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Mathematical Formalization 

2

Why formalize?

 to remove ambiguity

 to represent facts on a computer and use it for 

proving, proof-checking, etc.

 to detect unsound reasoning in arguments

All people are mortal. 

Socrates is a person. Socrates is mortal.

Proof:

∀x P(x) → M(x) P(S) → M(S) M(S)

P(S) P(S)
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Logic

3

Mathematical logic is a tool for dealing with 

formal reasoning

formalization of natural language and reasoning 

methods

Logic does:

Assess if an argument is ∨alid/in∨alid

Logic does not directly:

Assess the truth of atomic statements
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Propositional Logic

4

 Propositional logic is the study of:

 the structure (syntax) and

 the meaning (semantics) of (simple and complex) 

propositions.

 The key questions are:

How is the truth value of a complex proposition 

obtained from the truth value of its simpler 

components?

Which propositions represent correct reasoning 

arguments?
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 A proposition is a sentence that is either true or false, but not 

both.

 Examples of simple propositions:

 John is a student

 5+1 = 6

 426 > 1721

 It is 82 degrees outside right now.

 Example of a complex proposition:

 Tom is five and Mary is six

 Sentences which are not propositions:

 Did Steve get an A on the 215 exam?

 Go away!

Propositional Logic
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 In studying properties of propositions we represent them by expressions 

called proposition forms or formulas built from propositional 

variables (atoms), which represent simple propositions and symbols 

representing logical connectives

 Proposition or propositional variables: p, q,…

each can be true or false

Examples: p=“Socrates is mortal”

q=“Plato is mortal”

 Connectives: ∧, ∨, →, ↔, ~

 connect propositions: p ∨ q

 Example: “I passed the exam or I did not pass it.”       p ∨ ~p

 The formula expresses the logical structure of the proposition, where p

is an abbreviation for the simple proposition “I passed the exam.”

Propositional Logic
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Connectives

7

~ not

∧ and

∨ or  (non-exclusive!)

→ implies (if … then …)

↔ if and only if

 for all

 exists
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Formulas
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Atomic: p, q, x, y, …

Unit Formula: p, ~p, (formula), …

Conjunctive: p ∧ q, p ∧ ~q, …

Disjunctive: p ∨ q, p ∨ (q ∧ x),…

Conditional: p→ q

Biconditional: p↔ q
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Negation (~ or ¬ or !)
 We use the symbol ~ to denote negation (same with the 

textbook)

 Formalization (syntax): If p is a formula, then ~p is also a 

formula. We say that the second formula is the negation of the 

first

 Examples: p, ~p, and ~~p are all formulas.

 Meaning (semantics): If a proposition is true, then its negation 

is false. If it is false, then its negation is true.

 The similarity in the structure of a formula and its negation 

reflects a relationship between the meaning of propositions of 

this form

9
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Examples:

John went to the store yesterday (p).

John did not go to the store yesterday (~p).

At the formula level we express the connection 

via a so-called truth table:

If p is true, then ~p is false

If p is false, then ~p is true

10

Negation (~ or ¬ or !)
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Note: ~~p ≡ p

11

Negation (~ or ¬ or !)
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Conjunction (∧ or & or •)

 We use the symbol ∧ to denote conjunction (same with the 

textbook)

 Syntax: If p and q are formulas, then p ∧ q is also a formula.

 Semantics: If p is true and q is true, then p ∧ q is true. In all 

other cases, p ∧ q is false.

12
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 Example:

1. Bill went to the store.

2. Mary ate cantaloupe.

3. Bill went to the store and Mary ate cantaloupe.

 If p and q abbreviate the first and second sentence, then the 

third is represented by the conjunction p ∧ q.

13

Conjunction (∧ or & or •)
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Inclusive Disjunction (∨ or | or +)

 We use the symbol ∨ to denote (inclusive) disjunction.

 Syntax: If p and q are formulas, then p ∨ q is also a formula.

 Semantics: If p is true or q is true or both are true, then p ∨ q is 

true. If p and q are both false, then p ∨ q is false.

14
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 Example:

 John works hard (p).

 Mary is happy (q).

 John works hard or Mary is happy (p ∨ q).

15

Inclusive Disjunction (∨ or | or +)
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Exclusive Disjunction (⊕, XOR)

 We use the symbol ⊕ to denote exclusive disjunction.

 Syntax: If p and q are formulas, then p ⊕ q is also a formula.

