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(c) Paul Fodor (CS Stony Brook)

Set theory
 Set theory is a branch of mathematical logic that studies sets, 

which informally are collections of objects.

 Abstract set theory is one of the foundations of mathematical 

thought: most mathematical objects (e.g. numbers) can be defined in 

terms of sets

 Let S denote a set:

 a ∈ S (a is a member of S) means that a is an element of S

 Example: 1 ∈ {1,2,3}, 3 ∈ {1,2,3}

 a ∉ S (a is not a member of S) means that a is not an element of S

 Example: 4 ∉ {1,2,3}

 If S is a set and P(x) is a property that elements of S may or may 

not satisfy: A = {x ∈ S | P(x)} is the set of all elements x of S 

such that P(x)2



(c) Paul Fodor (CS Stony Brook)

Subsets: Proof and Disproof
 Def.: A ⊆ B (A is a subset of B) ⇔∀x, if x∈A then x∈B

(it is a formal universal conditional statement)

 Negation: A ⊈ B (A is not a subset of B) ⇔

∃x such that x ∈A and x ∉ B

 A is a proper subset of B (A⊂B) ⇔

(1) A⊆B      AND

(2) there is at least one element in B that is not in A

 Examples:

{1} ⊆ {1} {1,2} ⊈ {1, 3}

{1} ⊂ {1, 2} {1} ⊂ {1, {1}}
3
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Set Theory

Element Argument: the Basic Method for 

Proving That One Set Is a Subset of Another

Let sets X and Y be given. To prove that X ⊆Y,

1. Suppose that x is a particular [but 

arbitrarily chosen] element of X,

2. show that x is also an element of  Y.
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Set Theory
 Example of an Element Argument Proof: 

A = {m ∈ Z|m = 6r + 12 for some r ∈ Z}

B = {n ∈ Z | n = 3s for some s ∈ Z}

A ⊆ B?

Suppose x is a particular but arbitrarily chosen element of A.

[We must show that x ∈ B].

By definition of A, there is an integer r such that   

x = 6r + 12  x = 3(2r + 4)

But, s = 2r + 4 is an integer because products and sums of 

integers are integers.

x=3s. ➔ By definition of B, x is an element of B.

Therefore, A ⊆ B.
5
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Set Theory
 Disprove B ⊆A:   B ⊈A.

A = {m ∈ Z|m = 6r + 12 for some r ∈ Z}

B = {n ∈ Z | n = 3s for some s ∈ Z}

Disprove = show that the statement B ⊆A is false.

We must find an element of B (x=3s) that is not an element of 

A (x=6r+12).

Let x = 3 = 3 * 1 ➔ 3 ∈ B

3 ∈A? We assume by contradiction ∃r ∈ Z, such that: 

6r+12=3 (assumption) ➔2r + 4 = 1➔2r = -3➔r=-3/2

But r=-3/2 is not an integer(∉Z).Thus, contradiction➔ 3∉A.

3 ∈ B and 3∉A, so B ⊈A.
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Set Equality
 A = B, if, and only if, every element of A is in B and every element of 

B is in A.

A = B     ⇔ A ⊆ B and B ⊆A

 Example: 

A = {m ∈ Z | m = 2a for some integer a}

B = {n ∈ Z | n = 2b − 2 for some integer b}

A = B ?

 Proof  Part 1: A ⊆ B

Suppose x is a particular but arbitrarily chosen element of A.

By definition of A, there is an integer a such that x = 2a

x = 2a + 2 − 2 = 2(a + 1) − 2

Let b = a + 1, then x = 2b − 2 for some integer b

Thus, x ∈ B.
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Set Equality
 Proof  Part 2: B ⊆A

Suppose x is a particular but arbitrarily chosen element of B.

By definition of B, there is an integer b such that x = 2b-2

x = 2(b − 1)

Let a = b − 1, then x = 2a for some integer a

Thus, x ∈A.

Therefore, we proved A = B.
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Venn Diagrams

A ⊆ B

A ⊈ B
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Relations among Sets of Numbers
 Z, Q, and R denote the sets of integers, rational 

numbers, and real numbers

 Z ⊆ Q because every integer is rational (any integer n 

can be written in the form n/1)

Z is a proper subset of Q: there are rationals that are 

not integers (e.g., 1/2)

 Q ⊆ R because every rational is real

Q is a proper subset of R because there are real 

numbers that are not rational (e.g., √2)
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Operations on Sets
Let A and B be subsets of a universal set U.

