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Names, Scopes, and Bindings
 Names are identifiers (mnemonic character strings used to represent 

something in the program - instead of low-level concepts like 

addresses):

 A name can also represent an abstraction of a complicated program 

fragment (e.g., name of a method (control abstraction), class (data 

abstraction), module).

 Some symbols (like '+') can also be names

 A binding is an association between two things, such as a name and 

the thing it names 

 In general, binding time refers to the notion of resolving any design 

decision in a language implementation (e.g., an example of a static 

binding is a function call: the function referenced by the identifier 

cannot change at runtime)
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The textual region of the program in which a 

binding is active is its scope

The complete set of bindings in effect at a 

given point in a program is known as the 

current referencing environment
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Bindings
 Binding Time is the point at which a binding is created or, more 

generally, the point at which any implementation decision is 

made.

 There are many times when decision about the binding are taken:

 language design time: the control flow constructs, the set of 

fundamental (primitive) types, the available constructors for 

creating complex types, and many other aspects of language 

semantics are chosen when the language is designed

 language implementation time: precision (number of bits) of 

the fundamental types, the coupling of I/O to the operating 

system’s notion of files, the organization and maximum sizes of 

stack and heap, and the handling of run-time exceptions such as 

arithmetic overflow. 
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 program writing time: programmers choose algorithms and 

names

 compile time: compilers plan for data layout (the mapping of 

high-level constructs to machine code, including the layout of 

statically defined data in memory)

 link time: layout of whole program in memory (virtual 

addresses are chosen at link time), the linker chooses the 

overall layout of the modules with respect to one another, and 

resolves intermodule references

 load time: choice of physical addresses (the processor’s 

memory management hardware translates virtual addresses 

into physical addresses during each individual instruction at 

run time)
5
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 Run time is a very broad term that covers the entire span from 

the beginning to the end of execution:

 program start-up time

 module entry time

 elaboration time (point a which a declaration is first "seen")

 procedure entry time

 block entry time

 statement execution time

 The terms STATIC and DYNAMIC are generally used to refer 

to things bound before run time and at run time
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 In general, later binding times are associated 

with greater flexibility

 Early binding times are associated with greater 

efficiency

 Compiled languages tend to have early binding times

 Interpreted languages tend to have later binding times

 Some languages try to do both (e.g., Java JVM)
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Lifetime and Storage Management

Bindings key events:

creation of objects

creation of bindings

references to variables (which use bindings)

(temporary) deactivation of bindings

reactivation of bindings

destruction of bindings

destruction of objects
8
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The period of time between the creation and the 

destruction of a name-to-object binding is called the 

binding’s lifetime :

If object outlives binding it's garbage

If binding outlives object it's a dangling reference, 

e.g., if an object created via the C++ new

operator is passed as a & parameter and then 

deallocated (delete-ed) before the subroutine 

returns
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Storage Allocation mechanisms are used to 

manage the object’s space:

Static: the objects are given an absolute address that is 

retained throughout the program’s execution

Stack: the objects are allocated and deallocated in last-

in, first-out order, usually in conjunction with 

subroutine calls and returns.

Heap: the objects may be allocated and deallocated at 

arbitrary times (require a complex storage 

management mechanism).
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 Static allocation for:
 code (and small constants - often stored within the instruction itself)

 globals

 static or own variables

 explicit constants (including strings, sets, etc.), e.g., printf("hello, 

world\n") (called manifest constants or compile-time constants, e.g., 

interned strings).

 Arguments and return values: Fortran (Fortran didn't have subroutine 

recursion) and Basic (Basic didn't have function-level scopes).

 Temporaries (intermediate values produced in complex calculations)

 Bookkeeping information (subroutine’s return address, a reference to 

the stack frame of the caller (the dynamic link), additional saved 

registers, debugging information
11
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Stack:

Why a stack?

allocate space for recursive routines

reuse space

Each instance of a subroutine at run time has its 

own frame (or activation record) for:

parameters

 local variables

 temporaries (return address)
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Maintenance of the stack is the 

responsibility of the subroutine calling 

sequence (the code executed by the caller 

immediately before and after the call), 

which includes: the prologue (code executed 

at the beginning) and epilogue (code 

executed at the end) of the subroutine itself.

