists a ball in the bowl that is not blue
- The negation is false; So, the statement is true, by default

Definition

- A statement of the form

 \[\forall x \text{ in } D, \text{ if } p(x), \text{ then } q(x) \]

 is **vacuously true** or **true by default**, if and only if \(p(x) \) is false for all \(x \text{ in } D \)
Universal conditional statements \((\forall x, p(x) \rightarrow q(x))\)

Definitions

- **Statement**: \(\forall x, \text{if } p(x) \text{ then } q(x)\)
- **Contrapositive** of the statement is \(\forall x, \text{if } \sim q(x) \text{ then } \sim p(x)\)
- **Converse** of the statement is \(\forall x, \text{if } q(x) \text{ then } p(x)\)
- **Inverse** of the statement is \(\forall x, \text{if } \sim p(x) \text{ then } \sim q(x)\)

Identities

- Conditional \(\equiv\) Contrapositive \(\triangleright\) Useful for proofs
- Conditional \(\not\equiv\) Converse
- Conditional \(\not\equiv\) Inverse
- Converse \(\equiv\) Inverse

Formulas

- \(\forall x, p(x) \rightarrow q(x) \equiv \forall x, \sim q(x) \rightarrow \sim p(x)\) \(\triangleright\) Useful for proofs
- \(\forall x, p(x) \rightarrow q(x) \not\equiv \forall x, q(x) \rightarrow p(x)\)
- \(\forall x, p(x) \rightarrow q(x) \not\equiv \forall x, \sim p(x) \rightarrow \sim q(x)\)
- \(\forall x, q(x) \rightarrow p(x) \equiv \forall x, \sim p(x) \rightarrow \sim q(x)\)
Universal conditional statement $\forall x, p(x) \rightarrow q(x)$

Definitions

- $\forall x, p(x)$ is a **sufficient condition** for $q(x)$ means
 $\forall x$, if $p(x)$ then $q(x)$
- $\forall x, p(x)$ is a **necessary condition** for $q(x)$ means
 $\forall x$, if $\sim p(x)$ then $\sim q(x) \equiv \forall x$, if $q(x)$ then $p(x)$
- $\forall x, p(x)$ only if $q(x)$ means
 $\forall x$, if $\sim q(x)$ then $\sim p(x) \equiv \forall x$, if $p(x)$ then $q(x)$

Example

- For real x, $x = 1$ is a sufficient condition for $x^2 = 1$
 i.e., $\forall x$, if $x = 1$ then $x^2 = 1$ \triangleright **True**
- For real x, $x^2 = 1$ is a necessary condition for $x = 1$
 i.e., $\forall x$, if $x^2 \neq 1$ then $x \neq 1$ \triangleright **True**
- For real x, $x = 1$ only if $x^2 = 1$
 i.e., $\forall x$, if $x^2 \neq 1$ then $x \neq 1$ \triangleright **True**
Statements with Multiple Quantifiers
Problem

- What is the interpretation for the following statement?
 “There is a person supervising every detail of the production process.”

Ambiguous interpretations

1. There is one single person who supervises all the details of the production process.
 \[\exists \text{ person } p \text{ such that } \forall \text{ detail } d, p \text{ supervises } d \]
2. For any particular production detail, there is a person who supervises that detail, but there might be different supervisors for different details.
 \[\forall \text{ detail } d, \exists \text{ person } p \text{ such that } p \text{ supervises } d \]
Statements with multiple quantifiers

Definitions

1. Statement form:

\[\forall x \in D, \exists y \in E \text{ such that } P(x, y) \]

Interpretation: Allow someone else to pick whatever element \(x \) in \(D \) they wish. Then, you must find an element \(y \) in \(E \) that “works” for that particular \(x \).

2. Statement form:

\[\exists x \in D \text{ such that } \forall y \in E, P(x, y) \]

Interpretation: Your job is to find one particular \(x \) in \(D \) that will “work” no matter what \(y \) in \(E \) anyone might choose to challenge you with.
Example: Tarski world

Problem

- For all triangles x, there is a square y such that x and y have the same color. **Truth value?**

Answer

- True. **How?**
Problem

- There is a triangle x such that for all circles y, x is to the right of y. Truth value?

