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@ Semantic Web Primer

Introduction

All we did until now are forms of knowledge 

representation (KR), like knowledge about the 

content of web resources, knowledge about the 

concepts of a domain of discourse and their 

relationships (ontology)

Knowledge representation had been studied long 

before the emergence of the World Wide Web in 

the area of artificial intelligence and, before that, 

in philosophy

3
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Introduction

KR can be traced back to ancient Greece (because 

Aristotle is considered to be the father of logic)

Logic is the foundation of knowledge 

representation, particularly in the form of 

predicate logic (also known as first-order 

logic)
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Introduction

Logic:

provides a high-level language in which knowledge can 

be expressed in a transparent way

has a high expressive power (maybe too high because it 

is intractable or undecidable in some cases)

has a well-understood formal semantics, which assigns 

an unambiguous meaning to logical statements

has a precise notion of logical consequence, which 

determines whether a statement follows semantically 

from a set of other statements (premises)
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Introduction
 There exist proof systems that can automatically derive 

statements syntactically from a set of premises.

 There exist proof systems for which semantic logical 

consequence coincides with syntactic derivation within the 

proof system. 

 Proof systems should be sound (all derived statements follow 

semantically from the premises) and complete (all logical consequences 

of the premises can be derived in the proof system).

 Predicate logic is unique in the sense that sound and complete 

proof systems do exist - More expressive logics (higher-order 

logics) do not have such proof systems.

 It is possible to trace the proof that leads to a logical 

consequence, so logic can provide explanations for answers.
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Introduction
 RDF and OWL2 profiles can be viewed as specializations 

of predicate logic:

One justification for the existence of such specialized 

languages is that they provide a syntax that fits well with 

the intended use (in our case, web languages based on 

tags). 

Another justification is that they define reasonable subsets 

of logic where the computation is tractable (there is a 

trade-off between the expressive power and the 

computational complexity of certain logics: the more 

expressive the language, the less efficient the 

corresponding proof systems)
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Introduction
 Most OWL variants correspond to a description logic, a 

subset of predicate logic for which efficient proof 

systems exist

 Another subset of predicate logic with efficient proof 

systems comprises the Horn rule systems (also known 

as Horn logic or definite logic programs)

A rule has the form:

A1,...,An → B. 

where Ai and B are atomic formulas.

 In Prolog notation:

B :- A1,...,An.
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Introduction
 There are two intuitive ways of reading a Horn rule:

deductive rules: If A1,...,An are known to be true, 

then B is also true

 There are two ways of applying deductive rules: 

 from the body (A1,...,An) to the conclusion (B) (forward 

chaining)

 from the conclusion (goal) to the body (backward 

reasoning)

reactive rules: If the conditions A1,...,An are true, 

then carry out the action B.
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Introduction
 Description logics and Horn logic are orthogonal in the sense 

that neither of them is a subset of the other

 For example, it is impossible to define the class of happy spouses

as those who are married to their best friend in description 

logics, but this piece of knowledge can easily be represented 

using rules:

married(X, Y), bestFriend(X, Y) → 

happySpouse(X).

 On the other hand, rules cannot (in the general case) assert: 

(a) negation/complement of classes 

(b) disjunctive/union information (for instance, that a person is 

either a man or a woman) 

(c) existential quantification (for instance, that all persons have a 

father).
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Monotonic and nonmonotonic rules
Predicate logic is monotonic: if a conclusion can 

be drawn, it remains valid even if new knowledge 

becomes available

Even if a rule uses negation, 

R1 : If birthday, then special discount. 

R2 : If not birthday, then not special discount.

it works properly in cases where the birthday is 

known

11



@ Semantic Web Primer

Monotonic and nonmonotonic rules
 Imagine a customer who refuses to provide his birthday because 

of privacy concerns, then the preceding rules cannot be applied 

because their premises are not known. 

R1 : If birthday, then special discount. 

R2 : If not birthday, then not special discount.

R2' : If birthday is not known, then not special discount.

 R2' is not within the expressive power of predicate logic 

because its conclusion may become invalid if the customer’s 

birthday becomes known at a later stage and it happens to 

coincide with the purchase date.

 Adding knowledge later that invalidates some of the 

conclusions is called nonmonotonic because the addition of 

new information leads to a loss of a consequence
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Rules on the Semantic Web

 Rule technology has been around for decades, has found 

extensive use in practice, and has reached significant maturity

 led to a broad variety of approaches

 it is more difficult to standardize this area in the context of the 

(semantic) web

 A W3C working group has developed the Rule Interchange 

Format (RIF) standard

 Whereas RDF and OWL are languages meant for directly 

representing knowledge, RIF was designed primarily for the 

exchange of rules across different applications
 For example, an online store might wish to make its pricing, refund, 

and privacy policies, which are expressed using rules, accessible to 

intelligent agents
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Rules on the Semantic Web
 Due to the underlying aim of serving as an interchange format 

among different rule systems, RIF combines many of their 

features, and is quite complex

 Those wishing to develop rule systems for the Semantic Web 

have various alternatives:

 Rules over RDF can be expressed using SPARQL constructs 

SPARQL is not a rule language, as basically it carries out one 

application of a rule.

 SPIN is a rule system developed on top of SPARQL

 SWRL couples OWL DL functionalities with certain types of 

rules

 Model in terms of OWL but use rule technology for 

implementation purposes: OWL2 RL
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Example Monotonic Rules: Family

 Imagine a database of facts about some family relationships which 

contains facts about the following base predicates:

mother(X, Y) X is the mother of Y

father(X, Y) X is the father of Y

male(X) X is male

female(X) X is female

15



@ Semantic Web Primer

Example Monotonic Rules: Family

 We can infer further relationships using appropriate rules:

 a parent is either a father or a mother.

mother(X, Y) → parent(X, Y).

father(X, Y) → parent(X, Y).

a brother to be a male person sharing a parent:

male(X), parent(P, X), parent(P,Y),  

notSame(X, Y) → brother(X, Y).

