
Computers Playing Jeopardy! Course

Stony Brook University

Text search

(c) Paul Fodor (CS Stony Brook)

Today

 Text search: 2 parts:

 theoretical: costs of searching substrings, data structures for

string search,

 practical: implementation of text search.

 Text search refers to techniques for searching strings in single

computer-stored documents or a collection of documents in

a text database.

2

(c) Paul Fodor (CS Stony Brook)

Tokenization
 Automatically recognize words and sentences

 identify what constitutes an individual or distinct word,

referred to as a token

 Tokenizer or lexer

 sequences of characters which represent words and other

elements, such as punctuation, which are represented by

numeric codes,

 email addresses, phone numbers, and URLs.

3

(c) Paul Fodor (CS Stony Brook)

Sub-array algorithm example

 Given an array {t,h,i,s,i,s,a,t,e,s,t} and a pattern {t,e,s,t}, write a

program that checks whether the pattern is present in the array:

public static boolean substring(char[] s, char[] sub){

 for(int i=0; i < s.length - sub.length; i++)

 if(startsWith(s,sub,i)) return true;

 return false;

}

public static boolean startsWith(char[] s, char[] sub,

int m){

 for(int i=0; i<sub.length; i++)

 if(sub[i] != s[m+i]) return false;

 return true;

} Cost: m x n 

4

(c) Paul Fodor (CS Stony Brook)

Suffix arrays and trees

 Idea: preprocess the text, so the search of the substring is fast

 Specialized data structures (e.g., tries)

 Assumption: no suffix is a prefix of another suffix (can be a
substring, but not a prefix)
 Assure this by adding a character $ to end of S

 Costs:
 Build data structure for text (e.g., suffix tree)

 This is preprocessing O(m)

 Search time:

 For example: Suffix trees: O(n+k) where k is the number of
occurrences of P in T

5

(c) Paul Fodor (CS Stony Brook)

Suffix arrays
 An array of integers giving the starting positions of suffixes of

a string in lexicographical order

 8 suffixes: “TESTING$”, “ESTING$”, “STING$”, “TING$”, “ING$”, “NG$”, “G$”, “$”.

 One-based indexing: {8,2,5,7,6,3,1,4}

 Longest common prefix: how many characters

 one suffix has in common with the one above it

1 2 3 4 5 6 7 8

T E S T I N G $

index Sorted suffix lcp

8 $ 0

2 ESTING$ 0

5 ING$ 0

7 G$ 0

6 NG$ 0

3 STING$ 0

1 TESTING$ 0

4 TING$ 1

6

(c) Paul Fodor (CS Stony Brook)

Suffix arrays
 Construction: comparison sort or suffix trees

 Application: fast search of every occurrence of a substring within a string

 find every suffix that begins with the substring

 Cost: O(m log n) time

if W <= suffixAt(pos[1]) then

 ans = 1

else if W > suffixAt(pos[n]) then

 ans = n

else{

 L = 1, R = n

 while R-L > 1 do{

 M = (L + R)/2

 if W <= suffixAt(pos[M]) then

 R = M

 else

 L = M

 }

 ans = R

}

7

(c) Paul Fodor (CS Stony Brook)

Suffix tries
 Tries = ordered tree data structure that is used to store

associative arrays where the keys are usually strings

The time to insert, or to delete or to

find is identical

8

(c) Paul Fodor (CS Stony Brook)

Suffix trees
 A data structure that presents the suffixes of a given string in

a way that allows for fast implementation of string operations

9

(c) Paul Fodor (CS Stony Brook)

Building trees: O(m2) algorithm

 Initialize

 One edge for the entire string S[1..m]$

 For i = 2 to m

 Add suffix S[i..m] to suffix tree

 Find match point for string S[i..m] in current tree

 If in “middle” of edge, create new node w

 Add remainder of S[i..m] as edge label to suffix i leaf

 Running Time

 O(m-i) time to add suffix S[i..m]

10

(c) Paul Fodor (CS Stony Brook)

Assignment

 The Suffix Array Representing "BANANAS"

 The Suffix Trie Representing "BANANAS“

 The Suffix Tree Representing "BANANAS"

11

(c) Paul Fodor (CS Stony Brook)

Other indexes
 Theoretical: Gödel numbering (assigns to each symbol

and well-formed formula of some formal language a

unique natural number) – not practical

 Hashing: fast, but not unique – collisions, clustering

 B-trees: balanced search trees where every node has between

m/2 and m children, where m>1 is a fixed integer

12

(c) Paul Fodor (CS Stony Brook)

Inverted index
 A mapping from content, such as words or numbers, to its

locations in a database file, or in a document or a set of

documents

 T0 = "it is what it is”

 T1 = "what is it“

 T2 = "it is a banana"

"a": {2}

"banana": {2}

"is": {0, 1, 2}

"it": {0, 1, 2}

"what": {0, 1}

search for the terms "what", "is" and "it" would give

13

(c) Paul Fodor (CS Stony Brook)

 hash table: an array of some fixed size, that positions

elements according to an algorithm called a hash

function

elements (e.g., strings)

0

…

length –1

hash func.

h(element)

hash table

Hash tables

14

(c) Paul Fodor (CS Stony Brook)

Hashing, hash functions

 Map every element into some index in the array

 Lookup becomes constant-time: simply look at that one slot again

later to see if the element is there

 add, remove, contains all become O(1) !

 Example: h(i) = i % array.length

15

(c) Paul Fodor (CS Stony Brook)

B-trees
 The data items are stored at leaves

 The nonleaf nodes store up to M-1 keys to guide the
searching; key I represents the smallest key in subtree I
+1.

 The root is either a leaf or has between two and M
children.

 All nonleaf nodes (except the root) have between [M/2]
and M children

 All leaves are at the same depth and have between [L/2]
and L children, for some L (the determination of L is
described shortly).

16

(c) Paul Fodor (CS Stony Brook)

Apache Lucene
 http://lucene.apache.org/

 Tutorial:

 http://www.lucenetutorial.com/lucene-in-5-minutes.html

17

http://lucene.apache.org/
http://www.lucenetutorial.com/lucene-in-5-minutes.html
http://www.lucenetutorial.com/lucene-in-5-minutes.html
http://www.lucenetutorial.com/lucene-in-5-minutes.html
http://www.lucenetutorial.com/lucene-in-5-minutes.html
http://www.lucenetutorial.com/lucene-in-5-minutes.html
http://www.lucenetutorial.com/lucene-in-5-minutes.html
http://www.lucenetutorial.com/lucene-in-5-minutes.html

(c) Paul Fodor (CS Stony Brook)

Parallelism: MapReduce

 Input: a set of key/value pairs

 User supplies two functions:

 map(k,v)  list(k1,v1)

 reduce(k1, list(v1))  v2

 (k1,v1) is an intermediate key/value pair

 Output is the set of (k1,v2) pairs

18

(c) Paul Fodor (CS Stony Brook)

Hadoop
 An open-source implementation of Map Reduce in Java

 Uses HDFS for stable storage

 Download from:

http://lucene.apache.org/hadoop/

http://developer.yahoo.com/hadoop/tutorial/module3.html

19

http://lucene.apache.org/hadoop/
http://developer.yahoo.com/hadoop/tutorial/module3.html