13

Lifetime and Storage Management



(c) Paul Fodor (CS Stony Brook) and Elsevier

Stack pointers:

The frame pointer (fp) register points to a known 

location within the frame of the current subroutine

 fp usually points to the parameters (above the return 

address) for the current call

The stack pointer (sp) register points to the first unused 

location on the stack (or the last used location on 

some machines)

 sp would point to where arguments would be for next call

 Local variables and arguments are assigned fixed OFFSETS 

from the stack pointer or frame pointer at compile time
14
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Calling Methods Example in Java 

pass the value of j 
pass the value of i 

 
  

(a) The main 
method is invoked. 

Space required for 

the main method 

    k:  

    j:      2 

    i:      5 

 

(b) The max 
method is invoked. 

Space required for 

the max method 

    

   num2:    2 

   num1:    5 

 

 

(d) The max method is 

finished and the return 

value is sent to k. 

(e) The main 
method is finished. 

 
Stack is empty 

Space required for 

the main method 

    k:  

    j:          2 

    i:          5 

 

Space required for 

the main method 

    k:       5 

    j:        2 

    i:        5 

 

(c) The max method 
is being executed. 

Space required for 

the max method 

   result:    5 

   num2:    2 

   num1:    5 

 

 Space required for 

the main method 

    k:  

    j:          2 

    i:          5 
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Trace Call Stack

 

 

 

i is declared and initialized

 

The main method 

is invoked. 

 

 

 
 

i: 5 
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Trace Call Stack

 

 

 

j is declared and initialized

 

The main method 

is invoked. 

 

 

  
j: 2 

i: 5 
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Trace Call Stack

 

 

 

Declare k

 

The main method 

is invoked. 

Space required for the 

main method 

                             k:  
j: 2 

i: 5 
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Trace Call Stack

 

 

 

Invoke max(i, j)

 

The main method 

is invoked. 

Space required for the 

main method 

                             k:  
j: 2 

i: 5 
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Trace Call Stack

 

 

 

pass the values of i and j to num1 

and num2

 

The max method is 

invoked. 

 

 
                       

num2: 2 

num1: 5 
 

 
Space required for the 
main method 

                             k:  
j: 2 

i: 5 
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Trace Call Stack

 

 

 

pass the values of i and j to num1 

and num2

 

The max method is 

invoked. 

 

 
                       result:  

num2: 2 

num1: 5 
 

 
Space required for the 
main method 

                             k:  
j: 2 

i: 5 
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Trace Call Stack

 

 

 

(num1 > num2) is true

 

The max method is 

invoked. 

 

 
                       result:  

num2: 2 

num1: 5 
 

 
Space required for the 
main method 

                             k:  
j: 2 

i: 5 
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Trace Call Stack

 

 

 

Assign num1 to result

 

The max method is 

invoked. 

Space required for the 

max method 
                       result: 5 

num2: 2 

num1: 5 
 

 
Space required for the 
main method 

                             k:  
j: 2 

i: 5 
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Trace Call Stack

 

 

 

Return result and assign it to k

 

The max method is 

invoked. 

Space required for the 

max method 
                       result: 5 

num2: 2 

num1: 5 
 

 
Space required for the 
main method 

                               k:5  
j: 2 

i: 5 

 



(c) Paul Fodor (CS Stony Brook) and Elsevier
26

Trace Call Stack

 

 

 

Execute print statement

 

The main method 

is invoked. 

Space required for the 

main method 

                               k:5  
j: 2 

i: 5 
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 Reminder: maintenance of stack is responsibility of 

calling sequence and subroutines prolog and epilog

 Optimizations:

 space is saved by putting as much in the prolog and epilog as 

possible

 time may be saved by 

 putting stuff in the caller instead     or

 combining what's known in both places  (interprocedural

optimization)

 Unfolding subroutines (e.g., Prolog/Datalog unfolding optimizations)

 One cannot return references to objects on the stack

 Rookie mistake in C: the lifetime is limited to function scope.
27
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Heap-Based Allocation

Heap is for dynamic allocation

A heap is a region of storage in which sub-blocks 

can be allocated and deallocated at arbitrary 

times

dynamically allocated pieces of data structures: 

objects, Strings, lists, and sets, whose size may 

change as a result of an assignment statement or 

other update operation

28
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 Fragmentation: 

 Internal fragmentation occurs when a storage-management 

algorithm allocates a block that is larger than required to hold 

a given object.

