The Logic of Quantified Statements

CSE 215, Foundations of Computer Science Stony Brook University <u>http://www.cs.stonybrook.edu/~cse215</u>

The Logic of Quantified Statements

All men are mortal.

Socrates is a man.

∴ Socrates is mortal.

- **Propositional calculus**: analysis of ordinary compound statements
- Predicate calculus: symbolic analysis of predicates and quantified statements (∀x, ∃x)
 - *P* is a predicate symbol

P stands for "is a student at SBU"

P(x) stands for "x is a student at SBU"

• x is a predicate variable

(c) Paul Fodor (CS Stony Brook)

Predicates and Quantified Statements

- A *predicate* is a sentence that contains a finite number of variables and becomes a *statement* when specific values are substituted for the variables.
- The *domain* of a predicate variable is the set of all values that may be substituted in place of the variable.
- Example:

P(x) is the predicate " $x^2 > x$ ", x has as a domain the set **R** of all real numbers

 $P(2): 2^2 > 2.$ True. $P(1/2): (1/2)^2 > 1/2.$ False.

Truth Set of a Predicate

- If P(x) is a predicate and x has domain *D*, the truth set of P(x), $\{x \in D \mid P(x)\}$, is the set of all elements of *D* that make P(x) true when they are substituted for x.
- Example:

Q(n) is the predicate for "n is a factor of 8."
if the domain of n is the set Z of all integers
The truth set is {1, 2, 4, 8, −1, −2, −4, −8}

The Universal Quantifier: ∀

- Quantifiers are words that refer to quantities ("some" or "all") and tell for how many elements a given predicate is true.
- **Universal quantifier:** ∀ is "for all"
- Example:

"All human beings are mortal"
∀ human beings *x*, *x* is mortal.
If *H* is the set of all human beings
∀*x* ∈ *H*, *x* is mortal

Universal statements

- A **universal statement** is a statement of the form
- " $\forall x \in D, Q(x)$ " where Q(x) is a predicate and D is the domain of x.
 - $\forall x \in D, Q(x)$ is true if, and only if, Q(x) is true for every x in D
 - $\forall x \in D, Q(x)$ is false if, and only if, Q(x) is false for at least one x in D (the value for x is a *counterexample*)
- Example:

 $\forall x \in D, x^2 \ge x$ where $D = \{1, 2, 3, 4, 5\}$ $1^2 \ge 1, 2^2 \ge 2, 3^2 \ge 3, 4^2 \ge 4, 5^2 \ge 5$ • Hence " $\forall x \in D, x^2 \ge x$ " is true.

The Existential Quantifier: 3

- Existential quantifier: \exists is "there exists" or "for some"
- Example:
 - "There is a student in CSE 215"
 - \exists a person *p* such that *p* is a student in CSE 215 $\exists p \in P$ (a person *p*), such that, *p* is a student in CSE 215
 - where *P* is the set of all people

The Existential Quantifier: 3

• An **existential statement** is a statement of the form

" $\exists x \in D$ such that Q(x)" where Q(x) is a predicate and D the domain of x

- $\exists x \in D \text{ s.t. } Q(x) \text{ is true if, and only if, } Q(x) \text{ is true for at least one } x \text{ in } D$
- $\exists x \in D$ s.t. Q(x) is false if, and only if, Q(x) is false for all x in D
- Example:

•
$$\exists m \in \mathbb{Z}$$
 such that $m^2 = m$

$$1^2 = 1$$
 True

• Notation: I will use s.t. for "such that" to be concise

The Relation among \forall , \exists , \land , and \lor • $D = \{x_1, x_2, \dots, x_n\}$ and $\forall x \in D, Q(x) \equiv Q(x_1) \land Q(x_2) \land \dots \land Q(x_n)$

• $D = \{x_1, x_2, \dots, x_n\}$ and $\exists x \in D$ such that $Q(x) \equiv Q(x_1) \lor Q(x_2) \lor \cdots \lor Q(x_n)$

Universal Conditional Statements

- Universal conditional statement:
- $\forall x, if P(x) then Q(x)$
- Example:
 - If a real number is greater than 2 then its square is greater than 4.
 - $\forall x \in \mathbf{R}, if x > 2 then x^2 > 4$