 The predicate notSame denotes inequality; we assume 

that such facts are kept in a database

female(X), parent(P, X), 

parent(P,Y), notSame(X, Y) → 

sister(X, Y).16
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Example Monotonic Rules: Family

 An uncle is a brother of a parent:

brother(X, P), parent(P, Y) → 

uncle(X, Y).

 A grandmother is the mother of a parent:

mother(X, P), parent(P, Y) → 

grandmother(X, Y).

 An ancestor is either a parent or an ancestor of a parent:

parent(X, Y) → ancestor(X, Y).

ancestor(X, P), parent(P, Y) → 

ancestor(X, Y).
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Monotonic Rules: Syntax

 Let us consider a simple rule stating that all loyal customers with 

ages over 60 are entitled to a special discount:

loyalCustomer(X), age(X) > 60 → 

discount(X).

 Rules have: 

 variables, which are placeholders for values: X

 constants, which denote fixed values: 60

 predicates, which relate objects: loyalCustomer, >

 function symbols, which denote a value, when applied to 

certain arguments: age

 In case no function symbols are used, we discuss function-free 

(Horn) logic.
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Rules

 A rule has the form:

B1,...,Bn → A 

where A and Bi are atomic formulas

 A is the head of the rule

 Bi are the premises of the rule 

 The set {B1,...,Bn} is referred to as the body of the rule 

 The commas in the rule body are read conjunctively: 

if B1 and B2 and ... and Bn are true, then A is also true

(or equivalently, to prove A it is sufficient to prove all

of B1,...,Bn)
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Rules
 Variables may occur in A, B1,...,Bn. 

For example, 

loyalCustomer(X), age(X) > 60 → 

discount(X).

is applied for any customer: if a customer happens to be 

loyal and over 60, then they gets the discount. 

 The variable X is implicitly universally quantified (using 

∀X)

 In general, all variables occurring in a rule are 

implicitly universally quantified.
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Rules
 A rule r:

B1,...,Bn → A 

is interpreted as the following formula, denoted by pl(r): 

∀X1 ... ∀Xk((B1 ∧ ... ∧ Bn) → A) 

or equivalently, 

∀X1 ... ∀Xk(A ∨ ¬B1 ∨ ... ∨ ¬Bn) 

where X1,...,Xk are all variables occurring in A, 

B1,...,Bn.
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Logic Programs
 A fact is an atomic formula, such as 

loyalCustomer(a345678).

which says that the customer with ID a345678 is loyal

 If there are variables in a fact, then they are implicitly 

universally quantified.

 A logic program P is a finite set of facts and rules

 Its predicate logic translation pl(P) is the set of all 

predicate logic interpretations of rules and facts in P.
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Logic Programs

A goal or query G asked to a logic program has 

the form 

B1,...,Bn →

If n = 0, we have the empty goal ☐.

The interpretation of a goal is:

∀X1...∀Xk(¬B1 ∨...∨ ¬Bn)

where X1,...,Xk are all variables occurring in 

B1,...,Bn
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Logic Programs

The goal formula is equivalent to 

∀X1...∀Xk(false ∨ ¬B1 ∨...∨ ¬Bn)

so the missing rule head can be thought of as a 

contradiction false.

An equivalent representation in predicate logic is:

¬∃X1...∃Xk(B1 ∧...∧ Bn)
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Logic Programs
 Suppose we know the fact 

p(a).

and we have the goal

p(X) →

 we want to know whether there is a value for which p is true

 We expect a positive answer because of the fact p(a). 

 Thus p(X) is existentially quantified

 Why do we negate the formula?

 The explanation is that we use a proof technique from mathematics 

called proof by contradiction

 This technique proves that a statement A follows from a statement B 

by assuming that A is false and deriving a contradiction when 

combined with B. Then A must follow from B.
25



@ Semantic Web Primer

Logic Programs

 In logic programming we prove that a goal can be answered 

positively by negating the goal and proving that we get a 

contradiction using the logic program. 

 For example, given the logic program 

p(a).

and the goal

¬∃Xp(X)

we get a logical contradiction: the second formula says that no 

element has the property p, but the first formula says that the 

value of a does have the property p. 

Thus ¬∃Xp(X) follows from p(a).
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Monotonic Rules: Semantics
 Given a logic program P and a query B1,...,Bn→ 

with the variables X1,...,Xk, we answer positively if, and 

only if, 

pl(P) |= ∃X1...∃Xk(B1 ∧...∧ Bn)

or equivalently, if

pl(P) ∪ {¬∃X1...∃Xk(B1 ∧...∧ Bn)} is 

unsatisfiable

 We give a positive answer if the predicate logic 

representation of the program P, together with the 

predicate logic interpretation of the query, is 

unsatisfiable (a contradiction).
27
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Monotonic Rules: Semantics

 Predicate Logic Semantics

 A predicate logic model, A, consists of

 a domain dom(A), a nonempty set of objects about which the formulas 

make statements

 an element from the domain for each constant

 a concrete function on dom(A) for every function symbol

 a concrete relation on dom(A) for every predicate

 When the symbol = is used to denote equality (i.e., its 

interpretation is fixed), we talk of Horn logic with equality

 Logical connectives ¬, ∨, ∧, →, ∀, ∃

 A formula ϕ follows from a set M of formulas if ϕ is true in all 

models A in which M is true (that is, all formulas in M are true 

in A).
28
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Monotonic Rules: Semantics
 A formula ϕ follows from a set M of formulas if ϕ is 

true in all models A in which M is true (that is, all 

formulas in M are true in A).

Regardless of how we interpret the constants, 

predicates, and function symbols occurring in P and the 

query, once the predicate logic interpretation of P is 

true, ∃X1...∃Xk(B1 ∧...∧ Bn) must be true: 

that is, there are values for the variables X1,...,Xk such 

that all atomic formulas Bi become true.
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Monotonic Rules: Semantics
 Suppose P is the program 

p(a). 

p(X) → q(X).

