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" Set theory

® Set theory is a branch of mathematical logic that studies sets,

which informally are collections of objects.

® Abstract set theory is one of the foundations of mathematical
thought: most mathematical objects (e.g. numbers) can be defined in

terms of sets
® Let S denote a set:
® a € S (ais a member of S) means that a is an element of S
Example: 1 € {1,2,3},3 € {1,2,3}
®a & S (ais not a member of S) means that a is not an element of S
Example: 4 € {1,2,3}
® It Sis a set and P(x) is a property that elements of S may or may
not satisfy: A = {x € S | P(x)} is the set of all elements x of S
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" Subsets: Proof and Disproof :

® Def.: A € B (A is a subset of B) & Vx, if xEA then xEB
(it is a tformal universal conditional statement)
* Negation: A & B (A is not a subset of B) <&
dx such that x € A and x & B
® A is a proper subset of B (ACB) &
(1)ACB  AND
(2) there is at least one element in B that is not in A

o Examples:

Uy &1 {1,2} & {1, 3}
e{l}c{l,z} ESRSRUEN S
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' Set Theory

® Element Argument: the Basic Method for
Proving That One Set Is a Subset of Another

Let sets X andY be given. To prove that X &Y,

1. Suppose that x is a particular [but
arbitrarily Chosen] element of X

)

2 . show that x is also an element of Y.
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' Set Theory

* Example of an Element Argument Prootf:
A={mEZ|m=6r+ 12 for somer € Z}
B={n€Z | n=3sforsomes€Z}

A € B?

Suppose x is a particular but arbitrarily chosen element of A.
[We must show that x € B].

By definition of A, there is an integer r such that
x =6r+ 12 x=302r+4)

But, s = 2r + 4 is an integer because products and sums of

integers are integers.

x=3s. =P By definition of B, x is an element of B.
Therefore, A & B.
(-, ’
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' Set Theory A

® Disprove B& A: B ZA.

A={mE€EZ|m = 6r + 12 for somer € Z}

B={n€Z | n=3sforsomes€Z}

Disprove = show that the statement B & A is false.

We must find an element of B (x=3s) that is not an element of
A (x=6rt12).

Letx=3=3*1=»3€EB

3 € A? We assume by contradiction dr € Z, such that:
6r+12=3 (assumption) > 0r + 4 = 1"=P2r = 3= Pr=-3/2

But r=-3/2 is not an integer(&Z).Thus, contradiction™® 3&A.

3E€Band 3¢A,so BEZA.
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'Set Equality

* A = B, if, and only if, every element of A is in B and every element of
BisinA.
A=B & ACSCBandBCA
* Example:
A= {m E€Z | m = 2afor some integer a}
B={n€Z | n=2b— 2for some integer b}
A=B?
® Proof Part 1:A € B
Suppose x is a particular but arbitrarily chosen element of A.
By definition of A, there is an integer a such that x = 2a
x=2a+2—2=2@+1)—2
Letb=a+ 1, then x = 2b — 2 for some integer b
Thus, x € B.
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'Set Equality

® Proof Part 2: BC A

Suppose x is a particular but arbitrarily chosen element of B.
By definition of B, there is an integer b such that x = 2b-2

x =2(b—1)

Leta=Db — 1, then x = 2a for some integer a

Thus, x EA.

Therefore, we proved A = B.
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"Venn Diagrams
ecACRB

DA
°AZB

A
OR ‘ OR
(c) Paul Fodor (CS Stony Brook)

(-,




e
Relations among Sets of Numbers

*Z, Q, and R denote the sets of integers, rational

numbers, and real numbers
® Z S Q because every integer is rational (any integer n
can be written in the form n/1)
®Z is a proper subset of Q: there are rationals that are
not integers (e.g., 1/2)
* Q & R because every rational is real

®QQ is a proper subset of R because there are real

numbers that are not rational (e.g., \/2) f \\
N

ZQRI

S/ /
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" Operations on Sets

Let A and B be subsets of a universal set U.

1.The union of A and B: A U B is the set of all elements that are in

at least one of A or B:

AUB={x€U | xEAorx€EB}
2. The intersection of A and B: A N B is the set of all elements that

are common to both A and B.

ANB={x€U | xEAandx EB}

3.The difference of B minus A (relative complement of A in B):
B—A (or B\A) is the set of all elements that are in B and not A.

