Parallel Algorithms
Matrix Multiplication

Pramod Ganapathi
Square Matrix Multiplication

Example

\[
\begin{bmatrix}
2 & 7 & 3 & 6 \\
5 & 8 & 3 & 8 \\
6 & 4 & 5 & 6 \\
0 & 3 & 9 & 7
\end{bmatrix}
\times
\begin{bmatrix}
8 & 4 & 4 & 3 \\
7 & 7 & 6 & 8 \\
5 & 3 & 8 & 4 \\
2 & 5 & 5 & 7
\end{bmatrix}
= \begin{bmatrix}
92 & 96 & 104 & 116 \\
127 & 125 & 132 & 147 \\
113 & 97 & 118 & 112 \\
80 & 83 & 125 & 109
\end{bmatrix}
\]

- A’s ith row \times B’s jth column = $C[i, j]$ cell
- E.g.: $5 \times 4 + 8 \times 6 + 3 \times 8 + 8 \times 5 = 132$
Square Matrix Multiplication

Example

2 7 3 6	8 4 4 3	92 96 104 116
5 8 3 8	7 7 6 8	127 125 132 147
6 4 5 6	5 3 8 4	113 97 118 112
0 3 9 7	2 5 5 7	80 83 125 109

- A’s ith row \times B’s jth column = $C[i, j]$ cell
- E.g.: $5 \times 4 + 8 \times 6 + 3 \times 8 + 8 \times 5 = 132$

Definition

If A and B are $n \times n$ matrices consisting of real numbers, then the matrix product $C = A \times B$ is defined and computed as

$$C[i, j] = \sum_{k=1}^{n} A[i, k] \times B[k, j] \text{ for } i, j \in [1, n]$$
The A, B, C matrices are stored in row-major order

How can we improve cache complexity?

Reorder the loops!
MM Loops

\[\text{MM-Loop}(A, B, C, n) \]

1. for \(i \leftarrow 1 \) to \(n \) do
2. for \(j \leftarrow 1 \) to \(n \) do
3. \(C[i, j] \leftarrow 0 \)
4. for \(k \leftarrow 1 \) to \(n \) do
5. \(C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j] \)

<table>
<thead>
<tr>
<th>(T_1(n))</th>
<th>(T_\infty(n))</th>
<th>(E_1(n))</th>
<th>(S_\infty(n))</th>
<th>(Q_1(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Theta(n^3))</td>
<td>(\Theta(n^3))</td>
<td>(\Theta(1))</td>
<td>(\Theta(n^2))</td>
<td>(\Theta(n^3))</td>
</tr>
</tbody>
</table>
MM Loops

\[\text{MM-Loop}(A, B, C, n) \]

1. for \(i \leftarrow 1 \) to \(n \) do
2. for \(j \leftarrow 1 \) to \(n \) do
3. \(C[i, j] \leftarrow 0 \)
4. for \(k \leftarrow 1 \) to \(n \) do
5. \(C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j] \)

<table>
<thead>
<tr>
<th>(T_1(n))</th>
<th>(T_\infty(n))</th>
<th>(E_1(n))</th>
<th>(S_\infty(n))</th>
<th>(Q_1(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Theta(n^3))</td>
<td>(\Theta(n^3))</td>
<td>(\Theta(1))</td>
<td>(\Theta(n^2))</td>
<td>(\Theta(n^3))</td>
</tr>
</tbody>
</table>

- The \(A, B, C \) matrices are stored in row-major order
- How can we improve cache complexity?
MM Loops

<table>
<thead>
<tr>
<th>MM-Loop ((A, B, C, n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. for (i \leftarrow 1) to (n) do</td>
</tr>
<tr>
<td>2. for (j \leftarrow 1) to (n) do</td>
</tr>
<tr>
<td>3. (C[i, j] \leftarrow 0)</td>
</tr>
<tr>
<td>4. for (k \leftarrow 1) to (n) do</td>
</tr>
<tr>
<td>5. (C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(T_1(n))</th>
<th>(T_\infty(n))</th>
<th>(E_1(n))</th>
<th>(S_\infty(n))</th>
<th>(Q_1(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Theta(n^3))</td>
<td>(\Theta(n^3))</td>
<td>(\Theta(1))</td>
<td>(\Theta(n^2))</td>
<td>(\Theta(n^3))</td>
</tr>
</tbody>
</table>

- The \(A, B, C\) matrices are stored in row-major order
- **How can we improve cache complexity?**
 Reorder the loops!
MM Loops (3! = 6 possible ways)

<table>
<thead>
<tr>
<th>MM-ijk(A, B, C, n)</th>
<th>MM-jki(A, B, C, n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. for $i \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>2. for $j \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>3. for $k \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>1. for $j \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>2. for $k \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>3. for $i \leftarrow 1$ to n do</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MM-ikj(A, B, C, n)</th>
<th>MM-kij(A, B, C, n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. for $i \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>2. for $k \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>3. for $j \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>1. for $k \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>2. for $i \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>3. for $j \leftarrow 1$ to n do</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MM-jik(A, B, C, n)</th>
<th>MM-kji(A, B, C, n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. for $j \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>2. for $i \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>3. for $k \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>1. for $k \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>2. for $j \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>3. for $i \leftarrow 1$ to n do</td>
<td></td>
</tr>
</tbody>
</table>

Which of these algorithms are correct?
Which of the correct algorithms have improved cache locality?
MM Loops \((3! = 6\) possible ways\)

- **MM-ijk** \((A, B, C, n)\)
 1. for \(i \leftarrow 1\) to \(n\) do
 2. for \(j \leftarrow 1\) to \(n\) do
 3. for \(k \leftarrow 1\) to \(n\) do
 4. \(C[i, j] \leftarrow C[i, j] + A[i, k] \cdot B[k, j]\)

- **MM-ikj** \((A, B, C, n)\)
 1. for \(i \leftarrow 1\) to \(n\) do
 2. for \(k \leftarrow 1\) to \(n\) do
 3. for \(j \leftarrow 1\) to \(n\) do
 4. \(C[i, j] \leftarrow C[i, j] + A[i, k] \cdot B[k, j]\)

- **MM-jik** \((A, B, C, n)\)
 1. for \(j \leftarrow 1\) to \(n\) do
 2. for \(i \leftarrow 1\) to \(n\) do
 3. for \(k \leftarrow 1\) to \(n\) do
 4. \(C[i, j] \leftarrow C[i, j] + A[i, k] \cdot B[k, j]\)

- **MM-kij** \((A, B, C, n)\)
 1. for \(k \leftarrow 1\) to \(n\) do
 2. for \(i \leftarrow 1\) to \(n\) do
 3. for \(j \leftarrow 1\) to \(n\) do
 4. \(C[i, j] \leftarrow C[i, j] + A[i, k] \cdot B[k, j]\)

- **MM-kji** \((A, B, C, n)\)
 1. for \(k \leftarrow 1\) to \(n\) do
 2. for \(j \leftarrow 1\) to \(n\) do
 3. for \(i \leftarrow 1\) to \(n\) do
 4. \(C[i, j] \leftarrow C[i, j] + A[i, k] \cdot B[k, j]\)

Which of these algorithms are correct?
MM Loops (3! = 6 possible ways)

<table>
<thead>
<tr>
<th>MM-ijk(A, B, C, n)</th>
<th>MM-jki(A, B, C, n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. for $i \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>2. for $j \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>3. for $k \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>1. for $j \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>2. for $k \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>3. for $i \leftarrow 1$ to n do</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MM-ikj(A, B, C, n)</th>
<th>MM-kij(A, B, C, n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. for $i \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>2. for $k \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>3. for $j \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>1. for $k \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>2. for $i \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>3. for $j \leftarrow 1$ to n do</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MM-jik(A, B, C, n)</th>
<th>MM-kji(A, B, C, n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. for $j \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>2. for $i \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>3. for $k \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>1. for $k \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>2. for $j \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>3. for $i \leftarrow 1$ to n do</td>
<td></td>
</tr>
</tbody>
</table>

▶ Which of these algorithms are correct?
▶ Which of the correct algorithms have improved cache locality?
Correctness

All 6 algorithms are correct because they satisfy the read-write constraints of the MM definition.

Technique to prove correctness of the looping algorithms

- Check if the read-write constraints are satisfied
- Check if the order of computations are as desired
- Check if no more instructions are executed
- Check if no fewer instructions are executed
MM Loops: Complexity

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>$T_1(n)$</th>
<th>$T_\infty(n)$</th>
<th>$E_1(n)$</th>
<th>$S_\infty(n)$</th>
<th>$Q_1(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM-ijkl</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^3)$</td>
</tr>
<tr>
<td>MM-ikj</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta\left(\frac{n^3}{B} + n^2\right)$</td>
</tr>
<tr>
<td>MM-jik</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^3)$</td>
</tr>
<tr>
<td>MM-jki</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^3)$</td>
</tr>
<tr>
<td>MM-kij</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^3)$</td>
</tr>
<tr>
<td>MM-kji</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^3)$</td>
</tr>
</tbody>
</table>
MM Loops: Complexity

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>$T_1(n)$</th>
<th>$T_\infty(n)$</th>
<th>$E_1(n)$</th>
<th>$S_\infty(n)$</th>
<th>$Q_1(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM-ijk</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^3)$</td>
</tr>
<tr>
<td>MM-ikj</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta\left(\frac{n^3}{B} + n^2\right)$</td>
</tr>
<tr>
<td>MM-jik</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^3)$</td>
</tr>
<tr>
<td>MM-jki</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^3)$</td>
</tr>
<tr>
<td>MM-kij</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^3)$</td>
</tr>
<tr>
<td>MM-kji</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^3)$</td>
</tr>
</tbody>
</table>

- The matrices A, B, C are stored in row-major order
- **MM-ikj** exploits spatial cache locality
The matrices A, B, C are stored in row-major order.

MM-ikj exploits spatial cache locality.

If we store the B matrix in column-major order, then which of the 6 algorithms will have better cache complexity?
The matrices A, B, C are stored in row-major order

MM-ikj exploits spatial cache locality

If we store the B matrix in column-major order, then which of the 6 algorithms will have better cache complexity?

