
CSE 307 – Principles of Programming Languages

Stony Brook University

http://www.cs.stonybrook.edu/~cse307

Data Types

1

http://www.cs.stonybrook.edu/~cse307

(c) Paul Fodor (CS Stony Brook) and Elsevier

Data Types
We all have developed an intuitive notion of what

types are; what's behind the intuition?

 collection of values from a "domain" (the denotational

approach)

 internal structure of data, described down to the level of a

small set of fundamental types (the structural approach)

 equivalence class of objects (the implementer's approach)

 collection of well-defined operations that can be applied to

objects of that type (the abstraction approach)

2

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Computers are naturally untyped: binary

 Encoding by a type is necessary to store data:

 as integer: -1, -396, 2, 51, 539

 as float: -3.168, 384.0, 1.234e5

 as Strings: "SBCS" (ASCII, Unicode UTF-16, etc.)

 We associate types with:

 Expressions

 Objects (anything that can have a name)
 Type checking can also be done with user-defined types:

speed = 100 miles/hour distance + 5 miles (ok!)

time = 2 hour distance + 5 hours (bad!)

distance = speed * time (miles)

3

Type Systems

(c) Paul Fodor (CS Stony Brook) and Elsevier

 What has a type?

 things that have values:
 constants

 variables

 fields

 parameters

 subroutines

 objects

 A name (identifier) might have a type, but refer to an

object of a different (compatible type):
double a = 1;

Person p = new Student("John");
4

Type Systems

(c) Paul Fodor (CS Stony Brook) and Elsevier

A type system consists of:

(1) a mechanism to define types and

associate them with certain language

constructs, and

(2) a set of rules for type equivalence, type

compatibility, and type inference

5

Type Systems

(c) Paul Fodor (CS Stony Brook) and Elsevier

 What are types good for?

 implicit context for operators (“+” is concatenation

for Strings vs. integer summation for integers, etc.)

 type checking - make sure that certain meaningless

operations do not occur
 A violation of the compatibility rules is known as a type clash

 Type checking cannot prevent all meaningless operations

 It catches enough of them to be useful

 Polymorphism results when the compiler finds that it

doesn't need to know certain things

6

Type Systems

(c) Paul Fodor (CS Stony Brook) and Elsevier

Strong Typing: means that the language prevents

you from applying an operation to data on which

it is not appropriate:

unlike types cause type errors

Weak Typing: unlike types cause conversions

7

Classifications of Type Systems

(c) Paul Fodor (CS Stony Brook) and Elsevier

Static Typing: means that the compiler can do all

the checking at compile time:

types are computed and checked at compile

time

Dynamin Typing: types wait until runtime

8

Classifications of Type Systems

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Java is strongly typed, with a non-trivial mix of things that can be

checked statically and things that have to be checked dynamically

(for instance, for dynamic binding):
String a = 1; //compile-time (static) error

int i = 10.0; //compile-time (static) error

Student s = (Student)(o);// checks at runtime if o

 Python is strong dynamic typed:
a = 1;

b = "2";

a + b run-time error

 Perl is weak dynamic typed:
$a = 1

$b = "2"

$a + $b no error / conversion
9

Classifications of Type Systems

(c) Paul Fodor (CS Stony Brook) and Elsevier

There are trade-offs here:

Strong-static: verbose code (everything is

typed), errors at compile time (but cheap for

runtime)

Strong-dynamic: less writing, but errors at

runtime

Weak-dynamic: the least code writing, some

potential errors at runtime, BUT

approximations in many cases
10

Classifications of Type Systems

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Duck typing is concerned with establishing the

suitability of an object for some purpose

JavaScript uses duck dynamic typing:
var inTheForest = function(object) {

object.quack(); // no type checking

}; //assume object has quack

var Duck = function() {

this.quack = function()

{alert('Quaaaaaack!');};

return this;

};

var donald = new Duck();

inTheForest(donald);

11

Type Systems (JS)

(c) Paul Fodor (CS Stony Brook) and Elsevier

 ORTHOGONALITY:

 A collection of features is called orthogonal in a

programming language if there are no restrictions on the

ways in which the features can be combined

 For example:

 Prolog is more orthogonal than ML (because it allows

arrays of elements of different types, for instance)

 It also allows input and output parameters in

relations (any combination)

 Orthogonality is nice primarily because it makes a language

easy to understand, easy to use, and easy to reason about

12

Type Systems

(c) Paul Fodor (CS Stony Brook) and Elsevier

What do we mean by type?
 Three main schools of thought:

 Denotational: a type is a shorthand for a set of values (e.g.,

the byte domain is: {0, 1, 2, ... 255})

 Some are simple (set of integers)

 Some are complex (set of functions from variables to

values)

 Everything in the program is computing values in an

appropriate set

 Constructive: a type is built out of components:

int, real, string,

record, tuple, map.

