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Logical Arguments
 An argument (form) is a (finite) sequence of statements 

(forms), usually written as follows:

p1

...

pn

∴ q

 We call p1,..., pn the premises (or assumptions or 

hypotheses) and q the conclusion, of the argument.

 We read:     “p1, p2, ..., pn, therefore q” OR

“From premises p1, p2, ..., pn infer conclusion q”
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Logical Arguments
 Argument forms are also called inference rules.

 An argument form consisting of two premises and a 

conclusion is called a syllogism.
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Logical Arguments
 An inference rule is said to be valid, or (logically) 

sound, if it is the case that, for each truth valuation, if 

all the premises true, then the conclusion is also true!

Theorem: An inference rule is valid if, and only if, the 

conditional p1∧p2∧... ∧pn→ q is a tautology.
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Determining Validity or Invalidity
 Testing an Argument Form for Validity

1. Identify the premises and conclusion of the argument form.

2. Construct a truth table showing the truth values of all the 

premises and the conclusion.

3. A row of the truth table in which all the premises are 

true is called a critical row. 

a) If there is a critical row in which the conclusion is false, then the 

argument form is invalid. 

b) If the conclusion in every critical row is true, then the argument 

form is valid.
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Determining Validity or Invalidity

p →q ∨ ∼ r

q → p ∧ r 

∴ p →r
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Modus Ponens
 Modus Ponens: p →q

p

∴ q

7

“method of affirming”

in Latin
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Modus Ponens
The following argument is valid:

If Socrates is a man, then Socrates is mortal.

Socrates is a man.

∴ Socrates is mortal.
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Modus Ponens
 Example:

If the sum of the digits of 371,487 is divisible by 3,

then 371,487 is divisible by 3.

The sum of the digits of 371,487 is divisible by 3.

∴ 371,487 is divisible by 3.
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Modus Tollens
Modus Tonens: p →q

“method of denying” ~q

in Latin ∴ ~p
 Modus Tollens is valid because :

modus ponens is valid and the fact that a conditional 

statement is logically equivalent to its 

contrapositive, OR

 it can be established formally by using a truth table.
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Modus Tollens
 Example:

(1) If Zeus is human, then Zeus is mortal.

(2) Zeus is not mortal.

∴ Zeus is not human.

 An intuitive proof is proof by contradiction

 if Zeus were human, then by (1) he would be mortal.

But by (2) he is not mortal (which would be a 

contradiction).

Hence, Zeus cannot be human.
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Recognizing Modus Ponens and Modus Tollens

If there are more pigeons than there are pigeonholes, then at 

least two pigeons roost in the same hole.

There are more pigeons than there are pigeonholes.

∴ ?
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If there are more pigeons than there are pigeonholes, then at 

least two pigeons roost in the same hole.

There are more pigeons than there are pigeonholes.

∴At least two pigeons roost in the same hole. 

by modus ponens
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If 870,232 is divisible by 6, then it is divisible by 3.

870,232 is not divisible by 3.

∴ ?
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If 870,232 is divisible by 6, then it is divisible by 3.

870,232 is not divisible by 3.

∴ 870,232 is not divisible by 6. by modus tollens
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Other Rules of Inference
 Generalization:

p and q

∴ p ∨ q ∴ p ∨ q

 Example:

Anton is a junior.

∴ (more generally) Anton is a junior or Anton is a 

senior.

16



(c) Paul Fodor (CS Stony Brook)

Other Rules of Inference
 Specialization:

p ∧ q and p ∧ q

∴ p ∴ q

 Example:

Ana knows numerical analysis and 

Ana knows graph algorithms.

∴ (in particular) Ana knows graph algorithms.
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Other Rules of Inference
 Elimination :

p ∨ q and p ∨ q

~q ~p

∴ p ∴ q

 If we have only two possibilities and we can rule one out, the 

other one must be the case.

 Example:

x − 3 =0 or x + 2 = 0

x + 2  0.