How can we parallelize the algorithms?
MM Parallel Loops

MM-ijk \((A, B, C, n)\)

1. parallel for \(i \leftarrow 1\) to \(n\) do
2. parallel for \(j \leftarrow 1\) to \(n\) do
3. parallel for \(k \leftarrow 1\) to \(n\) do
4. \(C[i, j] \leftarrow C[i, j] + A[i, k] \cdot B[k, j]\)

MM-ikj \((A, B, C, n)\)

1. parallel for \(i \leftarrow 1\) to \(n\) do
2. parallel for \(k \leftarrow 1\) to \(n\) do
3. parallel for \(j \leftarrow 1\) to \(n\) do
4. \(C[i, j] \leftarrow C[i, j] + A[i, k] \cdot B[k, j]\)

MM-jki \((A, B, C, n)\)

1. parallel for \(j \leftarrow 1\) to \(n\) do
2. parallel for \(k \leftarrow 1\) to \(n\) do
3. parallel for \(i \leftarrow 1\) to \(n\) do
4. \(C[i, j] \leftarrow C[i, j] + A[i, k] \cdot B[k, j]\)

MM-jik \((A, B, C, n)\)

1. parallel for \(j \leftarrow 1\) to \(n\) do
2. parallel for \(i \leftarrow 1\) to \(n\) do
3. parallel for \(k \leftarrow 1\) to \(n\) do
4. \(C[i, j] \leftarrow C[i, j] + A[i, k] \cdot B[k, j]\)

MM-kji \((A, B, C, n)\)

1. parallel for \(k \leftarrow 1\) to \(n\) do
2. parallel for \(j \leftarrow 1\) to \(n\) do
3. parallel for \(i \leftarrow 1\) to \(n\) do
4. \(C[i, j] \leftarrow C[i, j] + A[i, k] \cdot B[k, j]\)

MM-kij \((A, B, C, n)\)

1. parallel for \(k \leftarrow 1\) to \(n\) do
2. parallel for \(i \leftarrow 1\) to \(n\) do
3. parallel for \(j \leftarrow 1\) to \(n\) do
4. \(C[i, j] \leftarrow C[i, j] + A[i, k] \cdot B[k, j]\)

▶ All the three loops are parallelized
▶ Are these algorithms correct?
All the three loops are parallelized.

Are these algorithms correct? No! (race conditions)
MM Parallel Loops

<table>
<thead>
<tr>
<th>MM-ijk(A, B, C, n)</th>
<th>MM-jki(A, B, C, n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. parallel for $i \leftarrow 1$ to n do</td>
<td>1. parallel for $j \leftarrow 1$ to n do</td>
</tr>
<tr>
<td>2. parallel for $j \leftarrow 1$ to n do</td>
<td>2. parallel for $k \leftarrow 1$ to n do</td>
</tr>
<tr>
<td>3. parallel for $k \leftarrow 1$ to n do</td>
<td>3. parallel for $i \leftarrow 1$ to n do</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MM-ikj(A, B, C, n)</th>
<th>MM-kij(A, B, C, n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. parallel for $i \leftarrow 1$ to n do</td>
<td>1. parallel for $k \leftarrow 1$ to n do</td>
</tr>
<tr>
<td>2. parallel for $k \leftarrow 1$ to n do</td>
<td>2. parallel for $i \leftarrow 1$ to n do</td>
</tr>
<tr>
<td>3. parallel for $j \leftarrow 1$ to n do</td>
<td>3. parallel for $j \leftarrow 1$ to n do</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MM-jik(A, B, C, n)</th>
<th>MM-kji(A, B, C, n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. parallel for $j \leftarrow 1$ to n do</td>
<td>1. parallel for $k \leftarrow 1$ to n do</td>
</tr>
<tr>
<td>2. parallel for $i \leftarrow 1$ to n do</td>
<td>2. parallel for $j \leftarrow 1$ to n do</td>
</tr>
<tr>
<td>3. parallel for $k \leftarrow 1$ to n do</td>
<td>3. parallel for $i \leftarrow 1$ to n do</td>
</tr>
</tbody>
</table>

- All the three loops are parallelized
- Are these algorithms correct? No! (race conditions)
- How can we avoid the race conditions?
MM Parallel Loops

MM-ijk \((A, B, C, n)\)

1. `parallel` for \(i \leftarrow 1\) to \(n\) do
2. `parallel` for \(j \leftarrow 1\) to \(n\) do
3. for \(k \leftarrow 1\) to \(n\) do
4. \(C[i, j] \leftarrow C[i, j] + A[i, k] \cdot B[k, j]\)

MM-ikj \((A, B, C, n)\)

1. `parallel` for \(i \leftarrow 1\) to \(n\) do
2. for \(k \leftarrow 1\) to \(n\) do
3. `parallel` for \(j \leftarrow 1\) to \(n\) do
4. \(C[i, j] \leftarrow C[i, j] + A[i, k] \cdot B[k, j]\)

MM-jik \((A, B, C, n)\)

1. for \(k \leftarrow 1\) to \(n\) do
2. `parallel` for \(i \leftarrow 1\) to \(n\) do
3. for \(j \leftarrow 1\) to \(n\) do
4. \(C[i, j] \leftarrow C[i, j] + A[i, k] \cdot B[k, j]\)

MM-kij \((A, B, C, n)\)

1. `parallel` for \(j \leftarrow 1\) to \(n\) do
2. `parallel` for \(i \leftarrow 1\) to \(n\) do
3. for \(k \leftarrow 1\) to \(n\) do
4. \(C[i, j] \leftarrow C[i, j] + A[i, k] \cdot B[k, j]\)

MM-kji \((A, B, C, n)\)

1. for \(k \leftarrow 1\) to \(n\) do
2. `parallel` for \(j \leftarrow 1\) to \(n\) do
3. `parallel` for \(i \leftarrow 1\) to \(n\) do
4. \(C[i, j] \leftarrow C[i, j] + A[i, k] \cdot B[k, j]\)

- The \(k\)-loop is serialized
- Are these algorithms correct?
MM Parallel Loops

MM-ijk\((A, B, C, n)\)

1. **parallel** for \(i \leftarrow 1\) to \(n\) do
2. **parallel** for \(j \leftarrow 1\) to \(n\) do
3. for \(k \leftarrow 1\) to \(n\) do
4. \(C[i, j] \leftarrow C[i, j] + A[i, k] \cdot B[k, j]\)

MM-ikj\((A, B, C, n)\)

1. **parallel** for \(i \leftarrow 1\) to \(n\) do
2. for \(k \leftarrow 1\) to \(n\) do
3. **parallel** for \(j \leftarrow 1\) to \(n\) do
4. \(C[i, j] \leftarrow C[i, j] + A[i, k] \cdot B[k, j]\)

MM-jik\((A, B, C, n)\)

1. **parallel** for \(j \leftarrow 1\) to \(n\) do
2. **parallel** for \(i \leftarrow 1\) to \(n\) do
3. for \(k \leftarrow 1\) to \(n\) do
4. \(C[i, j] \leftarrow C[i, j] + A[i, k] \cdot B[k, j]\)

MM-jki\((A, B, C, n)\)

1. **parallel** for \(j \leftarrow 1\) to \(n\) do
2. for \(k \leftarrow 1\) to \(n\) do
3. **parallel** for \(i \leftarrow 1\) to \(n\) do
4. \(C[i, j] \leftarrow C[i, j] + A[i, k] \cdot B[k, j]\)

- The \(k\)-loop is serialized
- Are these algorithms correct? Yes! (no race conditions)
MM Parallel Loops: Complexity

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>$T_1(n)$</th>
<th>$T_\infty(n)$</th>
<th>$E_1(n)$</th>
<th>$S_\infty(n)$</th>
<th>$Q_1(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM-ijk</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^3)$</td>
</tr>
<tr>
<td>MM-ikj</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta\left(\frac{n^3}{B} + n^2\right)$</td>
</tr>
<tr>
<td>MM-jik</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^3)$</td>
</tr>
<tr>
<td>MM-jki</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^3)$</td>
</tr>
<tr>
<td>MM-kij</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^3)$</td>
</tr>
<tr>
<td>MM-kji</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^3)$</td>
</tr>
</tbody>
</table>

- How can we compute $S_p(n)$?
MM Parallel Loops: Complexity

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>$T_1(n)$</th>
<th>$T_∞(n)$</th>
<th>$E_1(n)$</th>
<th>$S_∞(n)$</th>
<th>$Q_1(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM-ijk</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^3)$</td>
</tr>
<tr>
<td>MM-ikj</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta\left(\frac{n^3}{B} + n^2\right)$</td>
</tr>
<tr>
<td>MM-jik</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^3)$</td>
</tr>
<tr>
<td>MM-jki</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^3)$</td>
</tr>
<tr>
<td>MM-kij</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^3)$</td>
</tr>
<tr>
<td>MM-kji</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^3)$</td>
</tr>
</tbody>
</table>

▶ How can we compute $S_p(n)$?
▶ How can we improve parallelism?
MM Parallel Loops: Complexity

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>$T_1(n)$</th>
<th>$T_\infty(n)$</th>
<th>$E_1(n)$</th>
<th>$S_\infty(n)$</th>
<th>$Q_1(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM-ijk</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^3)$</td>
</tr>
<tr>
<td>MM-ikj</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta\left(\frac{n^3}{B} + n^2\right)$</td>
</tr>
<tr>
<td>MM-jik</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^3)$</td>
</tr>
<tr>
<td>MM-jki</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^3)$</td>
</tr>
<tr>
<td>MM-kij</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^3)$</td>
</tr>
<tr>
<td>MM-kji</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^3)$</td>
</tr>
</tbody>
</table>

- How can we compute $S_p(n)$?
- How can we improve parallelism?

 Reduction!
MM Parallel Loops with Reduction

- The $C[i, j]$ shared variables are defined as reducers

<table>
<thead>
<tr>
<th>$\text{MM-ijk}(A, B, C, n)$</th>
<th>$\text{MM-jki}(A, B, C, n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. parallel for $i \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>2. parallel for $j \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>3. reduce for $k \leftarrow 1$ to n do</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\text{MM-ikj}(A, B, C, n)$</th>
<th>$\text{MM-kij}(A, B, C, n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. parallel for $i \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>2. reduce for $k \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>3. parallel for $j \leftarrow 1$ to n do</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\text{MM-jik}(A, B, C, n)$</th>
<th>$\text{MM-kji}(A, B, C, n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. parallel for $j \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>2. parallel for $i \leftarrow 1$ to n do</td>
<td></td>
</tr>
<tr>
<td>3. reduce for $k \leftarrow 1$ to n do</td>
<td></td>
</tr>
</tbody>
</table>

- The k-loop is reduced

- Are these algorithms correct?
MM Parallel Loops with Reduction

- The $C[i, j]$ shared variables are defined as reducers

$\textbf{MM-ijk}(A, B, C, n)$

1. parallel for $i \leftarrow 1$ to n do
2. parallel for $j \leftarrow 1$ to n do
3. reduce for $k \leftarrow 1$ to n do

$\textbf{MM-jki}(A, B, C, n)$

1. parallel for $j \leftarrow 1$ to n do
2. reduce for $k \leftarrow 1$ to n do
3. parallel for $i \leftarrow 1$ to n do

$\textbf{MM-ikj}(A, B, C, n)$

1. parallel for $i \leftarrow 1$ to n do
2. reduce for $k \leftarrow 1$ to n do
3. parallel for $j \leftarrow 1$ to n do

$\textbf{MM-kij}(A, B, C, n)$

1. reduce for $k \leftarrow 1$ to n do
2. parallel for $i \leftarrow 1$ to n do
3. parallel for $j \leftarrow 1$ to n do

$\textbf{MM-kji}(A, B, C, n)$

1. reduce for $k \leftarrow 1$ to n do
2. parallel for $j \leftarrow 1$ to n do
3. parallel for $i \leftarrow 1$ to n do

- The k-loop is reduced
- Are these algorithms correct? Yes! (no race conditions)
MM Parallel Loops with Reduction: Complexity

