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IBM Watson Question Analysis for 

Jeopardy! = UIMA + Prolog + NLP  
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Languages 
 Languages: 

 Imperative = Turing machines 

 Functional Programming = lambda calculus 

 Logical Programming = first-order predicate calculus 

 Prolog and its variants make up the most commonly used 

Logical programming languages. 

 One variant is XSB  developed here at Stony Brook. 

 Prolog systems: SWI Prolog, XSB Prolog, Sicstus, Yap 

Prolog, Ciao Prolog, GNU Prolog, etc. 

 ISO Prolog standard. 
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What Is Prolog? 
 Prolog is a logic-based language 

 Simple Knowledge Representation 

 With a few simple rules, information can be analyzed 

Socrates is a man. 

All men are mortal. 

Therefore, Socrates is mortal. 

 This is logic. Can Prolog do it? 

Yes, but infinite inference in some cases 

 XSB = Prolog + tabling  

better termination properties 
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Brief History 
 The first, official version of Prolog was developed  

 at the University of Marseilles, France by Alain Colmerauer in 

the early 1970s  

 as a tool for PROgramming in LOGic.  

 Fifth generation project in Japan. 

 Europe and US followed. 

 Many rule systems today in: natural language processing, semantic 

Web, access control system, expert systems, etc. 

 Several Prolog systems in use: XSB Prolog, SWI, Yap, GNU 

Prolog, Sicstus, Quitus, Ciao, EcliPse, etc. 

 Extensions: Flora-2 F-logic, Answer Set Programming, 

OntoBroker. 
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Application Areas 

Prolog has been a very important tool in: 

artificial intelligence applications  

expert systems  

natural language processing 

smart information management systems  

business rules 

security access control policies 
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Declarative Language 
 Prolog is based on mathematical logic with deductive 

capabilities. 

 This means that  

The programmer  
 declares facts (true facts) 

 defines rules (logical implication) for reasoning with the 
facts 

Prolog uses deductive reasoning to  
 decide whether a proposed fact (goal, query) can be 

logically derived from known facts (such a decision is 
called a conclusion) 

 determine new facts from old 
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Prolog: Facts, Rules and Queries 

 

Socrates is a man. 

All men are mortal. 

Is Socrates mortal? 

man(socrates). 

mortal(X) :- man(X). 

?- mortal(socrates). 

Yes 

Prolog 
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Formalizing Arguments 
  Abstracting with symbols for predicates, we get an argument 

form that looks like this: 

    if   p  then  q  

    p is true 

     therefore  q is true 

            

((q :- p)  p)  q 
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Declarative Language 

Monotonic logic 
 Standard logic is monotonic: once you prove something is 

true, it is true forever. 

 Logic isn't a good fit to reality (we don’t know everything 

and we learn true things that we believed in the past to be 

False). 

 Prolog’s not (\+) operator is a closed-world negation as 

failure:  if no proof can be found for the fact, then the negative 

goal succeeds.  

 Example:     illegal(X) :- \+ legal(X). 

 Example inference: If we don’t know anything legal about “Al Capone”, then 

it must be the case that he is doing something illegal is true. 

 This is non-monotonic: 

 Adding a fact that something is legal destroys an argument that it is 

illegal.  
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 A non-monotonic logic is a formal logic whose consequence  

    relation is not monotonic. 

 Adding a formula to a theory produces a reduction of its 

set of consequences. 

   p:- \+ q. 

 p is true because q is not known/derivable to be true. 

 What if later q is asserted? Then p is false (it destroyed the 

proof that it is true). 

 The \+/1 prefix operator is also called the "not provable" 

operator, since the query   ?- \+ Goal.   succeeds if Goal is not 

provable.  

 

Declarative Language 

Non-monotonic logic 
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Forward and backward reasoning 

 A syllogism gives two premises. 

 We ask: "What is everything that we can conclude?" 

 This is forward reasoning -- from premises to conclusions! 

 it's inefficient when you have lots of premises: many things can be 

inferred. 

 Instead, you ask Prolog specific questions: 

 Example: “Can we infer that Al is a criminal?” 

 Prolog seeks for the goals provided  by the user as questions 

 Prolog uses backward reasoning -- from (potential) conclusions to 

facts 
 Prolog searches successful paths and if it reaches unsuccessful branch, it 

backtracks to previous one and tries to apply alternative clauses 
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Prolog Backtracking 

1
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Logic Programming Concepts 
 Based on predicate calculus  

 Predicates: p(a1,a2,...,an) 

 Example: a graph declared with facts (true statements) 

edge(a, b). 

edge(a, c). 

edge(b, d). 

edge(c, d). 