1. The union of A and B: A ∪ B is the set of all elements that are in 

at least one of A or B:

A ∪ B = {x ∈U | x ∈A or x ∈ B}

2. The intersection of A and B: A ∩ B is the set of all elements that 

are common to both A and B.

A ∩ B = {x ∈U | x ∈A and x ∈ B}

3. The difference of B minus A (relative complement of A in B): 

B−A (or B\A) is the set of all elements that are in B and not A.

B − A = {x ∈U | x ∈ B and x ∉A}

4. The complement of A: Ac is the set of all elements in U that are 

not in A.

Ac = {x ∈U | x ∉A}
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Operations on Sets
Example: Let U = {a, b, c, d, e, f, g} and let 

A = {a, c, e, g} and B = {d, e, f, g}.

A ∪ B = {a, c, d, e, f, g}

A ∩ B = {e, g}

B − A = {d, f }

Ac = {b, d, f }
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Subsets of real numbers
 Given real numbers a and b with a ≤ b:

 (a, b) = {x ∈ R | a < x < b} 

 (a, b] = {x ∈ R | a < x ≤ b} 

 [a, b) = {x ∈ R | a ≤ x < b}

 [a, b] = {x ∈ R | a ≤ x ≤ b}

 The symbols ∞ and −∞ are used to indicate intervals that are 

unbounded either on the right or on the left:

 (a,∞)={x ∈ R | a < x} 

 [a,∞) ={x ∈ R | a ≤ x}

 (−∞, b)={x ∈ R | x < b} 

 (−∞, b]={x ∈ R | x ≤ b}

 A single number is denoted in the usual set notation, e.g.: {3}
13
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Subsets of real numbers
 Example: Let

A = (−1, 0] = {x ∈ R|−1 < x ≤ 0} 

B = [0, 1) = {x ∈ R| 0 ≤ x < 1}

A ∪ B = {x ∈ R| x ∈ (−1, 0] or 

x ∈ [0, 1)} 

= {x ∈ R| x ∈ (−1, 1)} = (−1, 1)

A ∩ B = {x ∈ R| x ∈ (−1, 0] and 

x ∈ [0, 1)} = {0}

B − A={x ∈ R| x ∈ [0, 1) and x ∉ (−1, 0]}= (0, 1)

Ac = {x ∈ R| it is not the case that x ∈ (−1, 0]} 

= (−∞, −1] ∪ (0, ∞)
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Set theory
 Unions and Intersections of an Indexed Collection 

of Sets

 Given sets A0, A1, A2,... that are subsets of a universal set U and 

given a nonnegative integer n (set sequence)

 Ai = {x ∈ U | x ∈Ai for at least one i = 0, 1, 2,..., n}

 Ai ={x ∈ U |x ∈Ai for at least one nonnegative integer i }

 Ai = {x ∈ U | x ∈Ai for all i = 0, 1, 2, . . . , n}

 Ai = {x ∈ U | x ∈Ai for all nonnegative integers i }
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Indexed Sets
 Example: for each positive integer i, 

Ai = {x ∈ R| −1/i <x< 1/i} = (−1/i , 1/i)

 A1 ∪A2 ∪A3 ={x ∈ R|x is in at least one of the intervals 

(−1,1), (−1/2, 1/2), (−1/3, 1/3) } = (−1, 1)

 A1 ∩A2 ∩A3 ={x ∈ R|x is in all of the intervals (−1,1), 

(−1/2,1/2), (−1/3, 1/3) } = (−1/3, 1/3)

 Ai ={x ∈ R|x is in at least one of the intervals (−1/i,1/i) 

where i is a positive integer} = (−1, 1)

 Ai ={x ∈ R|x is in all of the intervals (−1/i,1/i), where i is 

a positive integer} = {0}
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The Empty Set ∅ ({})

∅ = {} a set that has no elements

Examples: 

{1,2} ∩ {3,4}= ∅

{x ∈ R| 3 < x < 2} = ∅

17
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Partitions of Sets
 A and B are disjoint⇔A ∩ B = ∅

 the sets A and B have no elements in common

 Sets A1, A2, A3,... are mutually disjoint (pairwise disjoint or 

non-overlapping)  no two sets Ai and Aj (i ≠ j) have any 

elements in common

 ∀ i,j = 1,2,3,..., i ≠ j →Ai ∩Aj = ∅

 A finite or infinite collection of nonempty sets{A1,A2, A3,...} 

is a partition of a set A 

1. A =      Ai

2. A1,A2, A3,... are mutually disjoint

18
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Partitions of Sets
 Examples:

