
CSE 307 – Principles of Programming Languages

Stony Brook University

http://www.cs.stonybrook.edu/~cse307

Names, Scopes, and Bindings

1

http://www.cs.stonybrook.edu/~cse307

(c) Paul Fodor (CS Stony Brook) and Elsevier

Names, Scopes, and Bindings
 Names are identifiers (mnemonic character strings used to represent

something in the program - instead of low-level concepts like

addresses):

 A name can also represent an abstraction of a complicated program

fragment (e.g., name of a method (control abstraction), class (data

abstraction), module).

 Some symbols (like '+') can also be names

 A binding is an association between two things, such as a name and

the thing it names

 In general, binding time refers to the notion of resolving any design

decision in a language implementation (e.g., an example of a static

binding is a function call: the function referenced by the identifier

cannot change at runtime)
2

(c) Paul Fodor (CS Stony Brook) and Elsevier

The textual region of the program in which a

binding is active is its scope

The complete set of bindings in effect at a

given point in a program is known as the

current referencing environment

3

Names, Scopes, and Bindings

(c) Paul Fodor (CS Stony Brook) and Elsevier

Bindings
 Binding Time is the point at which a binding is created or, more

generally, the point at which any implementation decision is

made.

 There are many times when decision about the binding are taken:

 language design time: the control flow constructs, the set of

fundamental (primitive) types, the available constructors for

creating complex types, and many other aspects of language

semantics are chosen when the language is designed

 language implementation time: precision (number of bits) of

the fundamental types, the coupling of I/O to the operating

system’s notion of files, the organization and maximum sizes of

stack and heap, and the handling of run-time exceptions such as

arithmetic overflow.
4

(c) Paul Fodor (CS Stony Brook) and Elsevier

 program writing time: programmers choose algorithms and

names

 compile time: compilers plan for data layout (the mapping of

high-level constructs to machine code, including the layout of

statically defined data in memory)

 link time: layout of whole program in memory (virtual

addresses are chosen at link time), the linker chooses the

overall layout of the modules with respect to one another, and

resolves intermodule references

 load time: choice of physical addresses (the processor’s

memory management hardware translates virtual addresses

into physical addresses during each individual instruction at

run time)
5

Bindings

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Run time is a very broad term that covers the entire span from

the beginning to the end of execution:

 program start-up time

 module entry time

 elaboration time (point a which a declaration is first "seen")

 procedure entry time

 block entry time

 statement execution time

 The terms STATIC and DYNAMIC are generally used to refer

to things bound before run time and at run time

6

Bindings

(c) Paul Fodor (CS Stony Brook) and Elsevier

 In general, later binding times are associated

with greater flexibility

 Early binding times are associated with greater

efficiency

 Compiled languages tend to have early binding times

 Interpreted languages tend to have later binding times

 Some languages try to do both (e.g., Java JVM)

7

Bindings

(c) Paul Fodor (CS Stony Brook) and Elsevier

Lifetime and Storage Management

Bindings key events:

creation of objects

creation of bindings

references to variables (which use bindings)

(temporary) deactivation of bindings

reactivation of bindings

destruction of bindings

destruction of objects
8

(c) Paul Fodor (CS Stony Brook) and Elsevier

The period of time between the creation and the

destruction of a name-to-object binding is called the

binding’s lifetime :

If object outlives binding it's garbage

If binding outlives object it's a dangling reference,

e.g., if an object created via the C++ new

operator is passed as a & parameter and then

deallocated (delete-ed) before the subroutine

returns

9

Lifetime and Storage Management

(c) Paul Fodor (CS Stony Brook) and Elsevier

Storage Allocation mechanisms are used to

manage the object’s space:

Static: the objects are given an absolute address that is

retained throughout the program’s execution

Stack: the objects are allocated and deallocated in last-

in, first-out order, usually in conjunction with

subroutine calls and returns.

Heap: the objects may be allocated and deallocated at

arbitrary times (require a complex storage

management mechanism).

