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The Logic of Quantified Statements

All men are mortal.

Socrates is a man.

∴ Socrates is mortal.

 Propositional calculus: analysis of ordinary compound 

statements 

 Predicate calculus: symbolic analysis of predicates and 

quantified statements (∀x, ∃x)

 P is a predicate symbol

P stands for “is a student at SBU” 

P(x) stands for “x is a student at SBU”

x is a predicate variable
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Predicates and Quantified Statements
 A predicate is a sentence that contains a finite number of 

variables and becomes a statement when specific values are 

substituted for the variables.

 The domain of a predicate variable is the set of all values that 

may be substituted in place of the variable.

 Example: 

P(x) is the predicate “x2 > x” , x has as a domain the set R of all 

real numbers

P(2): 22 > 2. True.

P(1/2): (1/2)2 > 1/2. False.
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Truth Set of a Predicate

 If P(x) is a predicate and x has domain D, the truth set of 

P(x), {x ∈ D | P(x)}, is the set of all elements of D that 

make P(x) true when they are substituted for x. 

 Example:

Q(n) is the predicate for “n is a factor of 8.”

if the domain of n is the set Z of all integers

The truth set is {1, 2, 4, 8,−1,−2,−4,−8}
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The Universal Quantifier: ∀
 Quantifiers are words that refer to quantities (“some” 

or “all”) and tell for how many elements a given 

predicate is true.

 Universal quantifier: ∀ is “for all”

 Example: 

“All human beings are mortal”

∀ human beings x, x is mortal.
 If H is the set of all human beings

∀x ∈ H, x is mortal
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Universal statements
 A universal statement is a statement of the form 

“∀x ∈ D, Q(x)” where Q(x) is a predicate and D is the domain of x.

∀x ∈ D, Q(x) is true if, and only if, Q(x) is true for every x in D

∀x ∈ D, Q(x) is false if, and only if, Q(x) is false for at least one 

x in D (the value for x is a counterexample)

 Example:

∀x ∈ D, x2 ≥ x     where D = {1, 2, 3, 4, 5}
12 ≥ 1,         22 ≥ 2,         32 ≥ 3,         42 ≥ 4,         52 ≥ 5 

 Hence “∀x ∈ D, x2 ≥ x” is true.
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The Existential Quantifier: ∃
Existential quantifier: ∃ is “there exists” or 

"for some"

Example:

“There is a student in CSE 215”

∃ a person p such that p is a student in CSE 215

∃p ∈ P (a person p), such that, p is a student in 

CSE 215

where P is the set of all people
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The Existential Quantifier: ∃
 An existential statement is a statement of the form 

“∃x ∈ D such that Q(x)” where Q(x) is a predicate and D the domain of x

 ∃x ∈ D s.t. Q(x) is true if, and only if, Q(x) is true for at least one x in D

 ∃x ∈ D s.t. Q(x) is false if, and only if, Q(x) is false for all x in D

 Example:

 ∃m ∈ Z such that m2 = m

12 = 1 True

 Notation: I will use s.t. for "such that" to be concise
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The Relation among ∀, ∃, ∧, and ∨
D = {x1, x2, . . . , xn} and 

∀x ∈ D, Q(x)   ≡ Q(x1) ∧ Q (x2) ∧ · · · ∧ Q (xn)

D = {x1, x2, . . . , xn} and 

∃x ∈ D such that Q(x) ≡ Q(x1) ∨ Q(x2) ∨ · · · ∨ Q(xn)
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Universal Conditional Statements

Universal conditional statement:

∀x, if P(x) then Q(x)

Example:

If a real number is greater than 2 then its 

square is greater than 4.

∀x ∈ R, if x > 2 then x2 > 4
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Vacuous Truth of Universal Statements

11

∀x in D, if P(x) then Q(x) is vacuously true or true by default if, 

and only if, P(x) is false for every x in D

All the balls in the bowl are blue               True



(c) Paul Fodor (CS Stony Brook)

Equivalent Forms of Universal and Existential Statements

 ∀x ∈ U, if P(x) then Q(x) can be rewritten in the form 

∀x ∈ D, Q(x) by narrowing U to be the domain D 

consisting of all values of the variable x that make P(x) 

true.

Example: ∀x, if x is a square then x is a rectangle

∀ squares x, x is a rectangle.