 A = {1, 2, 3, 4, 5, 6}

A1 = {1, 2} A2= {3, 4} A3 = {5, 6}

{A1,A2, A3}is a partition of A because:

A = A1 ∪A2 ∪A3

A1,A2 and A3 are mutually disjoint: 

A1∩A2=A1∩A3=A2∩A3= ∅

 T1 = {n ∈ Z| n = 3k, for some integer k}

T2 = {n ∈ Z| n = 3k + 1, for some integer k}

T3 = {n ∈ Z| n = 3k + 2, for some integer k}

{T1,T2, T3}is a partition of Z
19
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Power Set

Given a set A, the power set of A, P(A), is 

the set of all subsets of A

Examples: 

P({1,2}) = {∅, {1}, {2}, {1,2}}

P(∅) = {∅}

P(P(∅)) = P({∅}) = {∅, {∅}} 

P(P(P(∅))) = P({∅, {∅}})=

= {∅, {∅}, {{∅}},{∅, {∅}}}
20
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Cartesian Product
 An ordered n-tuple (x1,x2,...,xn) consists of the elements 

x1,x2,...,xn together with the ordering: first x1, then x2, and so 

forth up to xn

 Two ordered n-tuples (x1,x2,...,xn) and (y1,y2,...,yn) are equal:

(x1,x2,...,xn)=(y1,y2,...,yn) x1=y1and x2=y2 and ... xn=yn

 The Cartesian product of A1,A2,...,An:    

A1×A2×... ×An={(a1, a2,..., an) | a1∈A1, a2∈A2,..., an∈An}

 Example: A={1,2}, B={3,4}

A×B ={(1,3), (1,4), (2,3), (2,4)}

21
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Cartesian Product
 Example: let A = {x, y}, B = {1, 2, 3}, and C = {a, b}

A × B × C = {(u,v,w) | u ∈A, v ∈ B, and w ∈ C}

= {(x, 1, a), (x, 2, a), (x, 3, a), (y, 1, a), (y, 2, a),

(y, 3, a), (x, 1, b), (x, 2, b), (x, 3, b), (y, 1, b),

(y, 2, b), (y, 3, b)}

(A × B) × C = {(u,v) | u ∈A × B and v ∈ C}

= {((x, 1), a), ((x, 2), a), ((x, 3), a), ((y, 1), a),

((y, 2), a), ((y, 3), a), ((x, 1), b), ((x, 2), b), ((x, 3), b),

((y, 1), b), ((y, 2), b), ((y, 3), b)}

22
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Properties of Sets
 Inclusion of Intersection: 

A ∩ B ⊆A     and A ∩ B ⊆ B

 Inclusion in Union: 

A ⊆A ∪ B and B ⊆A ∪ B

 Transitive Property of Subsets: 

A ⊆ B and B ⊆ C →A ⊆ C

 x ∈A ∪ B ⇔ x ∈A or x ∈ B

 x ∈A ∩ B ⇔ x ∈A and x ∈ B

 x ∈ B − A ⇔ x ∈ B and x ∉A

 x ∈Ac ⇔ x ∉A

 (x, y) ∈A × B ⇔ x ∈A and y ∈ B
23
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Proof of a Subset Relation
 For all sets A and B, A ∩ B ⊆A.

The statement to be proved is universal: 

∀ sets A and B, A∩B ⊆A

Suppose A and B are any (particular, but arbitrarily 

chosen) sets.

A ∩ B ⊆A, we must show ∀x, x∈A∩B→ x ∈A

Suppose x is any (particular but arbitrarily chosen) 

element in A ∩ B.

By definition of A ∩ B, x ∈A and x ∈ B.

Therefore, ∴ x ∈A                       So, A ∩ B ⊆A
24
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Set Identities
 For all sets A, B, and C:

 Commutative Laws: A∪B = B∪A and A∩B = B∩A

 Associative Laws: (A∪B)∪C=A∪(B∪C) and (A∩B)∩C=A∩(B∩C)

 Distributive Laws: A∪(B∩C)=(A∪B)∩(A∪C),A∩(B∪C)=(A∩B)∪(A∩C)

 Identity Laws: A∪∅ = A and A∩U = A

 Complement Laws: A∪Ac = U and A∩Ac = ∅

 Double Complement Law: (Ac)c = A

 Idempotent Laws: A∪A = A and A∩A = A

 Universal Bound Laws: A ∪ U = U and A∩∅ = ∅

 De Morgan’s Laws: (A ∪ B)c = Ac∩Bc and (A∩B)c = Ac ∪ Bc

 Absorption Laws: A ∪ (A ∩ B) = A and A ∩ (A ∪ B) = A

 Complements of U and ∅: Uc = ∅ and ∅c = U

 Set Difference Law:  A − B = A ∩ Bc

25
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Proof of a Set Identity
 For all sets A, B, and C, A∪(B∩C)=(A∪B)∩(A∪C)

Suppose A, B, and C are arbitrarily chosen sets.