 Semantics: An exclusive disjunction p ⊕ q is true if, and only 

if, one of p or q is true, but not both.

 Example: 

 Either John works hard or Mary is happy (p ⊕ q)
16
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Implication

 Example of proposition: 

If I do not pass the exam I will fail the course.

 Corresponding formula: ~p → q

17
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Determining Truth of A Formula

18

 Atomic formulae: given

 Compound formulae: via meaning of the connectives

 The semantics of logical connectives determines how propositional 

formulas are evaluated depending on the truth values assigned to 

propositional variables

 Each possible truth assignment or valuation for the propositional 

variables of a formula yields a truth value. The different possibilities can 

be summarized in a truth table.
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 Example 1:             p ∧ ~q (read “p and not q”)

p q ~q p ∧ ~q

T T F F

T F T T

F T F F

F F T F

Determining Truth of A Formula
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 Example 2: p ∧ (q ∨ r ) (read “p and, in addition, q or r”)

 Note : it is usually necessary to evaluate all subformulas

p q r q ∨ r p ∧ (q ∨ r ) 

T T T T T

T T F T T

T F T T T

T F F F F

F T T T F

F T F T F

F F T T F

F F F F F

Determining Truth of A Formula
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Evaluation of formulas - Truth Tables

 A truth table for a formula lists all possible “situations” of 

truth or falsity, depending on the values assigned to the 

propositional variables of the formula

21
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Truth Tables
 Example: If p, q and r are the propositions “Peter [Quincy or 

Richard] will lend Sam money,” then Sam can deduce logically 

correct, that he will be able to borrow money whenever one of 

his three friends is willing to lend him some (p ∨ q ∨ r)

 Each row in the truth table corresponds to one possible 

situation of assigning truth values to p, q and r
22

p q r p ∨ q ∨ r

T T T T

T T F T

T F T T

T F F T

F T T T

F T F T

F F T T

F F F F
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 How many rows are there in a truth table with n 

propositional variables?

 For n = 1, there are two rows,

 for n = 2, there are four rows,

 for n = 3, there are eight rows, and so on.

 Do you see a pattern?

23

Truth Tables
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Constructing Truth Tables

 There are two choices (true or false) for each of n variables, 

so in general there are 2x2x2x...x2 = 2n rows for n 

variables.

 A systematic procedure (an algorithm) is necessary to make 

sure you construct all rows without duplicates

 construct the rows systematically: 

 count in binary: 000, 001, 010, 011,100, . . .

 the rightmost column must be computed as a function of all the truth 

values in the row.

24
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 Because it is clumsy and time-consuming to build large 

explicit truth tables, we will be interested in more efficient 

logical evaluation procedures.

25

Constructing Truth Tables
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Syntax of Formulas

 The formal language of propositional logic can be 

specified by grammar rules

 The syntactic structure of a complex logical expression 

(i.e., its parse tree) must be unambiguous

proposition ::= variable

| (~proposition)

| (proposition ∧ proposition)

| (proposition ∨ proposition)

...

variable ::= p | q | r | ...

26
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Ambiguities in Syntax of Formulas

 For example, the expression p ∧ q ∨ r can be interpreted in 

two different ways:

 Parentheses are needed to avoid ambiguities.

 Without parentheses the meaning of the formula is not clear!

 The same problem arises in arithmetic: does 5+2 x 4 mean 

(5+2) x 4 or 5+(2 x 4)?

 solved with priorities

27

p q r p ∧ q (p ∧ q) ∨ r q ∨ r p ∧ (q ∨ r)

F F T F T T F
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Simplified Syntax
 In arithmetic one often species a precedence 

among operators (say, times ahead of plus) to 

eliminate the need for some parentheses in 

certain programming languages.

The same can be done for the logical connectives, 

though deleting parentheses may cause confusion.

Example: If ∧ is ahead of ∨ in the precedence, 

there is no ambiguity in p ∧ q ∨ r

28
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Precedence
 ~ highest

 ∧

 ∨

 →, ↔ lowest

 Avoid confusion - use ‘(‘ and ‘)’:

 (p ∧ q) ∨ x



(c) Paul Fodor (CS Stony Brook)

Simplified Syntax

 The properties of the logical connectives can also be 

exploited to simplify the notation.