 External fragmentation occurs when the blocks that have been 

assigned to active objects are scattered through the heap in 

such a way that the remaining, unused space is composed of 

multiple blocks: there may be quite a lot of free space, but no 

one piece of it may be large enough to satisfy some request

29
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 The storage-management algorithm maintains a single linked 

list, the free list, of heap blocks not currently in use

 The first fit algorithm selects the first block on the list that is 

large enough to satisfy a request

 The best fit algorithm searches the entire list to find the 

smallest block that is large enough to satisfy the request

 Common mechanisms for dynamic pool adjustment: 

 The buddy system: the standard block sizes are powers of two

 The Fibonacci heap: the standard block sizes are the Fibonacci 

numbers

 Compacting the heap moves already-allocated blocks to free large 

blocks of space
30
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 Garbage Collection (GC):

 In languages that deallocation of objects is not explicit

 Manual deallocation errors are among the most common and costly 

bugs in real-world programs

 Objects are to be deallocated implicitly when it is no longer 

possible to reach them from any program variable

 Costly

 Methodologies: reference counting, Mark/Sweep, Copying, 

Generational GC

 Stop-the-world vs. incremental vs. concurrent

 Generational GC (Java): hierarchy of memory sectors, 

"young" vars (often deleted after 1 reference) and "old"
31
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Scope Rules
 The binding scope is the textual region of the program 

in which a binding is active

A scope is a program section of maximal size in 

which no bindings change, or at least in which no re-

declarations are permitted

 The scope of a binding is determined statically or 

dynamically

 Scoping rule example 1: Declaration before use

Can a name be used before it is declared?
 Java local vars: NO

 Java class properties and methods: YES 
32
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Scoping rule example 2:

Two uses of a given name 

Do they refer to the same binding?

a = 1

... 

def f():

a = 2

b = a

the scoping rules determine the scope

33
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 In static scope rules, bindings are defined by the physical 

(lexical) structure of the program

 Static scoping (also called lexical scoping) rule examples: 

 one big scope (old Basic),

 scope of a function (variables live through a function execution)

 block scope (a local var. is available in the block in which is defined)

 nested subroutines (have access to the variables defined in the parent)

 if a variable is active in one or more scopes, then the closest nested scope 

rule applies

 Lexical/static scoping was used for ALGOL and has been picked 

up in most other languages since then: like Pascal, C, Java

34
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 In most languages with subroutines, we OPEN a new 

scope on subroutine entry:

create bindings for new local variables,

deactivate bindings for global variables that are re-

declared (these variable are said to have a "hole" in 

their scope), and

make references to reference parameters.

 On subroutine exit:

destroy bindings for local variables

reactivate bindings for global variables that were 

deactivated35

Scope Rules
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ELABORATION = process of creating 

bindings when entering a subroutine 

scope:

storage may be allocated 

even exceptions propagated as a result 

of the elaboration of declarations

36
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Static Scoping
 With STATIC (LEXICAL) SCOPE RULES (e.g., C, Java and 

python), a scope is defined in terms of the physical 

(lexical) structure of the program:

The determination of scopes can be made by the 

compiler

All bindings for identifiers can be resolved by 

examining the program

Typically, we choose the most recent, active binding 

made at compile time

 Most compiled languages, C, Pascal, Java and python 

included, employ static scope rules
37
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 Nested blocks:

The classical example of static scope rules is the most 

closely nested rule used in block structured languages 

(started with Pascal): 
 An identifier is known in the scope in which it is declared 

and in each enclosed scope, unless it is re-declared in an 

enclosed scope (the original identifier is said to be hidden)

 To resolve a reference to an identifier, we examine the 

local scope and statically enclosing scopes until a binding is 

found

 Classes (in object-oriented languages) have even more 

sophisticated (static) scope rules
38
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 The simplest way in which to find the frames of 

surrounding scopes is to maintain a static link in each 

frame that points to the “parent” frame (i.e., the frame of 

the most recent invocation of the lexically surrounding 

subroutine).