1. A∪(B∩C) ⊆ (A∪B)∩(A∪C)

Show: ∀x, if x∈A∪(B∩C) then x∈(A∪B)∩(A∪C)

Suppose x ∈A ∪ (B ∩ C), arbitrarily chosen. (1)

We must show x∈(A∪B)∩(A∪C).

From (1), by definition of union, x ∈A or x ∈ B∩C

Case 1.1: x∈A. By definition of union: x∈A∪B and x∈A∪C

By definition of intersection: x∈(A∪B)∩(A∪C). (2)

Case 1.2: x∈B∩C. By definition of intersection: x∈B and x∈C

By definition of union: x∈A∪B and x∈A∪C. And (2) again.

2. (A∪B)∩(A∪C) ⊆A∪(B∩C) (proved in similar manner)
26
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Proof of a De Morgan’s Law for Sets

 For all sets A and B: (A ∪ B)c = Ac∩Bc

Suppose A and B are arbitrarily chosen sets.

(➔) Suppose x ∈(A ∪ B)c .

By definition of complement: x ∉A ∪ B

it is false that (x is in A or x is in B)

By De Morgan’s laws of logic: x is not in A and x is not in B.

x ∉A and x ∉ B

Hence x ∈Ac and x ∈ Bc

x ∈Ac ∩ Bc

() Proved in similar manner.
27
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Intersection and Union with a Subset

 For any sets A and B, if A ⊆ B, then A∩B=A and A∪B=B

A∩B=A  (1) A ∩ B ⊆A and (2) A ⊆A ∩ B

(1) A ∩ B ⊆A is true by the inclusion of intersection property

(2) Suppose x ∈A (arbitrary chosen).

From A ⊆ B, then x ∈ B (by definition of subset relation).

From x ∈A and x ∈ B, thus x ∈A ∩ B (by definition of ∩)

A ⊆A ∩ B 

A ∪ B = B (3) A ∪ B ⊆ B and (4) B ⊆A ∪ B 

(3) and (4) proved in similar manner to (1) and (2)
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The Empty Set Properties
 A Set with No Elements Is a Subset of Every Set: 

If E is a set with no elements and A is any set, then E ⊆A

Proof (by contradiction): Suppose there exists an empty set E with 

no elements and a set A such that E ⊈A.

By definition of ⊈: there is an element of E (x∈E) that is not an 

element of A (x∉A).

Contradiction with E was empty, so x∉E. 

 Uniqueness of the Empty Set: There is only one set with no 

elements.

Proof: Suppose E1 and E2 are both sets with no elements.

By the above property: E1⊆E2 and E2⊆E1➔ E1=E2

29
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The Element Method
 To prove that a set X = ∅, prove that X has no elements 

by contradiction: 

suppose X has an element and derive a contradiction.

 Example 1: For any set A,   A ∩∅ = ∅.

Proof: Let A be a particular (arbitrarily chosen) set.

A ∩∅ = ∅A ∩∅ has no elements

Proof by contradiction: suppose there is  x such that 

x∈A∩∅.

By definition of intersection, x ∈A and x ∈ ∅

Contradiction since ∅ has no elements.
30
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The Element Method

 Example 2: For all sets A, B, and C, 

if A ⊆ B and B ⊆ Cc, then A ∩ C = ∅.

Proof: Suppose A, B, and C are any sets such that 

A ⊆ B and B ⊆ Cc

Suppose there is an element x ∈A ∩ C.

By definition of intersection, x ∈A and x ∈ C.

From x ∈A and A ⊆ B, by definition of subset, x ∈ B.

From x ∈ B and B ⊆ Cc , by definition of subset, x ∈ Cc.

By definition of complement x ∉ C (contradiction with x ∈ C).

31
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Disproofs
 Disproving an alleged set property amounts to finding a counterexample 

for which the property is false.