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>(T_1(n))</th>
<th>(T_\infty(n))</th>
<th>(E_1(n))</th>
<th>(S_\infty(n))</th>
<th>(Q_1(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM-ijk</td>
<td>(\Theta(n^3))</td>
<td>(\Theta(\log n))</td>
<td>(\Theta(\log n))</td>
<td>(\Theta(n^3))</td>
<td>(\Theta(n^3))</td>
</tr>
<tr>
<td>MM-ikj</td>
<td>(\Theta(n^3))</td>
<td>(\Theta(\log n))</td>
<td>(\Theta(\log n))</td>
<td>(\Theta(n^3))</td>
<td>(\Theta\left(\frac{n^3}{B} + n^2\right))</td>
</tr>
<tr>
<td>MM-jik</td>
<td>(\Theta(n^3))</td>
<td>(\Theta(\log n))</td>
<td>(\Theta(\log n))</td>
<td>(\Theta(n^3))</td>
<td>(\Theta(n^3))</td>
</tr>
<tr>
<td>MM-jki</td>
<td>(\Theta(n^3))</td>
<td>(\Theta(\log n))</td>
<td>(\Theta(\log n))</td>
<td>(\Theta(n^3))</td>
<td>(\Theta(n^3))</td>
</tr>
<tr>
<td>MM-kij</td>
<td>(\Theta(n^3))</td>
<td>(\Theta(\log n))</td>
<td>(\Theta(\log n))</td>
<td>(\Theta(n^3))</td>
<td>(\Theta(n^3))</td>
</tr>
<tr>
<td>MM-kji</td>
<td>(\Theta(n^3))</td>
<td>(\Theta(\log n))</td>
<td>(\Theta(\log n))</td>
<td>(\Theta(n^3))</td>
<td>(\Theta(n^3))</td>
</tr>
</tbody>
</table>
MM Parallel Loops with Reduction: Complexity

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>$T_1(n)$</th>
<th>$T_\infty(n)$</th>
<th>$E_1(n)$</th>
<th>$S_\infty(n)$</th>
<th>$Q_1(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM-ijk</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n^3)$</td>
</tr>
<tr>
<td>MM-ikj</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta\left(\frac{n^3}{B} + n^2\right)$</td>
</tr>
<tr>
<td>MM-jik</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n^3)$</td>
</tr>
<tr>
<td>MM-jki</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n^3)$</td>
</tr>
<tr>
<td>MM-kij</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n^3)$</td>
</tr>
<tr>
<td>MM-kji</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n^3)$</td>
</tr>
</tbody>
</table>

Advantages
- Minimum depth
- Easy to implement

Disadvantages
- Maximum space
- Lack temporal cache locality
MM Parallel Loops with Reduction: Complexity

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>$T_1(n)$</th>
<th>$T_\infty(n)$</th>
<th>$E_1(n)$</th>
<th>$S_\infty(n)$</th>
<th>$Q_1(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM-ijk</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n^3)$</td>
</tr>
<tr>
<td>MM-ikj</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta\left(\frac{n^3}{B} + n^2\right)$</td>
</tr>
<tr>
<td>MM-jik</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n^3)$</td>
</tr>
<tr>
<td>MM-jki</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n^3)$</td>
</tr>
<tr>
<td>MM-kij</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n^3)$</td>
</tr>
<tr>
<td>MM-kji</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n^3)$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum depth</td>
<td>Maximum space</td>
</tr>
<tr>
<td>Easy to implement</td>
<td>Lack temporal cache locality</td>
</tr>
</tbody>
</table>

> How can we exploit the temporal data locality?
MM Parallel Loops with Reduction: Complexity

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>$T_1(n)$</th>
<th>$T_\infty(n)$</th>
<th>$E_1(n)$</th>
<th>$S_\infty(n)$</th>
<th>$Q_1(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM-ijk</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n^3)$</td>
</tr>
<tr>
<td>MM-ikj</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta\left(\frac{n^3}{B} + n^2\right)$</td>
</tr>
<tr>
<td>MM-jik</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n^3)$</td>
</tr>
<tr>
<td>MM-jki</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n^3)$</td>
</tr>
<tr>
<td>MM-kij</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n^3)$</td>
</tr>
<tr>
<td>MM-kji</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(\log n)$</td>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n^3)$</td>
</tr>
</tbody>
</table>

Advantages
- Minimum depth
- Easy to implement

Disadvantages
- Maximum space
- Lack temporal cache locality

▶ How can we exploit the temporal data locality?
Localized computations!
MM Tiled Loops: Core Idea

Core idea
- Let \(r = \frac{n}{\sqrt{M}} \). Split the three matrices into \(r \times r \) tiles/blocks, each tile of size \(\frac{n}{r} \times \frac{n}{r} \).
- Load the three tiles \(A[I, K], B[K, J], \) and \(C[I, J], \) each of size \(\frac{n}{r} \times \frac{n}{r} \), into cache of size \(\Theta(M) \).
- Compute \(C[I, J] \).
MM Tiled Loops

\[MM-\text{Tiled}(A, B, C, n, M) \]

1. \(r \leftarrow n / \sqrt{M} \)
2. for \(I \leftarrow 1 \) to \(r \) do
3. for \(J \leftarrow 1 \) to \(r \) do
4. \(C[I, J] \leftarrow \{0\} \)
5. for \(K \leftarrow 1 \) to \(r \) do
6. \(\text{MM-Loop}(A[I, K], B[K, J], C[I, J], n/r) \)
MM Tiled Loops

MM-Tiled\((A, B, C, n, M)\)

1. \(r \leftarrow n / \sqrt{M} \)
2. for \(I \leftarrow 1 \) to \(r \) do
3. for \(J \leftarrow 1 \) to \(r \) do
4. \(C[I, J] \leftarrow \{0\} \)
5. for \(K \leftarrow 1 \) to \(r \) do
6. \(\text{MM-Loop}(A[I, K], B[K, J], C[I, J], n/r) \)

Correctness

- Similar to our previous proofs
MM Tiled Loops

MM-Tiled\((A, B, C, n, M)\)

1. \(r \leftarrow \frac{n}{\sqrt{M}}\)
2. for \(I \leftarrow 1\) to \(r\) do
3. for \(J \leftarrow 1\) to \(r\) do
4. \(C[I, J] \leftarrow \{0\}\)
5. for \(K \leftarrow 1\) to \(r\) do
6. \(\textbf{MM-Loop}(A[I, K], B[K, J], C[I, J], n/r)\)

Correctness

- Similar to our previous proofs

<table>
<thead>
<tr>
<th>(T_1(n))</th>
<th>(T_\infty(n))</th>
<th>(E_1(n))</th>
<th>(S_\infty(n))</th>
<th>(Q_1(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Theta(n^3))</td>
<td>(\Theta(n^3))</td>
<td>(\Theta(1))</td>
<td>(\Theta(n^2))</td>
<td>(\Theta\left(\frac{n^3}{B\sqrt{M}} + \frac{n^2}{B} + n\right))</td>
</tr>
</tbody>
</table>
MM Tiled Loops

\[\text{MM-Tiled}(A, B, C, n, M) \]

1. \(r \leftarrow n / \sqrt{M} \)
2. for \(I \leftarrow 1 \) to \(r \) do
3. for \(J \leftarrow 1 \) to \(r \) do
4. \(C[I, J] \leftarrow \{0\} \)
5. for \(K \leftarrow 1 \) to \(r \) do
6. \(\text{MM-Loop}(A[I, K], B[K, J], C[I, J], n/r) \)

Correctness

▸ Similar to our previous proofs

| \(T_1(n) \) | \(T_\infty(n) \) | \(E_1(n) \) | \(S_\infty(n) \) | \(Q_1(n) \) |
| \(\Theta(n^3) \) | \(\Theta(n^3) \) | \(\Theta(1) \) | \(\Theta(n^2) \) | \(\Theta\left(\frac{n^3}{B \sqrt{M}} + \frac{n^2}{B} + n\right) \) |

▸ How can we parallelize this algorithm?
MM Parallel Tiled Loops

MM-Tiled-Parallel(A, B, C, n, M)

1. $r \leftarrow n / \sqrt{M}$
2. parallel for $I \leftarrow 1$ to r do
3. parallel for $J \leftarrow 1$ to r do
4. $C[I, J] \leftarrow \{0\}$
5. for $K \leftarrow 1$ to r do
6. MM-Loop-Parallel($A[I, K], B[K, J], C[I, J], n/r$)

The $⟨I,J,K⟩$ and $⟨i,j,k⟩$ loops can be permuted in $6 \times 6 = 36$ ways. Which is the fastest among these parallel tiled algorithms?

Tiled algorithms are not easily portable across machines. How can we get more portable algorithms?

Divide-and-conquer!
MM Parallel Tiled Loops

MM-Tiled-Parallel\((A, B, C, n, M)\)

1. \(r \leftarrow n / \sqrt{M} \)
2. **parallel** for \(I \leftarrow 1 \) to \(r \) do
3. **parallel** for \(J \leftarrow 1 \) to \(r \) do
4. \(C[I, J] \leftarrow \{0\} \)
5. for \(K \leftarrow 1 \) to \(r \) do
6. **MM-Loop-Parallel**\((A[I, K], B[K, J], C[I, J], n/r)\)

<table>
<thead>
<tr>
<th>(T_1(n))</th>
<th>(T_\infty(n))</th>
<th>(E_1(n))</th>
<th>(S_\infty(n))</th>
<th>(Q_1(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Theta (n^3))</td>
<td>(\Theta (n))</td>
<td>(\Theta (1))</td>
<td>(\Theta (n^2))</td>
<td>(\Theta \left(\frac{n^3}{B \sqrt{M}} + \frac{n^2}{B} + n \right))</td>
</tr>
</tbody>
</table>
MM Parallel Tiled Loops

MM-Tiled-Parallel\((A, B, C, n, M)\)

1. \(r \leftarrow n/\sqrt{M}\)
2. \textbf{parallel} for \(I \leftarrow 1\) to \(r\) do
3. \textbf{parallel} for \(J \leftarrow 1\) to \(r\) do
4. \(C[I, J] \leftarrow \{0\}\)
5. for \(K \leftarrow 1\) to \(r\) do
6. **MM-Loop-Parallel**\((A[I, K], B[K, J], C[I, J], n/r)\)

\[
\begin{array}{cccccc}
T_1(n) & T_\infty(n) & E_1(n) & S_\infty(n) & Q_1(n) \\
\Theta (n^3) & \Theta (n) & \Theta (1) & \Theta (n^2) & \Theta \left(\frac{n^3}{B\sqrt{M}} + \frac{n^2}{B} + n\right)
\end{array}
\]

- The \(\langle I, J, K \rangle\) and \(\langle i, j, k \rangle\) loops can be permuted in \(6 \times 6 = 36\) ways. Which is the fastest among these parallel tiled algorithms?
MM Parallel Tiled Loops

\[\text{MM-Tiled-Parallel}(A, B, C, n, M) \]

1. \(r \leftarrow n / \sqrt{M} \)
2. \text{parallel} for \(I \leftarrow 1 \) to \(r \) do
3. \text{parallel} for \(J \leftarrow 1 \) to \(r \) do
4. \(C[I, J] \leftarrow \{0\} \)
5. for \(K \leftarrow 1 \) to \(r \) do
6. \text{MM-Loop-Parallel}(A[I, K], B[K, J], C[I, J], n/r)

