
Computers Playing Jeopardy! Course

Stony Brook University

Prolog

(c) Paul Fodor (CS Stony Brook)

IBM Watson Question Analysis for

Jeopardy! = UIMA + Prolog + NLP

2

(c) Paul Fodor (CS Stony Brook) and Elsevier

Languages
 Languages:

 Imperative = Turing machines

 Functional Programming = lambda calculus

 Logical Programming = first-order predicate calculus

 Prolog and its variants make up the most commonly used

Logical programming languages.

 One variant is XSB  developed here at Stony Brook.

 Prolog systems: SWI Prolog, XSB Prolog, Sicstus, Yap

Prolog, Ciao Prolog, GNU Prolog, etc.

 ISO Prolog standard.

3

(c) Paul Fodor (CS Stony Brook)

What Is Prolog?
 Prolog is a logic-based language

 Simple Knowledge Representation

 With a few simple rules, information can be analyzed

Socrates is a man.

All men are mortal.

Therefore, Socrates is mortal.

 This is logic. Can Prolog do it?

Yes, but infinite inference in some cases

 XSB = Prolog + tabling

better termination properties
4

(c) Paul Fodor (CS Stony Brook)

Brief History
 The first, official version of Prolog was developed

 at the University of Marseilles, France by Alain Colmerauer in

the early 1970s

 as a tool for PROgramming in LOGic.

 Fifth generation project in Japan.

 Europe and US followed.

 Many rule systems today in: natural language processing, semantic

Web, access control system, expert systems, etc.

 Several Prolog systems in use: XSB Prolog, SWI, Yap, GNU

Prolog, Sicstus, Quitus, Ciao, EcliPse, etc.

 Extensions: Flora-2 F-logic, Answer Set Programming,

OntoBroker.

5

(c) Paul Fodor (CS Stony Brook)

Application Areas

Prolog has been a very important tool in:

artificial intelligence applications

expert systems

natural language processing

smart information management systems

business rules

security access control policies

6

(c) Paul Fodor (CS Stony Brook)

Declarative Language
 Prolog is based on mathematical logic with deductive

capabilities.

 This means that

The programmer
 declares facts (true facts)

 defines rules (logical implication) for reasoning with the
facts

Prolog uses deductive reasoning to
 decide whether a proposed fact (goal, query) can be

logically derived from known facts (such a decision is
called a conclusion)

 determine new facts from old

 7

(c) Paul Fodor (CS Stony Brook)

Prolog: Facts, Rules and Queries

Socrates is a man.

All men are mortal.

Is Socrates mortal?

man(socrates).

mortal(X) :- man(X).

?- mortal(socrates).

Yes

Prolog

8

(c) Paul Fodor (CS Stony Brook)

Formalizing Arguments
 Abstracting with symbols for predicates, we get an argument

form that looks like this:

 if p then q

 p is true

 therefore q is true

((q :- p)  p)  q

9

(c) Paul Fodor (CS Stony Brook)

Declarative Language

Monotonic logic
 Standard logic is monotonic: once you prove something is

true, it is true forever.

 Logic isn't a good fit to reality (we don’t know everything

and we learn true things that we believed in the past to be

False).

 Prolog’s not (\+) operator is a closed-world negation as

failure: if no proof can be found for the fact, then the negative

goal succeeds.

 Example: illegal(X) :- \+ legal(X).

 Example inference: If we don’t know anything legal about “Al Capone”, then

it must be the case that he is doing something illegal is true.

 This is non-monotonic:

 Adding a fact that something is legal destroys an argument that it is

illegal.
10

(c) Paul Fodor (CS Stony Brook)

 A non-monotonic logic is a formal logic whose consequence

 relation is not monotonic.

 Adding a formula to a theory produces a reduction of its

set of consequences.

 p:- \+ q.

 p is true because q is not known/derivable to be true.

 What if later q is asserted? Then p is false (it destroyed the

proof that it is true).