 Example: Disprove that for all sets A,B, and C, 

(A−B)∪(B−C) =            A−C  ?

The property is false  there are sets A, B, and C for which the equality 

does not hold

Counterexample 1: A={1,2,4,5},B={2,3,5,6},C={4,5,6,7}

(A−B)∪(B−C)={1,4}∪{2,3}={1,2,3,4} ≠ {1,2}=A−C

Counterexample 2: A=∅,B={1},C=∅

(A−B)∪(B−C)={}∪{1}={1} ≠ {}=A−C32
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Cardinality of a set
The cardinality of a set A: N(A) or|A| is a 

measure of the "number of elements of the set"

Example: |{2, 4, 6}| = 3

For any sets A and B, 

|A ∪ B| + |A ∩ B| = |A|+|B|

 If A and B are disjoint sets, then 

|A ∪ B| = |A|+|B|

|A ∩ B| = 0

33



(c) Paul Fodor (CS Stony Brook)

The Size of the Power Set
 For all int. n ≥ 0, X has n elements → P(X) has 2n elements.

Proof (by mathematical induction): Q(n): Any set with n elements has 2n subsets.

Q(0): Any set with 0 elements has 20 subsets:

The power set of the empty set ∅ is the set P(∅) = {∅}.

P(∅) has 1=20 element: the empty set ∅.

For all integers k ≥ 0, if Q(k) is true then Q(k+1) is also true.

Q(k): Any set with k elements has 2k subsets.

We show Q(k+1): Any set with k +1elements has 2k+1 subsets.

Let X be a set with k+1 elements and z∈X (since X has at least one element).

X−{z} has k elements, so P(X−{z}) has 2k elements.

Any subset A of X−{z} is a subset of X: A ∈ P(X).

Any subset A of X−{z}, can also be matched with {z}: A∪{z} ∈ P(X)

All subsets A and A∪{z} are all the subsets of X ➔ P(X) has 2k +2k = 2*2k=2k+1 

elements34
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35

Algebraic Proofs of Set Identities
 Algebraic Proofs = Use of laws to prove new identities

1. Commutative Laws: A∪B = B∪A and A∩B = B∩A

2. Associative Laws: (A∪B)∪C=A∪(B∪C) and (A∩B)∩C=A∩(B∩C)

3. Distributive Laws: A∪(B∩C)=(A∪B)∩(A∪C) and 

A∩(B∪C)=(A∩B)∪(A∩C)

4. Identity Laws: A∪∅ = A and A∩U = A

5. Complement Laws: A∪Ac = U and A∩Ac = ∅

6. Double Complement Law: (Ac)c = A

7. Idempotent Laws: A∪A = A and A∩A = A

8. Universal Bound Laws: A ∪U = U and A∩∅ = ∅

9. De Morgan’s Laws: (A ∪ B)c = Ac∩Bc and (A∩B)c = Ac ∪ Bc

10. Absorption Laws: A ∪ (A ∩ B) = A and A ∩ (A ∪ B) = A

11. Complements of U and ∅: Uc = ∅ and ∅c = U

12. Set Difference Law:  A − B = A ∩ Bc
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Algebraic Proofs of Set Identities

 Example: for all sets A,B,and C,(A∪B)−C=(A−C)∪(B−C).

Algebraic proof:

(A ∪ B) − C = (A ∪ B) ∩ Cc by the set difference law

= Cc ∩ (A ∪ B) by the commutative law for ∩

= (Cc ∩A) ∪ (Cc ∩ B) by the distributive law

= (A ∩ Cc) ∪ (B ∩ Cc) by the commutative law for ∩

= (A − C) ∪ (B − C) by the set difference law.
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 Example: for all sets A and B, A − (A ∩ B) = A − B.

A − (A ∩ B) = A ∩ (A ∩ B)c   by the set difference law

= A ∩ (Ac ∪ Bc) by De Morgan’s laws

= (A ∩Ac) ∪ (A ∩ Bc) by the distributive law

= ∅∪(A ∩ Bc)    by the complement law

= (A ∩ Bc) ∪ ∅ by the commutative law for ∪

= A ∩ Bc by the identity law for ∪

= A − B by the set difference law. 