<table>
<thead>
<tr>
<th>(T_1(n))</th>
<th>(T_\infty(n))</th>
<th>(E_1(n))</th>
<th>(S_\infty(n))</th>
<th>(Q_1(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Theta(n^3))</td>
<td>(\Theta(n))</td>
<td>(\Theta(1))</td>
<td>(\Theta(n^2))</td>
<td>(\Theta\left(\frac{n^3}{B \sqrt{M}} + \frac{n^2}{B} + n\right))</td>
</tr>
</tbody>
</table>

- The \(\langle I, J, K \rangle \) and \(\langle i, j, k \rangle \) loops can be permuted in \(6 \times 6 = 36 \) ways. Which is the fastest among these parallel tiled algorithms?
- Tiled algorithms are not easily portable across machines
 How can we get more portable algorithms?
MM Parallel Tiled Loops

MM-Tiled-Parallel(A, B, C, n, M)

1. $r \leftarrow n / \sqrt{M}$
2. **parallel** for $I \leftarrow 1$ to r do
3. **parallel** for $J \leftarrow 1$ to r do
4. $C[I, J] \leftarrow \{0\}$
5. for $K \leftarrow 1$ to r do
6. **MM-Loop-Parallel**($A[I, K], B[K, J], C[I, J], n/r$)

<table>
<thead>
<tr>
<th>$T_1(n)$</th>
<th>$T_\infty(n)$</th>
<th>$E_1(n)$</th>
<th>$S_\infty(n)$</th>
<th>$Q_1(n)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Theta(n^3)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta\left(\frac{n^3}{B \sqrt{M}} + \frac{n^2}{B} + n\right)$</td>
</tr>
</tbody>
</table>

- The $\langle I, J, K \rangle$ and $\langle i, j, k \rangle$ loops can be permuted in $6 \times 6 = 36$ ways. Which is the fastest among these parallel tiled algorithms?
- Tiled algorithms are not easily portable across machines

 How can we get more portable algorithms?

 Divide-and-conquer!
\[
\begin{array}{cc}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}
\]
\[=\]
\[
\begin{array}{cc}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}
\times
\begin{array}{cc}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}
\]
\[=\]
\[
\begin{array}{cc}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{array}
\]
MM D&C

<table>
<thead>
<tr>
<th>MM(A, B, C, n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. if $n = 1$ then</td>
</tr>
<tr>
<td>2. MM-Loop(A, B, C, n)</td>
</tr>
<tr>
<td>3. else</td>
</tr>
<tr>
<td>4. MM$(A_{11}, B_{11}, C_{11}, n/2)$</td>
</tr>
<tr>
<td>5. MM$(A_{12}, B_{21}, C_{11}, n/2)$</td>
</tr>
<tr>
<td>6. MM$(A_{11}, B_{12}, C_{12}, n/2)$</td>
</tr>
<tr>
<td>7. MM$(A_{12}, B_{22}, C_{12}, n/2)$</td>
</tr>
<tr>
<td>8. MM$(A_{21}, B_{11}, C_{21}, n/2)$</td>
</tr>
<tr>
<td>9. MM$(A_{22}, B_{21}, C_{21}, n/2)$</td>
</tr>
<tr>
<td>10. MM$(A_{21}, B_{12}, C_{22}, n/2)$</td>
</tr>
<tr>
<td>11. MM$(A_{22}, B_{22}, C_{22}, n/2)$</td>
</tr>
</tbody>
</table>

Complexity

\[
T_1(n) = \begin{cases}
\Theta(1) & \text{if } n = 1, \\
8T_1\left(\frac{n}{2}\right) + \Theta(1) & \text{if } n > 1.
\end{cases}
\]

\[
T_\infty(n) = \begin{cases}
\Theta(1) & \text{if } n = 1, \\
8T_\infty\left(\frac{n}{2}\right) + \Theta(1) & \text{if } n > 1.
\end{cases}
\]

\[
S_\infty(n) = \begin{cases}
\Theta(1) & \text{if } n = 1, \\
4S_\infty\left(\frac{n}{2}\right) + \Theta(1) & \text{if } n > 1.
\end{cases}
\]

\[
Q_1(n) = \begin{cases}
\Theta\left(\frac{n^2}{B} + n\right) & \text{if } n^2 \leq \alpha M, \\
8Q_1\left(\frac{n}{2}\right) + \Theta(1) & \text{if } n^2 > \alpha M.
\end{cases}
\]

▶ How can we parallelize this algorithm?
1. if \(n = 1 \) then
2. \textbf{MM-Loop}(A, B, C, n)
3. else
4. \textbf{MM}(A_{11}, B_{11}, C_{11}, n/2)
5. \textbf{MM}(A_{12}, B_{21}, C_{11}, n/2)
6. \textbf{MM}(A_{11}, B_{12}, C_{12}, n/2)
7. \textbf{MM}(A_{12}, B_{22}, C_{12}, n/2)
8. \textbf{MM}(A_{21}, B_{11}, C_{21}, n/2)
9. \textbf{MM}(A_{22}, B_{21}, C_{21}, n/2)
10. \textbf{MM}(A_{21}, B_{12}, C_{22}, n/2)
11. \textbf{MM}(A_{22}, B_{22}, C_{22}, n/2)

Complexity

\[
T_1(n) = \begin{cases}
\Theta(1) & \text{if } n = 1, \\
8T_1\left(\frac{n}{2}\right) + \Theta(1) & \text{if } n > 1.
\end{cases}
\]

\[
T_\infty(n) = \begin{cases}
\Theta(1) & \text{if } n = 1, \\
8T_\infty\left(\frac{n}{2}\right) + \Theta(1) & \text{if } n > 1.
\end{cases}
\]

\[
S_\infty(n) = \begin{cases}
\Theta(1) & \text{if } n = 1, \\
4S_\infty\left(\frac{n}{2}\right) + \Theta(1) & \text{if } n > 1.
\end{cases}
\]

\[
Q_1(n) = \begin{cases}
\Theta\left(\frac{n^2}{B} + n\right) & \text{if } n^2 \leq \alpha M,
\end{cases}
\]

\[
8Q_1\left(\frac{n}{2}\right) + \Theta(1) & \text{if } n^2 > \alpha M.
\]

<table>
<thead>
<tr>
<th>(T_1(n))</th>
<th>(T_\infty(n))</th>
<th>(E_1(n))</th>
<th>(S_\infty(n))</th>
<th>(Q_1(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Theta(n^3))</td>
<td>(\Theta(n^3))</td>
<td>(\Theta(\log n))</td>
<td>(\Theta(n^2))</td>
<td>(\Theta\left(\frac{n^3}{B\sqrt{M}} + \frac{n^2}{B} + n\right))</td>
</tr>
</tbody>
</table>
How can we parallelize this algorithm?
MM Parallel D&C

<table>
<thead>
<tr>
<th>MM((A, B, C, n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. if (n = 1) then MM-Loop((A, B, C, n))</td>
</tr>
<tr>
<td>2. else</td>
</tr>
<tr>
<td>3. parallel: MM((A_{11}, B_{11}, C_{11}, n/2)), MM((A_{11}, B_{12}, C_{12}, n/2))</td>
</tr>
<tr>
<td>MM((A_{21}, B_{11}, C_{21}, n/2)), MM((A_{21}, B_{12}, C_{22}, n/2))</td>
</tr>
<tr>
<td>4. parallel: MM((A_{12}, B_{21}, C_{11}, n/2)), MM((A_{12}, B_{22}, C_{12}, n/2))</td>
</tr>
<tr>
<td>MM((A_{22}, B_{21}, C_{21}, n/2)), MM((A_{22}, B_{22}, C_{22}, n/2))</td>
</tr>
</tbody>
</table>

\[
\begin{array}{cc}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}
= \begin{array}{cc}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}
\times \begin{array}{cc}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}
= \begin{array}{cc}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{array}
\]
MM Parallel D&C

<table>
<thead>
<tr>
<th>MM(A, B, C, n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. if $n = 1$ then MM-Loop(A, B, C, n)</td>
</tr>
<tr>
<td>2. else</td>
</tr>
<tr>
<td>3. parallel: MM$(A_{11}, B_{11}, C_{11}, n/2)$, MM$(A_{11}, B_{12}, C_{12}, n/2)$</td>
</tr>
<tr>
<td>MM$(A_{21}, B_{11}, C_{21}, n/2)$, MM$(A_{21}, B_{12}, C_{22}, n/2)$</td>
</tr>
<tr>
<td>4. parallel: MM$(A_{12}, B_{21}, C_{11}, n/2)$, MM$(A_{12}, B_{22}, C_{12}, n/2)$</td>
</tr>
<tr>
<td>MM$(A_{22}, B_{21}, C_{21}, n/2)$, MM$(A_{22}, B_{22}, C_{22}, n/2)$</td>
</tr>
</tbody>
</table>

Complexity

\[
T_1(n) = \begin{cases}
\Theta(1) & \text{if } n = 1, \\
8T_1\left(\frac{n}{2}\right) + \Theta(1) & \text{if } n > 1.
\end{cases}
\]

\[
S_\infty(n) = \begin{cases}
\Theta(1) & \text{if } n = 1, \\
4S_\infty\left(\frac{n}{2}\right) + \Theta(1) & \text{if } n > 1.
\end{cases}
\]

\[
T_\infty(n) = \begin{cases}
\Theta(1) & \text{if } n = 1, \\
2T_\infty\left(\frac{n}{2}\right) + \Theta(1) & \text{if } n > 1.
\end{cases}
\]

\[
Q_1(n) = \begin{cases}
\Theta\left(\frac{n^2}{B} + n\right) & \text{if } n^2 \leq \alpha M, \\
8Q_1\left(\frac{n}{2}\right) + \Theta(1) & \text{if } n^2 > \alpha M.
\end{cases}
\]

How can we further improve parallelism? Reduction! i.e., using extra space
MM Parallel D&C

\[\text{MM}(A, B, C, n)\]

1. if \(n = 1 \) then \(\text{MM-Loop}(A, B, C, n) \)
2. else
3. parallel: \(\text{MM}(A_{11}, B_{11}, C_{11}, n/2), \text{MM}(A_{11}, B_{12}, C_{12}, n/2) \)
\(\text{MM}(A_{21}, B_{11}, C_{21}, n/2), \text{MM}(A_{21}, B_{12}, C_{22}, n/2) \)
4. parallel: \(\text{MM}(A_{12}, B_{21}, C_{11}, n/2), \text{MM}(A_{12}, B_{22}, C_{12}, n/2) \)
\(\text{MM}(A_{22}, B_{21}, C_{21}, n/2), \text{MM}(A_{22}, B_{22}, C_{22}, n/2) \)

Complexity

\[T_1(n) = \begin{cases}
\Theta(1) & \text{if } n = 1, \\
8T_1\left(\frac{n}{2}\right) + \Theta(1) & \text{if } n > 1.
\end{cases}\]

\[S_\infty(n) = \begin{cases}
\Theta(1) & \text{if } n = 1, \\
4S_\infty\left(\frac{n}{2}\right) + \Theta(1) & \text{if } n > 1.
\end{cases}\]

\[T_\infty(n) = \begin{cases}
\Theta(1) & \text{if } n = 1, \\
2T_\infty\left(\frac{n}{2}\right) + \Theta(1) & \text{if } n > 1.
\end{cases}\]

\[Q_1(n) = \begin{cases}
\Theta\left(\frac{n^2}{B} + n\right) & \text{if } n^2 \leq \alpha M, \\
8Q_1\left(\frac{n}{2}\right) + \Theta(1) & \text{if } n^2 > \alpha M.
\end{cases}\]