Example: Disjunction is commutative

30

p q p ∨ q q ∨ p

T T T T

T F T T

F T T T

F F F F
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Simplified Syntax
 AND Disjunction is associative

 We will therefore ambiguously write p ∨ q ∨ r to denote either (p ∨
q) ∨ r or p ∨ (q ∨ r). The ambiguity is usually of no consequence, as 

both formulas have the same meaning.

31

p q r (p ∨ q) ∨ r p ∨ (q ∨ r) 

T T T T T

T T F T T

T F T T T

T F F T T

F T T T T

F T F T T

F F T T T

F F F F F
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Logical Equivalence
 If two formulas evaluate to the same truth value in all situations, so 

that their truth tables are the same, they are said to be logically 

equivalent

 We write p ≡ q to indicate that two formulas p and q are logically 

equivalent

 If two formulas are logically equivalent, their syntax may be 

different, but their semantics is the same. The logical equivalence 

of two formulas can be established by inspecting the associated 

truth tables.

 Substituting logically inequivalent formulas is the source of most 

real-world reasoning errors

32
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 Example 1:

 Is ~(p ∧ q) logically equivalent to ~p ∧ ~q?

Lines 2 and 3 prove that this is not the case.

33

p q p ∧ q ~(p ∧ q) ~p ~q ~p ∧ ~q

T T T F F F F

T F F T F T F

F T F T T F F

F F F T T T T

Logical Equivalence
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 Example 2:

 Is ~(p ∧ q) logically equivalent to ~p ∨ ~q?

Yes.

34

p q p ∧ q ~(p ∧ q) ~p ~q ~p ∨ ~q

T T T F F F F

T F F T F T T

F T F T T F T

F F F T T T T

Logical Equivalence
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De Morgan's Laws
 There are a number of important equivalences, including the 

following De Morgan's Laws:

 ~(p ∧ q) ≡ ~p ∨ ~q

 ~(p ∨ q) ≡ ~p ∧ ~q

 These equivalences can be used to transform a formula into 

a logically equivalent one of a certain syntactic form, called 

a "normal form“

 Another useful logical equivalence is double negation:

 ~~ p ≡ p 

35
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Example: 

 ~(~p ∧ ~q) ≡ ~ ~ (p ∨ q) ≡ p ∨ q

The first equivalence is by De Morgan's Law, the 

second by double negation

We have just derived a new equivalence: p ∨ q ≡

~(~p ∧ ~q) (as equivalence can be used in both 

directions) which shows that disjunction can be 

expressed in terms of conjunction and negation!

36

De Morgan's Laws
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Some Logical Equivalences

 You should be able to convince yourself of (i.e., 

prove) each of these:

Commutativity of ∧ : p ∧ q ≡ q ∧ p

Commutativity of ∨ : p ∨ q ≡ q ∨ p

Associativity of ∧ : p ∧ (q ∧ r) ≡ (p ∧ q) ∧ r

Associativity of ∨ : p ∨ (q ∨ r) ≡ (p ∨ q) ∨ r

 Idempotence: p ≡ p ∧ p ≡ p ∨ p

Absorption: p ≡ p ∧ (p ∨ q) ≡ p ∨ (p ∧ q) 

37
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 You should be able to convince yourself of (i.e., 

prove) each of these:

Distributivity of ∧ : p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) 

Distributivity of ∨ : p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r) 

Contradictions: p ∧ F ≡ F ≡ p ∧ ~p

 Identities: p ∧T ≡ p ≡ p ∨ F

Tautologies: p ∨T ≡ T ≡ p ∨ ~p

38

Some Logical Equivalences
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Tautologies

 A tautology is a formula that is always true, no matter 

which truth values we assign to its variables.

 Consider the proposition "I passed the exam or I did 

not pass the exam," the logical form of which is 

represented by the formula p ∨ ~p

This is a tautology, as we get T in every row of its 

truth table.
39

p ~p p ∨ ~p

T F T

F T T
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Contradictions
 A contradiction is a formula that is always false.

 The logical form of the proposition "I passed the 

exam and I did not pass the exam" is represented 

by p ∧ ~p

 This is a contradiction, as we get F in every row of its 

truth table

40

p ~p p ∧ ~p

T F F

F T F
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Tautologies and contradictions

Tautologies and contradictions are related

Theorem: If p is a tautology (contradiction) 

then ~p is a contradiction (tautology).