B-—A={x€EU|xEBandx&A}

4.The complement of A: A¢is the set of all elements in U that are

notin A.

Ac={x€eEU | x €A}
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" Operations on Sets :

®Example: Let U = {a, b, c,d, e, f, g} and let
A=1{a,ce gland B= {d,e,f, g}.
*AUB={a,c,d,e,f, g}
°*AMNB= {e, g}
°B—-A={d,f}
°*A°={b,d, f}
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"Subsets of real numbers

® Given real numbers a and b with a < b:
¢(a,b)= {x ER | a<x <b}
®(a,b]={xER | a<x=<b}
°la,b)= {xER | a<x <b}
®la,b]= {xE€ER | a<x<b}
® The symbols 00 and —o0 are used to indicate intervals that are
unbounded either on the right or on the left:
® (a,0)={x ER | a <x}
®[a,0) ={x ER | a <x}
® (—oo,b)={x ER | x <b}
® (—oo,b]={x ER | x <b}
@ * A single number is denoted in the usual set notation, e.g.: {3}
A
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‘Subsets of real numbers

¢ Example: Let i S S S
A=(—1,0]= {xER|-1<x<0} !
B=1[0,1)= {xER|0<x <1} R
AUB={x€R|x€E(—1,0]or

x €10, 1)}
_ _ 2 -1 0 1 2
= {xER|xE (-1, 1)} =(—1,1) o>
ANB={xER| xE(—1,0]and
2 o0 12
x €10, 1)} = {0} D e o
B—A={x€R|x€[0,1)and x & (—1,0]}= (0, 1)
I O
B—A
A° = {x € R| itis not the case that x € (—1, 0]}
-2 -1 0 1 2
= (0, ~1]U (0,0) g
N/
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' Set theory

e Unions and Intersections of an Indexed Collection
of Sets

® Given sets Ay, A, A,,... that are subsets of a universal set U and

1ven a nonnegative integer n (set sequence
giv g ger n (set sequence)

U A= {x€U | x €A, foratleastonei=0,1,2,...,n}
i=0

=

e (J A, ={x €U |x EA, for at least one nonnegative integeri}
—1

o ﬂAi: {x€U | x€A foralli=0,1,2,..., n}
i=0

o m A, = {x €U | x EA, for all nonnegative integers i }
i=1 1! 1
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"Indexed Sets

* Example: for each positive integer i,
A = {x€eR| —1/i<x<1/i} = (—1/i,1/i)
* A, UA, UA, ={x € R|xisin at least one of the intervals
(—1,1), (—1/2,1/2),(=1/3,1/3) } = (=1, 1)
* A, NA,NA; ={x € R|xisin all of the intervals (—1,1),
(—1/2,1/2),(=1/3,1/3) } =(=1/3,1/3)
o EOJ A, ={x € R|x is in at least one of the intervals (—1/i,1/1)

vﬂlere iis a positive integer} = (—1, 1)

o ﬂ A, ={x € R|x is in all of the intervals (—1/i,1/1i), where i is
i=1
a positive integer} = {0}
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"The Empty Set @ ({})

@ = {! aset that has no elements

*Examples:
°f1,2} N {3,4}:®
°{x ER| 3<X<2}:®




" Partitions of Sets

* A and B are disjoint & A (1B = 1)
¢ the sets A and B have no elements in common

® Sets A, A,, A;,... are mutually disjoint (pairwise disjoint or
non-overlapping) < no two sets A; and A; (i #j) have any
elements in common
*Vij=123,.,izj2ANA=0

® A finite or infinite collection of nonempty sets{A,A,, A;,...}

is a partition of a set A & A

1LA=U A b
=1

2.A,A,, Aj,... are mutually disjoint
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" Partitions of Sets

* Examples:

°*A=1{1,2,3,4,5,6}
A= 41,2} A= 3,4 A= 15,6)
{A,A,, A;}is a partition of A because:

A=A UA,UA,

A},A, and A; are mutually disjoint:

A,NA,=A NA,=A,NA,= @

*T, = {n €Z| n = 3k, for some integer k}
T,={n €Z| n= 3k + 1, for some integer k}
T;={n€Z| n= 3k + 2, for some integer k}
{T,,T,, T;}is a partition of Z
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Power Set
* Given a set A, the power set of A, P(A), is
the set of all subsets of A
‘Examp es:

P({1,2}) = {D, {1}, {2}, {1,2}}
P(©@) = {2}

P(P(D)) = P({0}) = {9, {0} }
P(P(P(D))) = P({D, {0} })=

~ B4, 1018 P




" Cartesian Product

® An ordered n-tuple (x,,X,,...,Xx_) consists of the elements
X;,X,,...,X, together with the ordering: first x,, then x,, and so

forth up to x_
* Two ordered n-tuples (x,,x,,...,x,) and (y,,y,,...,y,) are equal:
(X)X, X)) = (Y15 Y000 Yn) X =yjand x, =y, and L x =y,
® The Cartesian product of A ,A,,... A :
A XAX XA ={(a;, a5,...,2) | €A, 2,€EA,,...;a EA }
° Example: A={1,2}, B={3,4}
AXB ={(1,3), (1,4), (2,3), (2,4)}
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" Cartesian Product

® Example: letA = {x,y},B = {1,2,3},and C = {a, b}
AXBXC={(uvw) | u€A,vEB,and w € C}
= {05, 1,), (%, 2,2), (5 3,), (3 1, 2), (3, 2, ),
(13,2, (% 1,b), (%, 2, b), (%, 3, b), (3, 1, b),
(¥, 2,b), (, 3, b)}
(AXB)yXC={(uv) | u€AXBandvEC}
= {((x, 1), 2), ((x, 2), 2), ((x, 3),2), ((; 1), 2),
(% 2), ), ((y, 3), @), ((x, 1), b), ((x, 2), b), ((x, 3), b),
((y; 1), b), ((x, 2), b), ((x; 3), b)§
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" Properties of Sets

® Inclusion of Intersection:
AMNMBEA and ANBCHB
® Inclusion in Union:
ACSAUB and BESEAUB
* Transitive Property of Subsets:
AC€BandBEC2ACC
exEAUBe=xEAorx€B
exEANNBeS xEAandxEB
*XxXEB—ASxEBandx €A
*XEASXEA
°* (x,y)EAXB&SxEAandyEB
(-
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" Proof of a Subset Relation

® Forall setsAand B,A (1 B € A.
The statement to be proved is universal:
V setsAand B,ANBE A
Suppose A and B are any (particular, but arbitrarily

chosen) sets.
A N B E A, we must show Vx, xEANB 2 x €A

Suppose X is any (particular but arbitrarily chosen)
element in A 1 B.

By definition of A (1 B, x € A and x € B.
Therefore, <~ x €A So, ANBEA

(c) Paul Fodor (CS Stony Brook)
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"Set Identities h

® For all sets A, B, and C:
¢ Commutative Laws: AUB = BUA and AMNB = BMNA
® Associative Laws: (AUB)UC=AU(BUC) and (AMNB)NC=AN(BNC)
e Distributive Laws: AUBNC)=(AUB)N(AUC),AN(BUC)=(ANB)U(ANC)
e Identity Laws: AUQ = A and ANU = A
e Complement Laws: AUA® = U and ANA® = @
® Double Complement Law: (A)¢ = A
® Idempotent Laws: AUA =A and ANA =A
® Universal Bound Laws: A U U = U and AN@ = @
® De Morgan’s Laws: (A U B)* = A°(1B¢ and (A(1B)° = A°U B¢
 Absorption Laws: A U (A (1 B) =AandA N (AUB)=A
® Complements of Uand @: U° = @ and @ = U
e Set Difference Law: A —B=A 1 B¢

(c) Paul Fodor (CS Stony Brook) /




" Proof of a Set Identity

® For all sets A, B, and C, AU(BINC)=(AUB)N(AUC)

Suppose A, B, and C are arbitrarily chosen sets.

1.AUBNC) € (AUB)N(AUC)

Show: Vx, if x€EAU(BNC) then xE(AUB)N(AUC)

Suppose x € A U (B [1 C), arbitrarily chosen. (1)

We must show x€E(AUB)N(AUC).

From (1), by definition of union, x € A or x € BNC

Case 1.1: xEA. By definition of union: x€EAUB and xEAUC

By definition of intersection: xE(AUB)MN(AUC). (2)

Case 1.2: xEBMNC. By definition of intersection: x€EB and xEC

By definition of union: x€EAUB and x€EAUC. And (2) again.
@ 2. (AUB)MN(AUC) € AU(BINC) (proved in similar manner)

(c) Paul Fodor (CS Stony Brook)




" Proof of a De Morgan’s Law for Sets

® For all sets A and B: (A U B)* = A°[1B¢
Suppose A and B are arbitrarily chosen sets.
() Suppose x E(A U B)°.
By definition of complement: x € A U B
it is false that (x is in A or x is in B)
By De Morgan’s laws of logic: x is not in A and x is not in B.
xEAand x € B
Hence x € A° and x € B¢
x E A B¢
(€) Proved in similar manner.