37
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Correspondence between logical 

equivalences and set identities

38
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Boolean Algebra
∨ (or) corresponds to ∪ (union)

∧ (and) corresponds to ∩ (intersection)

∼ (negation) corresponds to c (complementation)

 t (a tautology) corresponds to U (a universal set)

c (a contradiction) corresponds to ∅ (the empty set)

 Logic and sets are special cases of the same general 

structure Boolean algebra.
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 A Boolean algebra is a set B together with two operations + and ·, 

such that for all a and b in B both a + b and a ·b are in B and the 

following properties hold:

1. Commutative Laws: For all a and b in B, a+b=b+a and a·b=b·a

2. Associative Laws: For all a,b, and c in B, 

(a+b)+c=a+(b+c) and (a·b)·c=a·(b·c)

3. Distributive Laws: For all a, b, and c in B, a+(b·c)=(a+b)·(a+c) 

and      a·(b+c)=(a·b)+(a·c)

4. Identity Laws: There exist distinct elements 0 and 1 in B such that 

for all a in B, a+0=a and a·1=a

5. Complement Laws: For each a in B, there exists an element in B, 

a, complement or negation of a, such that a+a=1 and a·a=0
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Properties of a Boolean Algebra
 Uniqueness of the Complement Law: For all a and x in B, if 

a+x=1 and a·x=0 then x=a

 Uniqueness of 0 and 1: If there exists x in B such that a+x=a 

for all a in B, then x=0, and if there exists y in B such that 

a·y=a for all a in B, then y=1.

 Double Complement Law: For all a ∈ B, ( a ) = a

 Idempotent Law: For all a ∈ B, a+a=a and a·a=a.

 Universal Bound Law: For all a ∈ B, a+1=1 and a·0 = 0.

 De Morgan’s Laws: For all a and b ∈ B, a+b=a·b and a·b=a+b

 Absorption Laws: For all a and b ∈ B,(a+b)·a=a and (a·b)+a=a

 Complements of 0 and 1: 0 = 1 and 1 = 0.
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 Uniqueness of the Complement Law: For all a and x in B, if 

a+x=1 and a·x=0 then x=a

Proof: Suppose a and x are particular (arbitrarily chosen) in B that satisfy the 

hypothesis: a+x=1 and a·x=0.

x = x ·1 because 1 is an identity for ·

= x · (a + a) by the complement law for +

= x ·a + x ·a by the distributive law for · over +

= a · x + x ·a by the commutative law for ·

= 0 + x ·a by hypothesis

= a ·a + x ·a by the complement law for ·

= (a ·a) + (a · x) by the commutative law for ·

= a · (a + x) by the distributive law for · over +

= a ·1 by hypothesis

= a because 1 is an identity for ·
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Russell’s Paradox
 Most sets are not elements of themselves.

 Imagine a set A being an element of itself A∈A.

 Let S be the set of all sets that are not elements of themselves:

S = {A | A is a set and A ∉A}

 Is S an element of itself? Yes&No contradiction.

 If S∈S, then S does not satisfy the defining property for S: S∉S.

 If S∉S, then satisfies the defining property for S, which implies 

that: S∈S.
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The Barber Puzzle
 In a town there is a male barber who shaves all those 

men, and only those men, who do not shave themselves. 

 Question: Does the barber shave himself?

 If the barber shaves himself, he is a member of the class of 

men who shave themselves. The barber does not shave 

himself because he doesn’t shave men who shave 

themselves.

 If the barber does not shave himself, he is a member of the 

class of men who do not shave themselves. The barber 

shaves every man in this class, so the barber must shave 

himself.                     Both Yes&No derive contradiction!
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Russell’s Paradox
 One possible solution: except powersets, whenever a set is defined 

using a predicate as a defining property, the set is a subset of a 

known set.

 Then S (form Russell’s Paradox) is not a set in the universe of sets.
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The Halting Problem
 There is no computer algorithm that will accept any algorithm X and data set D 

as input and then will output “halts” or “loops forever” to indicate whether or 

not X terminates in a finite number of steps when X is run with data set D.

Proof sketch (by contradiction): Suppose there is an algorithm CheckHalt such 

that for any input algorithm X and a data set D, it prints “halts” or “loops 

forever”.

A new algorithm Test(X) 

loops forever if CheckHalt(X, X) prints “halts” or

stops if CheckHalt(X, X) prints “loops forever”.

Test(Test) = ?

 If Test(Test) terminates after a finite number of steps, then the value of 

CheckHalt(Test, Test) is “halts” and so Test(Test) loops forever. Contradiction!

 If Test(Test) does not terminate after a finite number of steps, then 

CheckHalt(Test, Test) prints “loops forever” and so Test(Test) terminates. 

Contradiction!

So, CheckHalt doesn’t exist.
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