Example:

~(p ∨ ~p) ≡ ~p ∧ ~~p ≡ ~p ∧ p ≡ p ∧ ~p

41
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Implication (→)
 Syntax: If p and q are formulas, then p → q (read “p implies q") 

is also a formula.

 We call p the premise and q the conclusion of the implication.

 Semantics: If p is true and q is false, then p → q is false. In all 

other cases, p → q is true.

 Truth table:

42
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Example:

p: You get A's on all exams.

q: You get an A in this course.

p → q: If you get A's on all exams, then you 

will get an A in this course.

43

Implication (→)
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 The semantics of implication is trickier than for the other 

connectives

 if p and q are both true, clearly the implication p → q is true

 if p is true but q is false, clearly the implication p → q is false

 If the premise p is false no conclusion can be drawn, but both 

q being true and being false are consistent, so that the 

implication p → q is true in both cases

 Implication can also be expressed by other connectives, for 

example, p → q is logically equivalent to ~(p ∧ ~q).

44

Implication (→)
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Example: The Case of the 

Bad Defense Attorney
 Prosecutor: 

"If the defendant is guilty, then he had an accomplice."

 Defense Attorney: 

"That's not true!!"

 What did the defense attorney just claim??

~(p → q) ≡ ~~(p ∧ ~q) ≡ p ∧ ~q

45
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Biconditional
 Syntax: If p and q are formulas, then p↔ q (read “p if 

and only if (iff) q") is also a formula.

 Semantics: If p and q are either both true or both false, 

then p↔q is true. Otherwise, p↔ q is false.

 Truth table:

46
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 Example:

p: Bill will get an A.

q: Bill studies hard.

p ↔ q : Bill will get an A if and only if Bill studies 

hard.

 The biconditional may be viewed as a shorthand for a 

conjunction of two implications, as p ↔ q is logically 

equivalent to (p → q) ∧ (q → p) 

47

Biconditional
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Necessary and Sufficient Conditions
 The phrase "necessary and sufficient conditions" appears often 

in mathematics

 A proposition p is necessary for q if q cannot be true without 

it: ~p → ~q (equivalent to q → p).

 Example: It is necessary for a student to have a 3.0 GPA in 

the core courses to be admitted to become a CSE major.

 A proposition p is sufficient for q if p → q is a tautology.

 Example: It is sufficient for a student to get A's in CSE114, 

CSE215, CSE214, and CSE220 in order to be admitted to 

become a CSE major

48
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Only if
 It p and q are statements,

p only if q means “if not q then not p,”

or, equivalently,

“if p then q.”

 John will break the world’s record for the mile run only if he 

runs the mile in under four minutes.

 Solution Version 1: If John does not run the mile in under 

four minutes, then he will not break the world’s record.

 Solution Version 2: If John breaks the world’s record, then he 

will have run the mile in under four minutes.

49
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Theorem: If a proposition p is both necessary 

and sufficient for q, then p and q are logically 

equivalent (and vice versa).

50

Necessary and Sufficient Conditions
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Tautologies and Logical Equivalence

Theorem: A propositional formula p is logically equivalent to q if 

and only if p ↔ q is a tautology

 Proof:

 (a) If p ↔ q is a tautology, then p is logically equivalent to q

Why? If p ↔ q is a tautology, then it is true for all truth 

assignments. By the semantics of the biconditional, this means that 

p and q agree on every row of the truth table. Hence the two 

formulas are logically equivalent.

 (b) If p is logically equivalent to q, then p ↔ q is a tautology

Why? If p and q logically equivalent, then they evaluate to the same 

truth value for each truth assignment. By the semantics of the 

biconditional, the formula p ↔ q is true in all situations.   

51
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Related Implications
 Implication: p → q

 If you get A's on all exams, you get an A in the course.

 Contrapositive: ~q → ~p

 If you didn't get an A in the course, then you didn't get A's on all 

exams

 Note that implication is logically equivalent to the contrapositive

52

p q p → q ~q ~p ~q → ~p

T T T F F T

T F F T F F

F T T F T T

F F T T T T
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Related Implications
 Converse: q → p

 If you get an A in the course, then you got A's on all exams.

 Inverse: ~p → ~q

 If you didn't get A's on all exams, then you didn't get an A in the 

course. 