 ∃x such that P(x) and Q(x) can be rewritten in the form 

∃x ∈ D such that Q(x) where D consists of all values of 

the variable x that make P(x) true
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Implicit Quantification
 P(x) ⇒ Q (x) means that every element in the 

truth set of P(x) is in the truth set of Q(x), or, 

equivalently, ∀x, P(x) → Q(x)

 P(x)⇔ Q(x) means that P(x) and Q(x) have 

identical truth sets, or, equivalently, 

∀x, P(x)↔ Q(x).
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 Negation of a Universal Statement:

The negation of a statement of the form ∀x ∈ D, Q(x)

is logically equivalent to a statement of the form 

∃x ∈ D, ∼Q(x), that is: 

∼(∀x ∈ D, Q(x)) ≡ ∃x ∈ D,∼Q(x)

 Example:

 “All mathematicians wear glasses”

 Its negation is: “There is at least one mathematician who does 

not wear glasses”

 IMPORTANT: Its negation is NOT “No mathematicians wear 

glasses”!!!!
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 Negation of an Existential Statement

The negation of a statement of the form ∃x ∈ D, Q(x)

is logically equivalent to a statement of the form 

∀x ∈ D,∼Q(x), that is:

∼(∃x ∈ D, Q(x)) ≡ ∀x ∈ D,∼Q(x)

 Example:

“Some snowflakes are the same.”

 Its negation is: “No snowflakes are the same” which 

means: “All snowflakes are different.”
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 More Examples:

 ~(∀ primes p, p is odd) ≡ ∃ a prime p such that p is not odd

 ~( ∃ a triangle T such that  the sum of the angles ofT equals 200◦ ) ≡

∀ triangles T, the sum of the angles ofT does not equal 200◦

 ~(∀ politicians x, x is not honest) ≡ ∃ a politician x such that x is 

honest (by double negation)

 ~(∀ computer programs p, p is finite) ≡ ∃ a computer program p that 

is not finite

 ~( ∃ a computer hacker c, c is over 40) ≡ ∀ computer hacker c, c is 

40 or under

 ~( ∃ an integer n between 1 and 37 such that 1,357 is divisible by n )

≡ ∀ integers n between 1 and 37, 1,357 is not divisible by n
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∼(∀x, P(x) → Q(x)) ≡ ∃x such that P(x) ∧ ∼Q(x)
Proof:

∼(∀x, P(x) → Q(x)) ≡ ∃x such that ∼(P(x) → Q(x))

∼(P(x) → Q(x)) ≡ ∼(~P(x) ∨ Q(x)) ≡ ∼~P(x) ∧ ~Q(x)) ≡ P(x) ∧ ∼Q(x)

 Examples:

 ~(∀ people p, if p is blond then p has blue eyes) ≡

∃ a person p such that p is blond and p does not have blue eyes

 ~(If a computer program has more than 100,000 lines, then it contains a bug) 

≡ There is at least one computer program that has more than 100,000 lines 

and does not contain a bug
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Variants of Universal Conditional Statements

 Universal conditional statement: ∀x ∈ D, if P(x) then Q(x)

 Contrapositive: ∀x ∈ D, if ∼Q(x) then ∼P(x)

∀x ∈ D, if P(x) then Q(x) ≡ ∀x ∈ D, if ∼Q(x) then ∼P(x)

Proof: for any x in D by the logical equivalence between statement and 

its contrapositive

 Converse: ∀x ∈ D, if Q(x) then P(x).

 Inverse: ∀x ∈ D, if ∼P(x) then ∼Q(x).

 Example:

∀x ∈ R, if x > 2 then x2 > 4

Contrapositive: ∀x ∈ R, if x2 ≤ 4 then x ≤ 2

Converse: ∀x ∈ R, if x2 > 4 then x > 2

Inverse:∀x ∈ R, if x ≤ 2 then x2 ≤ 4
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Necessary and Sufficient Conditions
 Necessary condition:  

“∀x, r (x) is a necessary condition for s(x)” means 

“∀x, if ∼r (x) then ∼s(x)” ≡ “∀x, if s(x) then r(x)” (*)

(*)(by contrapositive and double negation)

 Sufficient condition:

“∀x, r (x) is a sufficient condition for s(x)” means 

“∀x, if r (x) then s(x)”
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 Examples:

 Squareness is a sufficient condition for rectangularity;

Formal statement: ∀x, if x is a square, then x is a rectangle

 Being at least 35 years old is a necessary condition for 

being President of the United States

∀ people x, if x is younger than 35, then x cannot be President 

of the United States ≡

∀ people x, if x is President of the United States then x is at 

least 35 years old (by contrapositive)
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Only If
 Only If:

“∀x, r(x) only if s(x)” means 

“∀x, if ∼s(x) then ∼r (x)” ≡ “∀x, if r(x) then s(x).”

 Example:

A product of two numbers is 0 only if one of the 

numbers is 0.