 Consider the query 

q(X)→

q(a) follows from pl(P)

∃Xq(X) follows from pl(P)

 pl(P)∪{¬∃Xq(X)} is unsatisfiable

 If we consider the query 

q(b)→

then we give a negative answer because q(b) does not follow 

from pl(P)
30



@ Semantic Web Primer

Least Herbrand Model Semantics
 Instead of considering any domain dom(A), we can consider only 

the names in the program (predicate names, constants, functors)

 Then we have Herbrand semantics:

 Given an alphabet A, the set of all ground terms constructed 

from the constant and function symbols of A is called the 

Herbrand Universe of A (denoted by UA).

Consider the program:

p(zero).

p(s(s(X))) ← p(X).

The Herbrand Universe of the program's alphabet is: 

UA = {zero,s(zero),s(s(zero)),…}
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Least Herbrand Model Semantics
Consider a "relations" program:

parent(pam, bob).    parent(bob, ann).

parent(tom, bob).    parent(bob, pat).

parent(tom, liz).    parent(pat, jim).

grandparent(X,Y) :-

parent(X,Z), parent(Z,Y).

The Herbrand Universe of the program's 

alphabet is: 

UA = {pam, bob, tom, liz, ann, pat, jim}
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Least Herbrand Model Semantics

Given an alphabet A, the set of all ground 

atomic formulas over A is called the 

Herbrand Base of A (denoted by BA).

Consider the program:

p(zero).

p(s(s(X))) ← p(X).

The Herbrand Base of the program's alphabet is: 

BA={p(zero), p(s(zero)), 

p(s(s(zero))),…}
33
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Least Herbrand Model Semantics

Consider the "relations" program:

parent(pam, bob).    parent(bob, ann).

parent(tom, bob).    parent(bob, pat).

parent(tom, liz).    parent(pat, jim).

grandparent(X,Y) :-

parent(X,Z), parent(Z,Y).

The Herbrand Base of the program's alphabet is: 
BA={parent(pam, pam), parent(pam, bob), 
parent(pam, tom), ..., parent(bob, pam), ..., 

grandparent(pam,pam),...,grandparent(bob,pam),.

..}.
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Least Herbrand Model Semantics

 A Herbrand Interpretation of a program P is an 

interpretation I such that:

The domain of the interpretation: |I| = UP

For every constant c: cI = c

For every function symbol f/n: 

fI(x1,…,xn)=f(x1,…,xn)

For every predicate symbol p/n: pI⊆ (UP)n (i.e. some 

subset of n-tuples of ground terms)

 A Herbrand Model of a program P is a Herbrand

interpretation that is a model of P.
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Least Herbrand Model Semantics

 All Herbrand interpretations of a program give the same 

“meaning” to the constant and function symbols. 

Different Herbrand interpretations differ only in the 

“meaning” they give to the predicate symbols. 

 We often write a Herbrand model simply by listing the 

subset of the Herbrand base that is true in the model 

Example: Consider our numbers program, where
{p(zero), p(s(s(zero))), p(s(s(s(s(zero))))),…}

represents the Herbrand model that treats 
pI={zero,s(s(zero)),s(s(s(s(zero)))), . . .} 

as the meaning of p.
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Sufficiency of Herbrand Models
 Let P be a definite program. If I' is a model of P then 

I={A ∈ Bp | I' ⊨A} is a Herbrand model of P. 
Proof (by contradiction): 

Let I be a Herbrand interpretation. 

Assume that I' is a model of P but I is not a model. 

Then there is some ground instance of a clause in P: 

A0 :− A1, ..., An.

which is not true in I i.e., I ⊨A1, ..., I ⊨An but I ⊯A0

By definition of I then, I' ⊨A1, ..., I' ⊨An but I' ⊯A0

Thus, I' is not a model of P, which contradicts our earlier 

assumption. 
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Definite programs only
 Let P be a definite program. If I' is a model of P then 

I={A ∈ Bp | I' ⊨A} is a Herbrand model of P. 
 This property holds only for definite programs!

 Consider P = {¬p(a), ∃X.p(X)}

 There are two Herbrand interpretations:I1={p(a)} and 

I2={}

o The first is not a model of P since I1 ⊯ ¬p(a). 

o The second is not a model of P since I2 ⊯ ∃X.p(X) 

 But there is a non-Herbrand model I:

o | I | = N, the set of natural numbers 

o aI = 0 

o pI = “is odd”
38
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Properties of Herbrand Models 
1) If M is a set of Herbrand Models of a definite program 

P, then ∩M is also a Herbrand Model of P. 

2) For every definite program P there is a unique least 

model Mp such that:

 Mp is a Herbrand Model of P and, 

 for every Herbrand Model M, Mp⊆M. 

3) For any definite program, if every Herbrand Model of 

P is also a Herbrand Model of F, then P ⊨ F. 

4) Mp = the set of all ground logical consequences of P.
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Properties of Herbrand Models
If M1 and M2 are Herbrand models of P, then 

M=M1∩M2 is a model of P.
Assume M is not a model. 

Then there is some clause A0:− A1, ..., An such 

that M⊨A1,…, M ⊨An but M ⊯A0. 

Which means A0 ∉M1 or A0 ∉M2. 

But A1,..., An ∈M1 as well as M2. 

Hence one of M1 or M2 is not a model. 
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Properties of Herbrand Models
There is a unique least Herbrand model

Let M1 and M2 are two incomparable 

minimal Herbrand models, i.e., 

M=M1∩M2 is also a Herbrand model 

(previous theorem), and M⊆M1 and 

M⊆M2

Thus M1 and M2 are not minimal.
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Least Herbrand Model 
The least Herbrand model Mp of a definite 

program P is the set of all ground logical 

consequences of the program. 