 Abstraction: a type is what it does:

 OO thinking
13

(c) Paul Fodor (CS Stony Brook) and Elsevier

Type Checking
 A type system has rules for:

 type equivalence: when are the types of two values

the same?
 Structural equivalence: two types are the same if they consist of

the same components

 type compatibility: when can a value of type A be

used in a context that expects type B?
 type compatibility is the one of most concern to programmers

 type inference: what is the type of an expression,

given the types of the operands?
a : int b : int

a + b : int

14

(c) Paul Fodor (CS Stony Brook) and Elsevier

Types and Equality Testing
What should a == b do?

Are they the same object?

Content? Bitwise-identical?

Languages can have different equality

operators:

Ex. Java's == vs equals

15

(c) Paul Fodor (CS Stony Brook) and Elsevier

Type Equivalence
 Structural equivalence: most languages agree that the

format of a declaration should not matter:
struct { int b, a; }

is the same as the type:

struct {

int a;

int b;

}

 To determine if two types are structurally equivalent, a

compiler can expand their definitions by replacing any

embedded type names with their respective definitions,

recursively, until nothing is left but a long string of type

constructors, field names, and built-in types.

16

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Name equivalence:
TYPE new_type = old_type;

new_type is said to be an alias for old_type.

 aliases to the same type

TYPE human = person;

A language in which aliased types are considered equivalent is said to

have loose name equivalence

 there are times when aliased types should probably Not be the same:

TYPE celsius_temp = REAL,

fahrenheit_temp = REAL;

VAR c : celsius_temp,

f : fahrenheit_temp;

f := c; (* this should probably be an error *)

A language in which aliased types are considered distinct is said to have

strict name equivalence17

Type Equivalence

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Parametrized generic data structures:
TYPE stack_element = INTEGER; (* alias *)

MODULE stack;

IMPORT stack_element;

EXPORT push, pop;

...

PROCEDURE push(elem : stack_element);

...

PROCEDURE pop() : stack_element;

...

18

Type Equivalence

(c) Paul Fodor (CS Stony Brook) and Elsevier

Type Casts
Two casts: converting and non-converting

 Converting cast: changes the meaning of the type in question
 cast of double to int in Java

int i = (int)1.2; // 1

 Non-converting casts: means to interpret the bits as the same

type
Person p = new Student(); // implicit non-converting

Student s = (Student)p; // explicit non-converting cast

 Type coercion: May need to perform a runtime semantic check
 Example: Java references:
Object o = "...";

String s = (String) o;

// maybe after if(o instanceOf String)…
19

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Types can be discrete (countable/finite in implementation):

boolean:
 in C, 0 or not 0

 integer types:
 different precisions (or even multiple precision)

 different signedness

 Why do we define required precision? Leave it up to implementer

 floating point numbers:
 only numbers with denominators that are a power of 10 can be

represented precisely

 decimal types:
 allow precise representation of decimals

 useful for money: Visual Studio .NET:

decimal myMoney = 300.5m;
20

Classification of Types

(c) Paul Fodor (CS Stony Brook) and Elsevier

character

 often another way of designating an 8 or 16 or 32 bit integer

 Ascii, Unicode (UTF-16, UTF-8), BIG-5, Shift-JIS, latin-1

subrange numbers

 Subset of a type (for i in range(1:10))

 Constraint logic programming: X in 1..100

rational types:

 represent ratios precisely

complex numbers

21

Classification of Types

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Types can be composite :

records (unions)

arrays
 Strings (most languages represent Strings like arrays)

 list of characters: null-terminated

 With length + get characters

sets

pointers

 lists

files

functions, classes, etc.
22

Classification of Types

(c) Paul Fodor (CS Stony Brook) and Elsevier

Record Types
A record consists of a number of fields:

Each field has its own type:
struct MyStruct {

boolean ok;

int bar;

};

MyStruct foo;

There is a way to access the field:
foo.bar; <- C, C++, Java style, F-logic path

expressions

bar of foo <- Cobol/Algol style

23

(c) Paul Fodor (CS Stony Brook) and Elsevier

 When a language has value semantics, it's possible to

assign the entire record in one path expression:
a.b.c.d.e = 1; // even used in query languages like XPath

 With statement: accessing a deeply nested field can take a

while. Some languages (JS) allow a with statement:
with a.b.c.d {

e = 1;

f = 2;

}

 Variant records (a and b take up the same memory, saves

memory, but usually unsafe, tagging can make safe again):
union {

int a;

float b;

}
24

Record Types

(c) Paul Fodor (CS Stony Brook) and Elsevier

Records

usually laid out contiguously

possible holes for alignment reasons

smart compilers may rearrange fields to

minimize holes (C compilers promise not to)
See next slide for an example of memory layout

implementation problems are caused by

records containing dynamic arrays

25

Record Types

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Memory layout: how is it stored in memory

 memory layout for packed element records

26

Record Types

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Rearranging record fields to minimize holes and keep
fields optimally addressable:

27

Record Types

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Unions (variant records):

overlay space

cause problems for type checking

Lack of tag means you don't know what is there

Ability to change tag and then access fields hardly

better: can make fields "uninitialized" when tag is

changed (requires extensive run-time support) -

Memory layout for unions example:

28

Record Types

(c) Paul Fodor (CS Stony Brook) and Elsevier

Arrays
Arrays are the most common and important

composite data types

Unlike records, which group related fields of

disparate types, arrays are usually homogeneous

 Semantically, they can be thought of as a

mapping from an index type to a component or

element type

29

(c) Paul Fodor (CS Stony Brook) and Elsevier

Arrays
 Arrays = areas of memory of the same type.

 Stored consecutively.

Element access (read & write) = O(1)
 Possible layouts of memory:

 Row-major and Column-major:
 storing multidimensional arrays in linear memory

 Example: int A[2][3] = { {1, 2, 3}, {4, 5, 6} };

o Row-major: A is laid out contiguously in linear memory as: 1 2 3 4 5 6

offset = row * NUMCOLS + column

Example: A[1][1] (5)

offset = 1 * 3 + 1 = 4

o Column-major: A is laid: 1 4 2 5 3 6

offset = row + column * NUMROWS

Example: A[1][1] (5)

offset = 1 + 1 * 2 = 3

30

(c) Paul Fodor (CS Stony Brook) and Elsevier

Arrays
Row-major and Column-major:

31

(c) Paul Fodor (CS Stony Brook) and Elsevier

Arrays
Row-major order is used in C, PL/I, Python

Column-major order is used in Fortran,

MATLAB, GNU Octave, R, Rasdaman, X10

and Scilab

Efficiency issues due to caching
Can effect behavior of algorithms

Row/Column major require dimension

to be part of the type

32

(c) Paul Fodor (CS Stony Brook) and Elsevier

Arrays
 Consider the array:

int A[3][4] = {{1, 2, 3, 4},

{5, 6, 7, 8}, {9, 10, 11, 12}};

Row-major: 1 2 3 4 5 6 7 8 9 10 11 12

 the offset for the element A[1][3] (8) =

row*NUMCOLS + column = 1*4+3 = 7

Column-major: 1 5 9 2 6 10 3 7 11 4 8 12

 the offset for the element A[1][3] (8) =

row + column*NUMROWS = 1+3*3 = 10

33

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Row-major generalizes to higher dimensions, so a 2×3×4

array that looks like: int A[2][3][4] = {{{1,2,3,4},
{5,6,7,8}, {9,10,11,12}}, {{13,14,15,16},

