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Noun -> roller 

Verb  thrills 

VP Verb NP 

S  NP VP 

Last class: grammars and parsing in Prolog 

NP Verb 

VP NP 

S 

   A roller coaster thrills every teenager 
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(c) Paul Fodor (CS Stony Brook) 

Today: NLP ambiguity 

 Example: books: NOUN OR VERB 

 You do not need books for this class. 

 She books her trips early. 

 Another example: Thank you for not smoking or playing 

iPods without earphones. 

 Thank you for not smoking () without earphones  

 These cases can be detected as special uses of the same word 

 Caveout: If we write too many rules, we may write ‘unnatural’ 

grammars – special rules became general rules – it puts a 

burden too large on the person writing the grammar 
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(c) Paul Fodor (CS Stony Brook) 

Ambiguity in Parsing 

S  NP VP 

NP  Det N 

NP  NP PP 

VP  V NP 

VP  VP PP 

PP  P NP 

 NP  Papa 

N  caviar 

N  spoon 

V  spoon 

V  ate 

P  with 

Det  the 

Det  a 

S 

Papa 

NP VP 

VP 

V NP 

Det N 

the caviar 

NP 

Det N 

a spoon 

ate 

PP 

P 

with 
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Ambiguity in Parsing 
S 

Papa 

NP VP 

NP V 

NP 

Det N 

the caviar 

NP 

Det N 

a spoon 

ate PP 

P 

with 
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S  NP VP 

NP  Det N 

NP  NP PP 

VP  V NP 

VP  VP PP 

PP  P NP 

 NP  Papa 

N  caviar 

N  spoon 

V  spoon 

V  ate 

P  with 

Det  the 

Det  a 



(c) Paul Fodor (CS Stony Brook) 

Scores 

P 
A 
R 
S 
E 
R 

Grammar 

s 
c 
o 
r 
e 
r 

correct test trees 

test 
sentences 

accuracy 

Recent parsers quite 

accurate 

… good enough  

to help NLP tasks! 
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(c) Paul Fodor (CS Stony Brook) 

Speech processing ambiguity 

 Speech processing  is a very hard problem (gender, accent, 

background noise) 

 Solution: n-grams 

 Letter or word frequencies: 1-grams: THE, COURSE 
 useful in solving cryptograms 

 If you know the previous letter/word: 2-grams 
 “h” is rare in English (4%; 4 points in Scrabble) 

 but “h” is common after “t” (20%)!!! 

 If you know the previous 2 letters/words: 3-grams 
 “h” is really common after “(space) t” 
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(c) Paul Fodor (CS Stony Brook) 

N-grams 
 An n-gram is a contiguous sequence of n items from a 

given sequence 

 the items can be: letters, words, phonemes, syllables, etc. 

 Examples: 

 Consider the paragraph: “Suppose you should be walking down Broadway 

after dinner, with ten minutes allotted to the consummation of your cigar 

while you are choosing between a diverting tragedy and something serious 

in the way of vaudeville. Suddenly a hand is laid upon your arm.” (from the 

The green door, The Four Million novel, by O. Henry) 

 unigrams (n-grams of size 1): “Suppose”, “you”, “should”, “be”, “walking”,... 

 bigrams (n-grams of size 2): “Suppose you”, “you should”, “should be”, “be 

walking”,... 

 trigrams (n-grams of size 3): “Suppose you should”, “you should be”, 

“should be walking”,... 

 four-grams: “Suppose you should be”, “you should be walking”,... 
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(c) Paul Fodor (CS Stony Brook) 

N-grams 
 An n-gram model is a type of probabilistic language model for 

predicting the next item in such a sequence  

 Example: from a novel, we can extract all bigrams (sequences of 

2- words) with their probabilities of showing up: 

 probability(“you can”)= 

     number of  “you can”s in text/total number of bigrams = 0.002 

 probability(“you should” )= 

   number of  “you should”s in text/total number of bigrams = 0.001 

 etc. 