Vacuous Truth of Universal Statements

All the balls in the bowl are blue True

 $\forall x \text{ in } D, \text{ if } P(x) \text{ then } Q(x) \text{ is } vacuously true \text{ or } true by default \text{ if,} and only if, <math>P(x)$ is false for every x in D

Equivalent Forms of Universal and Existential Statements

- $\forall x \in U$, *if* P(x) *then* Q(x) can be rewritten in the form $\forall x \in D$, Q(x) by narrowing U to be the domain D consisting of all values of the variable x that make P(x) true.
 - Example: $\forall x, if x is a square then x is a rectangle$ \forall squares x, x is a rectangle.
- $\exists x \text{ such that } P(x) \text{ and } Q(x) \text{ can be rewritten in the form}$ $\exists x \in D \text{ such that } Q(x) \text{ where } D \text{ consists of all values of}$ the variable x that make P(x) true

Implicit Quantification

- $P(x) \Rightarrow Q(x)$ means that every element in the truth set of P(x) is in the truth set of Q(x), or, equivalently, $\forall x, P(x) \rightarrow Q(x)$
- $P(x) \Leftrightarrow Q(x)$ means that P(x) and Q(x) have identical truth sets, or, equivalently, $\forall x, P(x) \longleftrightarrow Q(x).$

- Negation of a Universal Statement:
- The negation of a statement of the form $\forall x \in D, Q(x)$

is logically equivalent to a statement of the form

 $\exists x \in D, \sim Q(x)$, that is:

 $\sim (\forall x \in D, Q(x)) \equiv \exists x \in D, \sim Q(x)$

- Example:
 - "All mathematicians wear glasses"
 - Its negation is: "There is at least one mathematician who does not wear glasses"
 - IMPORTANT: Its negation is **NOT "No** mathematicians wear glasses"!!!!

- Negation of an Existential Statement
- The negation of a statement of the form $\exists x \in D, Q(x)$ is logically equivalent to a statement of the form $\forall x \in D, \sim Q(x)$, that is:

 $\sim (\exists x \in D, Q(x)) \equiv \forall x \in D, \sim Q(x)$

- Example:
 - "Some snowflakes are the same."
 - Its negation is: "No snowflakes are the same" which means: "All snowflakes are different."

• More Examples:

- \sim (\forall primes *p*, *p* is odd) $\equiv \exists$ a prime *p* such that *p* is **not** odd
- ~(\exists a triangle *T* such that the sum of the angles of *T* equals 200°) $\equiv \forall$ triangles *T*, the sum of the angles of *T* **does not** equal 200°
- ~(∀ politicians x, x is not honest) ≡ ∃ a politician x such that x is honest (by double negation)
- ~(∀ computer programs *p*, *p* is finite) ≡ ∃ a computer program *p* that is not finite
- ~(∃ a computer hacker c, c is over 40) ≡ ∀ computer hacker c, c is 40 or under
- ~(\exists an integer *n* between 1 and 37 such that 1,357 is divisible by *n*) $\equiv \forall$ integers *n* between 1 and 37, 1,357 is not divisible by *n*

• $\sim (\forall x, P(x) \rightarrow Q(x)) \equiv \exists x \text{ such that } P(x) \land \sim Q(x)$

Proof:

~(∀x, P(x) → Q(x)) ≡ ∃x such that ~(P(x) → Q(x))
~(P(x) → Q(x)) ≡ ~(~P(x) ∨ Q(x)) ≡ ~~P(x) ∧ ~Q(x)) ≡ P(x) ∧ ~Q(x)
• Examples:

- ~(\forall people *p*, if *p* is blond then *p* has blue eyes) \equiv
 - \exists a person *p* such that *p* is blond and *p* does not have blue eyes
- ~(If a computer program has more than 100,000 lines, then it contains a bug)
 ≡ There is at least one computer program that has more than 100,000 lines and does not contain a bug

