
Stable Models Semantics and

Answer Set Programming

1

CSE 595 – Semantic Web

Instructor: Dr. Paul Fodor

Stony Brook University

http://www3.cs.stonybrook.edu/~pfodor/courses/cse595.html

http://www3.cs.stonybrook.edu/~pfodor/courses/cse595.html

(c) Paul Fodor (CS Stony Brook) and Elsevier

General Logic Programs
 A general program is a collection of rules of the form

a ← a1, ..., an, not an+1,…, not an+k.

 Let Π be a program and X be a set of atoms, by ΠX

(Gelfond-Lifschitz transformation) we denote the positive

program obtained from ground(Π) by:

Deleting from ground(Π) any rule for that

{an+1,…,an+k} ∩ X ≠ ∅, i.e., the body of the

rule contains a naf-atom not al and al belongs to X;

and

Removing all of the naf-atoms from the remaining

rules.
2

(c) Paul Fodor (CS Stony Brook) and Elsevier

General Logic Programs
 A set of atoms X is called an answer set of a program Π if X is the

minimal model of the program ΠX

 Theorem: For every positive program Π, the minimal model of

Π, MΠ, is also the unique answer set of Π.

 Example: Consider Π2 = {a ← not b. b ← not a.}.

We will show that its has two answer sets {a} and {b}

3

(c) Paul Fodor (CS Stony Brook) and Elsevier

General Logic Programs
 Π5 = {p ← not p.} does not have an answer set.

 S1 = ∅, then ΠS1 = {p←} whose minimal model is {p}. {p} ≠ ∅
implies that S1 is not an answer set of Π5.

 S2 = {p}, then ΠS2 = ∅ whose minimal model is ∅. {p} ≠ ∅ implies that

S2 is not an answer set of Π5.

 This shows that this program does not have an answer set.

 A program may have zero, one, or more than one answer sets.

 Π1 = {a ← not b.} has a unique answer set {a}.

 Π2 = {a ← not b. b ← not a.} has two answer sets: {a} and {b}.

 Π3 = {p ← a. a← not b. b ← not a.} has two answer sets: {a, p} and {b}

 Π4 = {a ← not b. b ← not c. d ← .} has one answer set {d, b}.

 Π5 = {p ← not p.} No answer set.

 Π6 = {p ← not p, d. r ← not d. d ← not r.} has one answer set {r}.
4

(c) Paul Fodor (CS Stony Brook) and Elsevier

Entailment w.r.t. Answer Set Semantics
 For a program Π and an atom a, Π entails a, denoted by Π ⊨ a, if

a ∈ S for every answer set S of Π.

 For a program Π and an atom a, Π entails ¬a, denoted by Π⊨ ¬a, if

a∉S for every answer set S of Π.

 If neither Π⊨ a nor Π⊨ ¬a, then we say that a is unknown with

respect to Π.

 Examples:

 Π1 = {a ← not b.} has a unique answer set {a}. Π1⊨a, Π1⊨¬b.

 Π2 = {a ← not b. b ← not a} has two answer sets: {a} and {b}. Both a

and b are unknown w.r.t. Π2.

 Π3 = {p ← a. a ← not b. b ← not a.} has two answer sets: {a, p} and

{b}. Everything is unknown.

 Π4 = {p ← not p.} No answer set. p is unknown.
5

(c) Paul Fodor (CS Stony Brook) and Elsevier

Answer Sets of Programs with Constraints
 For a set of ground atoms S and a constraint c

← a1, ..., an, not an+1, not an+k

we say that c is satisfied by S if {a1, ..., an} \ S ≠ ∅ or

{an+1,...,an+k} ∩ S ≠ ∅.

 Let Π be a program with constraints.

 Let ΠO = {r | r ∈ Π, r has non-empty head} (ΠO is the set of

normal logic program rules in Π)

 Let ΠC = Π \ ΠO (ΠC is the set of constraints in Π)

 A set of atoms S is an answer sets of a program Π if it is an answer

set of ΠO and satisfies all the constraints in ground (ΠC).

6

(c) Paul Fodor (CS Stony Brook) and Elsevier

Answer Sets of Programs with Constraints
 Example:

Π1 = {a ← not b. b ← not a.} has two answer sets {a} and

{b}.

 But, Π2 = { a ← not b.

b ← not a.

← not a}

has only one answer set {a}.

 But, Π3 = { a ← not b.

b ← not a.

← a}

has only one answer set {b}.

7

(c) Paul Fodor (CS Stony Brook) and Elsevier

Computing Answer Sets
Complexity: The problem of determining the

existence of an answer set for finite propositional

programs (programs without function symbols) is

NP-complete.