 The \+/1 prefix operator is also called the "not provable"

operator, since the query ?- \+ Goal. succeeds if Goal is not

provable.

Declarative Language

Non-monotonic logic

11

(c) Paul Fodor (CS Stony Brook)

Forward and backward reasoning

 A syllogism gives two premises.

 We ask: "What is everything that we can conclude?"

 This is forward reasoning -- from premises to conclusions!

 it's inefficient when you have lots of premises: many things can be

inferred.

 Instead, you ask Prolog specific questions:

 Example: “Can we infer that Al is a criminal?”

 Prolog seeks for the goals provided by the user as questions

 Prolog uses backward reasoning -- from (potential) conclusions to

facts
 Prolog searches successful paths and if it reaches unsuccessful branch, it

backtracks to previous one and tries to apply alternative clauses

12

(c) Paul Fodor (CS Stony Brook)

Prolog Backtracking

1

3

(c) Paul Fodor (CS Stony Brook) and Elsevier

Logic Programming Concepts
 Based on predicate calculus

 Predicates: p(a1,a2,...,an)

 Example: a graph declared with facts (true statements)

edge(a, b).

edge(a, c).

edge(b, d).

edge(c, d).

 Rules:

1) if there's an edge from X to Y, we can reach Y from X.

reach(X, Y) :- edge(X, Y).

 “:-” means “implied by”

2) if there's an edge from X to Y, and we can reach Z from Y, we can reach Z from X.

reach(X,Z) :- edge(X, Y), reach(Y, Z).

 “,” means and (conjunction), “;” means or (disjunction).

14

(c) Paul Fodor (CS Stony Brook)

Running XSB Prolog
 Install XSB Prolog

 Windows distribution

 build/configure and make for Linux and MacOS

 Create your "database" (program) in any editor

man(socrates).

mortal(X) :- man(X).

 Save it as text only, with a .P extension (or .pl)

 Run xsb

?- consult('socrates.pl').

 Then, ask your question at the prompt:

?- mortal(socrates).

15

(c) Paul Fodor (CS Stony Brook) and Elsevier

Some Useful Tricks
 XSB returns only the first answer to the query. To get the

next, type ; <Return>. For instance:

 | ?- q(X).
 X = 2
 X = 4
 yes
 | ?-

 Usually, typing the ;’s is tedious. To do this
programmatically, use this idiom:

 | ?- (q(_X), write('X='), write(_X),nl, fail ; true).

 _X here tells XSB to not print its own answers, since we are
printing them by ourselves. (XSB won’t print answers for
variables that are prefixed with a _.)

; <Return>

<Return>

<Return>

16

(c) Paul Fodor (CS Stony Brook)

Prolog is a theorem prover

 Prolog's "Yes" means "I can prove it“

 Prolog's "No" means "I can't prove it"

?- mortal(plato).

No

 XSB Prolog has closed world assumption: knows

everything it needs to know at a given time, so “No” means

that the fact cannot be proven with the current

information (and negation of failure).

 Prolog supplies values for variables when it can

 ?- mortal(X).

X = socrates

17

(c) Paul Fodor (CS Stony Brook)

 edge(1,2).

 edge(2,3).

 edge(2,4).

 reachable(X,Y) :- edge(X,Y).

 reachable(X,Y) :- edge(X,Z), reachable(Z, Y).

Prolog Example: Reachability

18

(c) Paul Fodor (CS Stony Brook)

 | ?- reachable(X,Y).

X = 1

Y = 2; Type a semi-colon repeatedly

X = 2

Y = 3;

X = 2

Y = 4;

X = 1

Y = 3;

X = 1

Y = 4;

no

| ?- halt. Command to Exit XSB

Prolog Example: Reachability

19

(c) Paul Fodor (CS Stony Brook)

 Cycles in the graph may generate infinite loops

 We can table (remember) queries and results,

so we don't ask the same queries over and over

again.

 edge(1,2).

 edge(2,3).

 edge(2,4).

 edge(4,1).