Mp = {A ∈ Bp | P ⊨A} 

First, Mp ⊇ {A ∈ Bp | P ⊨A}: 

By definition of logical consequence, P ⊨A means that 

A has to be in every model of P and hence also in the 

least Herbrand model. 
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Least Herbrand Model 
Second, Mp ⊆ {A ∈ Bp | P ⊨A}: 

 If Mp ⊨A then A is in every Herbrand model of P. 

But assume there is some model I' ⊨ ¬A. 

By sufficiency of Herbrand models, there is some 

Herbrand model I such that I ⊨ ¬A. 

Hence A is not in some Herbrand model, and hence is 

not in Mp.
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Finding the Least Herbrand Model 
 Immediate consequence operator: 

Given I ⊆ Bp, construct I' such that 

I' = {A0 ∈ Bp | A0←A1,..., An is a ground 

instance of a clause in P and A1,..., An ∈ I} 

 I' is said to be the immediate consequence of I. 

Written as I' = Tp(I), Tp is called the immediate 

consequence operator. 

Consider the sequence: 

∅, Tp(∅), Tp(Tp(∅)),..., Tpi(∅),... 

Mp ⊇Tpi(∅) for all i. 

Let Tp ↑ω = ∪i=0,∞ Tpi(∅) 

Then Mp⊆Tp ↑ω44
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Computing Least Herbrand Models: An Example 
parent(pam, bob). 

parent(tom, bob). 

parent(tom, liz). 

parent(bob, ann). 

parent(bob, pat). 

parent(pat, jim). 

anc(X,Y) :-

parent(X,Y). 

anc(X,Y) :-

parent(X,Z), 

anc(Z,Y).
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Ground and Parameterized Witnesses

 Suppose we know the fact 

p(a).

and we have the goal

p(X) →

 Responding true to parametrized queries is correct, but not 

satisfactory

 The appropriate answer is a substitution {X/a} which gives an 

instantiation for X, making the answer positive. 

 The constant a is called a ground witness

 Given two facts: p(a). and p(b). there are two ground 

witnesses to the same query: a and b.
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Ground and Parameterized Witnesses
 Ground witnesses are not always the optimal answer 

 Consider the logic program:

add(X, 0, X).

add(X, Y, Z) → add(X, s(Y), s(Z)).

 This program computes addition: if we read s as the “successor 

function,” which returns as value the value of its argument plus 1

 The add predicate computes the sum of its first two arguments into 

its third argument

 Consider the query:

add(X, s8(0), Z) →

 Possible ground witnesses are determined by the substitutions:

{X/0, Z/s8(0)},     

{X/s(0), Z/s9(0), 

{X/s(s(0)), Z/s10(0)},…
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Ground and Parameterized Witnesses

 The parameterized witness 

Z = s8(X) 

is the most general way to witness the existential query 

∃X∃Z add(X, s8(0), Z) 

since it represents the fact that add(X, s8(0), Z) is true 

whenever the value of Z equals the value of X plus 8. 

 The computation of most general witnesses is the primary aim of 

a proof system, called SLD resolution
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OWL2 RL: Description Logic Meets Rules

 OWL2 RL represents the intersection of OWL and Horn logic, 

that is, the part of one language that can be translated in a 

semantics-preserving way from OWL to rules, and vice versa.

 From the modeler’s perspective, there is freedom to use either 

OWL or rules (and associated tools and methodologies) for 

modeling purposes, depending on the modeler’s experience 

and preferences.

 From the implementation perspective, either description logic 

reasoners or deductive rule systems can be used: it is possible 

to model using one framework, such as OWL, and to use a 

reasoning engine from the other framework, such as rules. 
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OWL2 RL: Description Logic Meets Rules
 Some constructs of RDF Schema and OWL2 RL can be 

expressed in Horn logic, while some constructs, in general 

cannot be expressed

 A triple of the form (a, P, b) in RDF can be expressed as 

a fact: 

P(a, b).

 an instance declaration of the form type(a, C), stating 

that a is an instance of class C, can be expressed as 

C(a).

 The fact that C is a subclass of D is expressed as 

C(X) → D(X).

 The fact that P is a subproperty of Q is expressed as

P(X,Y) → Q(X,Y).
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OWL2 RL: Description Logic Meets Rules
 Domain and range restrictions can also be expressed in Horn 

logic: C is the domain of property P, while D is the range of 

property P: 

P(X, Y) → C(X).

P(X, Y) → D(Y).

equivalentClass(C, D) can be expressed by the 

pair of rules:

C(X) → D(X).

D(X) → C(X).

equivalentProperty(P, Q) can be expressed by 

the pair of rules:

P(X, Y) → Q(X, Y).

Q(X, Y) → P(X, Y).
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OWL2 RL: Description Logic Meets Rules
 Transitivity of a property P is expressed as: 

P(X, Y), P(Y, Z) → P(X, Z).

 The intersection of classes C1 and C2 is a subclass of D:

C1(X), C2(X) → D(X).

C is a subclass of the intersection of D1 and D2: 

C(X) → D1(X). 

C(X) → D2(X).

 the union of C1 and C2 is a subclass of D:

C1(X) → D(X).

C2(X) → D(X).