10

Lifetime and Storage Management

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Static allocation for:
 code (and small constants - often stored within the instruction itself)

 globals

 static or own variables

 explicit constants (including strings, sets, etc.), e.g., printf("hello,

world\n") (called manifest constants or compile-time constants, e.g.,

interned strings).

 Arguments and return values: Fortran (Fortran didn't have subroutine

recursion) and Basic (Basic didn't have function-level scopes).

 Temporaries (intermediate values produced in complex calculations)

 Bookkeeping information (subroutine’s return address, a reference to

the stack frame of the caller (the dynamic link), additional saved

registers, debugging information
11

Lifetime and Storage Management

(c) Paul Fodor (CS Stony Brook) and Elsevier

Stack:

Why a stack?

allocate space for recursive routines

reuse space

Each instance of a subroutine at run time has its

own frame (or activation record) for:

parameters

 local variables

 temporaries (return address)

12

Lifetime and Storage Management

(c) Paul Fodor (CS Stony Brook) and Elsevier

Maintenance of the stack is the

responsibility of the subroutine calling

sequence (the code executed by the caller

immediately before and after the call),

which includes: the prologue (code executed

at the beginning) and epilogue (code

executed at the end) of the subroutine itself.

13

Lifetime and Storage Management

(c) Paul Fodor (CS Stony Brook) and Elsevier

Stack pointers:

The frame pointer (fp) register points to a known

location within the frame of the current subroutine

 fp usually points to the parameters (above the return

address) for the current call

The stack pointer (sp) register points to the first unused

location on the stack (or the last used location on

some machines)

 sp would point to where arguments would be for next call

 Local variables and arguments are assigned fixed OFFSETS

from the stack pointer or frame pointer at compile time
14

Lifetime and Storage Management

(c) Paul Fodor (CS Stony Brook) and Elsevier
15

Lifetime and Storage Management

(c) Paul Fodor (CS Stony Brook) and Elsevier
16

Calling Methods Example in Java

pass the value of j
pass the value of i

(a) The main
method is invoked.

Space required for

the main method

 k:

 j: 2

 i: 5

(b) The max
method is invoked.

Space required for

the max method

 num2: 2

 num1: 5

(d) The max method is

finished and the return

value is sent to k.

(e) The main
method is finished.

Stack is empty

Space required for

the main method

 k:

 j: 2

 i: 5

Space required for

the main method

 k: 5

 j: 2

 i: 5

(c) The max method
is being executed.

Space required for

the max method

 result: 5

 num2: 2

 num1: 5

 Space required for

the main method

 k:

 j: 2

 i: 5

(c) Paul Fodor (CS Stony Brook) and Elsevier
17

Trace Call Stack

i is declared and initialized

The main method

is invoked.

i: 5

(c) Paul Fodor (CS Stony Brook) and Elsevier
18

Trace Call Stack

j is declared and initialized

The main method

is invoked.

j: 2

i: 5

(c) Paul Fodor (CS Stony Brook) and Elsevier
19

Trace Call Stack

Declare k

The main method

is invoked.

Space required for the

main method

 k:
j: 2

i: 5

(c) Paul Fodor (CS Stony Brook) and Elsevier
20

Trace Call Stack

Invoke max(i, j)

The main method

is invoked.

Space required for the

main method

 k:
j: 2

i: 5

(c) Paul Fodor (CS Stony Brook) and Elsevier
21

Trace Call Stack

pass the values of i and j to num1

and num2

The max method is

invoked.

num2: 2

num1: 5

Space required for the
main method

 k:
j: 2

i: 5

(c) Paul Fodor (CS Stony Brook) and Elsevier
22

Trace Call Stack

pass the values of i and j to num1

and num2

The max method is

invoked.

 result:

num2: 2

num1: 5

Space required for the
main method

 k:
j: 2

i: 5

(c) Paul Fodor (CS Stony Brook) and Elsevier
23

Trace Call Stack

(num1 > num2) is true

The max method is

invoked.

 result:

num2: 2

num1: 5

Space required for the
main method

 k:
j: 2

i: 5

(c) Paul Fodor (CS Stony Brook) and Elsevier
24

Trace Call Stack

Assign num1 to result

The max method is

invoked.