 Rules: 

1) if there's an edge from X to Y, we can reach Y from X. 

reach(X, Y) :- edge(X, Y). 

 “:-” means “implied by” 

2) if there's an edge from X to Y, and we can reach Z from Y, we can reach Z from X. 

reach(X,Z) :- edge(X, Y), reach(Y, Z). 

 “,” means and (conjunction), “;” means or (disjunction). 
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Running XSB Prolog 
 Install XSB Prolog 

 Windows distribution 

 build/configure and make for Linux and MacOS 

 Create your "database" (program) in any editor 

man(socrates). 

mortal(X) :- man(X). 

 Save it as text only, with a .P extension (or .pl) 

 Run xsb 

?- consult('socrates.pl'). 

 Then, ask your question at the prompt: 

?- mortal(socrates). 
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Some Useful Tricks 
 XSB returns only the first answer to the query. To get the 

next, type  ; <Return>. For instance: 
 

  | ?- q(X). 
  X = 2 
  X = 4 
  yes 
  | ?- 
 

 Usually, typing the ;’s is tedious. To do this 
programmatically, use this idiom: 

 

  | ?- (q(_X), write('X='), write(_X),nl, fail ; true). 
 

    _X  here tells XSB to not print its own answers, since we are 
printing them by ourselves.  (XSB won’t print answers for 
variables that are prefixed with a _.) 

; <Return> 

<Return> 

<Return> 
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Prolog is a theorem prover 

 Prolog's "Yes" means "I can prove it“ 

 Prolog's "No" means "I can't prove it" 

?- mortal(plato). 

No 

 XSB Prolog has closed world assumption: knows 

everything it needs to know at a given time, so “No” means 

that the fact cannot be proven with the current 

information (and negation of failure). 

 Prolog supplies values for variables when it can 

 ?- mortal(X). 

X = socrates 
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 edge(1,2). 

 edge(2,3). 

 edge(2,4). 

 reachable(X,Y) :- edge(X,Y). 

 reachable(X,Y) :- edge(X,Z), reachable(Z, Y). 

 

 

Prolog Example: Reachability 
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  | ?- reachable(X,Y). 

 

X = 1 

Y = 2;  Type a semi-colon repeatedly 

 

X = 2 

Y = 3; 

 

X = 2 

Y = 4; 

 

X = 1 

Y = 3; 

 

X = 1 

Y = 4; 

 

no 

 

| ?- halt.  Command to Exit XSB 

Prolog Example: Reachability 
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 Cycles in the graph may generate infinite loops 

 We can table (remember) queries and results, 

so we don't ask the same queries over and over 

again. 

 

  edge(1,2). 

 edge(2,3). 

 edge(2,4). 

 edge(4,1). 

 :- table(reachable/2). 

 reachable(X,Y) :- edge(X,Y). 

 reachable(X,Y) :- edge(X,Z), reachable(Z, Y). 

 

 

XSB Prolog Example: Reachability 
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 A predicate is a collection of clauses with the same 

functor (name) and arity (number of arguments). 

 

 

 

 

 A program is a collection of predicates. 

 Clauses within a predicate are used in the order 

in which they occur. 

 

 

Prolog in detail 

parent(paul,steven). 

parent(peter,olivia). 

parent(tom,liz). 

parent(tony, ann). 

parent(michael,paul). 

parent(jill,tania). 
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Prolog Syntax 

Variables begin with a capital letter or 

underscore: 

     X, Socrates, _result 

Atoms do not begin with a capital letter: 

    socrates, paul 

Atoms containing special characters, or 

beginning with a capital letter, must be 

enclosed in single quotes: ‘Socrates’ 
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Prolog 
 A variable is an identifier beginning with an upper-case letter 

(e.g., X, Y, Number) or with underscore. 

 Anonymous variable: an underscore character (_) stands for an 

anonymous variable. 

 Each occurrence of _ corresponds to a different variable; even within a 

clause, _ does not stand for one and the same object. 

 Single-variable-check: a variable with a name beginning with a 

character other than _ will be used to create relationships 

within a clause and must therefore be used more than once 

(otherwise, a warning is produced). 

 You can use variables preceded with underscore to eliminate this warning. 

 All types are discovered implicitly (no declarations in LP). 
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Data types 
 An atom is a general-purpose name with no inherent 

meaning. 

 Numbers can be floats or integers. 