 The opposite direction is outside the expressive power of Horn logic 

(see next slide).
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OWL2 RL: Description Logic Meets Rules
C is a subclass of the union of D1 and D2 would require a 

disjunction in the head of the corresponding rule

C(X) → D1(X) ∨ D2(X).

which is not available in Horn logic
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OWL2 RL: Description Logic Meets Rules
 OWL range restriction:

:C rdfs:subClassOf [ 

rdf:type owl:Restriction ;

owl:onProperty :P ;

owl:allValuesFrom :D ] .

can be represented as the rule:

C(X), P(X, Y) → D(Y).

 the opposite direction cannot be expressed in Horn logic
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OWL2 RL: Description Logic Meets Rules
[ rdf:type owl:Restriction ;

owl:onProperty :P ;

owl:allValuesFrom :D ] 

rdfs:subClassOf :C.

can be represented as the rule:

P(X,_), (Forall Y,(P(X, Y) -> D(Y))) 

→ C(X).

which is not available in Horn logic

 Also, cardinality constraints and complement of classes cannot 

be expressed in Horn logic.
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Rule Interchange Format: RIF
 Rules exhibit a broad variety (e.g., action rules, first order rules, logic 

programming)

 As a consequence, the aim of the W3C Rule Interchange Format Working 

Group was not to develop a new rule language that would fit all purposes, 

but rather to focus on the interchange among the various (existing or 

future) rule systems on the web

 The approach taken was to develop a family of languages, from basic to 

existing state of the art, called dialects, that can be interchanged on the 

Web

 Most of the work of the RIF Working Group was dedicated to semantic 

aspects

 Of course, rule interchange takes place at the syntactic level (e.g., 

using XML) using mappings between the various syntactic features of a 

logic system and RIF, but the main objective is to interchange rules in a 

semantics preserving way.
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Rule Interchange Format: RIF
 Documents with links:

 RIF Overview (Second Edition)

 RIF Use Cases and Requirements (Second Edition)

 RIF Core Dialect (Second Edition)

 RIF Basic Logic Dialect (Second Edition)

 RIF Production Rule Dialect (Second Edition)

 RIF Framework for Logic Dialects (Second Edition)

 RIF Datatypes and Built-Ins 1.0 (Second Edition)

 RIF RDF and OWL Compatibility (Second Edition)

 OWL 2 RL in RIF (Second Edition)

 RIF Combination with XML data (Second Edition)

 RIF In RDF (Second Edition)

 RIF Test Cases (Second Edition)

 RIF Primer (Second Edition)
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Rule Interchange Format: RIF
 RIF defined two kinds of dialects:

 Logic-based dialects are meant to include rule languages that 

are based on some form of logic; for example, first-order logic 

and various logic programming approaches with different 

interpretations of negation (answer-set programming, well-founded 

semantics, etc.)

 The concrete dialects developed so far under this branch are:

 RIF Core corresponding to function-free Horn logic 

 RIF Basic Logic Dialect (BLD) corresponding to Horn 

logic with equality

 Rules with actions are meant meant to include production 

systems and reactive rules. The concrete dialect developed so far:

 Production Rule Dialect (RIF-PRD)
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Rule Interchange Format: RIF

 RIF was designed to be both uniform and extensible

Uniformity is achieved by expecting the syntax and 

semantics of all RIF dialects to share basic principles 

Extensibility refers to the possibility of future dialects 

being developed and added to the RIF family

 For the logic-based side, the RIF Working Group 

developed the Framework for Logic Dialects

(RIFFLD) which allows one to specify various rule 

languages by instantiating the various parameters of the 

approach.
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RIF-BLD

 The RIF Basic Logic Dialect corresponds to Horn logic 

with equality plus: 

data types (such as, integer, boolean, string, date),

“built-in” predicates (such as, numeric-greater-

than, starts-with, date-less-than), and functions (such 

as numeric-subtract, replace, hoursfrom-time), and 

frames (like in F-Logic) represent objects with their 

properties as slots (for example, a class professor with 

slots such as name, office, phone, department)
oid[slot1 -> value1,…, slotn -> valuen]
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RIF-BLD

 The syntax of RIF is straightforward, though quite 

verbose (of course, there is also an XML-based syntax 

to support interchange between rule systems)

Variable names begin with a question mark ?

The symbols =, #, and ## are used to express: 

equality, class membership, and subclass relationship
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RIF-BLD

Examples: 

A film is considered successful if it has received critical 

acclaim (say, a rating higher than 8 out of 10) or was 

financially successful (produced more than $100 

million in ticket sales). 

An actor is a movie star if he has starred in more than 

three successful movies, produced in a span of at least 

five years.
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RIF-BLD
 These rules should be evaluated against the DBpedia data set:

Document(

Prefix(func <http://www.w3.org/2007/rif-builtin-function#>

Prefix(pred <http://www.w3.org/2007/rif-builtin-predicate#>

Prefix(rdfs <http://www.w3.org/2000/01/rdf-schema#>

Prefix(imdbrel <http://example.com/imdbrelation#>

Prefix(dbpedia <http://dbpedia.org/ontology/>

Prefix(ibdbrel http://example.com/ibdbrelation#>

Group(

Forall ?Actor ?Film ?Year (

If And( dbpedia:starring(?Film ?Actor)

dbpedia:dateOfFilm(?Film ?Year) )

Then dbpedia:starredInYear(?Film ?Actor ?Year) 

)
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RIF-BLD
Forall ?Film (

If Or (

External(pred:numeric-greater-than(

dbpedia:criticalRating(?Film) 8)

External(pred:numeric-greater-than(

dbpedia:boxOfficeGross(?Film) 100000000)))

Then dbpedia:successful(?Film)

)

 External applies built-in predicates. 

 Group to put together a number of rules.
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RIF-BLD
Forall ?Actor (

If ( Exists ?Film1 ?Film2 ?Film3 ?Year1 ?Year2 ?Year3

And ( dbpedia:starredInYear(?Film1 ?Actor ?Year1)

dbpedia:starredInYear(?Film2 ?Actor ?Year2)

dbpedia:starredInYear(?Film3 ?Actor ?Year3)

External ( pred:numeric-greater-than(

External(func:numeric-subtract ?Year1 ?Year3) 5)))

dbpedia:successful(?Film1)

dbpedia:successful(?Film2)

dbpedia:successful(?Film3)

External (pred:literal-not-identical(?Film1 ?Film2))

External (pred:literal-not-identical(?Film1 ?Film3))

External (pred:literal-not-identical(?Film2 ?Film3))

)

Then dbpedia:movieStar(?Actor)

)
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Compatibility with RDF and OWL