@ (c) Paul Fodor (CS Stony Brook) /
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Intersection and Union with a Subset

® For any sets A and B, if A € B, then A[1B=A and AUB=B
ANB=A < (1)ANBCAand (2)A CANB

(1) A (1 B € A is true by the inclusion of intersection property
(2) Suppose x € A (arbitrary chosen).
From A € B, then x € B (by definition of subset relation).
From x € A and x € B, thus x € A (1 B (by definition of )
ACANB
AUB=B<% 3)AUBCBand (4)BSAUB
(3) and (4) proved in similar manner to (1) and (2)

@ (c) Paul Fodor (CS Stony Brook) /




" The Empty Set Properties
* A Set with No Elements Is a Subset of Every Set:

If E is a set with no elements and A is any set, then E € A

Proof (by contradiction): Suppose there exists an empty set E with
no elements and a set A such that E € A.

By definition of &: there is an element of E (xEE) that is not an
element of A (x&A).

Contradiction with E was empty, so x&E.
* Uniqueness of the Empty Set: There is only one set with no

elements.
Proof: Suppose E, and E, are both sets with no elements.

By the above property: E,CE, and E,€E, > 4 E,=E,

@ (c) Paul Fodor (CS Stony Brook) /




" The Element Method -

® To prove that a set X = @, prove that X has no elements

by contradiction:

® suppose X has an element and derive a contradiction.
* Example 1: For any setA, A NQ = Q.
Proof: Let A be a particular (arbitrarily chosen) set.
ANG =0 < A NO has no elements

Proof by contradiction: suppose there is x such that
xEANQ.
By definition of intersection, x € A and x € 1)

Contradiction since @ has no elements.

@ (c) Paul Fodor (CS Stony Brook) /




" The Element Method

® Example 2: For all sets A, B, and C,

if A€ Band B € C¢, thenA N C = 0.
Proof: Suppose A, B, and C are any sets such that
AC€ Band B C C¢
Suppose there is an element x €A (1 C.
By definition of intersection, x € A and x € C.
From x € A and A € B, by detinition of subset, x € B.

From x € Band B & C¢, by definition of subset, x € C*.
By definition of complement x & C (contradiction with x € C).

(c) Paul Fodor (CS Stony Brook)




" Disproofs A
* Disproving an alleged set property amounts to finding a counterexample

for which the property is false.
* Example: Disprove that for all sets A,B, and C,

(A-B)U(B—C) = A—C ?
A T A
] ]

_‘\\ /j_.-'ll \ .__‘-\ {/__.- II
i C - C -

The property is false <> there are sets A, B, and C for which the equahty
does not hold

Counterexample 1: A={1,2,4,5} B={2,3,5,6},C= {4,5,6,7}% I l.-"';z""-} 3 3
AV

A-BUB-C)= (141U {2,3]={1,2,3,4) # {12}=A-C /46"~

Counterexample 2: A= D B= {1},C= 1) \ g{, 8

@A U ORI 2 TAS )




" Cardinality of a set

® The cardinality of a set A: N(A) or|A| isa

measure of the "number of elements of the set"
® Example: | {2,4,6}| =3
® For any sets A and B,
IAUB| + |AMNB| = |A|+]|B]
* It A and B are disjoint sets, then
AUB| = |A|+]|B
AMNB| =0

(c) Paul Fodor (CS Stony Brook)




" The Size of the Power Set

 For all int. n =0, X has n elements = P(X) has 2" elements.
Proot (by mathematical induction): Q(n): Any set with n elements has 2" subsets.
Q(0): Any set with O elements has 2° subsets:
The power set of the empty set @ is the set P(Q) = {D}.
P(®) has 1=2° element: the empty set @.
For all integers k 2 0, if Q(k) is true then Q(k+1) is also true.
Q(k): Any set with k elements has 2* subsets.
We show Q(k+1): Any set with k +1elements has 2! subsets.
Let X be a set with k+1 elements and zEX (since X has at least one element).
X—{z} has k elements, so P(X—{z}) has 2* elements.
Any subset A of X—{z} is a subset of X: A € P(X).
Any subset A of X—{z}, can also be matched with {z}: AU {z} € P(X)
All subsets A and AU {z} are all the subsets of X = P(X) has 2k +2k = 2#k=)k+1

@ elements (c) Paul Fodor (CS Stony Brook) /
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1.
2.

o

e A

10.
11.