<table>
<thead>
<tr>
<th>(T_1(n))</th>
<th>(T_\infty(n))</th>
<th>(E_1(n))</th>
<th>(S_\infty(n))</th>
<th>(Q_1(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Theta(n^3))</td>
<td>(\Theta(n))</td>
<td>(\Theta(\log n))</td>
<td>(\Theta(n^2))</td>
<td>(\Theta\left(\frac{n^3}{B\sqrt{M}} + \frac{n^2}{B} + n\right))</td>
</tr>
</tbody>
</table>
MM Parallel D&C

<table>
<thead>
<tr>
<th>MM(A, B, C, n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. if (n = 1) then (\text{MM-Loop}(A, B, C, n))</td>
</tr>
<tr>
<td>2. else</td>
</tr>
<tr>
<td>3. parallel: (\text{MM}(A_{11}, B_{11}, C_{11}, n/2), \text{MM}(A_{11}, B_{12}, C_{12}, n/2))</td>
</tr>
<tr>
<td>(\text{MM}(A_{21}, B_{11}, C_{21}, n/2), \text{MM}(A_{21}, B_{12}, C_{22}, n/2))</td>
</tr>
<tr>
<td>4. parallel: (\text{MM}(A_{12}, B_{21}, C_{11}, n/2), \text{MM}(A_{12}, B_{22}, C_{12}, n/2))</td>
</tr>
<tr>
<td>(\text{MM}(A_{22}, B_{21}, C_{21}, n/2), \text{MM}(A_{22}, B_{22}, C_{22}, n/2))</td>
</tr>
</tbody>
</table>

Complexity

\[
T_1(n) = \begin{cases}
\Theta(1) & \text{if } n = 1, \\
8T_1(\frac{n}{2}) + \Theta(1) & \text{if } n > 1.
\end{cases}
\]

\[
S_\infty(n) = \begin{cases}
\Theta(1) & \text{if } n = 1, \\
4S_\infty(\frac{n}{2}) + \Theta(1) & \text{if } n > 1.
\end{cases}
\]

\[
T_\infty(n) = \begin{cases}
\Theta(1) & \text{if } n = 1, \\
2T_\infty(\frac{n}{2}) + \Theta(1) & \text{if } n > 1.
\end{cases}
\]

\[
Q_1(n) = \begin{cases}
\Theta\left(\frac{n^2}{B} + n\right) & \text{if } n^2 \leq \alpha M, \\
8Q_1(\frac{n}{2}) + \Theta(1) & \text{if } n^2 > \alpha M.
\end{cases}
\]

<table>
<thead>
<tr>
<th>(T_1(n))</th>
<th>(T_\infty(n))</th>
<th>(E_1(n))</th>
<th>(S_\infty(n))</th>
<th>(Q_1(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Theta(n^3))</td>
<td>(\Theta(n))</td>
<td>(\Theta(\log n))</td>
<td>(\Theta(n^2))</td>
<td>(\Theta\left(\frac{n^3}{B\sqrt{M}} + \frac{n^2}{B} + n\right))</td>
</tr>
</tbody>
</table>

▶ How can we further improve parallelism?
MM Parallel D&C

<table>
<thead>
<tr>
<th>MM(A, B, C, n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. if n = 1 then MM-Loop(A, B, C, n)</td>
</tr>
<tr>
<td>2. else</td>
</tr>
<tr>
<td>3. parallel: MM(A_11, B_11, C_11, n/2), MM(A_11, B_12, C_12, n/2), MM(A_21, B_11, C_21, n/2), MM(A_21, B_12, C_22, n/2)</td>
</tr>
<tr>
<td>4. parallel: MM(A_12, B_21, C_11, n/2), MM(A_12, B_22, C_12, n/2), MM(A_22, B_21, C_21, n/2), MM(A_22, B_22, C_22, n/2)</td>
</tr>
</tbody>
</table>

Complexity

\[
T_1(n) = \begin{cases}
 \Theta(1) & \text{if } n = 1, \\
 8T_1\left(\frac{n}{2}\right) + \Theta(1) & \text{if } n > 1.
\end{cases}
\]

\[
S_\infty(n) = \begin{cases}
 \Theta(1) & \text{if } n = 1, \\
 4S_\infty\left(\frac{n}{2}\right) + \Theta(1) & \text{if } n > 1.
\end{cases}
\]

\[
T_\infty(n) = \begin{cases}
 \Theta(1) & \text{if } n = 1, \\
 2T_\infty\left(\frac{n}{2}\right) + \Theta(1) & \text{if } n > 1.
\end{cases}
\]

\[
Q_1(n) = \begin{cases}
 \Theta\left(\frac{n^2}{B} + n\right) & \text{if } n^2 \leq \alpha M, \\
 8Q_1\left(\frac{n}{2}\right) + \Theta(1) & \text{if } n^2 > \alpha M.
\end{cases}
\]

<table>
<thead>
<tr>
<th>T_1(n)</th>
<th>T_\infty(n)</th>
<th>E_1(n)</th>
<th>S_\infty(n)</th>
<th>Q_1(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Theta(n^3))</td>
<td>(\Theta(n))</td>
<td>(\Theta(\log n))</td>
<td>(\Theta(n^2))</td>
<td>(\Theta\left(\frac{n^3}{B\sqrt{M}} + \frac{n^2}{B} + n\right))</td>
</tr>
</tbody>
</table>

▶ How can we further improve parallelism?
Reduction! i.e., using extra space
MM Parallel Not-In-Place D&C

\[
\text{MM}(A, B, C, n)
\]

1. if \(n = 1 \) then \(\text{MM-Loop}(A, B, C, n) \)
2. else
3. parallel: \(\text{MM}(A_{11}, B_{11}, C_{11}, n/2) \), \(\text{MM}(A_{11}, B_{12}, C_{12}, n/2) \), \(\text{MM}(A_{21}, B_{11}, C_{21}, n/2) \), \(\text{MM}(A_{21}, B_{12}, C_{22}, n/2) \), \(\text{MM}(A_{12}, B_{21}, D_{11}, n/2) \), \(\text{MM}(A_{12}, B_{22}, D_{12}, n/2) \), \(\text{MM}(A_{22}, B_{21}, D_{21}, n/2) \), \(\text{MM}(A_{22}, B_{22}, D_{22}, n/2) \)
4. \(C \leftarrow \text{Parallel-Matrix-Sum}(C, D) \) \(\triangleright C \leftarrow C + D \)

Complexity

\[
T_1(n) = \begin{cases}
\Theta(1) & \text{if } n = 1, \\
8T_1(n/2) + \Theta(1) & \text{if } n > 1.
\end{cases}
\]

\[
T_\infty(n) = \begin{cases}
\Theta(1) & \text{if } n = 1, \\
T_\infty(n/2) + \Theta(\log n) & \text{if } n > 1.
\end{cases}
\]

\[
S_\infty(n) = \begin{cases}
\Theta(1) & \text{if } n = 1, \\
8S_\infty(n/2) + \Theta(n^2) & \text{if } n > 1.
\end{cases}
\]

\[
Q_1(n) = \Theta(n^3)
\]

How can we improve cache complexity?

In-place tiled basecase!
\textbf{MM Parallel Not-In-Place D\&C}

\begin{table}[h]
\begin{tabular}{|c|}
\hline
\textbf{MM}(A, B, C, n) \\
\hline
1. if \(n = 1 \) then \textbf{MM-Loop}(A, B, C, n) \\
2. else \\
3. \textbf{parallel}: \textbf{MM}(A_{11}, B_{11}, C_{11}, n/2), \textbf{MM}(A_{11}, B_{12}, C_{12}, n/2) \\
 \textbf{MM}(A_{21}, B_{11}, C_{21}, n/2), \textbf{MM}(A_{21}, B_{12}, C_{22}, n/2) \\
 \textbf{MM}(A_{12}, B_{21}, D_{11}, n/2), \textbf{MM}(A_{12}, B_{22}, D_{12}, n/2) \\
 \textbf{MM}(A_{22}, B_{21}, D_{21}, n/2), \textbf{MM}(A_{22}, B_{22}, D_{22}, n/2) \\
4. \(C \leftarrow \text{Parallel-Matrix-Sum}(C, D) \quad \triangleright \ C \leftarrow C + D \) \\
\hline
\end{tabular}
\end{table}

\textbf{Complexity}

\begin{tabular}{|l|}
\hline
\textbf{\(T_1(n) = \)} & \text{if} \(n = 1 \), \\
\hline
\(\Theta (1) \) & \(\Theta (1) \) \\
\hline
\(8T_1(n/2) + \Theta (1) \) & \(8T_1(n/2) + \Theta (1) \) \\
\hline
\end{tabular}

\begin{tabular}{|l|}
\hline
\textbf{\(S_\infty(n) = \)} & \text{if} \(n = 1 \), \\
\hline
\(\Theta (1) \) & \(\Theta (1) \) \\
\hline
\(8S_\infty(n/2) + \Theta (n^2) \) & \(8S_\infty(n/2) + \Theta (n^2) \) \\
\hline
\end{tabular}

\begin{tabular}{|l|}
\hline
\textbf{\(T_\infty(n) = \)} & \text{if} \(n = 1 \), \\
\hline
\(\Theta (1) \) & \(\Theta (1) \) \\
\hline
\(T_\infty(n/2) + \Theta (\log n) \) & \(T_\infty(n/2) + \Theta (\log n) \) \\
\hline
\end{tabular}

\begin{tabular}{|l|}
\hline
\textbf{\(Q_1(n) = \)} & \text{if} \(n = 1 \), \\
\hline
\(\Theta (n^3) \) & \(\Theta (n^3) \) \\
\hline
\end{tabular}
MM Parallel Not-In-Place D&C

\[\text{MM}(A, B, C, n) \]

1. if \(n = 1 \) then \(\text{MM-Loop}(A, B, C, n) \)
2. else
3. \textbf{parallel:} \(\text{MM}(A_{11}, B_{11}, C_{11}, n/2), \text{MM}(A_{11}, B_{12}, C_{12}, n/2) \)
 \(\text{MM}(A_{21}, B_{11}, C_{21}, n/2), \text{MM}(A_{21}, B_{12}, C_{22}, n/2) \)
 \(\text{MM}(A_{12}, B_{21}, D_{11}, n/2), \text{MM}(A_{12}, B_{22}, D_{12}, n/2) \)
 \(\text{MM}(A_{22}, B_{21}, D_{21}, n/2), \text{MM}(A_{22}, B_{22}, D_{22}, n/2) \)
4. \(C \leftarrow \text{Parallel-Matrix-Sum}(C, D) \quad \triangleright C \leftarrow C + D \)