 A major feature of RIF is that it is compatible with the 

RDF and OWL standards

Represent RDF triples using RIF frame formulas: a 

triple (s p o) is represented as s[p -> o]

That is, one can reason with a combination of RIF, RDF, 

and OWL documents

RIF facilitates the interchange of not just rules, but also 

RDF graphs and/or OWL axioms
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Compatibility with RDF and OWL

 The semantic definitions are such that the triple is 

satisfied if and only if the corresponding RIF frame 

formula is also satisfied

 for example, if the RDF triple
ex:GoneWithTheWind ex:FilmYear ex:1939

is true, then so is the RIF fact
ex:GoneWithTheWind[

ex:FilmYear -> ex:1939].
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Compatibility with RDF and OWL
 Given the RIF rule (which states that the Hollywood Production 

Code was in place between 1930 and 1968)
Group(

Forall ?Film (

If And( ?Film[ex:Year -> ?Year]

External(pred:dateGreaterThan(?Year 1930))

External(pred:dateGreaterThan(1968 ?Year)))

Then ?Film[ex:HollywoodProductionCode -> ex:True]))

one can conclude
ex:GoneWithTheWind[

ex:HollywoodProductionCode -> ex:True].

as well as the corresponding RDF triple
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Compatibility with RDF and OWL

 Similar techniques are used to achieve compatibility 

between OWL and RIF:

The semantics of OWL and RIF are compatible

One can infer conclusions from certain combinations of 

OWL axioms and RIF knowledge

OWL2 RL can be implemented in RIF
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OWL2 RL in RIF

 OWL2 RL is partially described by a set of first-order 

rules that can form the basis for an implementation using 

rule technology

To enable interoperability between rule systems and 

OWL2 RL ontologies, this axiomatization can be 

described using RIF (BLD, actually even in the simpler 

Core) rules

The OWL2 RL rules can be categorized in four (non-

disjoint) categories: triple pattern rules, 

inconsistency rules, list rules, and datatype rules
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OWL2 RL in RIF

 Triple Pattern Rules: derive RDF triples from a 

conjunction of RDF triple patterns

Group(

Forall ?V1 ... ?Vn(

s[p->o] :-

And(s1[p1->o1]... sn[pn->on]))

)
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OWL2 RL in RIF

 Inconsistency Rules: indicate inconsistencies in the 

original RDF graph (w.r.t. the existing OWL knowledge)
 represented in RIF as rules with the conclusion rif:error, 

a predicate symbol within the RIF namespace that can be used 

to express inconsistency

 Example: an inconsistency occurs when two predicates have 

been declared to be disjoint, but connect the same entities

Group(

Forall ?P1 ?P2 ?X ?Y(

rif:error :- And(

?P1[owl:propertyDisjointWith ?P2]

?X[?P1->?Y] 

?X[?P2->?Y])))
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OWL2 RL in RIF

 List Rules: 
 A number of OWL2 RL rules involve processing OWL 

expressions that include RDF lists (for example 

owl:AllDifferent)
Forall ?x ?y ?z1 ?z2 ?iz1 ?iz2 (

rif:error() :- And (

?x[rdf:type -> owl:AllDifferent]

?x[owl:members -> ?y]

External(pred:list-contains(?y ?z1))   

?iz1 = External(func:index-of(?y ?z1))

External(pred:list-contains(?y ?z2))   

?iz2 = External(func:index-of(?y ?z2))

External( pred:numeric-not-equal(?iz1 ?iz2)) 

?z1[owl:sameAs->?z2] ) )
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OWL2 RL in RIF

 Datatype Rules: provide type checking and value 

equality/inequality checking for typed literals in the 

supported datatypes

For example, generate an inconsistency if a literal is 

specified to be an instance of a data type but its value is 

outside the value space of that data type
Forall ?lt (

rif:error() :- And (

?lt[rdf:type->xsd:decimal] 

External(

pred:is-literal-not-decimal( ?lt )) ))
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Lecture Outline
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Nonmonotonic Rules

Example: Brokered Trade

Rule Markup Language (RuleML)
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Semantic Web Rules Language (SWRL)

 SWRL is a proposed Semantic Web language 

combining OWL DL with function-free Horn logic 

and is written in Unary/Binary Datalog RuleML

it allows Horn-like rules to be combined with 

OWL DL ontologies

A rule in SWRL has the form:

B1,…,Bn → A1,…,Am
where the commas denote conjunction on both 

sides of the arrow
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Semantic Web Rules Language (SWRL)

 B1,…,Bn, A1,…,Am can be of the forms: 

C(x), 

P(x, y), 

sameAs(x, y), or 

differentFrom(x, y), 

where 

C is an OWL class, 

P is an OWL property, and 

x, y are Datalog variables, OWL individuals, or OWL 

data values.
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Semantic Web Rules Language (SWRL)

The main complexity of the SWRL language stems 

from the fact that arbitrary OWL expressions, such 

as restrictions, can appear in the head or body of a 

rule

adds significant expressive power to OWL, but at 

the high price of undecidability
a sublanguage is the extension of OWL DL with DL-

safe rules, in which every variable must appear in a 

non-description logic atom in the rule body
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Rules in SPARQL: SPIN

 Rules can be expressed in SPARQL using CONSTRUCT:

grandparent(X, Z) ←

parent(Y, Z), parent(X, Y).

can be expressed as:

CONSTRUCT {

?X grandParent ?Z.

} WHERE {

?Y parent ?Z.

?X parent ?Y.

}
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Rules in SPARQL: SPIN

SPIN provides abstraction mechanisms for 

rules using Templates, which encapsulate 

parameterized SPARQL queries; and user-

defined SPIN functions as a mechanism to 

build higher-level rules (complex SPARQL 

queries) on top of simpler building blocks.
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Rules in SPARQL: SPIN
C2(X) ← C1(X), equivalentClass(C1, C2).

can be represented in SPARQL as:

CONSTRUCT {

?X a ?C2.