 Consider that the current word is “you” and we want to predict 

what is the next word:  

 with probability 0.002%, the next word is “can” 

 with probability 0.001%, the next word is “should” 

 Advantages: easy training, simple/intuitive probabilistic 

model. 
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(c) Paul Fodor (CS Stony Brook) 

N-grams in NLP 
 N-gram models are widely used in statistical natural language 

processing (NLP): 

 in speech recognition, phonemes and sequences of phonemes are modeled 

using a n-gram distribution: 

 due to multitude of accents, various voice pitches, gender, etc., speech 

recognition is very error prone, so information about the predicted next 

phonemes is very useful to detect the exact transcription 

 in parsing text, words are modeled such that each n-gram is composed 

of n words 

 there is an infinite number of ways to express ideas in natural language. However, 

there are common and standardized ways used by humans to convert information. 

A probabilistic model is useful to the parser to construct a data structure that best 

fits the grammatical rules. 

 in language identification, sequences of characters are modeled for different 

languages (e.g., in English, “t” and “w” are followed by an “h” 90% of the 

time). 
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(c) Paul Fodor (CS Stony Brook) 

N-grams in NLP 
 Other applications:  

 plagiarism detection,  

 find candidates for the correct spelling of a misspelled word,  

 optical character recognition (OCR), 

 machine translation, 

 correction codes (correct words that were garbled during 

transmission) 

 Modern statistical models are typically made up of two parts:  

 a prior distribution describing the inherent likelihood of a 

possible result and  

 a likelihood function used to assess the compatibility of 

a possible result with observed data. 
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(c) Paul Fodor (CS Stony Brook) 

Probabilities and statistics 

 descriptive: mean scores 

 confirmatory: statistically significant? 

 predictive: what will follow?  

 Probability notation p(X | Y): 
  p(Paul Revere wins | weather’s clear) = 0.9 

 Revere’s won 90% of races with clear weather 

  p(win | clear) = p(win, clear) / p(clear) 

 
predicate selecting 

races where  

weather’s clear 

logical conjunction 

of predicates 

syntactic sugar 
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(c) Paul Fodor (CS Stony Brook) 

Properties of p (axioms) 

p() = 0            p(all outcomes) = 1 

  p(X)  p(Y) for any X  Y 

p(X  Y) = p(X) + p(Y) provided X  Y= 

 

 example: p(win & clear) + p(win &  clear) = p(win) 
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(c) Paul Fodor (CS Stony Brook) 

Properties and Conjunction 

 what happens as we add conjuncts to left of bar ? 

 p(Paul Revere wins, Valentine places, Epitaph shows |  

   weather’s clear) 

 probability can only decrease 

 what happens as we add conjuncts to right of bar ? 

 p(Paul Revere wins | weather’s clear, ground is dry,  

    jockey getting over sprain) 

 probability can increase or decrease 

 Simplifying Right Side (Backing Off) - reasonable estimate  

p(Paul Revere wins | weather’s clear, ground is dry,  

    jockey getting over sprain) 
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(c) Paul Fodor (CS Stony Brook) 

p(Revere, Valentine, Epitaph | weather’s clear)  

= p(Revere | Valentine, Epitaph, weather’s clear) 

* p(Valentine | Epitaph, weather’s clear) 

* p(Epitaph | weather’s clear) 

 

Factoring Left Side: The Chain Rule 

True because numerators cancel against denominators 

Makes perfect sense when read from bottom to top 

 

Epitaph? 

Valentine? 

Revere? 

Revere? 
Valentine? 

Revere? 

Revere? 

Epitaph, Valentine, Revere? 1/3 * 1/5 * 1/4 
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(c) Paul Fodor (CS Stony Brook) 

16 

 

 p(Revere | Valentine, Epitaph, weather’s clear) 

 

  

 

 

 

 

Factoring Left Side: The Chain Rule 

If this prob is unchanged by backoff, we say Revere was 

CONDITIONALLY INDEPENDENT of Valentine and Epitaph 

(conditioned on the weather’s being clear).    

      yes 

clear? 

no 3/4 
yes 1/4 
no 3/4 
yes 1/4 

no 3/4 
yes 1/4 

Epitaph? 