Complexity

\[T_1(n) = \begin{cases}
\Theta(1) & \text{if } n = 1, \\
8T_1\left(\frac{n}{2}\right) + \Theta(1) & \text{if } n > 1.
\end{cases} \]

\[S_\infty(n) = \begin{cases}
\Theta(1) & \text{if } n = 1, \\
8S_\infty\left(\frac{n}{2}\right) + \Theta(n^2) & \text{if } n > 1.
\end{cases} \]

\[T_\infty(n) = \begin{cases}
\Theta(1) & \text{if } n = 1, \\
T_\infty\left(\frac{n}{2}\right) + \Theta(\log n) & \text{if } n > 1.
\end{cases} \]

\[Q_1(n) = \Theta\left(n^3\right) \]

<table>
<thead>
<tr>
<th>(T_1(n))</th>
<th>(T_\infty(n))</th>
<th>(E_1(n))</th>
<th>(S_\infty(n))</th>
<th>(Q_1(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Theta\left(n^3\right))</td>
<td>(\Theta\left(\log^2 n\right))</td>
<td>(\Theta\left(n^2\right))</td>
<td>(\Theta\left(n^3\right))</td>
<td>(\Theta\left(n^3\right))</td>
</tr>
</tbody>
</table>
MM Parallel Not-In-Place D&C

\[\text{MM}(A, B, C, n) \]

1. if \(n = 1 \) then \(\text{MM-Loop}(A, B, C, n) \)
2. else
3. parallel: \(\text{MM}(A_{11}, B_{11}, C_{11}, n/2), \text{MM}(A_{11}, B_{12}, C_{12}, n/2) \)
 \(\text{MM}(A_{21}, B_{11}, C_{21}, n/2), \text{MM}(A_{21}, B_{12}, C_{22}, n/2) \)
 \(\text{MM}(A_{12}, B_{21}, D_{11}, n/2), \text{MM}(A_{12}, B_{22}, D_{12}, n/2) \)
 \(\text{MM}(A_{22}, B_{21}, D_{21}, n/2), \text{MM}(A_{22}, B_{22}, D_{22}, n/2) \)
4. \(C \leftarrow \text{Parallel-Matrix-Sum}(C, D) \)
 \(\triangleright C \leftarrow C + D \)

Complexity

\[
T_1(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 8T_1(\frac{n}{2}) + \Theta(1) & \text{if } n > 1. \end{cases}
\]

\[
S_{\infty}(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 8S_{\infty}(\frac{n}{2}) + \Theta(n^2) & \text{if } n > 1. \end{cases}
\]

\[
T_\infty(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ T_{\infty}(\frac{n}{2}) + \Theta(\log n) & \text{if } n > 1. \end{cases}
\]

\[
Q_1(n) = \Theta(n^3)
\]

<table>
<thead>
<tr>
<th>(T_1(n))</th>
<th>(T_\infty(n))</th>
<th>(E_1(n))</th>
<th>(S_{\infty}(n))</th>
<th>(Q_1(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Theta(n^3))</td>
<td>(\Theta(\log^2 n))</td>
<td>(\Theta(n^2))</td>
<td>(\Theta(n^3))</td>
<td>(\Theta(n^3))</td>
</tr>
</tbody>
</table>

▶ How can we improve cache complexity?
MM Parallel Not-In-Place D&C

\[MM(A, B, C, n) \]

1. if \(n = 1 \) then \(MM\text{-Loop}(A, B, C, n) \)
2. else
3. \textbf{parallel}: \(MM(A_{11}, B_{11}, C_{11}, n/2), MM(A_{11}, B_{12}, C_{12}, n/2) \)
 \(MM(A_{21}, B_{11}, C_{21}, n/2), MM(A_{21}, B_{12}, C_{22}, n/2) \)
 \(MM(A_{12}, B_{21}, D_{11}, n/2), MM(A_{12}, B_{22}, D_{12}, n/2) \)
 \(MM(A_{22}, B_{21}, D_{21}, n/2), MM(A_{22}, B_{22}, D_{22}, n/2) \)
4. \(C \leftarrow \text{Parallel-Matrix-Sum}(C, D) \) \(\triangleright C \leftarrow C + D \)

\[\text{Complexity} \]

\[
T_1(n) = \begin{cases}
\Theta(1) & \text{if } n = 1, \\
8T_1(n/2) + \Theta(1) & \text{if } n > 1.
\end{cases}
\]

\[
S_\infty(n) = \begin{cases}
\Theta(1) & \text{if } n = 1, \\
8S_\infty(n/2) + \Theta(n^2) & \text{if } n > 1.
\end{cases}
\]

\[
T_\infty(n) = \begin{cases}
\Theta(1) & \text{if } n = 1, \\
T_\infty(n/2) + \Theta(\log n) & \text{if } n > 1.
\end{cases}
\]

\[
Q_1(n) = \Theta(n^3)
\]

\[
\begin{array}{|c|c|c|c|c|}
\hline
T_1(n) & T_\infty(n) & E_1(n) & S_\infty(n) & Q_1(n) \\
\hline
\Theta(n^3) & \Theta(\log^2 n) & \Theta(n^2) & \Theta(n^3) & \Theta(n^3) \\
\hline
\end{array}
\]

▶ How can we improve cache complexity?
In-place tiled basecase!
MM Parallel Not-In-Place D&C

<table>
<thead>
<tr>
<th>MM(A, B, C, n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. if $n = \sqrt{M}$ then MM-Base(A, B, C, n) \triangleright Parallel in-place MM</td>
</tr>
<tr>
<td>2. else</td>
</tr>
<tr>
<td>3. parallel: MM$(A_{11}, B_{11}, C_{11}, n/2)$, MM$(A_{11}, B_{12}, C_{12}, n/2)$</td>
</tr>
<tr>
<td>MM$(A_{21}, B_{11}, C_{21}, n/2)$, MM$(A_{21}, B_{12}, C_{22}, n/2)$</td>
</tr>
<tr>
<td>MM$(A_{12}, B_{21}, D_{11}, n/2)$, MM$(A_{12}, B_{22}, D_{12}, n/2)$</td>
</tr>
<tr>
<td>MM$(A_{22}, B_{21}, D_{21}, n/2)$, MM$(A_{22}, B_{22}, D_{22}, n/2)$</td>
</tr>
<tr>
<td>4. $C \leftarrow$ Parallel-Matrix-Sum(C, D) \triangleright $C \leftarrow C + D$</td>
</tr>
</tbody>
</table>
MM Parallel Not-In-Place D&C

\[\text{MM}(A, B, C, n) \]

1. if \(n = \sqrt{M} \) then \(\text{MM-Base}(A, B, C, n) \) \(\triangleright \) Parallel in-place MM
2. else
3. parallel: \(\text{MM}(A_{11}, B_{11}, C_{11}, n/2), \text{MM}(A_{11}, B_{12}, C_{12}, n/2) \)
 \(\text{MM}(A_{21}, B_{11}, C_{21}, n/2), \text{MM}(A_{21}, B_{12}, C_{22}, n/2) \)
 \(\text{MM}(A_{12}, B_{21}, D_{11}, n/2), \text{MM}(A_{12}, B_{22}, D_{12}, n/2) \)
 \(\text{MM}(A_{22}, B_{21}, D_{21}, n/2), \text{MM}(A_{22}, B_{22}, D_{22}, n/2) \)
4. \(C \leftarrow \text{Parallel-Matrix-Sum}(C, D) \) \(\triangleright \) \(C \leftarrow C + D \)

Complexity

\[
T_1(n) = \begin{cases}
\Theta(n^3) & \text{if } n \leq \alpha \sqrt{M}, \\
8T_1\left(\frac{n}{2}\right) + \Theta(1) & \text{if } n > \alpha \sqrt{M}.
\end{cases}
\]

\[S_\infty(n) = \begin{cases}
\Theta(n^2) & \text{if } n^2 \leq \alpha M, \\
8S_\infty\left(\frac{n}{2}\right) + \Theta(n^2) & \text{if } n^2 > \alpha M.
\end{cases}
\]

\[
T_\infty(n) = \begin{cases}
\Theta(n) & \text{if } n \leq \alpha \sqrt{M}, \\
T_\infty\left(\frac{n}{2}\right) + \Theta(\log n) & \text{if } n > \alpha \sqrt{M}.
\end{cases}
\]

\[Q_1(n) = \begin{cases}
\Theta\left(\frac{n^2}{B} + n\right) & \text{if } n^2 \leq \alpha M, \\
8Q_1\left(\frac{n}{2}\right) + \Theta\left(\frac{n^2}{B} + n\right) & \text{if } n^2 > \alpha M.
\end{cases}
\]
, MM Parallel Not-In-Place D&C

MM(A, B, C, n)

1. if \(n = \sqrt{M} \) then \(\text{MM-Base}(A, B, C, n) \) \(\triangleright \) Parallel in-place MM
2. else
3. \(\text{parallel: } \text{MM}(A_{11}, B_{11}, C_{11}, n/2), \text{MM}(A_{11}, B_{12}, C_{12}, n/2) \)
 \(\text{MM}(A_{21}, B_{11}, C_{21}, n/2), \text{MM}(A_{21}, B_{12}, C_{22}, n/2) \)
 \(\text{MM}(A_{12}, B_{21}, D_{11}, n/2), \text{MM}(A_{12}, B_{22}, D_{12}, n/2) \)
 \(\text{MM}(A_{22}, B_{21}, D_{21}, n/2), \text{MM}(A_{22}, B_{22}, D_{22}, n/2) \)
4. \(C \leftarrow \text{Parallel-Matrix-Sum}(C, D) \) \(\triangleright \) \(C \leftarrow C + D \)

Complexity

<table>
<thead>
<tr>
<th>(T_1(n))</th>
<th>(T_\infty(n))</th>
<th>(E_1(n))</th>
<th>(S_\infty(n))</th>
<th>(Q_1(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Theta(n^3))</td>
<td>(\Theta(\sqrt{M} + \log n))</td>
<td>(\Theta(n^2))</td>
<td>(\Theta\left(\frac{n^3}{\sqrt{M}}\right))</td>
<td>(\Theta\left(\frac{n^3}{B \sqrt{M}} + \frac{n^2}{B} + n\right))</td>
</tr>
</tbody>
</table>
MM Parallel Not-In-Place D&C

MM \((A, B, C, n)\)

1. if \(n = \sqrt{M}\) then **MM-Base** \((A, B, C, n)\) \(\triangleright\) Parallel in-place MM

2. else

3. **parallel:**
 - **MM** \((A_{11}, B_{11}, C_{11}, n/2)\), **MM** \((A_{11}, B_{12}, C_{12}, n/2)\)
 - **MM** \((A_{21}, B_{11}, C_{21}, n/2)\), **MM** \((A_{21}, B_{12}, C_{22}, n/2)\)
 - **MM** \((A_{12}, B_{21}, D_{11}, n/2)\), **MM** \((A_{12}, B_{22}, D_{12}, n/2)\)
 - **MM** \((A_{22}, B_{21}, D_{21}, n/2)\), **MM** \((A_{22}, B_{22}, D_{22}, n/2)\)

4. \(C \leftarrow \text{Parallel-Matrix-Sum}(C, D)\) \(\triangleright\) \(C \leftarrow C + D\)

Complexity

T_1(n) = \[
\begin{cases}
 \Theta(n^3) & \text{if } n \leq \alpha \sqrt{M}, \\
 8T_1(n/2) + \Theta(1) & \text{if } n > \alpha \sqrt{M}.
\end{cases}
\]