For programs with disjunctions, function symbols,

etc. it is much higher.

A consequence of this property is that there exists

no polynomial-time algorithm for computing

answer sets.

8

(c) Paul Fodor (CS Stony Brook) and Elsevier

Answer set solvers
 Programs that compute answer sets of (finite and grounded) logic programs.

 Two main approaches:

 Direct implementation: Due to the complexity of the problem, most solvers implement a

variation of the generate-and-test algorithm.

 Smodels http://www.tcs.hut.fi/Software/smodels/

 DLV http://www.dbai.tuwien.ac.at/proj/dlv/

 deres http://www.cs.engr.uky.edu/ai/deres.html

 Using SAT solvers: A program Π is translated into a satisfiabilty problem

FΠ and a call to a SAT solver is made to compute solution of FΠ. The main

task of this approach is to write the program for the conversion from Π to

FΠ.

 Potassco: http://potassco.sourceforge.net/ (clasp, gringo, …)

 Cmodels http://www.cs.utexas.edu/users/tag/cmodels.html

 ASSAT http://assat.cs.ust.hk/

9

http://www.tcs.hut.fi/Software/smodels/
http://www.dbai.tuwien.ac.at/proj/dlv/
http://www.cs.engr.uky.edu/ai/deres.html
http://potassco.sourceforge.net/
http://www.cs.utexas.edu/users/tag/cmodels.html
http://assat.cs.ust.hk/

(c) Paul Fodor (CS Stony Brook) and Elsevier

Example: Graph Coloring
 Given a (bi-directed) graph and three colors red, green, and yellow. Find a

color assignment for the nodes of the graph such that no edge of the graph

connects two nodes of the same color.

 Graph representation:

 The nodes: node(1). … node(n).

 The edges: edge(i, j).

 Each node is assigned one color:

 the weighted rule

1{color(X, red), color(X, yellow), color(X, green)}1 ← node(X).

 or the three rules:

color(X, red) ← node(X), not color(X, green), not color(X, yellow).

color(X, green) ← node(X), not color(X, red), not color(X, yellow).

color(X, yellow) ← node(X), not color(X, green), not color(X, red).

 No edge connects two nodes of the same color:

← edge(X, Y), color(X, C), color(Y, C).
10

(c) Paul Fodor (CS Stony Brook) and Elsevier

%% representing the graph

node(1). node(2). node(3). node(4). node(5).

edge(1,2). edge(1,3). edge(2,4). edge(2,5). edge(3,4).

edge(3,5).

%% each node is assigned a color

color(X,red):- node(X), not color(X,green), not color(X,

yellow).

color(X,green):- node(X), not color(X,red), not color(X,

yellow).

color(X,yellow):- node(X), not color(X,green), not color(X,

red).

%% constraint checking

:- edge(X,Y), color(X,C), color(Y,C).

 Try with

clingo –n 0 color.lp

and see the result.
11

Example: Graph Coloring

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Place n queens on a n × n chess board so that no queen is attacked by

another one.

 the chess board can be represented by a set of cells cell(i, j) and

the size n.

 Since two queens can not be on the same column, we know that each

column has to have one and only one queen

1{cell(I, J) : row(J)}1 ← col(I).

 No two queens on the same row

← cell(I, J1), cell(I, J2), J1 ≠ J2.

 No two queens on the same column (not really needed)

← cell(I1, J), cell(I2, J), I1 ≠ I2.

 No two queens on the same diagonal

← cell(I1, J1), cell(I2, J2),

|I1 − I2| = |J1 − J2|, I1≠ I2.12

Example: n-queens

(c) Paul Fodor (CS Stony Brook) and Elsevier

%% representing the board, using n as a constant

col(1..n). % n column

row(1..n). % n row

%% generating solutions

1 {cell(I,J) : row(J)}:- col(I).

% two queens cannot be on the same row/column

:- col(I), row(J1), row(J2), neq(J1,J2), cell(I,J1),

cell(I,J2).

:- row(J), col(I1), col(I2), neq(I1,I2), cell(I1,J),

cell(I2,J).

% two queens cannot be on a diagonal

:- row(J1), row(J2), J1 > J2, col(I1), col(I2), I1 > I2,

cell(I1,J1), cell(I2,J2), eq(I1 - I2, J1 - J2).

:- row(J1), row(J2), J1 > J2, col(I1), col(I2), I1 < I2,

cell(I1,J1), cell(I2,J2), eq(I2 - I1, J1 - J2).

13

Example: n-queens