Space required for the

max method
 result: 5

num2: 2

num1: 5

Space required for the
main method

 k:
j: 2

i: 5

(c) Paul Fodor (CS Stony Brook) and Elsevier
25

Trace Call Stack

Return result and assign it to k

The max method is

invoked.

Space required for the

max method
 result: 5

num2: 2

num1: 5

Space required for the
main method

 k:5
j: 2

i: 5

(c) Paul Fodor (CS Stony Brook) and Elsevier
26

Trace Call Stack

Execute print statement

The main method

is invoked.

Space required for the

main method

 k:5
j: 2

i: 5

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Reminder: maintenance of stack is responsibility of

calling sequence and subroutines prolog and epilog

 Optimizations:

 space is saved by putting as much in the prolog and epilog as

possible

 time may be saved by

 putting stuff in the caller instead or

 combining what's known in both places (interprocedural

optimization)

 Unfolding subroutines (e.g., Prolog/Datalog unfolding optimizations)

 One cannot return references to objects on the stack

 Rookie mistake in C: the lifetime is limited to function scope.
27

Lifetime and Storage Management

(c) Paul Fodor (CS Stony Brook) and Elsevier

Heap-Based Allocation

Heap is for dynamic allocation

A heap is a region of storage in which sub-blocks

can be allocated and deallocated at arbitrary

times

dynamically allocated pieces of data structures:

objects, Strings, lists, and sets, whose size may

change as a result of an assignment statement or

other update operation

28

Lifetime and Storage Management

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Fragmentation:

 Internal fragmentation occurs when a storage-management

algorithm allocates a block that is larger than required to hold

a given object.

 External fragmentation occurs when the blocks that have been

assigned to active objects are scattered through the heap in

such a way that the remaining, unused space is composed of

multiple blocks: there may be quite a lot of free space, but no

one piece of it may be large enough to satisfy some request

29

Lifetime and Storage Management

(c) Paul Fodor (CS Stony Brook) and Elsevier

 The storage-management algorithm maintains a single linked

list, the free list, of heap blocks not currently in use

 The first fit algorithm selects the first block on the list that is

large enough to satisfy a request

 The best fit algorithm searches the entire list to find the

smallest block that is large enough to satisfy the request

 Common mechanisms for dynamic pool adjustment:

 The buddy system: the standard block sizes are powers of two

 The Fibonacci heap: the standard block sizes are the Fibonacci

numbers

 Compacting the heap moves already-allocated blocks to free large

blocks of space
30

Lifetime and Storage Management

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Garbage Collection (GC):

 In languages that deallocation of objects is not explicit

 Manual deallocation errors are among the most common and costly

bugs in real-world programs

 Objects are to be deallocated implicitly when it is no longer

possible to reach them from any program variable

 Costly

 Methodologies: reference counting, Mark/Sweep, Copying,

Generational GC

 Stop-the-world vs. incremental vs. concurrent

 Generational GC (Java): hierarchy of memory sectors,

"young" vars (often deleted after 1 reference) and "old"
31

Lifetime and Storage Management

(c) Paul Fodor (CS Stony Brook) and Elsevier

Scope Rules
 The binding scope is the textual region of the program

in which a binding is active

A scope is a program section of maximal size in

which no bindings change, or at least in which no re-

declarations are permitted

 The scope of a binding is determined statically or

dynamically

 Scoping rule example 1: Declaration before use

Can a name be used before it is declared?
 Java local vars: NO

 Java class properties and methods: YES
32

(c) Paul Fodor (CS Stony Brook) and Elsevier

Scoping rule example 2:

Two uses of a given name

Do they refer to the same binding?

a = 1

...