If neither of two numbers is 0, then the product of the 

numbers is not 0 ≡

If a product of two numbers is 0, then one of the 

numbers is 0 (by contrapositive)
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Statements with Multiple Quantifiers
 Example:

“There is a person supervising every detail of the production process”

 What is the meaning?

“There is one single person who supervises all the details of the 

production process”?

OR 

“For any particular production detail, there is a person who supervises 

that detail, but there might be different supervisors for different 

details”?

NATURAL LANGUAGE IS AMBIGUOUS

LOGIC IS CLEAR 
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Quantifiers are performed in the order in which 

the quantifiers occur.

Example:

∀x in set D, ∃y in set E such that x and y satisfy 

property P(x, y)

23
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Tarski’s World
 Blocks of various shapes, and colors located on a grid

∀t, Triangle(t) →Blue(t) TRUE

∀x, Blue(x) →Triangle(x). FALSE

∃z such that Square(z)∧ Gray(z). FALSE
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Statements with Multiple Quantifiers in Tarski’s World

 For all triangles x, there is a square y such that x and y have the same color

TRUE
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Statements with Multiple Quantifiers in Tarski’s World

 There is a triangle x such that for all circles y, x is to the right of y

TRUE
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Interpreting Statements with Two Different Quantifiers

∀x in D, ∃y in E such that P(x, y)

for whatever element x in D you must find an 

element y in E that “works” for that particular x

∃x in D such that ∀y in E, P(x, y)

find one particular x in D that will “work” no 

matter what y in E anyone might choose

27



(c) Paul Fodor (CS Stony Brook)

Interpreting Statements with Two Different Quantifiers

 ∃ an item I such that ∀ students S, S chose I . TRUE

 ∃ a student S such that ∀ stations Z, ∃ an item I in Z such 

that S chose I TRUE 

 ∀ students S and ∀ stations Z, ∃ an item I in Z such that S 

chose I . FALSE
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Statements with Multiple Quantifiers in Tarski’s World

 For all triangles x, there is a square y such that x and y have the same color

TRUE
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Statements with Multiple Quantifiers in Tarski’s World

 There is a triangle x such that for all circles y, x is to the right of y

TRUE
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Negations of Multiply-Quantified Statements

 Apply negation to quantified statements from left to 

right:

∼(∀x in D, ∃y in E such that P(x, y))

≡ ∃x in D such that ∼(∃y in E such that P(x, y))

≡ ∃x in D such that ∀y in E,∼P(x, y).

∼(∃x in D such that ∀y in E, P(x, y)) 

≡ ∀x in D,∼(∀y in E, P(x, y))

≡ ∀x in D, ∃y in E such that ∼P(x, y).
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Negating Statements in Tarski’s World

 For all squares x, there is a circle y such that x and y have the same color

Negation:

∃ a square x such that ∼(∃ a circle y such that x and y have the same color)

≡ ∃ a square x such that ∀ circles y, x and y do not have the same color

TRUE: Square e is black and no circle is black.
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Negating Statements in Tarski’s World

 There is a triangle x such that for all squares y, x is to the right of y 

Negation:

∀ triangles x,∼ (∀ squares y, x is to the right of y)

≡ ∀ triangles x, ∃ a square y such that x is not to the right of y

TRUE
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Quantifier Order in Tarski’s World

 For every square x there is a triangle y such that x and y have different colors

TRUE

 There exists a triangle y such that for every square x, x and y have different 

colors

FALSE
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Formalizing Statements in Tarski’s World

 Triangle(x) means “x is a triangle”

 Circle(x) means “x is a circle”

 Square(x) means “x is a square”

 Blue(x) means “x is blue”

 Gray(x) means “x is gray”

 Black(x) means “x is black”

 Above(x, y) means “x is above y” (strictly above)

 RightOf(x, y) means “x is to the right of y” (strictly)

 SameColorAs(x, y) means “x has the same color as y”

 x = y denotes the predicate “x is equal to y”
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Formalizing Statements in Tarski’s World

 For all circles x, x is above f

∀x(Circle(x) →Above(x, f ))

 Negation: 

∼(∀x(Circle(x) →Above(x, f )))

≡ ∃x ∼ (Circle(x) →Above(x, f ))

≡ ∃x(Circle(x) ∧ ∼Above(x, f ))
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Formalizing Statements in Tarski’s World

 There is a square x such that x is black

∃x(Square(x) ∧ Black(x))

 Negation: 

∼(∃x(Square(x) ∧ Black(x)))

≡ ∀x ∼ (Square(x) ∧ Black(x))