S_\infty(n) = \[
\begin{cases}
 \Theta(n^2) & \text{if } n^2 \leq \alpha M, \\
 8S_\infty(n/2) + \Theta(n^2) & \text{if } n^2 > \alpha M.
\end{cases}
\]

T_\infty(n) = \[
\begin{cases}
 \Theta(n) & \text{if } n \leq \alpha \sqrt{M}, \\
 T_\infty(n/2) + \Theta(\log n) & \text{if } n > \alpha \sqrt{M}.
\end{cases}
\]

Q_1(n) = \[
\begin{cases}
 \Theta(n^2_B + n) & \text{if } n^2 \leq \alpha M, \\
 8Q_1(n/2) + \Theta(n^2_B + n) & \text{if } n^2 > \alpha M.
\end{cases}
\]

<table>
<thead>
<tr>
<th>(T_1(n))</th>
<th>(T_\infty(n))</th>
<th>(E_1(n))</th>
<th>(S_\infty(n))</th>
<th>(Q_1(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Theta(n^3))</td>
<td>(\Theta(\sqrt{M} + \log n))</td>
<td>(\Theta(n^2))</td>
<td>(\Theta(n^3_M))</td>
<td>(\Theta(n^3_B \sqrt{M} + n^2_B + n))</td>
</tr>
</tbody>
</table>

How can we reduce work?
MM Parallel Not-In-Place D&C

\[\text{MM}(A, B, C, n) \]

1. if \(n = \sqrt{M} \) then \(\text{MM-Base}(A, B, C, n) \) \(\triangleright \) Parallel in-place MM
2. else
3. parallel: \(\text{MM}(A_{11}, B_{11}, C_{11}, n/2), \text{MM}(A_{11}, B_{12}, C_{12}, n/2) \)
 \(\text{MM}(A_{21}, B_{11}, C_{21}, n/2), \text{MM}(A_{21}, B_{12}, C_{22}, n/2) \)
 \(\text{MM}(A_{12}, B_{21}, D_{11}, n/2), \text{MM}(A_{12}, B_{22}, D_{12}, n/2) \)
 \(\text{MM}(A_{22}, B_{21}, D_{21}, n/2), \text{MM}(A_{22}, B_{22}, D_{22}, n/2) \)
4. \(C \leftarrow \text{Parallel-Matrix-Sum}(C, D) \) \(\triangleright \) \(C \leftarrow C + D \)

Complexity

\[
\begin{align*}
T_1(n) &= \begin{cases}
\Theta(n^3) & \text{if } n \leq \alpha \sqrt{M}, \\
8T_1\left(\frac{n}{2}\right) + \Theta(1) & \text{if } n > \alpha \sqrt{M}.
\end{cases} \\
S_\infty(n) &= \begin{cases}
\Theta(n^2) & \text{if } n^2 \leq \alpha M, \\
8S_\infty\left(\frac{n}{2}\right) + \Theta(n^2) & \text{if } n^2 > \alpha M.
\end{cases} \\
T_\infty(n) &= \begin{cases}
\Theta(n) & \text{if } n \leq \alpha \sqrt{M}, \\
T_\infty\left(\frac{n}{2}\right) + \Theta(\log n) & \text{if } n > \alpha \sqrt{M}.
\end{cases} \\
Q_1(n) &= \begin{cases}
\Theta\left(\frac{n^2}{B} + n\right) & \text{if } n^2 \leq \alpha M, \\
8Q_1\left(\frac{n}{2}\right) + \Theta\left(\frac{n^2}{B} + n\right) & \text{if } n^2 > \alpha M.
\end{cases}
\end{align*}
\]

\[\begin{array}{|c|c|c|c|c|}
\hline
T_1(n) & T_\infty(n) & E_1(n) & S_\infty(n) & Q_1(n) \\
\hline
\Theta(n^3) & \Theta\left(\sqrt{M} + \log n\right) & \Theta(n^2) & \Theta\left(\frac{n^3}{\sqrt{M}}\right) & \Theta\left(\frac{n^3}{B \sqrt{M}} + \frac{n^2}{B} + n\right) \\
\hline
\end{array} \]

\(\triangleright \) How can we reduce work? Strassen’s algorithm!
Volker Strassen’s MM D&C: Core Idea

<table>
<thead>
<tr>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is there a strategy to perform multiplication of two complex numbers with only 3 multiplications?</td>
</tr>
<tr>
<td>((a + ib)(c + id) = (ac - bd) + i(bc + ad))</td>
</tr>
</tbody>
</table>
Volker Strassen’s MM D&C: Core Idea

<table>
<thead>
<tr>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is there a strategy to perform multiplication of two complex numbers with only 3 multiplications?</td>
</tr>
<tr>
<td>[(a + ib)(c + id) = (ac - bd) + i(bc + ad)]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solution 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let (x = bd), (y = ac), and (z = (a + b)(c + d)).</td>
</tr>
<tr>
<td>Then, real part = (y - x) and imaginary part = (z - x - y).</td>
</tr>
</tbody>
</table>
Volker Strassen’s MM D&C: Core Idea

<table>
<thead>
<tr>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is there a strategy to perform multiplication of two complex numbers with only 3 multiplications?</td>
</tr>
<tr>
<td>((a + ib)(c + id) = (ac - bd) + i(bc + ad))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solution 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let (x = bd,) (y = ac,) and (z = (a + b)(c + d)).</td>
</tr>
<tr>
<td>Then, real part = (y - x) and imaginary part = (z - x - y).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solution 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let (x = c(a + b),) (y = a(d - c),) and (z = b(c + d)).</td>
</tr>
<tr>
<td>Then, real part = (x - z) and imaginary part = (x + y).</td>
</tr>
</tbody>
</table>
Volker Strassen’s MM D&C: Core Idea

<table>
<thead>
<tr>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is there is a strategy to perform multiplication of two complex numbers with only 3 multiplications?</td>
</tr>
</tbody>
</table>

\[(a + ib)(c + id) = (ac - bd) + i(bc + ad)\]

<table>
<thead>
<tr>
<th>Solution 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let (x = bd, y = ac,) and (z = (a + b)(c + d).) Then, real part = (y - x) and imaginary part = (z - x - y.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solution 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let (x = c(a + b), y = a(d - c),) and (z = b(c + d).) Then, real part = (x - z) and imaginary part = (x + y.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solution 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let (x = c(a + b), y = a(c - d),) and (z = d(a - b).) Then, real part = (y + z) and imaginary part = (x - y.)</td>
</tr>
</tbody>
</table>
Volker Strassen’s MM D&C: Core Idea

<table>
<thead>
<tr>
<th>Problem</th>
<th>Traditional</th>
<th>Solution 1</th>
<th>Solution 2</th>
<th>Solution 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex number mult.</td>
<td>4 mults</td>
<td>3 mults</td>
<td>3 mults</td>
<td>3 mults</td>
</tr>
<tr>
<td></td>
<td>2 adds</td>
<td>5 adds</td>
<td>5 adds</td>
<td>5 adds</td>
</tr>
</tbody>
</table>
Volker Strassen’s MM D&C: Core Idea

<table>
<thead>
<tr>
<th>Problem</th>
<th>Traditional</th>
<th>Solution 1</th>
<th>Solution 2</th>
<th>Solution 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex number mult.</td>
<td>4 mults</td>
<td>3 mults</td>
<td>3 mults</td>
<td>3 mults</td>
</tr>
<tr>
<td></td>
<td>2 adds</td>
<td>5 adds</td>
<td>5 adds</td>
<td>5 adds</td>
</tr>
</tbody>
</table>

\[
\begin{array}{cccc}
A_{11} & A_{12} & & \\
A_{21} & A_{22} & & \\
& & B_{11} & B_{12} \\
& & B_{21} & B_{22} \\
\end{array}
\times
\begin{array}{cccc}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \\
\end{array}
= \begin{array}{cccc}
C_{11} & C_{12} & & \\
C_{21} & C_{22} & & \\
\end{array}
\]

<table>
<thead>
<tr>
<th>Problem</th>
<th>Traditional</th>
<th>Strassen</th>
<th>Winograd</th>
</tr>
</thead>
<tbody>
<tr>
<td>2×2 MM</td>
<td>8 mults</td>
<td>7 mults</td>
<td>7 mults</td>
</tr>
<tr>
<td></td>
<td>4 adds</td>
<td>18 adds</td>
<td>15 adds</td>
</tr>
<tr>
<td>$n \times n$ MM</td>
<td>n^3 mults</td>
<td>$n^{\log_2 7}$ mults</td>
<td>$n^{\log_2 7}$ mults</td>
</tr>
<tr>
<td></td>
<td>$(n^3 - n^2)$ adds</td>
<td>$(6n^{\log_2 7} - 6n^2)$ adds</td>
<td>$(5n^{\log_2 7} - 5n^2)$ adds</td>
</tr>
</tbody>
</table>
Volker Strassen’s MM D&C

MM-Strassen \((A, B, C, n)\)

1. \(P_1 \leftarrow (A_{11} + A_{22}) \times (B_{11} + B_{22})\)
2. \(P_2 \leftarrow (A_{21} + A_{22}) \times B_{11}\)
3. \(P_3 \leftarrow A_{11} \times (B_{12} - B_{22})\)
4. \(P_4 \leftarrow A_{22} \times (B_{21} - B_{11})\)
5. \(P_5 \leftarrow (A_{11} + A_{12}) \times B_{22}\)
6. \(P_6 \leftarrow (A_{21} - A_{11}) \times (B_{11} + B_{12})\)
7. \(P_7 \leftarrow (A_{12} - A_{22}) \times (B_{21} + B_{22})\)
8. \(C_{11} \leftarrow P_1 + P_4 - P_5 + P_7\)
9. \(C_{12} \leftarrow P_3 + P_5\)
10. \(C_{21} \leftarrow P_2 + P_4\)
11. \(C_{22} \leftarrow P_1 - P_2 + P_3 + P_6\)
Volker Strassen’s MM D&C

\[
\text{MM-Strassen}(A, B, C, n)
\]

1. \(P_1 \leftarrow (A_{11} + A_{22}) \times (B_{11} + B_{22}) \)
2. \(P_2 \leftarrow (A_{21} + A_{22}) \times B_{11} \)
3. \(P_3 \leftarrow A_{11} \times (B_{12} - B_{22}) \)
4. \(P_4 \leftarrow A_{22} \times (B_{21} - B_{11}) \)
5. \(P_5 \leftarrow (A_{11} + A_{12}) \times B_{22} \)
6. \(P_6 \leftarrow (A_{21} - A_{11}) \times (B_{11} + B_{12}) \)
7. \(P_7 \leftarrow (A_{12} - A_{22}) \times (B_{21} + B_{22}) \)
8. \(C_{11} \leftarrow P_1 + P_4 - P_5 + P_7 \)
9. \(C_{12} \leftarrow P_3 + P_5 \)
10. \(C_{21} \leftarrow P_2 + P_4 \)
11. \(C_{22} \leftarrow P_1 - P_2 + P_3 + P_6 \)

Complexity

\[
T_1(n) = \begin{cases}
\Theta(1) & \text{if } n = 1, \\
7T_1\left(\frac{n}{2}\right) + \Theta(n^2) & \text{if } n > 1.
\end{cases}
= \Theta(n^{\log_2 7})
\]
Volker Strassen’s MM D&C

