Stable Models Semantics and Answer Set Programming

CSE 595 – Semantic Web

Instructor: Dr. Paul Fodor

Stony Brook University

http://www3.cs.stonybrook.edu/~pfodor/courses/cse595.html

General Logic Programs • A general program is a collection of rules of the form $a \leftarrow a_1, \ldots, a_n, \text{ not } a_{n+1}, \ldots, \text{ not } a_{n+k}.$ • Let Π be a program and X be a set of atoms, by Π^X (Gelfond-Lifschitz transformation) we denote the positive program obtained from **ground**(Π) by: • Deleting from **ground**(Π) any rule for that $\{a_{n+1}, \dots, a_{n+k}\} \cap X \neq \emptyset$, i.e., the body of the rule contains a naf-atom **not** a_1 and a_1 belongs to X; and

• Removing all of the naf-atoms from the remaining rules.

General Logic Programs

- A set of atoms X is called an *answer set* of a program Π if X is the minimal model of the program Π^X
- Theorem: For every positive program Π , the minimal model of Π , M_{Π} , is also the unique answer set of Π .
- Example: Consider Π₂ = {a ← not b. b ← not a.}.
 We will show that its has two answer sets {a} and {b}

$S_1 = \emptyset$	$S_2 = \{a\}$	$S_3 = \{b\}$	$S_4 = \{a, b\}$
$\Pi_{2}^{S_{1}}$:	$\Pi_{2}^{S_{2}}$:	$\Pi_{2}^{S_{3}}$:	$\Pi_{2}^{S_{4}}$:
$a \leftarrow$	$a \leftarrow$		
$b \leftarrow$		$b \leftarrow$	
$M_{\mathrm{II}_2^{S_1}}=\{a,b\}$	$M_{\Pi_{2}^{S_{2}}}=\{a\}$	$M_{\Pi_{2}^{S_{3}}}=\{b\}$	$M_{P^{S_4}} = \emptyset$
$M_{\Pi_2^{S_1}} \neq S_1$	$M_{\Pi_2^{S_2}} = S_2$	$M_{\Pi_2^{S_3}} = S_3$	$M_{\Pi_2^{S_4}} \neq S_4$
NO	YES	YES	NO

(c) Paul Fodor (CS Stony Brook) and Elsevier

General Logic Programs

- $\Pi_5 = \{ \mathbf{p} \leftarrow \mathbf{not} \mathbf{p} \}$ does not have an answer set.
 - S₁ = Ø, then Π^{S1} = {p ←} whose minimal model is {p}. {p} ≠ Ø implies that S₁ is not an answer set of Π₅.
 - S₂ = {**p**}, then Π^{S2} = Ø whose minimal model is Ø. {**p**} ≠ Ø implies that S₂ is not an answer set of Π₅.
 - This shows that this program does not have an answer set.
- A program may have zero, one, or more than one answer sets.
 - $\Pi_1 = \{a \leftarrow \text{not } b.\}$ has a unique answer set $\{a\}$.
 - $\Pi_2 = \{a \leftarrow \text{not } b. b \leftarrow \text{not } a.\}$ has two answer sets: $\{a\}$ and $\{b\}$.
 - $\Pi_3 = \{p \leftarrow a. a \leftarrow not b. b \leftarrow not a.\}$ has two answer sets: $\{a, p\}$ and $\{b\}$
 - $\Pi_4 = \{a \leftarrow \text{not } b. b \leftarrow \text{not } c. d \leftarrow .\}$ has one answer set $\{d, b\}$.
 - $\Pi_5 = \{p \leftarrow \text{not } p.\}$ No answer set.
 - $\Pi_6 = \{p \leftarrow \text{not } p, d. r \leftarrow \text{not } d. d \leftarrow \text{not } r.\}$ has one answer set $\{r\}$.

Entailment w.r.t. Answer Set Semantics

- For a program Π and an atom a, Π *entails* a, denoted by Π ⊨ a, if
 a ∈ S for every answer set S of Π.
- For a program Π and an atom a, Π entails ¬a, denoted by Π ⊨ ¬a, if a∉S for every answer set S of Π.
- If neither $\Pi \vDash$ a nor $\Pi \vDash \neg$ a, then we say that a is *unknown* with respect to Π .
- Examples:
 - $\Pi_1 = \{a \leftarrow \text{not b.}\}\ \text{has a unique answer set } \{a\}. \ \Pi_1 \vDash a, \ \Pi_1 \vDash \neg b.$
 - $\Pi_2 = \{a \leftarrow \text{not } b. b \leftarrow \text{not } a\}$ has two answer sets: $\{a\}$ and $\{b\}$. Both a and b are unknown w.r.t. Π_2 .
 - Π₃ = {p ← a. a ← not b. b ← not a.} has two answer sets: {a, p} and {b}. Everything is unknown.
- $\Pi_4 = \{p \leftarrow \text{not } p.\}$ No answer set. p is unknown. (c) Paul Fodor (CS Stony Brook) and Elsevier

Answer Sets of Programs with Constraints

• For a set of ground atoms S and a *constraint* c

 $\leftarrow a_1, \dots, a_n, \text{not } a_{n+1}, \text{not } a_{n+k}$

we say that c is satisfied by S if $\{a_1, ..., a_n\} \setminus S \neq \emptyset$ or $\{a_{n+1}, ..., a_{n+k}\} \cap S \neq \emptyset$.