 :- table(reachable/2).

 reachable(X,Y) :- edge(X,Y).

 reachable(X,Y) :- edge(X,Z), reachable(Z, Y).

XSB Prolog Example: Reachability

20

(c) Paul Fodor (CS Stony Brook)

 A predicate is a collection of clauses with the same

functor (name) and arity (number of arguments).

 A program is a collection of predicates.

 Clauses within a predicate are used in the order

in which they occur.

Prolog in detail

parent(paul,steven).

parent(peter,olivia).

parent(tom,liz).

parent(tony, ann).

parent(michael,paul).

parent(jill,tania).

21

(c) Paul Fodor (CS Stony Brook)

Prolog Syntax

Variables begin with a capital letter or

underscore:

 X, Socrates, _result

Atoms do not begin with a capital letter:

 socrates, paul

Atoms containing special characters, or

beginning with a capital letter, must be

enclosed in single quotes: ‘Socrates’

22

(c) Paul Fodor (CS Stony Brook) and Elsevier

Prolog
 A variable is an identifier beginning with an upper-case letter

(e.g., X, Y, Number) or with underscore.

 Anonymous variable: an underscore character (_) stands for an

anonymous variable.

 Each occurrence of _ corresponds to a different variable; even within a

clause, _ does not stand for one and the same object.

 Single-variable-check: a variable with a name beginning with a

character other than _ will be used to create relationships

within a clause and must therefore be used more than once

(otherwise, a warning is produced).

 You can use variables preceded with underscore to eliminate this warning.

 All types are discovered implicitly (no declarations in LP).

23

(c) Paul Fodor (CS Stony Brook)

Data types
 An atom is a general-purpose name with no inherent

meaning.

 Numbers can be floats or integers.

 A compound term is composed of an atom called a

"functor" and a number of "arguments", which are again

terms: tree(node(a),tree(node(b),node(c)))

 Special cases of compound terms:

 Lists: ordered collections of terms: [], [1,2,3], [a,1,X|T]

 Strings: A sequence of characters surrounded by quotes is

equivalent to a list of (numeric) character codes. String

examples: “abc” (same with the list [97,98,99]), “to be, or not

to be”.

24

(c) Paul Fodor (CS Stony Brook)

Representation of Lists
 Lists are handled as recursive compound terms in Prolog

with the first element of the list (called the head) and the rest
of the list after eliminating the first element (called the tail):

[Head | Tail] OR

.(Head,Tail)

 Head is an atom and Tail is a list.

 We can write [a,b,c] or .(a,.(b,.(c,[]))).

25

(c) Paul Fodor (CS Stony Brook)

Matching - Unification
 Given two terms, they are identical or the variables in both

terms can have same objects after being instantiated

date(D,M,2006) = date(D1,feb,Y1)
D=D1, M=feb, Y1=2006

 General Rule to decide whether two terms, S and T match
are as follows:

 If S and T are constants, S=T if both are same object

 If S is a variable and T is anything, T=S

 If T is variable and S is anything, S=T

 If S and T are structures, S=T if
 S and T have same functor

 All their corresponding arguments components have to match

26

(c) Paul Fodor (CS Stony Brook)

Declarative and Procedural Way

 The Prolog procedural execution is equivalent with the

declarative semantics.

P:- Q,R.
 Declarative Way

 P is true if Q and R are true.

 Procedural Way

 To solve problem P, first solve Q and then R (or) To satisfy P, first satisfy

Q and then R,

 Procedural way does not only define logical relation between the head of

the clause and the goals in the body, but also the order in which the goal

are processed.

27

(c) Paul Fodor (CS Stony Brook)

Formal Declarative Meaning

Given a program and a goal G:

A goal G is true (that is satisfiable, or logically
follows from the program) if and only if:

There is a clause C in the program such that

There is a clause instance I of C such that
The head of I is identical to G, and

All the goals in the body of I are true.

