Stable Models Semantics and

Answer Set Programming

CSE 595 — Semantic Web

Instructor: Dr. Paul Fodor
Stony Brook University

http://www3 .cs.stonybrook.edu/prodor/courses/cseS 95 .html



http://www3.cs.stonybrook.edu/~pfodor/courses/cse595.html

General Logic Programs

o A general program is a collection of rules of the form
a —4a,, ..., a,, not a_,;,..., not a_,,.

n'’

® Let Il be a program and X be a set of atoms, by I1*

(Gelfond-Lifschitz transformation) we denote the positive

program obtained from ground(Il) by:

® Deleting from ground(ll) any rule for that
{a ,1,,a,..} N X # @, ie., the body of the
rule contains a nat-atom not a; and a, belongs to X;
and

® Removing all of the nat-atoms from the remaining

rules.

K (c) Paul Fodor (CS Stony Brook) and Elsevier




General Logic Programs

® A set of atoms X is called an answer set of a program I1if X is the

minimal model of the program [1*

® Theorem: For every positive program I, the minimal model of

[1, My, is also the unique answer set of II.

* Example: Consider I, = {a —~ not b. b « not a.}.
We will show that its has two answer sets {a} and {b}

qu — {ﬂ} R J.Sll — {ﬁ b}
32 23 H__L;JJ‘ :

F]

.'.1'[;}.‘;'4 — m
ﬂ'.{rn?;ﬂ ﬁ'é 51
NO

(c) Paul Fodor (CS Stony Brook) and Elsevier




General Logic Programs

e [I. = {p « not p.} doesnot have an answer set.
e S, = @, then II’! = {p <=} whose minimal model is {p}. {p} # 0
implies that S, is not an answer set of Il.

e S, = {p}, then II*> = @ whose minimal model is @. {p} # @ implies that

S2 is not an answer set of I1 5

® This shows that this program does not have an answer set.

® A program may have zero, one, or more than one answer sets.

e [I, ={a <= notb.} has a unique answer set {a}.

e [I, = {a <—notb. b <—nota.} has two answer sets: {a} and {b}.

e [I, ={p <= a.a¢—notb. b «—nota.} has two answer sets: {a, p} and {b}
e [I, ={a <—notb.b <= notc. d «<— .} has one answer set {d, b}.

e [I. = {p <= not p.} No answer set.

e [I, ={p < notp,d.r <= notd. d < notr.} has one answer set {r}.

(c) Paul Fodor (CS Stony Brook) and Elsevier /




a ™
Entailment w.r.t. Answer Set Semantics

® For a program Il and an atom a, Il entails a, denoted by Il = a, if

a € S for every answer set S of I1.

® For a program Il and an atom a, Il entails 7a, denoted by Il F 7a, if

aES fOI' GVCI'y answer set S Of H

* If neither I F anor Il F 7a, then we say that a is unknown with
respect to 1.

* Examples:
o [I, = {a <—notb.} has a unique answer set {a}. Il,Fa, I1,F7b.
e [I, = {a <—notb. b «<—not a} has two answer sets: {a} and {b}. Botha

and b are unknown w.r.t. I1,.

o [I, = {p «—a.a<—notb.b < nota.} has two answer sets: {a, p} and

{b}. Everything is unknown.

aO H4 = {p «— not p.} No answer set. p is unknown.

(c) Paul Fodor (CS Stony Brook) and Elsevier




4 ™
Answer Sets of Programs with Constraints

e For a set of ground atoms S and a constraint c

<—ay,...,a,nota ,,,nota .,

we say that c is satisfied by Sif {a,, ...,a } \ S# @ or
fa 1,3, NS#D.

® [etIl bea program with constraints.

® LetIl, = {r | r €II, r has non-empty head} (Il is the set of

normal logic program rules in 1)
o Let II. = IT \ Il (Il is the set of constraints in II)

® A set of atoms S is an answer sets of a program I1 if it is an answer

set of I, and satisfies all the constraints in ground (I1..).

@ (c) Paul Fodor (CS Stony Brook) and Elsevier




4 ™
Answer Sets of Programs with Constraints

® Example:

o [I, = {a <—notb. b <—not a.} has two answer sets {a} and
{b}.
® But, II, = { a < not b.
b < not a.
<— not a}
has only one answer set {a}.
® But, Il = { a < not b.
b < not a.
— a}

has only one answer set {b}.

@ (c) Paul Fodor (CS Stony Brook) and Elsevier




Computing Answer Sets

o Complexity: The problem of determining the
existence of an answer set for finite propositional
programs (programs without function symbols) is

NP—complete.

® For programs with disjunctions, function symbols,

etc. it is much higher.