Algebraic Proofs of Set Identities

o Algebralc Proofs = Use of laws to prove new identities

Commutative Laws: AUB = BUA and A(NB = BMNA

Associative Laws: (AUB)UC=AU(BUC) and (ANB)(1C=AN(BMC)

Distributive Laws: AU(B1C)=(AUB)(1(AUC) and
AN(BUC)=(ANB)U(ANC)

Identity Laws: AUD=Aand ANU=A

Complement Laws: AUA® = U and ANA°=Q

Double Complement Law: (A€)¢ = A

Idempotent Laws: AUA = A and ANA = A

Universal Bound Laws: AUU=Uand AN@ =0

De Morgan’s Laws: (A U B)° = A(1B°and (A(1B)¢ = A°U B¢
Absorption Laws: AU (AN B)=Aand AN (AUB)=A
Complements of U and P:Uc=Q@and @c=U

Set Difference Law: A — B =A ) B¢

(c) Paul Fodor (CS Stony Brook)
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Algebraic Proofs of Set ldentities

® Example: for all sets A,B,and C,(AUB)—C=(A—C)U(B—C).
Algebraic proof:
(AUB)—C=(AUB) N Ce by the set difference law
= C°1 (AUB) by the commutative law for [
= (CM1A) U (C< N B) by the distributive law
= (AN C%U (BN C by the commutative law for
= (A — C) U (B — C) by the set ditference law.

(c) Paul Fodor (CS Stony Brook) /
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/Algebraio Proofs of Set Identities

* Example: for all sets A and B;,A — (A (1 B) =A — B.

A — (AN B)=AMN (A B) by the set difference law
= A N (AU B) by De Morgan’s laws
= (A A U (A N B by the distributive law
= @QU(A N BY) by the complement law
= (AN B U D by the commutative law for U
= A B by the identity law for U
=—A—B by the set ditterence law.

(c) Paul Fodor (CS Stony Brook) /




~ Correspondence between logical
equivalences and set identit

€S

Logical Equivalences

Set Properties

For all statement variables p, ¢, and r:

For all sets A, B, and C:

apvg=qvp
b.prg=qgnap

a. AUB=BUA
b.ANB=BNA

apA(@Ar)=pa(gAr)
b.pvigvr)=pvi(gvVvr)

a AUBUC)=AUBUCQC)
b.AN(BNC)=AN(BNC)

apnrgvry=((prq)vI(pAar)
b.pvgnarr)=(pvgr(pvr)

a ANBUC)=(ANB)UANC)
b.AU(BNC)=(AUB)N(AUC)

apve=p aAUP=A
b.pat=p bANU=A
apv~p=t a AUA =U
b.pa~p=c b.ANA =0
~~p)=p (A=A

apvp=p aAUA=A
b.pap=rp bANA=A
apvt=t a AuU=U
b.prec=c b.ANP=0

a~(pvq)=~pr~q
b.~(p A q) =~pv ~q

a.(AUB)" =ANB°
b. (AN B) = A°U B*

apviprg)=p
b.pa(pvg)=p

aAUANB) =A
b.AN(AUB)=A

a~t=c

b.~c =t

alU‘=p
b. ¥ =U

(c) Paul Fodor (CS Stony Brook)
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" Boolean Algebra

*V (or) corresponds to U (union)

* A (and) corresponds to (1 (intersection)

® ~ (negation) corresponds to ¢ (complementation)

® t (a tautology) corresponds to U (a universal set)

® ¢ (a contradiction) corresponds to @ (the empty set)

* Logic and sets are special cases of the same general

structure Boolean algebra.