 A compound term is composed of an atom called a 

"functor" and a number of "arguments", which are again 

terms:       tree(node(a),tree(node(b),node(c))) 

 Special cases of compound terms: 

 Lists: ordered collections of terms: [], [1,2,3], [a,1,X|T] 

 Strings: A sequence of characters surrounded by quotes is 

equivalent to a list of (numeric) character codes. String 

examples: “abc” (same with the list [97,98,99]), “to be, or not 

to be”. 
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Representation of Lists 
 Lists are handled as recursive compound terms in Prolog 

with the first element of the list (called the head) and the rest 
of the list after eliminating the first element (called the tail): 

[Head | Tail]   OR 

.(Head,Tail)  

 Head is an atom and Tail is a list. 

 We can write [a,b,c] or .(a,.(b,.(c,[]))). 
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Matching - Unification 
 Given two terms, they are identical or the variables in both 

terms can have same objects after being instantiated 

date(D,M,2006) = date(D1,feb,Y1)  
D=D1, M=feb, Y1=2006 

 General Rule to decide whether two terms, S and T match 
are as follows: 

 If S and T are constants, S=T if both are same object 

 If S is a variable and T is anything, T=S  

 If T is variable and S is anything, S=T 

 If S and T are structures, S=T if 
 S and T have same functor 

 All their corresponding arguments components have to match 
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Declarative and Procedural Way 

 The Prolog procedural execution is equivalent with the 

declarative semantics. 

P:- Q,R. 
 Declarative Way 

 P is true if Q and R are true. 

 Procedural Way 

 To solve problem P, first solve Q and then R (or) To satisfy P, first satisfy 

Q and then R, 

 Procedural way does not only define logical relation between the head of 

the clause and the goals in the body, but also the order in which the goal 

are processed. 
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Formal Declarative Meaning 

Given a program and a goal G: 

A goal G is true (that is satisfiable, or logically 
follows from the program) if and only if: 

There is a clause C in the program such that 

There is a clause instance I of C such that 
The head of I is identical to G, and 

All the goals in the body of I are true. 

28 



(c) Paul Fodor (CS Stony Brook) 

Evaluation Example 

mother_child(trude, sally). 

  

father_child(tom, sally). 

father_child(tom, erica). 

father_child(mike, tom). 

 

parent_child(X, Y) :- father_child(X, Y). 

parent_child(X, Y) :- mother_child(X, Y). 

  

sibling(X, Y):- parent_child(Z, X), parent_child(Z, Y). 

  

?- sibling(sally, erica). 

Yes (by chronological backtracking) 
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Evaluation Example 

 ?- father_child(Father, Child). 

enumerates all valid answers on backtracking. 
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Prolog 
PROLOG IS NOT PURELY DECLARATIVE: 

The ordering of the database and the left-to-right pursuit of sub-

goals gives a deterministic imperative semantics to searching 

and backtracking, 

Changing the order of statements in the database can give you 

different results: 

It can lead to infinite loops, 

It can certainly result in inefficiency. 

3
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Infinite regression in Prolog 

3
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append([],L,L). 

append([X|L], M, [X|N]) :- append(L,M,N). 

append([1,2],[3,4],X)? 

Append example 
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34 

append([],L,L). 

append([X|L],M,[X|N]) :- append(L,M,N). 

append([1,2],[3,4],X)? X=1,L=[2],M=[3,4],A=[X|N] 

Append example 
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35 

append([],L,L). 

append([X|L],M,[X|N]) :- append(L,M,N). 

append([1,2],[3,4],X)? X=1,L=[2],M=[3,4],A=[X|N] 

append([2],[3,4],N)? 

Append example 
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36 

append([],L,L). 

append([X|L],M,[X|N’]) :- append(L,M,N’). 

append([1,2],[3,4],X)? 

X=2,L=[],M=[3,4],N=[2|N’] append([2],[3,4],N)? 

X=1,L=[2],M=[3,4],A=[1|N] 

Append example 
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37 

append([],L,L). 

append([X|L],M,[X|N’]) :- append(L,M,N’). 

append([1,2],[3,4],X)? 

X=2,L=[],M=[3,4],N=[2|N’] append([2],[3,4],N)? 

X=1,L=[2],M=[3,4],A=[1|N] 

append([],[3,4],N’)? 

Append example 
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38 

append([],L,L). 

append([X|L],M,[X|N’]) :- append(L,M,N’). 

append([1,2],[3,4],X)? 

X=2,L=[],M=[3,4],N=[2|N’] append([2],[3,4],N)? 