Variants of Universal Conditional Statements

- Universal conditional statement: $\forall x \in D$, if P(x) then Q(x)
- Contrapositive: ∀x ∈ D, if ~Q(x) then ~P(x)
 ∀x ∈ D, if P(x) then Q(x) ≡ ∀x ∈ D, if ~Q(x) then ~P(x)
 Proof: for any x in D by the logical equivalence between statement and its contrapositive
- **Converse:** $\forall x \in D$, if Q(x) then P(x).
- Inverse: $\forall x \in D$, if $\sim P(x)$ then $\sim Q(x)$.
- Example:

 $\forall x \in R, \text{ if } x \ge 2 \text{ then } x^2 \ge 4$

Contrapositive: $\forall x \in R$, if $x^2 \le 4$ then $x \le 2$

Converse: $\forall x \in R$, if $x^2 > 4$ then x > 2

Inverse: $\forall x \in R$, if $x \le 2$ then $x^2 \le 4$

Necessary and Sufficient Conditions

- Necessary condition:
- " $\forall x, r (x)$ is a **necessary condition** for s(x)" means

"∀x, if ~r (x) then ~s(x)" = "∀x, if s(x) then r(x)" (*)
(*)(by contrapositive and double negation)

- Sufficient condition:
- "∀x, r (x) is a sufficient condition for s(x)" means "∀x, if r (x) then s(x)"

Necessary and Sufficient Conditions

- Examples:
 - Squareness is a **sufficient condition** for rectangularity;
 - Formal statement: $\forall x$, if x is a square, then x is a rectangle
 - Being at least 35 years old is a **necessary condition** for being President of the United States
 - ∀ people x, if x is younger than 35, then x cannot be President of the United States ≡
 - ∀ people x, if x is President of the United States then x is at least 35 years old (by contrapositive)

Only If

- Only If:
- " $\forall x, r(x)$ only if s(x)" means

" $\forall x, if \sim s(x)$ then $\sim r(x)$ " = " $\forall x, if r(x)$ then s(x)."

- Example:
 - A product of two numbers is 0 **only if** one of the numbers is 0.
 - If neither of two numbers is 0, then the product of the numbers is not $0 \equiv$
 - If a product of two numbers is 0, then one of the numbers is 0 (by contrapositive)

Statements with Multiple Quantifiers

• Example:

"There is a person supervising every detail of the production process"

• What is the meaning?

"There is one single person who supervises all the details of the production process"?

OR

"For any particular production detail, there is a person who supervises that detail, but there might be different supervisors for different details"?

NATURAL LANGUAGE IS AMBIGUOUS LOGIC IS CLEAR

Statements with Multiple Quantifiers

- Quantifiers are performed in the order in which the quantifiers occur.
- Example:

 $\forall x \text{ in set D}, \exists y \text{ in set E such that x and y satisfy}$ property P(x, y)

Tarski's World

• Blocks of various shapes, and colors located on a grid

• $\forall t$, Triangle(t) \rightarrow Blue(t)

• $\forall x, Blue(x) \rightarrow Triangle(x).$

• $\exists z \text{ such that } Square(z) \land Gray(z).$

TRUE FALSE FALSE

Statements with Multiple Quantifiers in Tarski's World

AΞ

• For all triangles x, there is a square y such that x and y have the same color TRUE

Given $x =$	choose $y =$	and check that y is the same color as x.
d	е	yes √
<i>f</i> or <i>i</i>	h or g	yes √

Statements with Multiple Quantifiers in Tarski's World

AΕ

• There is a triangle x such that for all circles y, x is to the right of y TRUE

Choose $x =$	Then, given $y =$	check that x is to the right of y.
d or i	а	yes √
	b	yes √
	С	yes 🗸

(c) Paul Fodor (CS Stony Brook)

Interpreting Statements with Two Different Quantifiers

∀x in D, ∃y in E such that P(x, y)
for whatever element x in D you must find an element y in E that "works" for that particular x
∃x in D such that ∀y in E, P(x, y)
find one particular x in D that will "work" no matter what y in E anyone might choose

