Scheduling

Don Porter
CSE 506
Housekeeping

✨ Paper reading assigned for next Thursday
✨ Lab 2 due next Friday
Lecture goals

- Understand low-level building blocks of a scheduler
- Understand competing policy goals
- Understand the O(1) scheduler
  - CFS next lecture
- Familiarity with standard Unix scheduling APIs
Undergrad review

- What is cooperative multitasking?
  - Processes voluntarily yield CPU when they are done

- What is preemptive multitasking?
  - OS only lets tasks run for a limited time, then forcibly context switches the CPU

- Pros/cons?
  - Cooperative gives more control; so much that one task can hog the CPU forever
  - Preemptive gives OS more control, more overheads/complexity
Where can we preempt a process?

- In other words, what are the logical points at which the OS can regain control of the CPU?

- System calls
  - Before
  - During (more next time on this)
  - After

- Interrupts
  - Timer interrupt – ensures maximum time slice
(Linux) Terminology

- **mm_struct** – represents an address space in kernel
- **task** – represents a thread in the kernel
  - A task points to 0 or 1 mm_structs
    - Kernel threads just “borrow” previous task’s mm, as they only execute in kernel address space
    - Many tasks can point to the same mm_struct
  - Multi-threading
- **Quantum** – CPU timeslice
Outline

- Policy goals
- Low-level mechanisms
- O(1) Scheduler
- CPU topologies
- Scheduling interfaces
Policy goals

- Fairness – everything gets a fair share of the CPU
- Real-time deadlines
  - CPU time before a deadline more valuable than time after
- Latency vs. Throughput: Timeslice length matters!
  - GUI programs should feel responsive
  - CPU-bound jobs want long timeslices, better throughput
- User priorities
  - Virus scanning is nice, but I don’t want it slowing things down
No perfect solution

- Optimizing multiple variables
- Like memory allocation, this is best-effort
  - Some workloads prefer some scheduling strategies
- Nonetheless, some solutions are generally better than others
Context switching

- What is it?
  - Swap out the address space and running thread
- Address space:
  - Need to change page tables
  - Update cr3 register on x86
  - Simplified by convention that kernel is at same address range in all processes
  - What would be hard about mapping kernel in different places?
Other context switching tasks

- Swap out other register state
  - Segments, debugging registers, MMX, etc.
- If descheduling a process for the last time, reclaim its memory
- Switch thread stacks
Switching threads

.TODO Programming abstraction:

/* Do some work */
schedule(); /* Something else runs */
/* Do more work */
How to switch stacks?

- Store register state on the stack in a well-defined format
- Carefully update stack registers to new stack
  - Tricky: can’t use stack-based storage for this step!
Example

/* eax is next->thread_info.esp */
/* push general-purpose regs*/
push ebp
mov esp, eax
pop ebp
/* pop other regs */
Weird code to write

Inside schedule(), you end up with code like:

```
switch_to(me, next, &last);
/* possibly clean up last */
```

Where does last come from?

- Output of switch_to
- Written on my stack by previous thread (not me)!
How to code this?

- Pick a register (say ebx); before context switch, this is a pointer to last’s location on the stack
- Pick a second register (say eax) to stores the pointer to the currently running task (me)
- Make sure to push ebx after eax
- After switching stacks:
  - pop ebx /* eax still points to old task*/
  - mov (ebx), eax /* store eax at the location ebx points to */
  - pop eax /* Update eax to new task */
Outline

- Policy goals
- Low-level mechanisms
- O(1) Scheduler
- CPU topologies
- Scheduling interfaces
Strawman scheduler

- Organize all processes as a simple list

- In schedule():
  - Pick first one on list to run next
  - Put suspended task at the end of the list

- Problem?
  - Only allows round-robin scheduling
  - Can’t prioritize tasks
Even straw-ier man

- Naïve approach to priorities:
  - Scan the entire list on each run
  - Or periodically reshuffle the list
- Problems:
  - Forking – where does child go?
  - What about if you only use part of your quantum?
    - E.g., blocking I/O
O(1) scheduler

- Goal: decide who to run next, independent of number of processes in system
  - Still maintain ability to prioritize tasks, handle partially unused quanta, etc
O(1) Bookkeeping

- **runqueue**: a list of runnable processes
  - Blocked processes are not on any runqueue
  - A runqueue belongs to a specific CPU
  - Each task is on exactly one runqueue
    - Task only scheduled on runqueue’s CPU unless migrated
- 2 * 40 * #CPUs runqueues
  - 40 dynamic priority levels (more later)
  - 2 sets of runqueues – one active and one expired
O(1) Intuition

- Take the first task off the lowest-numbered runqueue on active set
  - Confusingly: a lower priority value means higher priority
- When done, put it on appropriate runqueue on expired set
- Once active is completely empty, swap which set of runqueues is active and expired
- Constant time, since fixed number of queues to check; only take first item from non-empty queue
How is this better than a sorted list?

- Remember partial quantum use problem?
  - Process uses half of its timeslice and then blocks on disk
  - Once disk I/O is done, where to put the task?
- Simple: task goes in active runqueue at its priority
  - Higher-priority tasks go to front of the line once they become runnable
Time slice tracking

- If a process blocks and then becomes runnable, how do we know how much time it had left?