≡ ∀x(∼Square(x)∨ ∼Black(x))
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Formalizing Statements in Tarski’s World

 For all circles x, there is a square y 

such that x and y have the same color

∀x(Circle(x) → ∃y(Square(y) ∧

SameColor(x, y)))

 Negation: 

∼(∀x(Circle(x)→ ∃y(Square(y) ∧ SameColor(x, y))))

≡ ∃x ∼ (Circle(x) → ∃y(Square(y) ∧ SameColor(x, y)))

≡ ∃x(Circle(x) ∧ ∼(∃y(Square(y) ∧ SameColor(x, y))))

≡ ∃x(Circle(x) ∧ ∀y(∼(Square(y) ∧ SameColor(x, y))))

≡ ∃x(Circle(x) ∧ ∀y(∼Square(y) ∨ ∼SameColor(x, y)))
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Formalizing Statements in Tarski’s World

 There is a square x such that for all 

triangles y, x is to right of y

∃x(Square(x) ∧ ∀y(Triangle(y) →

RightOf(x, y)))

 Negation: 

∼(∃x(Square(x) ∧ ∀y(Triangle(y) → RightOf(x, y))))

≡ ∀x ∼ (Square(x) ∧ ∀y(Triangle(x) → RightOf(x, y)))

≡ ∀x(∼Square(x) ∨ ∼(∀y(Triangle(y) → RightOf(x, y))))

≡ ∀x(∼Square(x) ∨ ∃y(∼(Triangle(y) → RightOf(x, y))))

≡ ∀x(∼Square(x) ∨ ∃y(Triangle(y)∧ ∼RightOf(x, y)))
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Arguments with Quantified Statements

 Universal instantiation: if some property is true of 

everything in a set, then it is true of any particular 

thing in the set.

 Example: 

All men are mortal.

∴ If Socrates is a man, then Socrates is mortal.
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Universal Modus Ponens

Formal Version Informal Version

∀x, if P(x) then Q(x). If x makes P(x) true, then x makes

P(a) for a particular a. Q(x) true.

∴ Q(a). a makes P(x) true.

∴ a makes Q(x) true.

 Example:

∀x, if E(x) then S(x). If an integer is even, then its square is 

even.

E(k),for a particular k. k is a particular integer that is even.

∴ S(k). ∴ k2 is even.
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Universal Modus Tollens

Formal Version Informal Version

∀x, if P(x) then Q(x). If x makes P(x) true, then x makes 

∼Q(a), for a particular a. Q(x) true.

∴ ∼P(a). a does not make Q(x) true.

∴ a does not make P(x) true.

 Example:

∀x, if H(x) then M(x) All human beings are mortal.

∼M(Z) Zeus is not mortal. 

∴ ∼H(Z). ∴ Zeus is not human. 
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Validity of Arguments with Quantified Statements

 An argument form is valid, if and only if, for any 

particular predicates substituted for the predicate 

symbols in the premises if the resulting premise 

statements are all true, then the conclusion is 

also true

 Using Diagrams to Test for Validity
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Using Diagrams to Test for Validity
All human beings are mortal.

Zeus is not mortal.

∴ Zeus is not a human being.
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Using Diagrams to Show Invalidity
All human beings are mortal.

Felix is mortal.

∴ Felix is a human being.
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Using Diagrams to Test for Validity
 Universal modus tollens Example:

No polynomial functions have horizontal asymptotes.

This function has a horizontal asymptote.

∴This function is not a polynomial function
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Universal Transitivity
Formal Version Informal Version

∀x P(x) → Q(x). Any x that makes P(x) true makes Q(x) true.

∀xQ(x) → R(x). Any x that makes Q(x) true makes R(x) true.

∴ ∀x P(x) → R(x). ∴Any x that makes P(x) true makes R(x) true.

 Example from Tarski’s World:

∀x, if x is a triangle, then x is blue.

∀x, if x is blue, then x is to the right of all the squares.

∴ ∀x, if x is a triangle, then x is to the right of all the squares
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Converse Error (in Quantified Form)

Formal Version Informal Version

∀x, if P(x) then Q(x). If x makes P(x) true, then x makes 

Q(x) true.

Q(a) for a particular a. a makes Q(x) true.

∴ P(a). ∴ a makes P(x) true. 

invalid conclusion
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Inverse Error (in Quantified Form)

Formal Version Informal Version

∀x, if P(x) then Q(x). If x makes P(x) true, then x makes 

Q(x) true.

∼P(a), for a particular a. a does not make P(x) true.

∴ ∼Q(a). ∴ a does not make Q(x) true.

invalid conclusion
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