def f():

a = 2

b = a

the scoping rules determine the scope

33

Scope Rules

(c) Paul Fodor (CS Stony Brook) and Elsevier

 In static scope rules, bindings are defined by the physical

(lexical) structure of the program

 Static scoping (also called lexical scoping) rule examples:

 one big scope (old Basic),

 scope of a function (variables live through a function execution)

 block scope (a local var. is available in the block in which is defined)

 nested subroutines (have access to the variables defined in the parent)

 if a variable is active in one or more scopes, then the closest nested scope

rule applies

 Lexical/static scoping was used for ALGOL and has been picked

up in most other languages since then: like Pascal, C, Java

34

Scope Rules

(c) Paul Fodor (CS Stony Brook) and Elsevier

 In most languages with subroutines, we OPEN a new

scope on subroutine entry:

create bindings for new local variables,

deactivate bindings for global variables that are re-

declared (these variable are said to have a "hole" in

their scope), and

make references to reference parameters.

 On subroutine exit:

destroy bindings for local variables

reactivate bindings for global variables that were

deactivated35

Scope Rules

(c) Paul Fodor (CS Stony Brook) and Elsevier

ELABORATION = process of creating

bindings when entering a subroutine

scope:

storage may be allocated

even exceptions propagated as a result

of the elaboration of declarations

36

Scope Rules

(c) Paul Fodor (CS Stony Brook) and Elsevier

Static Scoping
 With STATIC (LEXICAL) SCOPE RULES (e.g., C, Java and

python), a scope is defined in terms of the physical

(lexical) structure of the program:

The determination of scopes can be made by the

compiler

All bindings for identifiers can be resolved by

examining the program

Typically, we choose the most recent, active binding

made at compile time

 Most compiled languages, C, Pascal, Java and python

included, employ static scope rules
37

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Nested blocks:

The classical example of static scope rules is the most

closely nested rule used in block structured languages

(started with Pascal):
 An identifier is known in the scope in which it is declared

and in each enclosed scope, unless it is re-declared in an

enclosed scope (the original identifier is said to be hidden)

 To resolve a reference to an identifier, we examine the

local scope and statically enclosing scopes until a binding is

found

 Classes (in object-oriented languages) have even more

sophisticated (static) scope rules
38

Static Scoping

(c) Paul Fodor (CS Stony Brook) and Elsevier
39

Pascal:

(c) Paul Fodor (CS Stony Brook) and Elsevier

 The simplest way in which to find the frames of

surrounding scopes is to maintain a static link in each

frame that points to the “parent” frame (i.e., the frame of

the most recent invocation of the lexically surrounding

subroutine).

 If a subroutine is declared at the outermost nesting level

of the program, then its frame will have a null static link

at run time.

 If a subroutine is nested k levels deep, then its frame’s

static link, and those of its parent, grandparent, and so

on, will form a static chain of length k at run time.

40

Static Scoping

(c) Paul Fodor (CS Stony Brook) and Elsevier

Nesting of subroutines: During run time (with links)

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Declaration Order rules:

 Several early languages, including Algol 60 and Lisp,

required that all declarations appear at the beginning of their

scope.

 Pascal modified the requirement to say that names must just

be declared before they are used.

 However, it may still use a whole-block scope (implemented in C#)

 Example in C#: defining a variable in a block makes every

external declaration hidden, so the M=N assignment generates a

compiling error:

42

Static Scoping

(c) Paul Fodor (CS Stony Brook) and Elsevier

Dynamic scope rules: bindings depend on the

current state of program execution:

They cannot always be resolved by examining

the program because they are dependent on

calling sequences

The binding might depend on how a function is

called

To resolve a reference, we use the most recent,

active binding made at run time

43

Dynamic Scoping

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Example:

var total = 0

def add():

total += 1

def myfunc():

var total = 0

add()

add()

myfunc()

print total

44

prints 1

Dynamic Scoping of bindings

Stack

main total=1

add

main total=1

myfunc total = 1

add

(c) Paul Fodor (CS Stony Brook) and Elsevier
45

User input in binding decisions
program scopes (input, output)

var a : integer;

procedure first();

begin a := 1; end;

procedure second();

var a : integer;

begin first(); end;

begin

a := 2;

if read_integer() > 0

second();

else

first();

write(a);

end.

