
Computers Playing Jeopardy! Course

Stony Brook University

Grammars and introduction to

machine learning

(c) Paul Fodor (CS Stony Brook)

Noun -> roller

Verb  thrills

VP Verb NP

S  NP VP

Last class: grammars and parsing in Prolog

NP Verb

VP NP

S

 A roller coaster thrills every teenager

2

(c) Paul Fodor (CS Stony Brook)

Today: NLP ambiguity

 Example: books: NOUN OR VERB

 You do not need books for this class.

 She books her trips early.

 Another example: Thank you for not smoking or playing

iPods without earphones.

 Thank you for not smoking () without earphones 

 These cases can be detected as special uses of the same word

 Caveout: If we write too many rules, we may write ‘unnatural’

grammars – special rules became general rules – it puts a

burden too large on the person writing the grammar

3

(c) Paul Fodor (CS Stony Brook)

Ambiguity in Parsing

S  NP VP

NP  Det N

NP  NP PP

VP  V NP

VP  VP PP

PP  P NP

 NP  Papa

N  caviar

N  spoon

V  spoon

V  ate

P  with

Det  the

Det  a

S

Papa

NP VP

VP

V NP

Det N

the caviar

NP

Det N

a spoon

ate

PP

P

with

4

(c) Paul Fodor (CS Stony Brook)

Ambiguity in Parsing
S

Papa

NP VP

NP V

NP

Det N

the caviar

NP

Det N

a spoon

ate PP

P

with

5

S  NP VP

NP  Det N

NP  NP PP

VP  V NP

VP  VP PP

PP  P NP

 NP  Papa

N  caviar

N  spoon

V  spoon

V  ate

P  with

Det  the

Det  a

(c) Paul Fodor (CS Stony Brook)

Scores

P
A
R
S
E
R

Grammar

s
c
o
r
e
r

correct test trees

test
sentences

accuracy

Recent parsers quite

accurate

… good enough

to help NLP tasks!

6

(c) Paul Fodor (CS Stony Brook)

Speech processing ambiguity

 Speech processing is a very hard problem (gender, accent,

background noise)

 Solution: n-grams

 Letter or word frequencies: 1-grams: THE, COURSE
 useful in solving cryptograms

 If you know the previous letter/word: 2-grams
 “h” is rare in English (4%; 4 points in Scrabble)

 but “h” is common after “t” (20%)!!!

 If you know the previous 2 letters/words: 3-grams
 “h” is really common after “(space) t”

7

(c) Paul Fodor (CS Stony Brook)

N-grams
 An n-gram is a contiguous sequence of n items from a

given sequence

 the items can be: letters, words, phonemes, syllables, etc.

 Examples:

 Consider the paragraph: “Suppose you should be walking down Broadway

after dinner, with ten minutes allotted to the consummation of your cigar

while you are choosing between a diverting tragedy and something serious

in the way of vaudeville. Suddenly a hand is laid upon your arm.” (from the

The green door, The Four Million novel, by O. Henry)

 unigrams (n-grams of size 1): “Suppose”, “you”, “should”, “be”, “walking”,...

 bigrams (n-grams of size 2): “Suppose you”, “you should”, “should be”, “be

walking”,...

 trigrams (n-grams of size 3): “Suppose you should”, “you should be”,

“should be walking”,...

 four-grams: “Suppose you should be”, “you should be walking”,...

8

(c) Paul Fodor (CS Stony Brook)

N-grams
 An n-gram model is a type of probabilistic language model for

predicting the next item in such a sequence

 Example: from a novel, we can extract all bigrams (sequences of

2- words) with their probabilities of showing up:

 probability(“you can”)=

 number of “you can”s in text/total number of bigrams = 0.002

 probability(“you should”)=

 number of “you should”s in text/total number of bigrams = 0.001

 etc.

 Consider that the current word is “you” and we want to predict

what is the next word:

 with probability 0.002%, the next word is “can”

 with probability 0.001%, the next word is “should”

 Advantages: easy training, simple/intuitive probabilistic

model.
9

(c) Paul Fodor (CS Stony Brook)

N-grams in NLP
 N-gram models are widely used in statistical natural language

processing (NLP):

 in speech recognition, phonemes and sequences of phonemes are modeled

using a n-gram distribution:

 due to multitude of accents, various voice pitches, gender, etc., speech

recognition is very error prone, so information about the predicted next

phonemes is very useful to detect the exact transcription

 in parsing text, words are modeled such that each n-gram is composed

of n words

 there is an infinite number of ways to express ideas in natural language. However,

there are common and standardized ways used by humans to convert information.

A probabilistic model is useful to the parser to construct a data structure that best

fits the grammatical rules.

 in language identification, sequences of characters are modeled for different

languages (e.g., in English, “t” and “w” are followed by an “h” 90% of the

time).

10

(c) Paul Fodor (CS Stony Brook)

N-grams in NLP
 Other applications:

 plagiarism detection,

 find candidates for the correct spelling of a misspelled word,

 optical character recognition (OCR),

 machine translation,

 correction codes (correct words that were garbled during

transmission)

 Modern statistical models are typically made up of two parts:

 a prior distribution describing the inherent likelihood of a

possible result and

 a likelihood function used to assess the compatibility of

a possible result with observed data.

 11

(c) Paul Fodor (CS Stony Brook)

Probabilities and statistics

 descriptive: mean scores

 confirmatory: statistically significant?

 predictive: what will follow?