28

(c) Paul Fodor (CS Stony Brook)

Evaluation Example

mother_child(trude, sally).

father_child(tom, sally).

father_child(tom, erica).

father_child(mike, tom).

parent_child(X, Y) :- father_child(X, Y).

parent_child(X, Y) :- mother_child(X, Y).

sibling(X, Y):- parent_child(Z, X), parent_child(Z, Y).

?- sibling(sally, erica).

Yes (by chronological backtracking)

29

(c) Paul Fodor (CS Stony Brook)

Evaluation Example

 ?- father_child(Father, Child).

enumerates all valid answers on backtracking.

30

(c) Paul Fodor (CS Stony Brook)

Prolog
PROLOG IS NOT PURELY DECLARATIVE:

The ordering of the database and the left-to-right pursuit of sub-

goals gives a deterministic imperative semantics to searching

and backtracking,

Changing the order of statements in the database can give you

different results:

It can lead to infinite loops,

It can certainly result in inefficiency.

3

1

(c) Paul Fodor (CS Stony Brook)

Infinite regression in Prolog

3

2

(c) Paul Fodor (CS Stony Brook)
33

append([],L,L).

append([X|L], M, [X|N]) :- append(L,M,N).

append([1,2],[3,4],X)?

Append example

33

(c) Paul Fodor (CS Stony Brook)
34

append([],L,L).

append([X|L],M,[X|N]) :- append(L,M,N).

append([1,2],[3,4],X)? X=1,L=[2],M=[3,4],A=[X|N]

Append example

34

(c) Paul Fodor (CS Stony Brook)
35

append([],L,L).

append([X|L],M,[X|N]) :- append(L,M,N).

append([1,2],[3,4],X)? X=1,L=[2],M=[3,4],A=[X|N]

append([2],[3,4],N)?

Append example

35

(c) Paul Fodor (CS Stony Brook)
36

append([],L,L).

append([X|L],M,[X|N’]) :- append(L,M,N’).

append([1,2],[3,4],X)?

X=2,L=[],M=[3,4],N=[2|N’] append([2],[3,4],N)?

X=1,L=[2],M=[3,4],A=[1|N]

Append example

36

(c) Paul Fodor (CS Stony Brook)
37

append([],L,L).

append([X|L],M,[X|N’]) :- append(L,M,N’).

append([1,2],[3,4],X)?

X=2,L=[],M=[3,4],N=[2|N’] append([2],[3,4],N)?

X=1,L=[2],M=[3,4],A=[1|N]

append([],[3,4],N’)?

Append example

37

(c) Paul Fodor (CS Stony Brook)
38

append([],L,L).

append([X|L],M,[X|N’]) :- append(L,M,N’).

append([1,2],[3,4],X)?

X=2,L=[],M=[3,4],N=[2|N’] append([2],[3,4],N)?

X=1,L=[2],M=[3,4],A=[1|N]

append([],[3,4],N’)? L = [3,4], N’ = L

Append example

38

(c) Paul Fodor (CS Stony Brook)
39

append([],L,L).

append([X|L],M,[X|N’]) :- append(L,M,N’).

append([1,2],[3,4],X)?

X=2,L=[],M=[3,4],N=[2|N’] append([2],[3,4],N)?

X=1,L=[2],M=[3,4],A=[1|N]

append([],[3,4],N’)? L = [3,4], N’ = L

 A = [1|N]

 N = [2|N’]

 N’= L

 L = [3,4]

Answer: A = [1,2,3,4]

Append example

39

(c) Paul Fodor (CS Stony Brook)

Member Example
member(X,[X|R]).

member(X,[Y|R]) :- member(X,R).

 X is a member of a list whose first element is X.

 X is a member of a list whose tail is R if X is a member of R.

?- member(2,[1,2,3]).

Yes

?- member(X,[1,2,3]).