 Program output depends on both scope

rules and, in the case of dynamic

scoping, a value read at run time

 If static scoping is in effect, this

program prints a 1 (the global a).

 If dynamic scoping is in effect, the

output depends on the value read

at line 10 at run time: if the input

is positive, the program prints a 2;

otherwise it prints a 1.

 The assignment to the variable

a at line 4 refers either to the

global variable declared at line

2 or to the local variable

declared at line 6.

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Dynamic scope rules are usually encountered in

interpreted languages

Lisp, Perl, Ruby, C#, the shell languages bash,

dash, and PowerShell

 Such languages do not always have type checking of at

compile time because type determination isn't always

possible when dynamic scope rules are in effect

 A common use of dynamic scope rules is to provide

implicit parameters to subroutines

 Alternative mechanisms exist

 default and optional parameters
46

Dynamic Scoping of bindings

(c) Paul Fodor (CS Stony Brook) and Elsevier

Binding of Reference Environments

A reference environment = all the bindings

active at a given time.

When we take a reference to a function, we

need to decide which reference environment we

want to use!!!

Deep binding binds the environment at the

time the procedure is passed as an argument

Shallow binding binds the environment at

the time the procedure is actually called
47

(c) Paul Fodor (CS Stony Brook) and Elsevier

Example: static vs. dynamic shallow vs.

dynamic deep
var total = 0

def a():

total += 1

def b(F):

var total = 0

F()

print "B", total

def c():

var total = 0

b(a)

print "C", total

c()

print "T", total

48

static dynamic shallow dynamic deep

B 0 1 0

C 0 0 1

T 1 0 0

(c) Paul Fodor (CS Stony Brook) and Elsevier

Example: static vs. dynamic shallow vs.

dynamic deep
var total = 0

def a():

total += 1 (* the state of the stack)

def b(F):

var total = 0

F()

print "B", total

def c():

var total = 0

b(a)

print "C", total

c()

print "T", total

49

static dynamic shallow dynamic deep

B 0 1 0

C 0 0 1

T 1 0 0

Stack

main total=1

c total=0

total=0

b F = a

a

static links

(c) Paul Fodor (CS Stony Brook) and Elsevier

Example: static vs. dynamic shallow vs.

dynamic deep
var total = 0

def a():

total += 1 (* the state of the stack)

def b(F):

var total = 0

F()

print "B", total

def c():

var total = 0

b(a)

print "C", total

c()

print "T", total

50

static dynamic shallow dynamic deep

B 0 1 0

C 0 0 1

T 1 0 0

Stack

main total=0

c total=0

total=1

b F = a

a

(c) Paul Fodor (CS Stony Brook) and Elsevier

Example: static vs. dynamic shallow vs.

dynamic deep
var total = 0

def a():

total += 1 (* the state of the stack)

def b(F):

var total = 0

F()

print "B", total

def c():

var total = 0

b(a)

print "C", total

c()

print "T", total

51

static dynamic shallow dynamic deep

B 0 1 0

C 0 0 1

T 1 0 0

Stack

main total=0

c total=1

b total=0

F = a

F=a

(c) Paul Fodor (CS Stony Brook) and Elsevier

x: integer := 1

y: integer := 2

procedure add

x := x + y

procedure second(P:procedure)

x:integer := 2

P()

procedure first

y:integer := 3

second(add)

first()

write_integer(x)

52

- static scoping would print 3.

- shallow binding just traverses

up until it finds the nearest

variable that corresponds to the

name (increments the local x), so

the answer would be 1.