MM-Strassen \((A, B, C, n)\)

1. \(P_1 \leftarrow (A_{11} + A_{22}) \times (B_{11} + B_{22})\)
2. \(P_2 \leftarrow (A_{21} + A_{22}) \times B_{11}\)
3. \(P_3 \leftarrow A_{11} \times (B_{12} - B_{22})\)
4. \(P_4 \leftarrow A_{22} \times (B_{21} - B_{11})\)
5. \(P_5 \leftarrow (A_{11} + A_{12}) \times B_{22}\)
6. \(P_6 \leftarrow (A_{21} - A_{11}) \times (B_{11} + B_{12})\)
7. \(P_7 \leftarrow (A_{12} - A_{22}) \times (B_{21} + B_{22})\)
8. \(C_{11} \leftarrow P_1 + P_4 - P_5 + P_7\)
9. \(C_{12} \leftarrow P_3 + P_5\)
10. \(C_{21} \leftarrow P_2 + P_4\)
11. \(C_{22} \leftarrow P_1 - P_2 + P_3 + P_6\)

Complexity

\[
T_1(n) = \begin{cases}
\Theta(1) & \text{if } n = 1, \\
7T_1(\frac{n}{2}) + \Theta(n^2) & \text{if } n > 1.
\end{cases}
\]

\(= \Theta(n^{\log_2 7})\)

- How can we parallelize the algorithm?
- What are the complexities of the parallel algorithm?
Shmuel Winograd’s MM D&C

<table>
<thead>
<tr>
<th>MM-Winograd((A, B, C, n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (R_1 \leftarrow A_{21} + A_{22})</td>
</tr>
<tr>
<td>2. (R_2 \leftarrow R_1 - A_{11})</td>
</tr>
<tr>
<td>3. (R_3 \leftarrow A_{11} - A_{21})</td>
</tr>
<tr>
<td>4. (R_4 \leftarrow A_{12} - R_2)</td>
</tr>
<tr>
<td>5. (R_5 \leftarrow B_{12} - B_{11})</td>
</tr>
<tr>
<td>6. (R_6 \leftarrow B_{22} - R_5)</td>
</tr>
<tr>
<td>7. (R_7 \leftarrow B_{22} - B_{12})</td>
</tr>
<tr>
<td>8. (R_8 \leftarrow R_6 - B_{21})</td>
</tr>
<tr>
<td>9. (P_1 \leftarrow R_2 \times R_6)</td>
</tr>
<tr>
<td>10. (P_2 \leftarrow A_{11} \times B_{11})</td>
</tr>
<tr>
<td>11. (P_3 \leftarrow A_{12} \times B_{21})</td>
</tr>
<tr>
<td>12. (P_4 \leftarrow R_3 \times R_7)</td>
</tr>
<tr>
<td>13. (P_5 \leftarrow R_1 \times R_5)</td>
</tr>
<tr>
<td>14. (P_6 \leftarrow R_4 \times B_{22})</td>
</tr>
<tr>
<td>15. (P_7 \leftarrow A_{22} \times R_8)</td>
</tr>
<tr>
<td>16. (V_1 \leftarrow P_1 + P_2)</td>
</tr>
<tr>
<td>17. (V_2 \leftarrow V_1 + P_4)</td>
</tr>
<tr>
<td>18. (C_{11} \leftarrow P_2 + P_3)</td>
</tr>
<tr>
<td>19. (C_{12} \leftarrow V_1 + P_5 + P_6)</td>
</tr>
<tr>
<td>20. (C_{21} \leftarrow V_2 - P_7)</td>
</tr>
<tr>
<td>21. (C_{22} \leftarrow V_2 + P_5)</td>
</tr>
</tbody>
</table>

Source: computer.org

 Complexity \(T_1(n) = \begin{cases} \Theta(1) & \text{if } n=1, \\ 7T_1(n^2) + \Theta(n^2) & \text{if } n>1. \end{cases} = \Theta(n\log_2 7)\)

How can we parallelize the algorithm?
Shmuel Winograd’s MM D&C

MM-Winograd(A, B, C, n)

1. $R_1 \leftarrow A_{21} + A_{22}$
2. $R_2 \leftarrow R_1 - A_{11}$
3. $R_3 \leftarrow A_{11} - A_{21}$
4. $R_4 \leftarrow A_{12} - R_2$
5. $R_5 \leftarrow B_{12} - B_{11}$
6. $R_6 \leftarrow B_{22} - R_5$
7. $R_7 \leftarrow B_{22} - B_{12}$
8. $R_8 \leftarrow R_6 - B_{21}$
9. $P_1 \leftarrow R_2 \times R_6$
10. $P_2 \leftarrow A_{11} \times B_{11}$
11. $P_3 \leftarrow A_{12} \times B_{21}$
12. $P_4 \leftarrow R_3 \times R_7$
13. $P_5 \leftarrow R_1 \times R_5$
14. $P_6 \leftarrow R_4 \times B_{22}$
15. $P_7 \leftarrow A_{22} \times R_8$
16. $V_1 \leftarrow P_1 + P_2$
17. $V_2 \leftarrow V_1 + P_4$
18. $C_{11} \leftarrow P_2 + P_3$
19. $C_{12} \leftarrow V_1 + P_5 + P_6$
20. $C_{21} \leftarrow V_2 - P_7$
21. $C_{22} \leftarrow V_2 + P_5$

Complexity

$T_1(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 7T_1\left(\frac{n}{2}\right) + \Theta\left(n^2\right) & \text{if } n > 1. \end{cases}$

$= \Theta\left(n^{\log_2 7}\right)$

Source: computer.org
Shmuel Winograd’s MM D&C

MM-Winograd(A, B, C, n)

1. $R_1 \leftarrow A_{21} + A_{22}$
2. $R_2 \leftarrow R_1 - A_{11}$
3. $R_3 \leftarrow A_{11} - A_{21}$
4. $R_4 \leftarrow A_{12} - R_2$
5. $R_5 \leftarrow B_{12} - B_{11}$
6. $R_6 \leftarrow B_{22} - R_5$
7. $R_7 \leftarrow B_{22} - B_{12}$
8. $R_8 \leftarrow R_6 - B_{21}$
9. $P_1 \leftarrow R_2 \times R_6$
10. $P_2 \leftarrow A_{11} \times B_{11}$
11. $P_3 \leftarrow A_{12} \times B_{21}$
12. $P_4 \leftarrow R_3 \times R_7$
13. $P_5 \leftarrow R_1 \times R_5$
14. $P_6 \leftarrow R_4 \times B_{22}$
15. $P_7 \leftarrow A_{22} \times R_8$
16. $V_1 \leftarrow P_1 + P_2$
17. $V_2 \leftarrow V_1 + P_4$
18. $C_{11} \leftarrow P_2 + P_3$
19. $C_{12} \leftarrow V_1 + P_5 + P_6$
20. $C_{21} \leftarrow V_2 - P_7$
21. $C_{22} \leftarrow V_2 + P_5$

Complexity

$T_1(n) = \begin{cases}
\Theta(1) & \text{if } n = 1, \\
7T_1\left(\frac{n}{2}\right) + \Theta\left(n^2\right) & \text{if } n > 1.
\end{cases}$

$= \Theta\left(n^{\log_2 7}\right)$

> How can we parallelize the algorithm?
MM Distributed

Distributed setup

- Let $r = \sqrt{p}$. The machine architecture is an $r \times r$ processor grid/mesh/hypercube
- Split the $n \times n$ sized A, B matrices into $r \times r$ blocks/tiles
- Initially, processor $P[i, j]$ holds $A[i, j]$ and $B[i, j]$ input blocks
- After the algorithm completes, processor $P[i, j]$ holds $C[i, j]$

![Diagram of distributed setup with $r \times r$ processor grid, initial input distribution, and final output.]
MM Distributed

\[\text{MM}(A, B, C, n, p) \]

1. \(r \leftarrow \sqrt{p}, \text{ where } p \leq n^2 \)
2. \(A, B \) matrices are split into \(r \times r \) blocks/tiles
3. \(P[i, j] \) initially stores \(A[i, j] \) and \(B[i, j] \) blocks/tiles
4. **Broadcast-Rowwise** (\(A \)'s blocks)
5. **Broadcast-Columnwise** (\(B \)'s blocks)
6. \(P[i, j] \) computes \(\sum_{k=1}^{r} A[i, k] \times B[k, j] \)

![Diagram](image-url)
MM Distributed

[Diagram showing the initial input distribution and broadcast rowwise process]

- **Initial input distribution**
 - Initial values: $A[1,1]$, $B[1,1]$

- **Broadcast rowwise**

 - $A[1,2]$, $B[1,2]$

 - $A[1,3]$, $B[1,3]$
MM Distributed

Broadcast columnwise

Final output
MM Distributed: Complexity

\[\text{MM}(A, B, C, n, p)\]

1. \(r \leftarrow \sqrt{p}, \) where \(p \leq n^2 \)
2. \(A, B \) matrices are split into \(r \times r \) blocks/tiles
3. \(P[i, j] \) initially stores \(A[i, j] \) and \(B[i, j] \) blocks/tiles
4. **Broadcast-Rowwise** \((A's \ blocks)\)
5. **Broadcast-Columnwise** \((B's \ blocks)\)
6. \(P[i, j] \) computes \(\sum_{k=1}^{r} A[i, k] \times B[k, j] \)

<table>
<thead>
<tr>
<th>Step</th>
<th>(T_{\text{comp}}(n))</th>
<th>(T_{\text{comm}}(n))</th>
<th>(S_{\max}(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC-Row ((r))</td>
<td>(-)</td>
<td>(t_s \log r + t_w(r - 1) \left(\frac{n}{r} \cdot \frac{n}{r} \right))</td>
<td>(r \left(\frac{n}{r} \cdot \frac{n}{r} \right))</td>
</tr>
<tr>
<td>BC-Col ((r))</td>
<td>(-)</td>
<td>(t_s \log r + t_w(r - 1) \left(\frac{n}{r} \cdot \frac{n}{r} \right))</td>
<td>(r \left(\frac{n}{r} \cdot \frac{n}{r} \right))</td>
</tr>
<tr>
<td>Compute (C[i, j])</td>
<td>(r \left(\frac{n}{r} \right)^3)</td>
<td>(-)</td>
<td>(\left(\frac{n}{r} \cdot \frac{n}{r} \right))</td>
</tr>
<tr>
<td>Total ((r))</td>
<td>(\frac{n^3}{r^2})</td>
<td>(2 \left(t_s \log r + t_w(r - 1) \left(\frac{n}{r} \right)^2 \right))</td>
<td>((2r + 1) \left(\frac{n}{r} \right)^2)</td>
</tr>
<tr>
<td>Total ((r = \sqrt{p}))</td>
<td>(\frac{n^3}{p})</td>
<td>(t_s \log p + 2t_w(\sqrt{p} - 1) \left(\frac{n^2}{p} \right))</td>
<td>((2 \sqrt{p} + 1) \left(\frac{n^2}{p} \right))</td>
</tr>
</tbody>
</table>

➤ How can we improve space complexity?