∴ x − 3 =0.
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Other Rules of Inference
 Transitivity :

p → q

q → r

∴ p → r

 Example:

If 18,486 is divisible by 18, then 18,486 is divisible by 9.

If 18,486 is divisible by 9, then the sum of the digits of 18,486 is 

divisible by 9.

∴ If 18,486 is divisible by 18, then the sum of the digits of 

18,486 is divisible by 9.
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Proof Techniques
Proof by Contradiction:

~p → c, where c is a contradiction

∴ p

The usual way to derive a conditional ~p → c is 

to assume ~p and then derive c (i.e., a 

contradiction).

Thus, if one can derive a contradiction from 

~p, then one may conclude that p is true.
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Knights and Knaves: knights always tell the truth and knaves always lie

A says: B is a knight.

B says: A and I are of opposite type.

Suppose A is a knight.

∴What A says is true. by definition of knight

∴ B is also a knight. That’s what A said.

∴What B says is true. by definition of knight

∴A and B are of opposite types. That’s what B said.

∴We have arrived at the following contradiction: A and B are both 

knights and A and B are of opposite type.

∴The supposition is false. by the contradiction rule

Therefore:

∴A is not a knight. negation of supposition

∴A is a knave. since A is not a knight, A is a knave.

∴What A says is false. by definition of knave

∴ B is not a knight. ~(what A said) by definition of knave 

∴ B is also a knave. by elimination
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Proof Techniques
 Proof by Division into Cases:

p ∨ q

p → r

q → r

∴ r

 If a disjunction p ∨ q has been derived and the goal is to 

prove r, then according to this inference rule it would be 

sufficient to derive p → r and q → r.

 Example: x is positive or x is negative.

If x is positive, then x2 > 0.

If x is negative, then x2 > 0.

∴ x2 > 0.
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Quine’s Method
 The following method can be used to determine whether a given 

propositional formula is a tautology, a contradiction, or a contingency.

Let p be a propositional formula.

 If p contains no variables, it can be simplified to T or F, and hence is 

either a tautology or a contradiction.

 If p contains a variable, then 

1. select a variable, say q, 

2. simplify both p[q := T] and p[q := F], denoting the simplified 

formulas by p1 and p2, respectively, and 

3. apply the method recursively to p1 and p2.

 If p1 and p2 are both tautologies, so is p. 

 If p1 and p2 are both contradictions, so is p. 

 In all other cases, p is a contingency.
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Quine’s Method Example
(p ∧ ~q → r) ∧ (r → p ∨ q) ∧ (p → ~r) ∧ (p ∨ q ∨ r) → q

We first select a variable, say q, and then consider the two cases, 

q := T and q := F.

1. For q := T, the formula ...→T can be simplified to T.

2. For q := F, 

(p ∧ ~F→ r) ∧ (r → p ∨ F) ∧ (p → ~r) ∧ (p ∨ F ∨ r) → F

≡ (p ∧T→ r) ∧ (r → p) ∧ (p → ~r) ∧ (p ∨ r) → F

≡ (p → r) ∧ (r → p) ∧ (p → ~r) ∧ (p ∨ r) → F

≡ ~[(p → r) ∧ (r → p) ∧ (p → ~r) ∧ (p ∨ r)]
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Quine’s Method Example cont.
~[(p → r) ∧ (r → p) ∧ (p → ~r) ∧ (p ∨ r)] 

We select the variable p

1. For p := T

~[(T→ r) ∧ (r → T) ∧ (T→ ~r) ∧ (T ∨ r)] 

≡ ~[r ∧T ∧ ~r ∧T] ≡ ~[r ∧ ~r] ≡ ~F ≡ T

2. For p := F

~[(F→ r) ∧ (r → F) ∧ (F→ ~r) ∧ (F ∨ r)] 

≡ ~[T ∧ ~r ∧T ∧ r] ≡ ~[~r ∧ r] ≡ ~F ≡ T

 This completes the process. All formulas considered, including 

the original formula, are tautologies.
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