- dynamic scoping with deep

binding: when add is passed into

second the environment of add is

x = 1, y = 3 and the x is the

global x so it writes 4 into the

global x, which is the one picked

up by the write_integer.

Binding of Reference Environments

(c) Paul Fodor (CS Stony Brook) and Elsevier

x: integer := 1

y: integer := 2

procedure add

x := x + y

procedure second(P:procedure)

x:integer := 2

P()

procedure first

y:integer := 3

second(add)

first()

write_integer(x)

53

- static scoping would print 3.

Binding of Reference Environments

Stack

main y=2

x=1

first y=3

x=2

second P = add

add

static links

main y=2

x=3

first y=3

x=2

second P = add

add

(c) Paul Fodor (CS Stony Brook) and Elsevier

x: integer := 1

y: integer := 2

procedure add

x := x + y

procedure second(P:procedure)

x:integer := 2

P()

procedure first

y:integer := 3

second(add)

first()

write_integer(x)

54

- shallow binding just traverses

up until it finds the nearest

variable that corresponds to the

name (increments the local x), so

the answer would be 1.

Binding of Reference Environments

Stack

main y=2

x=1

first y=3

x=2

second P = add

add

main y=2

x=1

first y=3

x=5

second P = add

add

(c) Paul Fodor (CS Stony Brook) and Elsevier

x: integer := 1

y: integer := 2

procedure add

x := x + y

procedure second(P:procedure)

x:integer := 2

P()

procedure first

y:integer := 3

second(add)

first()

write_integer(x)

55

- dynamic scoping with deep binding: when add is

passed into second the environment of add is x = 1, y = 3

and the x is the global x so it writes 4 into the global x,

which is the one picked up by the write_integer.

Binding of Reference Environments

main y=2

x=1

first y=3

x=2

second P = add

P=add

main y=2

x=4

first y=3

x=5

second P = add

P=add

(c) Paul Fodor (CS Stony Brook) and Elsevier

Closure
 Deep binding is implemented by creating an explicit

representation of a referencing environment and bundling it

together with a reference to the subroutine (this bundle is

called closure).

def foo():

a = 100

def bar():

return a

a += 1

return bar

f = foo()

print f()

56

Outputs: 101

Implementing closures means we may

need to keep around foo's frame even

after foo quits.

- heap allocation to keep around objects

pointed to by foo.

- In languages without closures, we can

fake them with objects.

(c) Paul Fodor (CS Stony Brook) and Elsevier

Binding of Referencing Environments

 Accessing variables with dynamic scope:

 (1) keep a stack (association list) of all active variables

 When you need to find a variable, hunt down from top of stack

 This is equivalent to searching the activation records on the dynamic

chain

 (2) keep a central table with one slot for every variable name

 You'll need a hash function or something to do lookup

 Every subroutine changes the table entries for its locals at entry and

exit.

 In effect, variable lookup in a dynamically-scoped language

corresponds to symbol table lookup in a statically-scoped language

57

(c) Paul Fodor (CS Stony Brook) and Elsevier

Overloading:

same name, more than one meaning

some overloading happens in almost all

languages
 integer + vs. real + vs. String concatanation

read and write in Pascal are overloaded based on the

number and types of parameters

 function return in Pascal

some languages get into overloading in a big

way: Java, C++

The Meaning of Names within a Scope

58

(c) Paul Fodor (CS Stony Brook) and Elsevier
59

Overloading & Ambiguous Invocation
public class AmbiguousOverloading {

public static void main(String[] args) {

System.out.println(max(1, 2));

}

public static double max(int num1, double num2){

if (num1 > num2)

return num1;

else

return num2;

}

public static double max(double num1, int num2){

if (num1 > num2)

return num1;

else

return num2;