 Note that converse is logically equivalent to the inverse

53

p q q → p ~p ~q ~p → ~q

T T T F F T

T F T F T T

F T F T F F

F F T T T T
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Deriving Logical Equivalences

 We can establish logical equivalence either via truth tables 

OR symbolically

 Example: p ↔ q is logically equivalent to (p → q) ∧ (q → p)

 Symbolic proofs are much like the simplifications you did in 

high school algebra - trial-and-error leads to experience and 

finally cunning

54

p q q ↔ p p→ q q → p (p → q) ∧ (q → p)

T T T T T T

T F F F T F

F T F T F F

F F T T T T
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Symbolic proofs

 Example: p ∧ q ≡ (p ∨ ~q) ∧ q

 Proof:

(p ∨ ~q) ∧ q ≡ q ∧ (p ∨ ~q) (1) 

≡ (q ∧ p) ∨ (q ∧ ~q) (2)

≡ (q ∧ p) ∨ F (3)

≡ (q ∧ p) (4)

≡ p ∧ q (5)

55
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 Example: p ∧ q ≡ (p ∨ ~q) ∧ q

 Proof: which laws are used at each step?

(p ∨ ~q) ∧ q ≡ q ∧ (p ∨ ~q) (1) 

≡ (q ∧ p) ∨ (q ∧ ~q) (2)

≡ (q ∧ p) ∨ F (3)

≡ (q ∧ p) (4)

≡ p ∧ q (5)

56

Symbolic proofs
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 Example: p ∧ q ≡ (p ∨ ~q) ∧ q

 Proof: which laws are used at each step?

(p ∨ ~q) ∧ q ≡ q ∧ (p ∨ ~q) (1) Commutativity of ∧

≡ (q ∧ p) ∨ (q ∧ ~q) (2)

≡ (q ∧ p) ∨ F (3)

≡ (q ∧ p) (4)

≡ p ∧ q (5)

57

Symbolic proofs
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 Example: p ∧ q ≡ (p ∨ ~q) ∧ q

 Proof: which laws are used at each step?

(p ∨ ~q) ∧ q ≡ q ∧ (p ∨ ~q) (1) Commutativity of ∧

≡ (q ∧ p) ∨ (q ∧ ~q) (2) Distributivity of ∧

≡ (q ∧ p) ∨ F (3)

≡ (q ∧ p) (4)

≡ p ∧ q (5)

58

Symbolic proofs
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 Example: p ∧ q ≡ (p ∨ ~q) ∧ q

 Proof: which laws are used at each step?

(p ∨ ~q) ∧ q ≡ q ∧ (p ∨ ~q) (1) Commutativity of ∧

≡ (q ∧ p) ∨ (q ∧ ~q) (2) Distributivity of ∧

≡ (q ∧ p) ∨ F (3) Contradiction

≡ (q ∧ p) (4)

≡ p ∧ q (5)

59

Symbolic proofs
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 Example: p ∧ q ∧ r ≡ (p ∨ ~q) ∧ q

 Proof: which laws are used at each step?

(p ∨ ~q) ∧ q ≡ q ∧ (p ∨ ~q) (1) Commutativity of ∧

≡ (q ∧ p) ∨ (q ∧ ~q) (2) Distributivity of ∧

≡ (q ∧ p) ∨ F (3) Contradiction

≡ (q ∧ p) (4) Identity

≡ p ∧ q (5)

60

Symbolic proofs
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 Example: p ∧ q ≡ (p ∨ ~q) ∧ q

 Proof: which laws are used at each step?

(p ∨ ~q) ∧ q ≡ q ∧ (p ∨ ~q) (1) Commutativity of ∧

≡ (q ∧ p) ∨ (q ∧ ~q) (2) Distributivity of ∧

≡ (q ∧ p) ∨ F (3) Contradiction

≡ (q ∧ p) (4) Identity

≡ p ∧ q (5) Commutativity of ∧
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Logical Consequence
 We say that p logically implies q, or that q is a logical consequence 

of p, if q is true whenever p is true.

 Example: p logically implies p ∨ q

 Note that logical consequence is a weaker condition than logical 

equivalence
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(c) Paul Fodor (CS Stony Brook)

Theorem: A formula p logically implies q if and only if p→ q

is a tautology.

 This gives us a tool to infer truths!

 A rule of inference is a rule of the form: 

“From premises p1, p2, ..., pn infer conclusion q”

 A rule of inference is sound or valid if the conclusion q is a 

logical consequence of the conjunction p1∧p2∧... ∧pn of all 

premises

 A rule of inference is unsound or bogus if it isn't! 
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