@ (c) Paul Fodor (CS Stony Brook)




" Boolean Algebra

* A Boolean algebra is a set B together with two operations + and -,
such that for all a and b in B both a + b and a ‘b are in B and the
following properties hold:

1. Commutative Laws: For all a and b in B, a+b=b+a and a-b=b-a
2. Associative Laws: For all a,b, and ¢ in B,
(at+b)+c=a+(b+c) and (a-b)-c=a‘(b-c)
3. Distributive Laws: For all a, b, and c in B, a+(b-c)=(a+b)-(a+tc)
and a‘(btc)=(a'b)t(a-c)
4. Identity Laws: There exist distinct elements 0 and 1 in B such that
forallain B, at0=aand a-1=a

5. Complement Laws: For each a in B, there exists an element in B,

a, complement or negation of a, such that a+a=1 and a-a=0

(c) Paul Fodor (CS Stony Brook)




e

Properties of a Boolean Algebra

Uniqueness of the Complement Law: For all a and x in B, it
a+x=1 and a-x=0 then x=a
Uniqueness of 0 and 1: If there exists x in B such that atx=a

for all a in B, then x=0, and if there exists y in B such that
a‘y=a for all ain B, then y=1.

Double Complement Law: For alla € B, (a) = a

Idempotent Law: For all a € B, ata=a and a-a=a.

Universal Bound Law: For all a € B, a+1=1 and a-0 = 0.

De Morgan’s Laws: For all aand b € B, at+b=a‘b and a-b=a+b

Absorption Laws: For all a and b € B,(at+b)-a=a and (a-b)+a=a

Complements of 0 and 1: 0=1and1=0.

(c) Paul Fodor (CS Stony Brook)
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e

x =x -1

=x-(ata)
=xatx-a
—a-x*tx-a
=0+x-a

—aatx-a
=@+ @ %)
—a-(aTtx)

3
=a-l1
a

Properties of a Boolean Algebra

® Uniqueness of the Complement Law: For all a and x in B, if
atx=1 and a-x=0 then x=a

Proof: Suppose a and x are particular (arbitrarily chosen) in B that satisty the

hypothesis: atx=1 and a-x=0.

because 1 is an identity for -

by the complement law for +

by the distributive law for - over +
by the commutative law for -

by hypothesis

by the complement law for -

by the commutative law for -

by the distributive law for - over +
by hypothesis

because 1 is an identity for -

(c) Paul Fodor (CS Stony Brook)




" Russell’s Paradox

® Most sets are not elements of themselves.
® Imagine a set A being an element of itself AEA.
® Let S be the set of all sets that are not elements of themselves:
S={A |Aisasetand A €A}
® Is S an element of'itself? Yes&No contradiction.
® If SES, then S does not satisfy the defining property for S: SES.

o If SES, then satisfies the defining property for S, which implies
that: SES.

@ (c) Paul Fodor (CS Stony Brook) /




"The Barber Puzzle :

® [n a town there is a male barber who shaves all those

men, and only those men, who do not shave themselves.

® Question: Does the barber shave himself?

¢ [f the barber shaves himself, he is a member of the class of
men who shave themselves. The barber does not shave
himself because he doesn’t shave men who shave

themselves.

® [{ the barber does not shave himself, he is a member of the
class of men who do not shave themselves. The barber
shaves every man in this class, so the barber must shave
himsellf. Both Yes&No derive contradiction!

@ (c) Paul Fodor (CS Stony Brook) /




" Russell’s Paradox

™~

® One possible solution: except powersets, whenever a set is defined

using a predicate as a defining property, the set is a subset of a

known set.

® Then S (form Russell’s Paradox) is not a set in the universe of sets.

(c) Paul Fodor (CS Stony Brook)




" The Halting Problem

® There is no computer algorithm that will accept any algorithm X and data set D
as input and then will output “halts” or “loops forever” to indicate whether or

not X terminates in a finite number of steps when X is run with data set D.

Proof sketch (by contradiction): Suppose there is an algorithm CheckHalt such
that for any input algorithm X and a data set D, it prints “halts” or “loops

forever”.
A new algorithm Test(X)
loops forever if CheckHalt(X, X) prints “halts” or
stops if CheckHalt(X, X) prints “loops forever”.
Test(Test) = ?

* IfTest(Test) terminates after a finite number of steps, then the value of
CheckHalt(Test, Test) is “halts” and so Test(Test) loops forever. Contradiction!

* IfTest(Test) does not terminate after a finite number of steps, then
CheckHalt(Test, Test) prints “loops forever” and so Test(Test) terminates.
Contradiction!

So, CheckHalt doesn’t exist.
(c) Paul Fodor (CS Stony Brook)




