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Application of Logic: Digital Logic Circuits 

 Analogy between the operations of switching devices and the 

operations of logical connectives
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Binary digits (bits): we will use the symbols 1 and 0 instead of “on” (“closed” or True) and “off” (“open” or False)
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Black Boxes and Gates
 Combinations of signal bits (1’s and 0’s) can be 

transformed into other combinations of signal bits (1’s 

and 0’s) by means of various circuits

 An efficient method for designing

complicated circuits is to build them

by connecting less complicated black 

box circuits: NOT-,AND-, and 

OR-gates.
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Combinational Circuits
 Rules for a Combinational Circuit:

 Never combine two input wires.

 A single input wire can be split partway and used as input 

for two separate gates.

 An output wire can be used as input.

 No output of a gate can eventually feed back into that 

gate.

 Examples:

5



(c) Paul Fodor (CS Stony Brook)

Determining Output for a Given Input

 Inputs: P = 0 and Q = 1
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Constructing the Input/Output Table for a Circuit

 List the four possible combinations of input signals, and find 

the output for each by tracing through the circuit.
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The Boolean Expression Corresponding to a Circuit

Trace through the circuit from left to right:

What is the result?
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The Boolean Expression Corresponding to a Circuit

The result is: exclusive OR
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Recognizer
 A recognizer is a circuit that outputs a 1 for exactly one 

particular combination of input signals and outputs 0’s for all 

other combinations.

 Example: 
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The Circuit Corresponding to a Boolean Expression

1. Write the input variables in a column on the left side of 

the diagram

2. Go from the right side of the diagram to the left, 

working from the outermost part of the expression to the 

innermost part

 Example: (∼P ∧ Q) ∨ ∼Q
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Find a Circuit That Corresponds to an 

Input/Output Table
1. Construct a Boolean expression with the same truth table

 identify each row for which the output is 1 and construct an and expression that 

produces a 1 for the exact combination of input values for that row

P ∧ Q ∧ R

P∧ ∼Q ∧ R

P∧ ∼Q ∧ ∼R

Result: (P ∧ Q ∧ R) ∨ (P∧ ∼Q ∧ R) ∨ (P∧ ∼Q∧ ∼R)

disjunctive normal form
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Find a Circuit That Corresponds to an 

Input/Output Table
2. Construct the circuit for: (P ∧ Q ∧ R) ∨ (P∧ ∼Q ∧ R) ∨ (P∧ ∼Q∧ ∼R)
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Equivalent Combinational Circuits

 Two digital logic circuits are equivalent if, and only if, their 

input/output tables are identical.
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Simplifying Combinational Circuits

1. Find the Boolean expressions for each circuit.

2. Show that these expressions are logically equivalent.

((P ∧ ∼Q) ∨ (P ∧ Q)) ∧ Q

≡ (P ∧ (∼Q ∨ Q)) ∧ Q by the distributive law

≡ (P ∧ (Q ∨ ∼Q)) ∧ Q by the commutative law for ∨

≡ (P ∧T) ∧ Q by the negation law

≡ P ∧ Q by the identity law.15
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A NAND-gate is a single gate that acts like an 

AND-gate followed by a NOT-gate 

 it has the logical symbol: | 

(called Sheffer stroke)

P | Q ≡ ∼(P ∧ Q)

A NOR-gate is a single gate that acts like an 

OR-gate followed by a NOT-gate

 it has the logical symbol: ↓

(called Peirce arrow)

P ↓ Q ≡ ∼(P ∨ Q)

NAND and NOR Gates
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Rewriting Expressions Using the Sheffer Stroke

 Any Boolean expression is equivalent to one written entirely with 

Sheffer strokes or entirely with Peirce arrows

∼P ≡ ∼(P ∧ P) by the idempotent law for ∧

≡ P | P by definition of |.

P ∨ Q ≡ ∼(∼(P ∨ Q))   by the double negative law

≡ ∼(∼P ∧ ∼Q)   by De Morgan’s laws

≡ ∼((P | P) ∧ (Q | Q)) by the above ∼P≡P|P

≡ (P | P) | (Q | Q) by definition of |

17