- Each task tracks ticks left in 'time_slice' field
  - On each lock tick: current->time_slice--
  - If time slice goes to zero, move to expired queue
    - Refill time slice
    - Schedule someone else
  - An unblocked task can use balance of time slice
  - Forking halves time slice with child
More on priorities

- 100 = highest priority
- 139 = lowest priority
- 120 = base priority
- “nice” value: user-specified adjustment to base priority
  - Selfish (not nice) = -20 (I want to go first)
  - Really nice = +19 (I will go last)
Base time slice

\[
time = \begin{cases} 
(140 - prio) \times 20ms & \text{prio} < 120 \\
(140 - prio) \times 5ms & \text{prio} \geq 120 
\end{cases}
\]

✧ “Higher” priority tasks get longer time slices
✧ And run first
Goal: Responsive UIs

- Most GUI programs are I/O bound on the user
  - Unlikely to use entire time slice
- Users get annoyed when they type a key and it takes a long time to appear
- Idea: give UI programs a priority boost
  - Go to front of line, run briefly, block on I/O again
- Which ones are the UI programs?
Idea: Infer from sleep time

- By definition, I/O bound applications spend most of their time waiting on I/O

- We can monitor I/O wait time and infer which programs are GUI (and disk intensive)

- Give these applications a priority boost

- Note that this behavior can be dynamic
  - Ex: GUI configures DVD ripping, then it is CPU-bound
  - Scheduling should match program phases
Dynamic priority

\[ dynamic \text{ priority} = \max ( 100, \min ( static \text{ priority} - bonus + 5, 139 ) ) \]

- Bonus is calculated based on sleep time
- Dynamic priority determines a task’s runqueue
- This is a heuristic to balance competing goals of CPU throughput and latency in dealing with infrequent I/O
- May not be optimal
Rebalancing tasks

- As described, once a task ends up in one CPU’s runqueue, it stays on that CPU forever
- What if all the processes on CPU 0 exit, and all of the processes on CPU 1 fork more children?
- We need to periodically rebalance
- Balance overheads against benefits
  - Figuring out where to move tasks isn’t free
Idea: Idle CPUs rebalance

- If a CPU is out of runnable tasks, it should take load from busy CPUs
  - Busy CPUs shouldn’t lose time finding idle CPUs to take their work if possible
- There may not be any idle CPUs
  - Overhead to figure out whether other idle CPUs exist
  - Just have busy CPUs rebalance much less frequently
Average load

- How do we measure how busy a CPU is?
- Average number of runnable tasks over time
- Available in /proc/loadavg
Rebalancing strategy

- Read the loadavg of each CPU
- Find the one with the highest loadavg
- (Hand waving) Figure out how many tasks we could take
  - If worth it, lock the CPU’s runqueues and take them
  - If not, try again later
Locking note

- If CPU A locks CPU B’s runqueue to take some work:
  - CPU B must lock its runqueues in the common case that no one is rebalancing
  - Cf. Hoard and per-CPU heaps
- Idiosyncrasy: runqueue locks are acquired by one task and released by another
  - Usually this would indicate a bug!
Why not rebalance?

- Intuition: If things run slower on another CPU
- Why might this happen?
  - NUMA (Non-Uniform Memory Access)
  - Hyper-threading
  - Multi-core cache behavior
- Vs: Symmetric Multi-Processor (SMP) – performance on all CPUs is basically the same
SMP

- All CPUs similar, equally “close” to memory
Want to keep execution near memory; higher migration costs
Hyper-threading

- Precursor to multi-core
  - A few more transistors than Intel knew what to do with, but not enough to build a second core on a chip yet
- Duplicate architectural state (registers, etc), but not execution resources (ALU, floating point, etc)
- OS view: 2 logical CPUs
- CPU: pipeline bubble in one “CPU” can be filled with operations from another; yielding higher utilization
Hyper-threaded scheduling

- Imagine 2 hyper-threaded CPUs
  - 4 Logical CPUs
  - But only 2 CPUs-worth of power
- Suppose I have 2 tasks
  - They will do much better on 2 different physical CPUs than sharing one physical CPU
  - They will also contend for space in the cache
  - Less of a problem for threads in same program. Why?
Multi-core

- More levels of caches
- Migration among CPUs sharing a cache preferable
  - Why?
  - More likely to keep data in cache
Scheduling Domains

- General abstraction for CPU topology
- “Tree” of CPUs
  - Each leaf node contains a group of “close” CPUs
  - When an idle CPU rebalances, it starts at leaf node and works up to the root
  - Most rebalancing within the leaf
  - Higher threshold to rebalance across a parent
Outline

- Policy goals
- Low-level mechanisms
- O(1) Scheduler
- CPU topologies
- Scheduling interfaces
Setting priorities

- `setpriority(which, who, niceval)` and `getpriority()`
  - Which: process, process group, or user id
    - PID, PGID, or UID
  - Niceval: -20 to +19 (recall earlier)

- `nice(niceval)`
  - Historical interface (backwards compatible)
  - Equivalent to:
    - `setpriority(PRIO_PROCESS, getpid(), niceval)`
Scheduler Affinity

- `sched_setaffinity` and `sched_getaffinity`
- Can specify a bitmap of CPUs on which this can be scheduled
  - Better not be 0!
- Useful for benchmarking: ensure each thread on a dedicated CPU
yield

- Moves a runnable task to the expired runqueue
  - Unless real-time (more later), then just move to the end of the active runqueue
- Several other real-time related APIs
Summary

- Understand competing scheduling goals
- Understand how context switching implemented
- Understand O(1) scheduler + rebalancing
- Understand various CPU topologies and scheduling domains
- Scheduling system calls