Answer

- True. How?
Example: College cafeteria

Problem

- \exists an item I such that \forall students S, S chose I.
- **Informal statement? Truth value?**

Solution

- There is an item that was chosen by every student.
- True. **How?**
Example: College cafetaria

Problem

- \exists a student S such that \forall items I, S chose I.
- Informal statement? Truth value?

Solution

- There is a student who chose every available item.
- False. How?
Example: College cafetaria

Problem

- \exists a student S such that \forall stations Z, \exists an item I in Z such that S chose I.

- Informal statement? Truth value?

Solution

- There is a student who chose at least one item from every station.

- True. How?
Example: College cafetaria

Problem

∀ students S and ∀ stations Z, \exists an item I in Z such that S chose I.

- Informal statement? Truth value?

Solution

- Every student chose at least one item from every station.
- False. How?
<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Every nonzero real number has a reciprocal.</td>
<td>• ∃ nonzero real numbers (u), ∃ a real number (v) such that (uv = 1).</td>
</tr>
<tr>
<td>• There is a real number with no reciprocal.</td>
<td>• ∃ a real number (c) such that (\forall) real numbers (d), (cd \neq 1).</td>
</tr>
<tr>
<td>Problem</td>
<td>Solution</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>• There is a smallest positive integer.</td>
<td>• ∃ a positive integer m such that \forall positive integers n, $m \leq n$.</td>
</tr>
<tr>
<td>Problem</td>
<td>Solution</td>
</tr>
<tr>
<td>• There is no smallest positive real number.</td>
<td>• \forall positive real numbers x, \exists a positive real number y such that $y < x$.</td>
</tr>
<tr>
<td>Problem</td>
<td>Solution</td>
</tr>
<tr>
<td>• $\lim_{n \to \infty} a_n = L$</td>
<td>• $\forall \epsilon > 0$, \exists an integer N such that \forall integers n, if $n > N$ then $L - \epsilon < a_n < L + \epsilon$.</td>
</tr>
</tbody>
</table>
Negations of multiply-quantified statements

<table>
<thead>
<tr>
<th>Definitions</th>
</tr>
</thead>
</table>
| • \(\sim (\forall x \text{ in } D, \exists y \text{ in } E \text{ such that } P(x, y)) \)
 \[\equiv \exists x \text{ in } D \text{ such that } \forall y \text{ in } E, \sim P(x, y) \]
• \(\sim (\exists x \text{ in } D \text{ such that } \forall y \text{ in } E, P(x, y)) \)
 \[\equiv \forall x \text{ in } D, \exists y \text{ in } E \text{ such that } \sim P(x, y) \] |
Example: Tarski world

Problem

- For all squares x, there is a circle y such that x and y have the same color. Negation?

Answer

- \exists a square x such that \forall circles y, x and y do not have the same color. True. How?
Example: Tarski world

Problem

- There is a triangle x such that for all squares y, x is to the right of y. Negation?

Answer

- \forall triangles x, \exists a square y such that x is not to the right of y. True. How?
Order of quantifiers

Order

- The order of quantifiers are important when multiple quantifiers are involved

Example

- \exists a person y such that \forall people x, x loves y.
 Maybe possible.

- \forall people x, \exists a person y such that x loves y.
 Quite impossible.
Order of quantifiers

Example

- For every square x there is a triangle y such that x and y have different colors
 - \triangleright True
- There exists a triangle y such that for every square x, x and y have different colors.
 - \triangleright False
Order of quantifiers

Example

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>∀ ∈ ℤ, ∃ y ∈ ℜ (xy < 1)</td>
</tr>
<tr>
<td></td>
<td>Two cases:</td>
</tr>
<tr>
<td>a</td>
<td>For x ≤ 0, let y = 1, then xy < 1</td>
</tr>
<tr>
<td>b</td>
<td>For x > 0, let y = 1/(x + 1), then xy < 1</td>
</tr>
<tr>
<td>2</td>
<td>∃ y ∈ ℜ, ∀ ∈ ℤ (xy < 1)</td>
</tr>
<tr>
<td></td>
<td>False</td>
</tr>
<tr>
<td></td>
<td>Counterexample</td>
</tr>
<tr>
<td></td>
<td>For y = 1, let x = 2, then xy < 1</td>
</tr>
</tbody>
</table>

True

False