Interpreting Statements with Two Different Quantifiers

- \exists an item I such that \forall students S, S chose I. TRUE
- ∃ a student S such that ∀ stations Z, ∃ an item I in Z such that S chose I TRUE
- ∀ students S and ∀ stations Z, ∃ an item I in Z such that S chose I.
 FALSE

Statements with Multiple Quantifiers in Tarski's World

AΞ

• For all triangles x, there is a square y such that x and y have the same color TRUE

Given $x =$	choose $y =$	and check that y is the same color as x.
d	е	yes √
f or i	h or g	yes √

Statements with Multiple Quantifiers in Tarski's World

AΕ

• There is a triangle x such that for all circles y, x is to the right of y TRUE

Choose $x =$	Then, given $y =$	check that x is to the right of y.
d or i	а	yes √
	b	yes √
	С	yes √

(c) Paul Fodor (CS Stony Brook)

Negations of Multiply-Quantified Statements

- Apply negation to quantified statements from left to right:
- $\sim (\forall x \text{ in } D, \exists y \text{ in } E \text{ such that } P(x, y))$ $\equiv \exists x \text{ in } D \text{ such that } \sim (\exists y \text{ in } E \text{ such that } P(x, y))$ $\equiv \exists x \text{ in } D \text{ such that } \forall y \text{ in } E, \sim P(x, y).$ $\sim (\exists x \text{ in } D \text{ such that } \forall y \text{ in } E, P(x, y))$ $\equiv \forall x \text{ in } D, \sim (\forall y \text{ in } E, P(x, y))$ $\equiv \forall x \text{ in } D, \exists y \text{ in } E \text{ such that } \sim P(x, y).$

Negating Statements in Tarski's World

- For all squares x, there is a circle y such that x and y have the same color **Negation:**
- \exists a square x such that \sim (\exists a circle y such that x and y have the same color) \equiv \exists a square x such that \forall circles y, x and y do not have the same color TRUE: Square e is black and no circle is black.

Negating Statements in Tarski's World

• There is a triangle x such that for all squares y, x is to the right of y **Negation:**

 \forall triangles x,~ (\forall squares y, x is to the right of y)

 $\equiv \forall$ triangles x, \exists a square y such that x is not to the right of y TRUE

Quantifier Order in Tarski's World

- For every square x there is a triangle y such that x and y have different colors **TRUE**
- There exists a triangle y such that for every square x, x and y have different colors

FALSE

- Triangle(x) means "x is a triangle"
- Circle(x) means "x is a circle"
- Square(x) means "x is a square"
- Blue(x) means "x is blue"
- Gray(x) means "x is gray"
- Black(x) means "x is black"

- Above(x, y) means "x is above y" (strictly above)
- RightOf(x, y) means "x is to the right of y" (strictly)
- SameColorAs(x, y) means "x has the same color as y"
- x = y denotes the predicate "x is equal to y"

- For all circles x, x is above f $\forall x(Circle(x) \rightarrow Above(x, f))$
- Negation:
- $\sim (\forall x(Circle(x) \rightarrow Above(x, f)))$ $\equiv \exists x \sim (Circle(x) \rightarrow Above(x, f))$ $\equiv \exists x(Circle(x) \land \sim Above(x, f))$

- There is a square x such that x is black $\exists x(Square(x) \land Black(x))$
- Negation:
- $\sim (\exists x(Square(x) \land Black(x)))$ $\equiv \forall x \sim (Square(x) \land Black(x))$ $\equiv \forall x(\sim Square(x) \lor \sim Black(x))$

• For all circles x, there is a square y such that x and y have the same color $\forall x(Circle(x) \rightarrow \exists y(Square(y) \land SameColor(x, y)))$

• Negation:

 $\sim (\forall x(Circle(x) \rightarrow \exists y(Square(y) \land SameColor(x, y))))$

- $\equiv \exists x \thicksim (Circle(x) \rightarrow \exists y(Square(y) \land SameColor(x, y)))$
- $\equiv \exists x(Circle(x) \land \sim(\exists y(Square(y) \land SameColor(x, y))))$
- $\equiv \exists x(Circle(x) \land \forall y(\sim(Square(y) \land SameColor(x, y))))$
- $\equiv \exists x(Circle(x) \land \forall y(\sim Square(y) \lor \sim SameColor(x, y)))$

