
CSE 215, Foundations of Computer Science

Stony Brook University

http://www.cs.stonybrook.edu/~cse215

The Logic of Compound Statements

Application: Digital Logic Circuits

http://www.cs.stonybrook.edu/~cse215

(c) Paul Fodor (CS Stony Brook)

Application of Logic: Digital Logic Circuits

 Analogy between the operations of switching devices and the

operations of logical connectives

2

Binary digits (bits): we will use the symbols 1 and 0 instead of “on” (“closed” or True) and “off” (“open” or False)

(c) Paul Fodor (CS Stony Brook)

Black Boxes and Gates
 Combinations of signal bits (1’s and 0’s) can be

transformed into other combinations of signal bits (1’s

and 0’s) by means of various circuits

 An efficient method for designing

complicated circuits is to build them

by connecting less complicated black

box circuits: NOT-,AND-, and

OR-gates.

3

(c) Paul Fodor (CS Stony Brook)
4

(c) Paul Fodor (CS Stony Brook)

Combinational Circuits
 Rules for a Combinational Circuit:

 Never combine two input wires.

 A single input wire can be split partway and used as input

for two separate gates.

 An output wire can be used as input.

 No output of a gate can eventually feed back into that

gate.

 Examples:

5

(c) Paul Fodor (CS Stony Brook)

Determining Output for a Given Input

 Inputs: P = 0 and Q = 1

6

(c) Paul Fodor (CS Stony Brook)

Constructing the Input/Output Table for a Circuit

 List the four possible combinations of input signals, and find

the output for each by tracing through the circuit.

7

(c) Paul Fodor (CS Stony Brook)

The Boolean Expression Corresponding to a Circuit

Trace through the circuit from left to right:

What is the result?

8

(c) Paul Fodor (CS Stony Brook)

The Boolean Expression Corresponding to a Circuit

The result is: exclusive OR

9

(c) Paul Fodor (CS Stony Brook)

Recognizer
 A recognizer is a circuit that outputs a 1 for exactly one

particular combination of input signals and outputs 0’s for all

other combinations.

 Example:

10

(c) Paul Fodor (CS Stony Brook)

The Circuit Corresponding to a Boolean Expression

1. Write the input variables in a column on the left side of

the diagram

2. Go from the right side of the diagram to the left,

working from the outermost part of the expression to the

innermost part

 Example: (∼P ∧ Q) ∨ ∼Q

11

(c) Paul Fodor (CS Stony Brook)

Find a Circuit That Corresponds to an

Input/Output Table
1. Construct a Boolean expression with the same truth table

 identify each row for which the output is 1 and construct an and expression that

produces a 1 for the exact combination of input values for that row

P ∧ Q ∧ R

P∧ ∼Q ∧ R

P∧ ∼Q ∧ ∼R

Result: (P ∧ Q ∧ R) ∨ (P∧ ∼Q ∧ R) ∨ (P∧ ∼Q∧ ∼R)

disjunctive normal form

12

(c) Paul Fodor (CS Stony Brook)

Find a Circuit That Corresponds to an

Input/Output Table
2. Construct the circuit for: (P ∧ Q ∧ R) ∨ (P∧ ∼Q ∧ R) ∨ (P∧ ∼Q∧ ∼R)

13

(c) Paul Fodor (CS Stony Brook)

Equivalent Combinational Circuits

 Two digital logic circuits are equivalent if, and only if, their

input/output tables are identical.

14

(c) Paul Fodor (CS Stony Brook)

Simplifying Combinational Circuits

1. Find the Boolean expressions for each circuit.

2. Show that these expressions are logically equivalent.

((P ∧ ∼Q) ∨ (P ∧ Q)) ∧ Q

≡ (P ∧ (∼Q ∨ Q)) ∧ Q by the distributive law

≡ (P ∧ (Q ∨ ∼Q)) ∧ Q by the commutative law for ∨

≡ (P ∧T) ∧ Q by the negation law

≡ P ∧ Q by the identity law.15

(c) Paul Fodor (CS Stony Brook)

A NAND-gate is a single gate that acts like an

AND-gate followed by a NOT-gate

 it has the logical symbol: |

(called Sheffer stroke)

P | Q ≡ ∼(P ∧ Q)

A NOR-gate is a single gate that acts like an

OR-gate followed by a NOT-gate

 it has the logical symbol: ↓

(called Peirce arrow)

P ↓ Q ≡ ∼(P ∨ Q)

NAND and NOR Gates

16

(c) Paul Fodor (CS Stony Brook)

Rewriting Expressions Using the Sheffer Stroke

 Any Boolean expression is equivalent to one written entirely with

Sheffer strokes or entirely with Peirce arrows

∼P ≡ ∼(P ∧ P) by the idempotent law for ∧

≡ P | P by definition of |.

P ∨ Q ≡ ∼(∼(P ∨ Q)) by the double negative law

≡ ∼(∼P ∧ ∼Q) by De Morgan’s laws

≡ ∼((P | P) ∧ (Q | Q)) by the above ∼P≡P|P

≡ (P | P) | (Q | Q) by definition of |

17