{17,18,19,20}, {21,22,23,24}}};

is laid out in linear memory as: 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20 21 22 23 24

 the offset for A[depth][row][column] =

depth*NUMROWS*NUMCOLS + row*NUMCOLS +

column

For example, the offset of A[1][1][2] (i.e., 19) =

1 * 3 * 4 + 1 * 4 + 2 = 12 + 4 + 2 = 18

34

Arrays

(c) Paul Fodor (CS Stony Brook) and Elsevier

Arrays
 Suppose A is a 10 × 10 array of (4-byte) integers

 If the address of A is currently in register r1, the value of

integer i is currently in register r2, and the value of integer

j is currently in register r3
 Pseudo-assembly code to load the value of A[i][j] into

register r1 on a 32-bit machine for row-major allocation

r2 *:= 40 // number of bytes in a row: int size is 4 * 10 elements

r1 +:= r2 // adds the rows to the initial address of A

// shift left with 2 positions = multiplies j with 4 (the size of an element)

r3 <<:= 2 // r3 *:= 4

r1 +:= r3 // adds the columns of the current row to the address of A

r1 := *r1 // loads the element at the address r1 into r1

35

(c) Paul Fodor (CS Stony Brook) and Elsevier

Arrays
 Suppose A is a 10 × 10 array of (4-byte) integers

 If the address of A is currently in register r1, the value of

integer i is currently in register r2, and the value of integer

j is currently in register r3
 Pseudo-assembly code to load the value of A[i][j] into

register r1 on a 32-bit machine for column-major allocation

r3 *:= 40 // number of bytes in a column: int size is 4 * 10 (rows)

r1 +:= r3 // adds the column to the initial address of A

// shift left with 2 positions = multiplies j with 4 (the size of an element)

r2 <<:= 2 // r2 *:= 4

r1 +:= r2 // adds the rows of the current row to the address of A

r1 := *r1 // loads the element at the address r1 into r1

36

(c) Paul Fodor (CS Stony Brook) and Elsevier

Arrays
 Consider an array A[4][6] of short values show the

pseudo-code to load A[i][j] on a 64-bit machine for row-

major allocation
 If the address of A is currently in register r1, the value of

integer i is currently in register r2, and the value of integer j

is currently in register r3
r3 *:= 8 // number of bytes in a column: 2(size of elem) * 4 (num of rows)

r2 <<:= 1 //(multiply by 2, size of elem)

r1 +:= r3

r1 +:= r2

r1 := *r1

37

(c) Paul Fodor (CS Stony Brook) and Elsevier

Arrays
 Consider an array A[4][6] of short values show the

pseudo-code to load A[i][j] on a 64-bit machine for

column-major allocation
 If the address of A is currently in register r1, the value of

integer i is currently in register r2, and the value of integer j

is currently in register r3
r2 *:= 12 // number of bytes in a row: 2(size of elem) * 6 (num of cols.)

r3 <<:= 1 //(multiply by 2, size of elem)

r1 +:= r3

r1 +:= r2

r1 := *r1

38

(c) Paul Fodor (CS Stony Brook) and Elsevier

Arrays of Records
 Suppose we are compiling for a 64-bit machine with 2-bytes

characters, 2-byte shorts, 4- byte integers, and 8-byte reals, and with

alignment rules that do not permitted to reorder fields or

packing and each element of the array should be directly addresable

 Consider the array:

A : array [0..9] of record

s : short

c : char (UTF-16)

t : short

d : char (UTF-16)

r : real

i : integer

39

(c) Paul Fodor (CS Stony Brook) and Elsevier

Arrays of Records
 Within each element of the array:
 s has offset 0

 c has offset 2

 t has offset 4

 d has offset 6

 r has offset 8

 i has offset 16

 Adding the length of i, that brings us to 20 bytes, but 20

is not a multiple of 8

 We therefore pad each element out to 24 bytes

 A has 10 elements, so the total length is 240 bytes

40

(c) Paul Fodor (CS Stony Brook) and Elsevier

Arrays
Row pointers memory layout:

41

(c) Paul Fodor (CS Stony Brook) and Elsevier
42

Java Two-dimensional Array

x
x[0]

x[1]

x[2]

x[0][0] x[0][1] x[0][2] x[0][3]

 x[1][0] x[1][1] x[1][2] x[1][3]

 x[2][0] x[2][1] x[2][2] x[2][3]

x.length is 3

x[0].length is 4

x[1].length is 4

x[2].length is 4

int[][] x = new int[3][4];