Valentine? 

Revere? 

Revere? 
Valentine? 

Revere? 

Revere? 

no 3/4 
yes 1/4 irrelevant 

conditional independence lets us use backed-off data from 

all four of these cases to estimate their shared probabilities 
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(c) Paul Fodor (CS Stony Brook) 
17 

Bayes’ Theorem 
 p(A | B) = p(B | A) * p(A) / p(B) 

 

 Easy to check by removing syntactic sugar 

 Use 1: Converts p(B | A) to p(A | B) 

 Use 2: Updates p(A) to p(A | B) 
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(c) Paul Fodor (CS Stony Brook) 

Probabilistic Algorithms 

 Example: The Viterbi algorithm computes the probability of a 

sequence of observed events and the most likely sequence of 

hidden states (the Viterbi path) that result in the sequence of 

observed events. 

http://www.cs.stonybrook.edu/~pfodor/old_page/viterbi/viterbi.P 

 forward_viterbi(+Observations, +States, +Start_probabilities, 

+Transition_probabilities, +Emission_probabilities, -Prob, -Viterbi_path, -

Viterbi_prob)  

 forward_viterbi(['walk', 'shop', 'clean'], ['Ranny', 'Sunny'], [0.6, 0.4], [[0.7, 

0.3],[0.4,0.6]], [[0.1, 0.4, 0.5], [0.6, 0.3, 0.1]], Prob, Viterbi_path, 

Viterbi_prob) will return:  

Prob = 0.03361, Viterbi_path = [Sunny, Rainy, Rainy, Rainy], 

Viterbi_prob=0.0094 
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(c) Paul Fodor (CS Stony Brook) 

Viterbi Algorithm 
 Alice and Bob live far apart from each other. 

 Bob does three activities: walks in the park, shops, and cleans 

his apartment. 

 Alice has no definite information about the weather where 

Bob lives. 

 Alice tries to guess what the weather is based on what Bob 

does: 

 The weather operates as a discrete Markov chain 

 There are two (hidden to Alice) states "Rainy" and "Sunny“  

 start_probability = {'Rainy': 0.6, 'Sunny': 0.4} 
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(c) Paul Fodor (CS Stony Brook) 

Viterbi Algorithm 
 A dynamic programming algorithm 

 Input: a first-order hidden Markov model (HMM) 

 states Y 

 initial probabilities πi of being in state i 

 transition probabilities ai,j of transitioning from state i to statej 

 observations x0 ,..., xT 

 Output: The state sequence  y0 ,..., yT  most likely to have 

produced the observations 

 Vt,k is the probability of the most probable state sequence 

responsible for the first t + 1 observations 

 V0,k = P(x0|k) πi 

 VT,k = P(xt|k) maxy  Y (ay,kVt-1,y) 

 
Wikipedia 20 



(c) Paul Fodor (CS Stony Brook) 

Viterbi Algorithm 
 The transition_probability represents the change of the weather 

transition_probability = { 'Rainy' : {'Rainy': 0.7, 'Sunny': 0.3},  

    'Sunny' : {'Rainy': 0.4, 'Sunny': 0.6}} 

 The emission_probability represents how likely Bob is to perform a 

certain activity on each day: 

emission_probability = { 'Rainy' : {'walk': 0.1, 'shop': 0.4, 'clean': 0.5},  

    'Sunny' : {'walk': 0.6, 'shop': 0.3, 'clean': 0.1}, } 

Wikipedia 21 



(c) Paul Fodor (CS Stony Brook) 

Viterbi Algorithm 
 Alice talks to Bob and discovers the history of his activities: 

 on the first day he went for a walk 

 on the second day he went shopping 

 on the third day he cleaned his apartment 

['walk', 'shop', 'clean'] 

 What is the most likely sequence of rainy/sunny days that 

would explain these observations? 

Wikipedia 22 
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