}

WHERE {

?X a ?C1.

?C1 equivalentClass ?C2.

}

and then instantiated as a spin:rule for the class 

owl:Thing to allow the rule to be applied to all possible 

instances.
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Lecture Outline
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Semantic Web Rules Language (SWRL)
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Nonmonotonic Rules

Example: Brokered Trade

Rule Markup Language (RuleML)
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Nonmonotonic Rules: Motivation and Syntax

 In nonmonotonic rule systems, a rule may not be applied even if 

all premises are known because we have to consider contrary 

reasoning chains

 the rules we consider from now on are called defeasible

because they can be defeated by other rules

 negated atomic formulas may occur in the head and the body of 

rules

p(X) ⇒ q(X).

r(X) ⇒ ¬q(X).

given also the facts

p(a).

r(a).

we can conclude both q(a) and ¬q(a) (impossible)
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Nonmonotonic Rules: Motivation and Syntax

 Conflicts may be resolved using priorities among rules

 Suppose we knew somehow that the first rule is stronger than 

the second; then we could derive only q(a).

 Priorities arise naturally in practice:
 The source of one rule may be more reliable than the source of the 

second rule, or it may have higher authority

 For example, federal law preempts state law 

 And in business administration, higher management has more 

authority than middle management

 One rule may be preferred over another because it is more recent

 One rule may be preferred over another because it is more specific

 A typical example is a general rule with some exceptions; in such 

cases, the exceptions are stronger than the general rule

o A classical example is that, in general, birds fly, however penguins 

are birds that do not fly87
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Nonmonotonic Rules: Motivation and Syntax

 Extend the rule syntax to include a unique label:

r1: p(X) ⇒ q(X).

r2: r(X) ⇒ ¬q(X).

r1 > r2.

given the facts

p(a).

r(a).

we can conclude q(a).

 We can require the priority relation to be acyclic: it is 

impossible to have cycles of the form 

r1 > r2 >...>rn > r1
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Nonmonotonic Rules: Motivation and Syntax

 Priorities are meant to resolve conflicts among competing rules: 

two rules are competing only if the head of one rule is the 

negation of the head of the other

 In applications it is often the case that once a predicate p is 

derived, some other predicates are excluded from holding
 For example, an investment consultant may base his recommendations 

on three levels of risk that investors are willing to take: low, 

moderate, and high. 

 Only one risk level per investor is allowed to hold at any given time

 Technically, these situations are modeled by maintaining a conflict set

C(L) for each literal L

 C(L) always contains the negation of L but may contain more 

literals
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Nonmonotonic Rules: Motivation and Syntax

 A defeasible rule has the form:

r : L1,…,Ln ⇒ L 

where 

r is the label, 

{L1,…,Ln} the body (or premises), and 

L the head of the rule. 

 L, L1,…,Ln are positive or negative literals (a literal is an 

atomic formula p(t1,…,tm) or its negation 

¬p(t1,…,tm)). 

 No function symbols may occur in the rule 

 Sometimes we denote the head of a rule as head(r), and its 

body as body(r)

90



@ Semantic Web Primer

Nonmonotonic Rules: Motivation and Syntax

 We use the label r to refer to the whole rule

 A defeasible logic program is a triple (F, R, >) consisting 

of a set F of facts, a finite set R of defeasible rules, and an acyclic 

binary relation > on R (precisely, a set of pairs r>r' where r

and r' are labels of rules in R)
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Example of Nonmonotonic Rules: Brokered Trade

Electronic commerce application

Brokered trades take place via an independent 

third party, the broker

The broker matches the buyer’s requirements and 

the sellers’ capabilities and proposes a transaction 

in which both parties can be satisfied by the trade

Concrete application: apartment renting

(common activity that is often tedious and time-

consuming) 
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Example of Nonmonotonic Rules: Brokered Trade

 Carlos is looking for an apartment of at least 45 sq m with at least two 

bedrooms. 

 If it is on the third floor or higher, the house must have an elevator. 

 Also, pet animals must be allowed. 

 Carlos is willing to pay $300 for a centrally located 45 sq m apartment, 

and $250 for a similar apartment in the suburbs. 

 In addition, he is willing to pay an extra $5 per square meter for a larger 

apartment, and $2 per square meter for a garden. 

 He is unable to pay more than $400 in total. 

 If given the choice, he would go for the cheapest option.

 His second priority is the presence of a garden; his lowest priority is 

additional space.
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Formalization of Carlos’s Requirements

 Predicates that describe properties of apartments:
apartment(x) stating that: x is an apartment

size(x, y): y is the size of apartment x (in sq m)

bedrooms(x, y): x has y bedrooms

price(x, y): y is the price for x

floor(x, y): x is on the yth floor

garden(x, y): x has a garden of size y

elevator(x): there is an elevator in the house of x

pets(x): pets are allowed in x

central(x): x is centrally located
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Formalization of Carlos’s Requirements
 We also make use of the predicates:

acceptable(x): apartment x satisfies Carlos’s 

requirements 

offer(x, y): Carlos is willing to pay $y for flat x

 Any apartment is a priori acceptable:

r1 : apartment(X) ⇒ acceptable(X).

 However, apartment Y is unacceptable if one of Carlos’s 

requirements is not met:
r2 : bedrooms(X, Y ),Y < 2 ⇒ ¬acceptable(X).

r3 : size(X, Y ),Y < 45 ⇒ ¬acceptable(X).

r4 : ¬pets(X) ⇒ ¬acceptable(X).

r5 : floor(X, Y ),Y > 2, ¬lif t(X) ⇒
¬acceptable(X).

r6 : price(X, Y ),Y > 400 ⇒ ¬acceptable(X).
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Formalization of Carlos’s Requirements
 Rules r2-r6 are exceptions to rule r1:

r2 > r1.

r3 > r1.

r4 > r1.

r5 > r1.

r6 > r1.