There is a square x such that for all triangles y, x is to right of y
 ∃x(Square(x) ∧ ∀y(Triangle(y) → RightOf(x, y)))

• Negation:

 $\sim (\exists x(Square(x) \land \forall y(Triangle(y) \rightarrow RightOf(x, y))))$

- $\equiv \forall x \sim (Square(x) \land \forall y(Triangle(x) \rightarrow RightOf(x, y)))$
- $\equiv \forall x (\sim Square(x) \lor \sim (\forall y (Triangle(y) \rightarrow RightOf(x, y))))$
- $\equiv \forall x (\sim Square(x) \lor \exists y (\sim (Triangle(y) \rightarrow RightOf(x, y))))$
- $\equiv \forall x (\sim Square(x) \lor \exists y (Triangle(y) \land \sim RightOf(x, y)))$

Arguments with Quantified Statements

- Universal instantiation: if some property is true of everything in a set, then it is true of any particular thing in the set.
- Example:
 - All men are mortal.
 - ∴ If Socrates is a man, then Socrates is mortal.

Universal Modus Ponens

Formal Version

- $\forall x, \text{ if } P(x) \text{ then } Q(x).$
- P(a) for a particular a.
- ∴ Q(a).
- Example:
- $\forall x, if E(x) then S(x).$

E(k), for a particular k. $\therefore S(k)$.

- Informal Version If x makes P(x) true, then x makes Q(x) true. a makes P(x) true. ∴ a makes Q(x) true.
- If an integer is even, then its square is even.
- k is a particular integer that is even. \therefore k² is even.

(c) Paul Fodor (CS Stony Brook)

Universal Modus Tollens

Formal Version

- $\forall x, \text{ if } P(x) \text{ then } Q(x).$
- $\sim Q(a)$, for a particular a.
- $\therefore \sim P(a).$
- Example:

 $\forall x, \text{ if } H(x) \text{ then } M(x)$

 $\sim M(Z)$

 $\therefore \sim H(Z).$

Informal Version If x makes P(x) true, then x makes Q(x) true. a does not make Q(x) true. ∴ a does not make P(x) true.

All human beings are mortal.Zeus is not mortal.∴ Zeus is not human.

Validity of Arguments with Quantified Statements

- An argument form is **valid**, if and only if, for any particular predicates substituted for the predicate symbols in the premises **if the resulting premise statements are all true, then the conclusion is also true**
- <u>Using Diagrams to Test for Validity</u>

(c) Paul Fodor (CS Stony Brook)

Using Diagrams to Test for Validity

- Universal modus tollens Example:
- No polynomial functions have horizontal asymptotes.
- This function has a horizontal asymptote.
- \therefore This function is not a polynomial function

Universal Transitivity

Formal Version

Informal Version

- $\forall x P(x) \rightarrow Q(x)$. Any x that makes P(x) true makes Q(x) true.
- $\forall x Q(x) \rightarrow R(x)$. Any x that makes Q(x) true makes R(x) true.
- $:: \forall x \ P(x) \rightarrow R(x). \quad :: Any \ x \ that \ makes \ P(x) \ true \ makes \ R(x) \ true.$
- Example from Tarski's World:
- $\forall x, if x is a triangle, then x is blue.$
- $\forall x$, if x is blue, then x is to the right of all the squares.
- \therefore \forall x, if x is a triangle, then x is to the right of all the squares

Converse Error (in Quantified Form)

Formal Version $\forall x, \text{ if } P(x) \text{ then } Q(x).$

Q(a) for a particular a. ∴ P(a). invalid conclusion Informal Version If x makes P(x) true, then x makes Q(x) true. a makes Q(x) true. ∴ a makes P(x) true.

Inverse Error (in Quantified Form)

Formal Version $\forall x, \text{ if } P(x) \text{ then } Q(x).$

∼P(a), for a particular a. ∴ ∼Q(a).

invalid conclusion

Informal Version

If x makes P(x) true, then x makes Q(x) true.

a does not make P(x) true.

 \therefore a does not make Q(x) true.