 If a subroutine is declared at the outermost nesting level 

of the program, then its frame will have a null static link 

at run time.

 If a subroutine is nested k levels deep, then its frame’s 

static link, and those of its parent, grandparent, and so 

on, will form a static chain of length k at run time.

40
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Nesting of subroutines:            During run time (with links)
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 Declaration Order rules:

 Several early languages, including Algol 60 and Lisp, 

required that all declarations appear at the beginning of their 

scope.

 Pascal modified the requirement to say that names must just

be declared before they are used.

 However, it may still use a whole-block scope (implemented in C#)

 Example in C#: defining a variable in a block makes every 

external declaration hidden, so the M=N assignment generates a 

compiling error:

42
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Dynamic scope rules: bindings depend on the 

current state of program execution:

They cannot always be resolved by examining 

the program because they are dependent on 

calling sequences

The binding might depend on how a function is 

called

To resolve a reference, we use the most recent, 

active binding made at run time

43
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 Example:

var total = 0

def add():

total += 1

def myfunc():

var total = 0

add()

add()

myfunc()

print total

44

prints 1

Dynamic Scoping of bindings

Stack

main     total=1

add     

main     total=1

myfunc total = 1     

add     
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User input in binding decisions
program scopes (input, output)

var a : integer;

procedure first();

begin a := 1; end;

procedure second();

var a : integer;

begin first(); end;

begin

a := 2; 

if read_integer() > 0 

second();

else 

first();

write(a);

end.

 Program output depends on both scope 

rules and, in the case of dynamic 

scoping, a value read at run time

 If static scoping is in effect, this 

program prints a 1 (the global a).

 If dynamic scoping is in effect, the 

output depends on the value read 

at line 10 at run time: if the input 

is positive, the program prints a 2; 

otherwise it prints a 1.

 The assignment to the variable 

a at line 4 refers either to the 

global variable declared at line 

2 or to the local variable 

declared at line 6.
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 Dynamic scope rules are usually encountered in 

interpreted languages

Lisp, Perl, Ruby, C#, the shell languages bash, 

dash, and PowerShell

 Such languages do not always have type checking of at 

compile time because type determination isn't always 

possible when dynamic scope rules are in effect

 A common use of dynamic scope rules is to provide 

implicit parameters to subroutines

 Alternative mechanisms exist

 default and optional parameters 
46
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Binding of Reference Environments

A reference environment = all the bindings 

active at a given time.

When we take a reference to a function, we 

need to decide which reference environment we 

want to use!!!

Deep binding binds the environment at the 

time the procedure is passed as an argument

Shallow binding binds the environment at 

the time the procedure is actually called
47
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Example: static vs. dynamic shallow vs.   

dynamic deep
var total = 0

def a():

total += 1

def b(F):

var total = 0

F()   

print "B", total

def c():

var total = 0

b(a)

print "C", total

c()

print "T", total

48

static   dynamic shallow    dynamic deep

B   0        1                  0

C   0        0                  1

T   1        0                  0
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Example: static vs. dynamic shallow vs.   

dynamic deep
var total = 0

def a():

total += 1 (* the state of the stack)

def b(F):

var total = 0

F()   

print "B", total

def c():

var total = 0

b(a)

print "C", total

c()

print "T", total

49

static dynamic shallow    dynamic deep

B   0 1                  0

C   0 0                  1

T   1 0                  0

Stack

main     total=1

c           total=0     

total=0

b           F = a     

a                

static links
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Example: static vs. dynamic shallow vs.   

dynamic deep
var total = 0

def a():

total += 1 (* the state of the stack)

def b(F):

var total = 0

F()   

print "B", total

def c():

var total = 0

b(a)

print "C", total

c()

print "T", total

50

static   dynamic shallow dynamic deep

B   0        1 0

C   0        0 1

T   1        0 0

Stack

main     total=0

c           total=0     

total=1

b          F = a     

a                
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Example: static vs. dynamic shallow vs.   