}

}

(c) Paul Fodor (CS Stony Brook) and Elsevier

 It's worth distinguishing between some closely related concepts:

 overloaded functions - two different things with the same name
 overload norm

int norm(int a){return a>0 ? a : -a;)

complex norm(complex c) { ... }

 polymorphic functions: one thing that works in more then one

way
 Overriding in OO programming, and

 Generic programming:

function min (A : array of Comparable)

 generic functions - a syntactic template that can be instantiated in

more than one way at compile or even run time

o via macro processors in C++

The Meaning of Names within a Scope

60

(c) Paul Fodor (CS Stony Brook) and Elsevier
61

Polymorphism, Dynamic Binding and Generic Programming

public class PolymorphismDemo {

public static void main(String[] args) {

m(new GraduateStudent());

m(new Student());

m(new Person());

m(new Object());

}

public static void m(Object x) {

System.out.println(x.toString());

}

}

class GraduateStudent

extends Student {

}

class Student extends Person {

public String toString() {

return "Student";

}

}

class Person extends Object {

public String toString() {

return "Person";

}

}

Method m takes a parameter of

the Object type – can be invoked

with any object

Polymorphism: an object of a subtype can be

used wherever its supertype value is required

Dynamic binding: the Java Virtual Machine
determines dynamically at runtime which
implementation is used by the method

When the method m(Object x) is

executed, the argument x’s toString

method is invoked.

(c) Paul Fodor (CS Stony Brook) and Elsevier

Dynamic Binding
 Suppose an object o is an instance of classes C1, C2, ..., Cn-1,
and Cn

 C1 is a subclass of C2, C2 is a subclass of C3, ..., and Cn-1 is a
subclass of Cn

 Cn is the most general class, and C1 is the most specific class

 If o invokes a method p, the JVM searches the
implementation for the method p in C1, C2, ..., Cn-1 and Cn,
in this order, until it is found, the search stops and the first-
found implementation is invoked

62

Cn Cn-1 C2 C1

Since o is an instance of C1, o is also an

instance of C2, C3, …, Cn-1, and Cn

(c) Paul Fodor (CS Stony Brook) and Elsevier

Output:

Student

Student

Person

java.lang.Object@12345678

63

public class PolymorphismDemo {

public static void main(String[] args) {

m(new GraduateStudent());

m(new Student());

m(new Person());

m(new Object());

}

public static void m(Object x) {

System.out.println(x.toString());

}

}

class GraduateStudent extends Student {

}

class Student extends Person {

public String toString() {

return "Student";

}

}

class Person extends Object {

public String toString() {

return "Person";

}

}

Dynamic Binding

(c) Paul Fodor (CS Stony Brook) and Elsevier

Method Matching vs. Binding

The compiler finds a matching method
according to parameter type, number of
parameters, and order of the
parameters at compilation time

The Java Virtual Machine dynamically
binds the implementation of the method
at runtime

64

(c) Paul Fodor (CS Stony Brook) and Elsevier

The Meaning of Names within a Scope
 Aliasing: two names point to the same object
Makes program hard to understand

Makes program slow to compile

What are aliases good for?
 linked data structures

Example: passing a variable by reference to a subroutine

that also accesses that variable directly
double sum, sum_of_squares;

accumulate(sum);

void accumulate(double& x){// x is passed by reference

sum += x;

sum_of_squares += x * x;

}

65

sum is passed as an argument to

accumulate, so, sum and x will be

aliases for one another

(c) Paul Fodor (CS Stony Brook) and Elsevier

Modules (AKA packages)
Break program up into parts, which need

to be explicitly imported.

We only need to agree on the meaning of

names when our code interacts.

66

(c) Paul Fodor (CS Stony Brook) and Elsevier

Macros
 Macros are a way of assigning a name to some syntax.

 C: Textual substitution.

#define MAX(x, y) (x > y ? x : y)

 benefit: shorter code, no stack, can choose not to execute some of

the code

 Problems with macros:

 multiple side effects: MAX(a++, b++)

 scope capture: temporary var used inside macro has same name as

a real var – for example: t exists outside

#define SWAP(a,b) {t = (a); (a) = (b); (b) = t;}

 Scheme and Common Lisp hygenic macros rename variables

67