(c) Paul Fodor (CS Stony Brook) and Elsevier

Arrays
Row pointers:

allows rows to be put anywhere - nice for big

arrays on machines with segmentation

problems

avoids multiplication

nice for matrices whose rows are of different

lengths (ragged)

e.g. an array of strings, or rows of different sizes

requires extra space for the pointers
43

(c) Paul Fodor (CS Stony Brook) and Elsevier

Arrays and Records
 Suppose A is a 10 × 10 array of (4-byte) integers

 If the address of A is currently in register r1, the value of

integer i is currently in register r2, and the value of integer

j is currently in register r3
 Pseudo-assembly code to load the value of A[i][j] into

register r1 on a 32-bit machine for row pointers allocation

r2 <<:= 2 // multiplies i with 4 (the size of an address on a 32-bit machine)

r1 +:= r2 // finds the address to the row i

r1 := *r1 // loads the address of the row i

r3 <<:= 2 // multiplies j with 4 (the size of an int element)

r1 +:= r3 // finds the address of the element at index j

r1 := *r1 // loads the element at the address r1
 row-major allocation is likely to be faster on a modern machine, not because it

is one instruction shorter, but because it performs only one load instead of

two
44

(c) Paul Fodor (CS Stony Brook) and Elsevier

Arrays
 Consider an array A[4][6] of short values show the

pseudo-code to load A[i][j] on a 64-bit machine for row-

pointers allocation
 If the address of A is currently in register r1, the value of integer

i is currently in register r2, and the value of integer j is

currently in register r3

r2 <<:= 3 (multiply by 8, size of address in 64-bit machine)

r1 +:= r2

r1 := *r1

r3 := 5

r3 <<:= 1 (multiply by 2, size of elem)

r1 +:= r3

r1 := *r1

45

(c) Paul Fodor (CS Stony Brook) and Elsevier

Arrays
 Allocation of arrays in memory:

 global lifetime, static shape — If the shape of an array is

known at compile time, and if the array can exist throughout

the execution of the program, then the compiler can allocate

space for the array in static global memory

 local lifetime, static shape — If the shape of the array is

known at compile time, but the array should not exist

throughout the execution of the program, then space can be

allocated in the subroutine’s stack frame at run time (stack

allocation)

 local lifetime, shape bound at elaboration time (heap

allocation)
46

(c) Paul Fodor (CS Stony Brook) and Elsevier

Indexing is a special operator, since it can

be used as an l-value

In languages that let you overload

operators, often need two variants:

__getindex__ and __setindex__

47

Arrays

(c) Paul Fodor (CS Stony Brook) and Elsevier

Array slices (sections) in Fortran90

48

Arrays Operations

Can you do them in python? Yes.

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Array slices in python

 a[start:end] # items start through end-1

 The :end value represents the first value that is not in the selected slice

 a[start:] # items start through the rest of the array

 a[:end] # items from the beginning through end-1

 a[:] # a copy of the whole array

 There is also the step value, which can be used with any of the above:

 a[start:end:step] # start through not past end, by step

 The start or end may be a negative number, which means it counts

from the end of the array instead of the beginning

 a[-1] # last item in the array

 a[-2:] # last two items in the array

 a[:-2] # everything except the last two items

49

Arrays Operations

(c) Paul Fodor (CS Stony Brook) and Elsevier

 In some languages, strings are really just arrays

of characters

 In others, they are often special-cased, to give

them flexibility (like dynamic sizing) that is not

available for arrays in general

It's easier to provide these things for strings than

for arrays in general because strings are one-

dimensional and (more importantly) non-circular

50

Strings

(c) Paul Fodor (CS Stony Brook) and Elsevier

Sets
 Set: contains distinct elements without order
Pascal supports sets of any discrete type, and provides

union, intersection, and difference operations:
var A, B, C : set of char;

D, E : set of weekday;

...