- Let Π be a program with constraints.
- Let $\Pi_{O} = \{r \mid r \in \Pi, r \text{ has non-empty head} \}$ (Π_{O} is the set of normal logic program rules in Π)
- Let $\Pi_{C} = \Pi \setminus \Pi_{O} (\Pi_{C} \text{ is the set of constraints in } \Pi)$
- A set of atoms S is an answer sets of a program Π if it is an answer set of Π_O and satisfies all the constraints in ground (Π_C).

Answer Sets of Programs with Constraints

- Example:
 - $\Pi_1 = \{a \leftarrow \text{not } b. b \leftarrow \text{not } a.\}$ has two answer sets $\{a\}$ and $\{b\}$.
 - But, $\Pi_2 = \{$ $a \leftarrow \text{not } b.$ $b \leftarrow not a$. \leftarrow not a} has only one answer set $\{a\}$. • But, $\Pi_3 = \{$ a \leftarrow not b. $b \leftarrow not a$. $\leftarrow a$

has only one answer set $\{b\}$.

Computing Answer Sets

- Complexity: The problem of determining the existence of an answer set for finite propositional programs (programs without function symbols) is NP-complete.
- For programs with disjunctions, function symbols, etc. it is much higher.
- A consequence of this property is that there exists no polynomial-time algorithm for computing answer sets.

Answer set solvers

- Programs that compute answer sets of (finite and grounded) logic programs.
- Two main approaches:
 - Direct implementation: Due to the complexity of the problem, most solvers implement a variation of the generate-and-test algorithm.
 - Smodels <u>http://www.tcs.hut.fi/Software/smodels/</u>
 - DLV <u>http://www.dbai.tuwien.ac.at/proj/dlv/</u>
 - deres <u>http://www.cs.engr.uky.edu/ai/deres.html</u>
 - Using SAT solvers: A program Π is translated into a satisfiability problem F Π and a call to a SAT solver is made to compute solution of F Π . The main task of this approach is to write the program for the conversion from Π to F Π .
 - Potassco: <u>http://potassco.sourceforge.net/</u> (clasp, gringo, ...)
 - Cmodels <u>http://www.cs.utexas.edu/users/tag/cmodels.html</u>
 - ASSAT <u>http://assat.cs.ust.hk/</u>

Example: Graph Coloring

- Given a (bi-directed) graph and three colors red, green, and yellow. Find a color assignment for the nodes of the graph such that no edge of the graph connects two nodes of the same color.
 - Graph representation:
 - The nodes: node (1) node (n) .
 - The edges: **edge(i, j)**.
 - Each node is assigned one color:
 - the weighted rule

 $1\{color(X, red), color(X, yellow), color(X, green)\}1 \leftarrow node(X).$

• or the three rules:

 $color(X, red) \leftarrow node(X), not color(X, green), not color(X, yellow).$

 $color(X, green) \leftarrow node(X), not color(X, red), not color(X, yellow).$

 $color(X, yellow) \leftarrow node(X), not color(X, green), not color(X, red).$

• No edge connects two nodes of the same color:

 $\leftarrow edge(X, Y), color(X, C), color(Y, C).$

Example: Graph Coloring

```
%% representing the graph
node(1). node(2). node(3). node(4). node(5).
edge(1,2). edge(1,3). edge(2,4). edge(2,5). edge(3,4).
edge(3, 5).
%% each node is assigned a color
color(X,red): - node(X), not color(X,green), not color(X,
yellow).
color(X,green): - node(X), not color(X,red), not color(X,
yellow).
color(X,yellow): - node(X), not color(X,green), not color(X,
red).
%% constraint checking
```

```
:- edge(X,Y), color(X,C), color(Y,C).
```

```
• Try with
```

clingo -n 0 color.lp

and see the result.

Example: n-queens

- Place n queens on a n × n chess board so that no queen is attacked by another one.
 - the chess board can be represented by a set of cells cell(i, j) and the size n.
 - Since two queens can not be on the same column, we know that each column has to have one and only one queen

 $1\{cell(I, J) : row(J)\}1 \leftarrow col(I).$

• No two queens on the same row

 $\leftarrow \text{ cell(I, J1), cell(I, J2), J1} \neq \text{J2.}$

• No two queens on the same column (not really needed)

 $\leftarrow \text{ cell(I1, J), cell(I2, J), I1 \neq I2.}$

• No two queens on the same diagonal

 \leftarrow cell(I1, J1), cell(I2, J2),

|I1 - I2| = |J1 - J2|, $I1 \neq I2$.

Example: n-queens

%% representing the board, using n as a constant col(1..n). % n column row(1..n). % n row %% generating solutions $1 \{ cell(I,J) : row(J) \} := col(I).$ % two queens cannot be on the same row/column := col(I), row(J1), row(J2), neq(J1,J2), cell(I,J1), cell(I,J2). :- row(J), col(I1), col(I2), neq(I1,I2), cell(I1,J), cell(I2,J). % two queens cannot be on a diagonal :- row(J1), row(J2), J1 > J2, col(I1), col(I2), I1 > I2,cell(I1,J1), cell(I2,J2), eq(I1 - I2, J1 - J2). :- row(J1), row(J2), J1 > J2, col(I1), col(I2), I1 < I2,cell(I1,J1), cell(I2,J2), eq(I2 - I1, J1 - J2).