dynamic deep
var total = 0

def a():

total += 1   (* the state of the stack)

def b(F):

var total = 0

F()   

print "B", total

def c():

var total = 0

b(a)

print "C", total

c()

print "T", total

51

static   dynamic shallow    dynamic deep

B   0        1                  0

C   0        0                  1

T   1        0                  0

Stack

main     total=0

c           total=1     

b           total=0

F = a     

F=a                



(c) Paul Fodor (CS Stony Brook) and Elsevier

x: integer := 1

y: integer := 2

procedure add

x := x + y

procedure second(P:procedure)

x:integer := 2

P()

procedure first

y:integer := 3

second(add)

first()

write_integer(x)

52

- static scoping would print 3.

- shallow binding just traverses 

up until it finds the nearest 

variable that corresponds to the 

name (increments the local x), so 

the answer would be 1.

- dynamic scoping with deep 

binding: when add is passed into 

second the environment of add is 

x = 1, y = 3 and the x is the 

global x so it writes 4 into the 

global x, which is the one picked 

up by the write_integer.

Binding of Reference Environments
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x: integer := 1

y: integer := 2

procedure add

x := x + y

procedure second(P:procedure)

x:integer := 2

P()

procedure first

y:integer := 3

second(add)

first()

write_integer(x)

53

- static scoping would print 3.

Binding of Reference Environments

Stack

main     y=2

x=1

first y=3    

x=2

second  P = add     

add                

static links

main     y=2

x=3

first y=3    

x=2

second  P = add     

add                
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x: integer := 1

y: integer := 2

procedure add

x := x + y

procedure second(P:procedure)

x:integer := 2

P()

procedure first

y:integer := 3

second(add)

first()

write_integer(x)

54

- shallow binding just traverses 

up until it finds the nearest 

variable that corresponds to the 

name (increments the local x), so 

the answer would be 1.

Binding of Reference Environments

Stack

main     y=2

x=1

first y=3    

x=2

second  P = add     

add                

main     y=2

x=1

first y=3    

x=5

second  P = add     

add                
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x: integer := 1

y: integer := 2

procedure add

x := x + y

procedure second(P:procedure)

x:integer := 2

P()

procedure first

y:integer := 3

second(add)

first()

write_integer(x)

55

- dynamic scoping with deep binding: when add is 

passed into second the environment of add is x = 1, y = 3 

and the x is the global x so it writes 4 into the global x, 

which is the one picked up by the write_integer.

Binding of Reference Environments

main     y=2

x=1

first y=3    

x=2

second  P = add     

P=add                

main     y=2

x=4

first y=3    

x=5

second  P = add     

P=add                
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Closure
 Deep binding is implemented by creating an explicit 

representation of a referencing environment and bundling it 

together with a reference to the subroutine (this bundle is 

called closure).

def foo():

a = 100

def bar():

return a

a += 1

return bar

f = foo()

print f()

56

Outputs: 101

Implementing closures means we may 

need to keep around foo's frame even 

after foo quits.

- heap allocation to keep around objects 

pointed to by foo.

- In languages without closures, we can 

fake them with objects. 
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Binding of Referencing Environments

 Accessing variables with dynamic scope:

 (1) keep a stack (association list) of all active variables

 When you need to find a variable, hunt down from top of stack

 This is equivalent to searching the activation records on the dynamic 

chain

 (2) keep a central table with one slot for every variable name

 You'll need a hash function or something to do lookup

 Every subroutine changes the table entries for its locals at entry and 

exit.