 Probability notation p(X | Y):
 p(Paul Revere wins | weather’s clear) = 0.9

 Revere’s won 90% of races with clear weather

 p(win | clear) = p(win, clear) / p(clear)

predicate selecting

races where

weather’s clear

logical conjunction

of predicates

syntactic sugar

12

(c) Paul Fodor (CS Stony Brook)

Properties of p (axioms)

p() = 0 p(all outcomes) = 1

 p(X)  p(Y) for any X  Y

p(X  Y) = p(X) + p(Y) provided X  Y=

 example: p(win & clear) + p(win & clear) = p(win)

13

(c) Paul Fodor (CS Stony Brook)

Properties and Conjunction

 what happens as we add conjuncts to left of bar ?

 p(Paul Revere wins, Valentine places, Epitaph shows |

 weather’s clear)

 probability can only decrease

 what happens as we add conjuncts to right of bar ?

 p(Paul Revere wins | weather’s clear, ground is dry,

 jockey getting over sprain)

 probability can increase or decrease

 Simplifying Right Side (Backing Off) - reasonable estimate

p(Paul Revere wins | weather’s clear, ground is dry,

 jockey getting over sprain)

14

(c) Paul Fodor (CS Stony Brook)

p(Revere, Valentine, Epitaph | weather’s clear)

= p(Revere | Valentine, Epitaph, weather’s clear)

* p(Valentine | Epitaph, weather’s clear)

* p(Epitaph | weather’s clear)

Factoring Left Side: The Chain Rule

True because numerators cancel against denominators

Makes perfect sense when read from bottom to top

Epitaph?

Valentine?

Revere?

Revere?
Valentine?

Revere?

Revere?

Epitaph, Valentine, Revere? 1/3 * 1/5 * 1/4
15

(c) Paul Fodor (CS Stony Brook)

16

 p(Revere | Valentine, Epitaph, weather’s clear)

Factoring Left Side: The Chain Rule

If this prob is unchanged by backoff, we say Revere was

CONDITIONALLY INDEPENDENT of Valentine and Epitaph

(conditioned on the weather’s being clear).

 yes

clear?

no 3/4
yes 1/4
no 3/4
yes 1/4

no 3/4
yes 1/4

Epitaph?

Valentine?

Revere?

Revere?
Valentine?

Revere?

Revere?

no 3/4
yes 1/4 irrelevant

conditional independence lets us use backed-off data from

all four of these cases to estimate their shared probabilities

16

(c) Paul Fodor (CS Stony Brook)
17

Bayes’ Theorem
 p(A | B) = p(B | A) * p(A) / p(B)

 Easy to check by removing syntactic sugar

 Use 1: Converts p(B | A) to p(A | B)

 Use 2: Updates p(A) to p(A | B)

17

(c) Paul Fodor (CS Stony Brook)

Probabilistic Algorithms

 Example: The Viterbi algorithm computes the probability of a

sequence of observed events and the most likely sequence of

hidden states (the Viterbi path) that result in the sequence of

observed events.

http://www.cs.stonybrook.edu/~pfodor/old_page/viterbi/viterbi.P

 forward_viterbi(+Observations, +States, +Start_probabilities,

+Transition_probabilities, +Emission_probabilities, -Prob, -Viterbi_path, -

Viterbi_prob)

 forward_viterbi(['walk', 'shop', 'clean'], ['Ranny', 'Sunny'], [0.6, 0.4], [[0.7,

0.3],[0.4,0.6]], [[0.1, 0.4, 0.5], [0.6, 0.3, 0.1]], Prob, Viterbi_path,

Viterbi_prob) will return:

Prob = 0.03361, Viterbi_path = [Sunny, Rainy, Rainy, Rainy],

Viterbi_prob=0.0094

18

http://www.cs.stonybrook.edu/~pfodor/old_page/viterbi/viterbi.P

(c) Paul Fodor (CS Stony Brook)

Viterbi Algorithm
 Alice and Bob live far apart from each other.

 Bob does three activities: walks in the park, shops, and cleans

his apartment.

 Alice has no definite information about the weather where

Bob lives.

 Alice tries to guess what the weather is based on what Bob

does:

 The weather operates as a discrete Markov chain

 There are two (hidden to Alice) states "Rainy" and "Sunny“

 start_probability = {'Rainy': 0.6, 'Sunny': 0.4}

Wikipedia 19

(c) Paul Fodor (CS Stony Brook)

Viterbi Algorithm
 A dynamic programming algorithm

 Input: a first-order hidden Markov model (HMM)

 states Y

 initial probabilities πi of being in state i

 transition probabilities ai,j of transitioning from state i to statej

 observations x0 ,..., xT

 Output: The state sequence y0 ,..., yT most likely to have

produced the observations

 Vt,k is the probability of the most probable state sequence

responsible for the first t + 1 observations

 V0,k = P(x0|k) πi

 VT,k = P(xt|k) maxy  Y (ay,kVt-1,y)

Wikipedia 20

(c) Paul Fodor (CS Stony Brook)

Viterbi Algorithm
 The transition_probability represents the change of the weather

transition_probability = { 'Rainy' : {'Rainy': 0.7, 'Sunny': 0.3},

 'Sunny' : {'Rainy': 0.4, 'Sunny': 0.6}}

 The emission_probability represents how likely Bob is to perform a

certain activity on each day:

emission_probability = { 'Rainy' : {'walk': 0.1, 'shop': 0.4, 'clean': 0.5},

 'Sunny' : {'walk': 0.6, 'shop': 0.3, 'clean': 0.1}, }

Wikipedia 21

(c) Paul Fodor (CS Stony Brook)

Viterbi Algorithm
 Alice talks to Bob and discovers the history of his activities:

 on the first day he went for a walk

 on the second day he went shopping

 on the third day he cleaned his apartment

['walk', 'shop', 'clean']

 What is the most likely sequence of rainy/sunny days that

would explain these observations?

Wikipedia 22

(c) Paul Fodor (CS Stony Brook) Wikipedia 23