A := B + C;

(* union; A := {x | x is in B or x is in C} *)

A := B * C;

(* intersection; A := {x | x is in B and x is in C} *)

A := B - C;

(* difference; A := {x | x is in B and x is not in C}*)

51

(c) Paul Fodor (CS Stony Brook) and Elsevier

Sets
 Three ways to implement sets:

 Hash Maps (keys without values or the value is the same with

the key)

 When we know # of values, can assign each value a bit in a bit

vector
 Consider that we have a specific domain: {A,B,C,D,F}

 The bit vector set of good grades: "11100"

 The bit vector set of low grades: "00111"

 Things like intersection, union, membership, etc. can be

implemented efficiently with bitwise logical instructions

 low-medium grades = 11100 * 00111 = 00100

 Bag: Allows the same element to be contained inside it multiple

times -> linear logic

52

(c) Paul Fodor (CS Stony Brook) and Elsevier

Maps/Dictionaries

Maps keys to values

Multimap: Maps keys to set of values

Can be implemented in the same way

as sets

53

(c) Paul Fodor (CS Stony Brook) and Elsevier

Lists
Python lists: Array-lists are efficient for

element extraction, doubling-resize

Prolog-style Linked lists (same with SML)

vs. Python-style Array lists:

Prolog: [Head | Tail]

Where Head is any number of atoms and
Tail is a list
Can match more complex patterns than SML:

[a,1,X|T]

54

(c) Paul Fodor (CS Stony Brook) and Elsevier

Representation of Lists in Prolog
List is handled as binary tree in Prolog

[Head | Tail] = .(Head,Tail)

We can write [a,b,c] =
.(a,.(b,.(c,[]))) =

[a|[b,c]] = [a|[b|[c]]] =

[a|[b|[c|[]]]] =

[a,b|[c|nil]]] =

[a|.(b,.(c,[]))]

55

(c) Paul Fodor (CS Stony Brook) and Elsevier

Pointers/Reference Types
 Pointers serve two purposes:

 efficient (and sometimes intuitive) access to elaborated objects (as in C)

 dynamic creation of linked data structures, in conjunction with a heap

storage manager

 Recursive types – like trees:

 Several languages (e.g. Pascal, Ada 83) restrict pointers to accessing

things in the heap
56

(c) Paul Fodor (CS Stony Brook) and Elsevier

Pointers/Reference Types
 Even in languages with value semantics, it's necessary to have a

pointer or reference type

class BinTree {

int value;

BinTree left;

BinTree right;

}

 It is value-only

 The question is, what sort of operations to allow:

 pointers usually need an explicit address to be taken

BinTree bt1;

BinTree bt2;

BinTree *foo = &bt1;

57

(c) Paul Fodor (CS Stony Brook) and Elsevier

Pointers/Reference Types
 Pointers tend to allow pointer arithmetic: foo += 1

Only useful when in an array

 Leave the bounds of your array, and you can have security

holes

Problem: Can point to something that isn't a

BinTree, or even out of memory

 In Java, references are assigned an object, and don't

allow pointer arithmetic

Can be NULL

58

(c) Paul Fodor (CS Stony Brook) and Elsevier

Pointers/Reference Types
Problems with garbage collection

many languages leave it up to the programmer to

allocate and deallocate memory - this is VERY hard

others arrange for automatic garbage collection

 reference counting

 does not work for circular structures

 works great for strings

 mark and weep

59

(c) Paul Fodor (CS Stony Brook) and Elsevier

Pointers/Reference Types
 Garbage collection with reference counts

 The list shown here cannot be found via any program variable,

but because it is circular, every cell contains a nonzero count.
60

(c) Paul Fodor (CS Stony Brook) and Elsevier

Pointers/Reference Types
 Mark-and-sweep:

The collector walks through the heap, tentatively

marking every block as “useless”

Beginning with all pointers outside the heap, the

collector recursively explores all linked data structures

in the program, marking each newly discovered block as

“useful”
 When it encounters a block that is already marked as “useful”,

the collector knows it has reached the block over some

previous path, and returns without recursing

The collector again walks through the heap, moving

every block that is still marked “useless” to the free list
61

(c) Paul Fodor (CS Stony Brook) and Elsevier

Files and Input/Output
 Input/output (I/O) facilities allow a program to

communicate with the outside world

 interactive I/O and I/O with files

 Interactive I/O generally implies communication

with human users or physical devices

 Files generally refer to off-line storage implemented by

the operating system

Files may be further categorized into
 temporary files exist for the duration of a single program run

 persistent files exist before and after a program runs

62