96



@ Semantic Web Primer

Formalization of Carlos’s Requirements

97

 We calculate the price Carlos is willing to pay for an apartment:

r7 : size(X, Y), Y ≥ 45, garden(X, Z), 

central(X) ⇒
offer(X, 300 + 2Z + 5(Y − 45)).

r8 : size(X, Y ), Y ≥ 45, garden(X, Z), 

¬central(X) ⇒
offer(X, 250 + 2Z + 5(Y − 45)).

 An apartment is only acceptable if the amount Carlos is willing to 

pay is higher than the price specified by the landlord (we assume 

no bargaining can take place) 

r9 : offer(X, Y), price(X, Z), Y < Z ⇒
¬acceptable(X).

r9 > r1.
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Representation of Available Apartments
 Each available apartment is given a unique name (for 

example a1), and its properties are represented as facts:
bedrooms(a1, 1).

size(a1, 50).

central(a1).

floor(a1, 1).

¬elevator(a1).

pets(a1).

garden(a1, 0).

price(a1, 300).

 In practice, the apartments on offer could be stored 

in a relational database, CSV file, or an RDF storage 

system98
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Selecting an Apartment

 If we match Carlos’s requirements and the available apartments, we see:

 flat a1 is not acceptable because it has one bedroom only (rule r2)

 flats a4 and a6 are unacceptable because pets are not allowed (rule r4)

 for a2, Carlos is willing to pay $300, but the price is higher (rules r7, r9)

 flats a3, a5, and a7 are acceptable (rule r1)
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Selecting an Apartment
 Carlos’s preferences are based on price, garden size, and size, 

in that order:

r10 : acceptable(X) ⇒ cheapest(X).

r11 : acceptable(X), price(X, Z), 

acceptable(Y), price(Y, W), W<Z ⇒
¬cheapest(X).

r11 > r10.

 Rule r10 says that every acceptable apartment is cheapest 

by default. 

 However, if there is an acceptable apartment cheaper than X, 

rule r11 (which is stronger than r10) fires and concludes 

that X is not cheapest. 
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Selecting an Apartment
 Carlos’s preferences are based on price, garden size, and size, 

in that order:

r12 : cheapest(X) ⇒ largestGarden(X).

r13 : cheapest(X), gardenSize(X, Z), 

cheapest(Y), gardenSize(Y,W),W >Z ⇒
¬largestGarden(X).

r13 > r12.

 Rules r12 and r13 select the apartments with the largest 

garden among the cheapest apartments.
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Selecting an Apartment
 Carlos’s preferences are based on price, garden size, and size, 

in that order:

r14 : largestGarden(X) ⇒ rent(X).

r15 : largestGarden(X), size(X, Z), 

largestGarden(Y), size(Y,W), W>Z ⇒
¬rent(X).

r15 > r14.

 Rules r14 and r15 select the proposed apartments to be 

rented, based on apartment size.
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Selecting an Apartment

 Apartments a3 and a5 are cheapest

 a5 has the largest garden and will be rented (after is inspected)

 in this case the apartment size criterion does not play a role: r14 fires 

only for a5, so rule r15 is not applicable for it
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Rule Markup Language (RuleML)
 RuleML is a long-running effort to develop markup of rules on 

the web

 It is actually not one language but a family of rule markup 

languages, corresponding to different kinds of rule languages: 

derivation rules, integrity constraints, reaction rules

 The kernel of the RuleML family is Datalog, which is 

function-free Horn logic

 The RuleML family provides descriptions of rule markup 

languages in XML
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Rule Markup Language (RuleML)
 Vocabulary of Datalog RuleML:
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Rule Markup Language (RuleML)
 Example rule: “The discount for a customer buying a product is 7.5 

percent if the customer is premium and the product is luxury”

 In RuleML 1.0:
<Implies>

<if>

<And>

<Atom>

<Rel>premium</Rel>

<Var>customer</Var>

</Atom>

<Atom>

<Rel>luxury</Rel>

<Var>product</Var>

</Atom>

</And>

</if>

<then>

<Atom>

<Rel>discount</Rel>

<Var>customer</Var>

<Var>product</Var>

<Ind>7.5 percent</Ind>

</Atom>

</then>

</Implies>

107



@ Semantic Web Primer

Rule Markup Language (RuleML)
 SWRL is an extension of RuleML and is represented in RuleML 1.0:

brother(X, Y), childOf(Z, Y) → uncle(X, Z).

<ruleml:Implies>

<ruleml:then>

<swrlx:individualPropertyAtom swrlx:property="uncle">

<ruleml:Var>X</ruleml:Var>

<ruleml:Var>Z</ruleml:Var>

</swrlx:individualPropertyAtom>

</ruleml:then>

<ruleml:if>

<ruleml:And>

<swrlx:individualPropertyAtom swrlx:property="brother">

<ruleml:Var>X</ruleml:Var>

<ruleml:Var>Y</ruleml:Var>

</swrlx:individualPropertyAtom>

<swrlx:individualPropertyAtom swrlx:property="childOf">

<ruleml:Var>Z</ruleml:Var>

<ruleml:Var>Y</ruleml:Var>

</swrlx:individualPropertyAtom>

</ruleml:And>

</ruleml:if>

</ruleml:Implies>108
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Summary
 Rules on the (semantic) web form a very rich and heterogeneous landscape

 Horn logic is a subset of predicate logic that allows efficient reasoning 

 It forms a subset orthogonal to description logics

 Horn logic is the basis of monotonic rules

 RIF is a new standard for rules on the web 

 Its logical dialect BLD is based on Horn logic

 OWL2 RL, which is essentially the intersection of description logics and 

Horn logic, can be embedded in RIF

 SWRL is a much richer rule language, combining description logic features 

with restricted types of rules

 Nonmonotonic rules are useful in situations where the available information 

is incomplete

 They are rules that may be overridden by contrary evidence (other rules)

 Priorities are used to resolve some conflicts between nonmonotonic rules
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