X=1,L=[2],M=[3,4],A=[1|N] 

append([],[3,4],N’)? L = [3,4], N’ = L 

Append example 
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39 

append([],L,L). 

append([X|L],M,[X|N’]) :- append(L,M,N’). 

append([1,2],[3,4],X)? 

X=2,L=[],M=[3,4],N=[2|N’] append([2],[3,4],N)? 

X=1,L=[2],M=[3,4],A=[1|N] 

append([],[3,4],N’)? L = [3,4], N’ = L 

               A = [1|N]  

        N = [2|N’]  

  N’= L 

      L = [3,4] 

Answer: A = [1,2,3,4]  

Append example 
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Member Example 
member(X,[X|R]).  

member(X,[Y|R]) :- member(X,R). 

 X is a member of a list whose first element is X. 

 X is a member of a list whose tail is R if X is a member of R. 

?- member(2,[1,2,3]).  

Yes 

?- member(X,[1,2,3]).  

X = 1 ;  

X = 2 ;  

X = 3 ;  

No 
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Select Example 
select(X,[X|R],R).  

select(X,[F|R],[F|S]) :- select(X,R,S). 

 When X is selected from [X|R], R results. 

 When X is selected from the tail of [X|R], [X|S] results, where S is 

the result of taking X out of R. 

?- select(X,[1,2,3],L).  

X=1  L=[2,3] ;  

X=2  L=[1,3] ;  

X=3  L=[1,2] ;  

No 
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Reverse Example 
reverse([X|Y],Z,W) :- reverse(Y,[X|Z],W).  

reverse([],X,X). 

 

?- reverse([1,2,3],[],X). 

X = [3,2,1] 

Yes 
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Permutation Example 
perm([],[]). 

perm([X|Y],Z) :- perm(Y,W), select(X,Z,W).    

 

?- perm([1,2,3],P).  

P = [1,2,3] ;  

P = [2,1,3] ;  

P = [2,3,1] ;  

P = [1,3,2] ;  

P = [3,1,2] ;  

P = [3,2,1] 
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Set Examples 
 Sets: 
union([X|Y],Z,W) :- member(X,Z),  union(Y,Z,W). 

union([X|Y],Z,[X|W]) :- \+ member(X,Z), union(Y,Z,W). 

union([],Z,Z). 

  

intersection([X|Y],M,[X|Z]) :- member(X,M), intersection(Y,M,Z). 

intersection([X|Y],M,Z) :- \+ member(X,M), intersection(Y,M,Z). 

intersection([],M,[]). 
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Imperative features 
Conditional operator: the if-then-else construct in Prolog: 

Example: 

max(X,Y,Z) :- 

    (  X =< Y 

    -> Z = Y 

    ;  Z = X   

     ). 

4
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Cut (logic programming) 

 Cut (! in Prolog) is a goal which always succeeds, but cannot 

be backtracked past. 

 Green cut 

gamble(X) :- gotmoney(X),!.  

gamble(X) :- gotcredit(X), \+ gotmoney(X). 

 cut says “stop looking for alternatives” 

 by explicitly writing \+ gotmoney(X), it guarantees that the 

second rule will always work even if the first one is removed by 

accident or changed 

 Red cut 

gamble(X) :- gotmoney(X),!.  

gamble(X) :- gotcredit(X). 
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Difference Lists 
• With the default implementation of lists one can only 

get/put the head of the list in constant time 

• Access to the tail of the list can only be done in a time equal 

to the size of the list. 

Examples: 

• Adding an element to the end of a list: 
addEnd(X,[],[X]). 

addEnd(X,[H|T],[H|T2]):- addEnd(X,T,T2). 

?- addEnd(6,[1,2,3,4,5],L).  

% needs 5 recursion steps to get to the end of the list 

%  to add the element 

• Appending 2 lists requires one to iterate through the first list: 
append([],L2,L2). 

append([H|T],L2,[H|T2]):- append(T,L2,T2). 

       ?- append([1,2,3,4],[5],L3). 
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Difference Lists 
• Add element to the end using difference lists: 

• The cost is O(1). 

• The first list A ends with a variable tail B 

• The result is a difference list A-C 

addEndDL(X, A,B, A,C):- B=[X|C]. 

?- addEndDL(6,[1,2,3,4,5|B],B,R1,C). 

    Response: R1 = [1,2,3,4,5,6|C] 

• Append with difference lists: 

• The cost is O(1). 

appendDL(A,AD,B,BD,C,CD):- AD = B, CD = BD, C = A. 

?- appendDL([1,2,3,4|AD],AD,[5|BD],BD,C,CD). 

    Response: C=[1,2,3,4,5|CD] 

  