® A consequence of this property is that there exists
no polynomial—time algorithm for computing

answer sets.

@ (c) Paul Fodor (CS Stony Brook) and Elsevier




Answer set solvers :

® Programs that compute answer sets of (finite and grounded) logic programs.

® Two main approaches:

® Direct implementation: Due to the complexity of the problem, most solvers implement a
variation of the generate-and-test algorithm.

Smodels http: / /www.tcs.hut.fi/Software/smodels/

DLV http: / /www.dbai.tuwien.ac.at/ proj/ dlv/

deres http://www. Cs.engr. uk}'.edu/ ai/deres.html

® Using SAT solvers: A program II is translated into a satisfiabilty problem

FII and a call to a SAT solver is made to compute solution of FII. The main
task of this approach is to write the program for the conversion from Il to

FII.

Potassco: http://potassco.sourceforge.net/ (clasp, gringo, ...)

Cmodels http: / /www.cs.utexas.edu/users/ tag/ cmodels.html

ASSAT http:/ /assat.cs.ust.hk/

(c) Paul Fodor (CS Stony Brook) and Elsevier



http://www.tcs.hut.fi/Software/smodels/
http://www.dbai.tuwien.ac.at/proj/dlv/
http://www.cs.engr.uky.edu/ai/deres.html
http://potassco.sourceforge.net/
http://www.cs.utexas.edu/users/tag/cmodels.html
http://assat.cs.ust.hk/

Example: Graph Coloring

® Given a (bi-directed) graph and three colors red, green, and yellow. Find a
color assignment for the nodes of the graph such that no edge of the graph

connects two nodes of the same color.

® Graph representation:
The nodes: node (1) . .. node(n) .
The edges: edge (1, J) .
® Each node is assigned one color:
the weighted rule
l{color (X, red), color(X, yellow), color (X, green)}l — node (X).
or the three rules:
color (X, red) — node(X), not color (X, green), not color (X, yellow).

color (X, green) — node(X), not color (X, red), not color (X, yellow).

color (X, yellow) — node(X), not color (X, green), not color (X, red).

® No edge connects two nodes of the same color:

(c) Paul Fodor (CS Stony Brook) and Elsevier

@ — edge(X, Y ), color(X, C), color(Y, C).




Example: Graph Coloring

%% representing the graph
node(l). node(2). node(3). node(4). node(5).

edge(1,2). edge(1l,3). edge(2,4). edge(2,5). edge(3,4).
edge (3,5) .

%% each node is assigned a color

color (X,red) : - node(X), not color(X,green), not color (X,
yellow) .

color (X,green) : - node (X), not color(X,red), not color (X,
yellow) .

color (X,yellow) : - node(X), not color(X,green), not color (X,
red) .

%% constraint checking
:—- edge(X,Y), color(X,C), color(¥,C).

°* Try with

clingo —n 0 color.1lp

d see the result.
\ (c) Paul Fodor (CS Stony Brook) and Elsevier




Example: n-queens

® Placen queens onan X n chess board so that no queen is attacked by

another one.

® the chess board can be represented by a set of cells cell (1, J) and
the size n.

* Since two queens can not be on the same column, we know that each

column has to have one and only one queen
l{cell(I, J) : row(J)}1l — col(I).
® No two queens on the same row
— cell(I, J1), cell(I, J2), J1 # J2.
® No two queens on the same column (not really needed)

—~ cell(I1l, J), cell(1I2, J), I1 # I2.

* No two queens on the same diagonal

— cell(Il, J1), cell(I2, J2),
@ I Il - (c):lga%F!dor (C=S Stolygr.o]o'k) an:EIse.\./?(;rz I ! Il# :[2 )




Example: n-queens

%% representing the board, using n as a constant
col(l..n). $ n column

row(l..n). % n row

%% generating solutions

1l {cell(I,JdJ) : row(J)}:- col(I).

% two queens cannot be on the same row/column

:- col(I), row(JdJl), row(J2), neq(Jl,J2), cell(I,Jl),
cell(I,J2).

:— row(J), col(Il), col(I2), neq(Il,I2), cell(I1l,J),
cell(I2,J).

% two queens cannot be on a diagonal

:— row(Jl), row(J2), J1 > J2, col(Il), col(I2), I1 > I2,
cell(Il1,J1), cell(I2,J2), eq(I1l - I2, J1 - J2).

:— row(Jl), row(J2), J1 > J2, col(Il), col(I2), Il < I2,
cell(Il1,J1), cell(I2,J2), eq(I2 - I1, J1 - J2).

@ (c) Paul Fodor (CS Stony Brook) and Elsevier