 In effect, variable lookup in a dynamically-scoped language 

corresponds to symbol table lookup in a statically-scoped language

57
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Overloading:

same name, more than one meaning

some overloading happens in almost all 

languages
 integer +     vs.     real +     vs. String concatanation

read and write in Pascal are overloaded based on the 

number and types of parameters

 function return in Pascal

some languages get into overloading in a big 

way: Java, C++

The Meaning of Names within a Scope

58
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Overloading & Ambiguous Invocation
public class AmbiguousOverloading {

public static void main(String[] args) {

System.out.println(max(1, 2));  

}

public static double max(int num1, double num2){ 

if (num1 > num2)

return num1;

else

return num2;

}

public static double max(double num1, int num2){

if (num1 > num2)

return num1;

else

return num2;     

}

}
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 It's worth distinguishing between some closely related concepts:

 overloaded functions - two different things with the same name
 overload norm

int norm(int a){return a>0 ? a : -a;)

complex norm(complex c ) { ... }

 polymorphic functions: one thing that works in more then one 

way
 Overriding in OO programming, and

 Generic programming: 

function min (A : array of Comparable)

 generic functions - a syntactic template that can be instantiated in 

more than one way at compile or even run time

o via macro processors in C++

The Meaning of Names within a Scope

60
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Polymorphism, Dynamic Binding and Generic Programming

public class PolymorphismDemo {

public static void main(String[] args) {

m(new GraduateStudent());

m(new Student());

m(new Person());

m(new Object());

}

public static void m(Object x) {

System.out.println(x.toString());

}

}

class GraduateStudent 

extends Student {

}

class Student extends Person {

public String toString() {

return "Student";

}

}

class Person extends Object {

public String toString() {

return "Person";

}

}

Method m takes a parameter of 

the Object type – can be invoked 

with any object

Polymorphism: an object of a subtype can be 

used wherever its supertype value is required

Dynamic binding: the Java Virtual Machine 
determines dynamically at runtime which 
implementation is used by the method

When the method m(Object x) is 

executed, the argument x’s toString

method is invoked.
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Dynamic Binding
 Suppose an object o is an instance of classes C1, C2, ..., Cn-1, 
and Cn

 C1 is a subclass of C2, C2 is a subclass of C3, ..., and Cn-1 is a 
subclass of Cn

 Cn is the most general class, and C1 is the most specific class

 If o invokes a method p, the JVM searches the 
implementation for the method p in C1, C2, ..., Cn-1 and Cn, 
in this order, until it is found, the search stops and the first-
found implementation is invoked
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Cn Cn-1 . . . . . C2 C1 

Since o is an instance of C1, o is also an 

instance of C2, C3, …, Cn-1, and Cn 
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Output: 

Student

Student

Person

java.lang.Object@12345678
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public class PolymorphismDemo {

public static void main(String[] args) {

m(new GraduateStudent());

m(new Student());

m(new Person());

m(new Object());

}

public static void m(Object x) {

System.out.println(x.toString());

}

}

class GraduateStudent extends Student {

}

class Student extends Person {

public String toString() {

return "Student";

}

}

class Person extends Object {

public String toString() {

return "Person";

}

}

Dynamic Binding
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Method Matching vs. Binding

The compiler finds a matching method
according to parameter type, number of 
parameters, and order of the 
parameters at compilation time

The Java Virtual Machine dynamically 
binds the implementation of the method 
at runtime
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The Meaning of Names within a Scope
 Aliasing: two names point to the same object
Makes program hard to understand

Makes program slow to compile

What are aliases good for? 
 linked data structures

Example: passing a variable by reference to a subroutine 

that also accesses that variable directly
double sum, sum_of_squares;

accumulate(sum);

void accumulate(double& x){// x is passed by reference

sum += x;

sum_of_squares += x * x;

}
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sum is passed as an argument to 

accumulate, so, sum and x will be 

aliases for one another
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Modules (AKA packages)
Break program up into parts, which need 

to be explicitly imported.

We only need to agree on the meaning of 

names when our code interacts.
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Macros
 Macros are a way of assigning a name to some syntax.

 C: Textual substitution.

#define MAX(x, y) (x > y ? x : y)

 benefit: shorter code, no stack, can choose not to execute some of 

the code

 Problems with macros:

 multiple side effects: MAX(a++, b++)

 scope capture: temporary var used inside macro has same name as 

a real var – for example: t exists outside 

#define SWAP(a,b) {t = (a); (a) = (b); (b) = t;}

 Scheme and Common Lisp hygenic macros rename variables
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