X = 1 ;

X = 2 ;

X = 3 ;

No

40

(c) Paul Fodor (CS Stony Brook)

Select Example
select(X,[X|R],R).

select(X,[F|R],[F|S]) :- select(X,R,S).

 When X is selected from [X|R], R results.

 When X is selected from the tail of [X|R], [X|S] results, where S is

the result of taking X out of R.

?- select(X,[1,2,3],L).

X=1 L=[2,3] ;

X=2 L=[1,3] ;

X=3 L=[1,2] ;

No

41

(c) Paul Fodor (CS Stony Brook)

Reverse Example
reverse([X|Y],Z,W) :- reverse(Y,[X|Z],W).

reverse([],X,X).

?- reverse([1,2,3],[],X).

X = [3,2,1]

Yes

42

(c) Paul Fodor (CS Stony Brook)

Permutation Example
perm([],[]).

perm([X|Y],Z) :- perm(Y,W), select(X,Z,W).

?- perm([1,2,3],P).

P = [1,2,3] ;

P = [2,1,3] ;

P = [2,3,1] ;

P = [1,3,2] ;

P = [3,1,2] ;

P = [3,2,1]

43

(c) Paul Fodor (CS Stony Brook)

Set Examples
 Sets:
union([X|Y],Z,W) :- member(X,Z), union(Y,Z,W).

union([X|Y],Z,[X|W]) :- \+ member(X,Z), union(Y,Z,W).

union([],Z,Z).

intersection([X|Y],M,[X|Z]) :- member(X,M), intersection(Y,M,Z).

intersection([X|Y],M,Z) :- \+ member(X,M), intersection(Y,M,Z).

intersection([],M,[]).

44

(c) Paul Fodor (CS Stony Brook)

Imperative features
Conditional operator: the if-then-else construct in Prolog:

Example:

max(X,Y,Z) :-

 (X =< Y

 -> Z = Y

 ; Z = X

).

4

5

(c) Paul Fodor (CS Stony Brook)

Cut (logic programming)

 Cut (! in Prolog) is a goal which always succeeds, but cannot

be backtracked past.

 Green cut

gamble(X) :- gotmoney(X),!.

gamble(X) :- gotcredit(X), \+ gotmoney(X).

 cut says “stop looking for alternatives”

 by explicitly writing \+ gotmoney(X), it guarantees that the

second rule will always work even if the first one is removed by

accident or changed

 Red cut

gamble(X) :- gotmoney(X),!.

gamble(X) :- gotcredit(X).

 46

(c) Paul Fodor (CS Stony Brook)

Difference Lists
• With the default implementation of lists one can only

get/put the head of the list in constant time

• Access to the tail of the list can only be done in a time equal

to the size of the list.

Examples:

• Adding an element to the end of a list:
addEnd(X,[],[X]).

addEnd(X,[H|T],[H|T2]):- addEnd(X,T,T2).

?- addEnd(6,[1,2,3,4,5],L).

% needs 5 recursion steps to get to the end of the list

% to add the element

• Appending 2 lists requires one to iterate through the first list:
append([],L2,L2).

append([H|T],L2,[H|T2]):- append(T,L2,T2).

 ?- append([1,2,3,4],[5],L3).

(c) Paul Fodor (CS Stony Brook)

Difference Lists
• Add element to the end using difference lists:

• The cost is O(1).

• The first list A ends with a variable tail B

• The result is a difference list A-C

addEndDL(X, A,B, A,C):- B=[X|C].

?- addEndDL(6,[1,2,3,4,5|B],B,R1,C).

 Response: R1 = [1,2,3,4,5,6|C]

• Append with difference lists:

• The cost is O(1).

appendDL(A,AD,B,BD,C,CD):- AD = B, CD = BD, C = A.

?- appendDL([1,2,3,4|AD],AD,[5|BD],BD,C,CD).

 Response: C=[1,2,3,4,5|CD]

