
Web Ontology Language: OWL2

CSE 595 – Semantic Web

Instructor: Dr. Paul Fodor

Stony Brook University

http://www3.cs.stonybrook.edu/~pfodor/courses/cse595.html

http://www3.cs.stonybrook.edu/~pfodor/courses/cse595.html

@ Semantic Web Primer

Lecture Outline
Requirements for Ontology Languages

Compatibility of OWL2 with RDF/RDFS

The OWL Language

Ontology Documents

Property Types

Property and Class Axioms

OWL2 Profiles

2

@ Semantic Web Primer

Why a Web Ontology Language?

RDF and RDF Schema are deliberately very

limited

RDF is (roughly) limited to binary ground

predicates,

RDF Schema is (roughly) limited to a subclass

hierarchy and a property hierarchy, with domain

and range definitions of these properties.

They are designed with flexibility in mind

3

@ Semantic Web Primer

Why a Web Ontology Language?

 We need to express more advanced, more ‘expressive’

knowledge

For example,

 that every person has exactly one birth date, or

 that no person can be both male and female at the same

time.

 The Web Ontology Working Group and the OWL Working

Group identified a number of characteristic use cases for the

Semantic Web that require much more language features than

those that RDF and RDFS have

 http://www.w3.org/2001/sw/WebOnt/

 http://www.w3.org/2007/OWL/wiki/OWL_ Working_Group
4

http://www.w3.org/2001/sw/WebOnt/
http://www.w3.org/2007/OWL/wiki/OWL_ Working_Group

@ Semantic Web Primer

Why a Web Ontology Language?

The resulting language, OWL2, for the Web

Ontology Language, is closely related to a

fragment of a family of logics that are specially

crafted for representing terminological

knowledge: Description Logics (DL)

OWL2 is the second iteration of the OWL

language.

5

@ Semantic Web Primer

Requirements for Ontology Languages

An explicit formal specification of the concepts in

a domain is called an ontology

 Languages that allow us to express ontologies are

therefore called ontology languages

 The main requirements for these languages are:

a well-defined syntax,

a formal semantics,

sufficient expressive power,

convenience of expression, and

efficient reasoning support
6

@ Semantic Web Primer

Syntax
 A syntax is well-defined if you can use it to write down

everything a language allows you to express in an

unambiguous manner

A well-defined syntax is not necessarily very user-

friendly
 For instance, the RDF/XML syntax is notoriously hard for

people to read.

 However, this drawback is not very significant because

most ontology engineers will use specialized ontology

development tools, rather than a text editor, for building

ontologies

 OWL2 builds on RDF and RDFS and uses an extension of their

syntax7

@ Semantic Web Primer

Formal Semantics
 A formal semantics describes the meaning of a language

precisely

Precisely means that the semantics does not refer to

subjective intuitions, nor is it open to different

interpretations by different people (or machines).

The importance of a formal semantics is well-

established in the domain of mathematical logic
 The combination of formal semantics with a well-defined syntax allows

us to interpret sentences expressed using the syntax: we know what is

meant by the sentence

 Formal semantics also allows us to reason about the knowledge

expressed in the sentences

8

@ Semantic Web Primer

Formal Semantics
 For instance, the formal semantics of RDFS allows us to

reason about class membership

Given

x rdf:type C.

C rdfs:subClassOf D.

we can infer that x is an instance of D.

 The rdfs:domain and rdfs:range properties

allow similar inferences:

p rdfs:range D.

x p y.

allows us to infer that y rdf:type D.
9

@ Semantic Web Primer

Expressivity
 The expressive power of RDF and RDFS is very limited

in some areas.

 If we build ontologies, we may want to be able to

reason about:
 Class Membership: a more precise description of the

conditions under which an instance can be considered to

belong to a class would allow for more fine-grained

reasoning

 For instance, if we have declared that certain property-

value pairs are a sufficient condition for membership in a

class A, then if an instance x satisfies these conditions, we

can conclude that x must be an instance of A

10

@ Semantic Web Primer

Expressivity
 Classification: we would like to use the conditions on class

membership to infer relations between the classes

themselves

 Equivalence between classes: for example, the class

Tortoise shares all its members with the class

Land_Turtle; they are therefore equivalent

 Equality between instances: we would like to be able to

state when two instances are the same: the

morning_star and the evening_star are names

for the same planet venus; these instances are therefore

the same.

11

@ Semantic Web Primer

Expressivity
 Disjointness and Difference: sometimes we know that two

classes do not share any instances (they are disjoint) or that

two instances are decidedly not the same thing.

 For example, Winner and Loser are disjoint in a

game, and roger_federer and rafael_nadal

are different individuals.

 Boolean Combinations of Classes: sometimes classes need

to be combined in ways that go beyond subclass relations.

 For instance, we may want to define the class Person to

be the disjoint union of the classes Female and

Male.

12

@ Semantic Web Primer

Expressivity
 Local Scope of Properties: rdfs:range states that the

instances in the range of a property, say plays, all belong

to a certain class.

 In RDFS we cannot declare range restrictions that

differentiate between contexts.

 For example, we cannot say that tennis players play only

tennis, while other people may play badminton

 Special Characteristics of Properties: Sometimes it is

useful to say that a property is:

 transitive, such as greater_than

 unique, like is_mother_of

 the inverse of another property, such as eats and

is_eaten_by
13

@ Semantic Web Primer

Expressivity
 Cardinality Restrictions: Sometimes we need to place

restrictions on how many distinct values a property may or

must take

 For example, each person has exactly two parents,

 a course has at least oneTA

 Consistency: Once we can determine relations between

classes, we may also want to determine conflicts between

their definitions.

 Suppose we have declared Fish and Mammal to be

disjoint classes.

o It is then an error to assert that dolphin is an

instance of both.

14

@ Semantic Web Primer

Reasoning Support
 Formal semantics is a prerequisite for reasoning support

Derivations such as the preceding ones can be made

mechanically instead of by hand

 Automatic reasoning is important because it allows us to

check the correctness of the ontology

check the consistency of the ontology

check for unintended relations between classes

check for unintended classifications of instances

 Checks like these are extremely valuable for designing

large ontologies, for cases where multiple authors are

involved, and for integrating and sharing ontologies from

various sources.15

@ Semantic Web Primer

Reasoning Support
 We can provide formal semantics and reasoning support to an

ontology language by mapping it to a known logical formalism, and

by using automated reasoners that already exist for those

formalisms

 In designing such a formal language one should be aware of the

trade-off between expressive power and efficient

reasoning support.

 Generally speaking, the richer the logical formalism, the less

efficient the reasoning support becomes, often crossing the

border of decidability (that is, reasoning on such logics is not

guaranteed to terminate).

 Need for a compromise: a language that can be supported by

reasonably efficient reasoners, while being sufficiently expressive

to represent a large variety of knowledge16

@ Semantic Web Primer

OWL2 with RDF/RDFS
 Ideally, OWL2 is an extension of RDF Schema, in the sense that OWL2

adopts the RDFS meaning of classes and properties (rdfs:Class,

rdfs:subClassOf, etc.) and adds language primitives to support

the richer expressiveness required

 This approach would be consistent with the layered architecture of the

Semantic Web

 Unfortunately, simply extending RDF Schema would work against

obtaining expressive power and efficient reasoning

 RDF Schema has some very powerful modeling primitives.

Constructions such as rdfs:Class (the class of all classes) and

rdfs:Property (the class of all properties) are very

expressive and would lead to uncontrollable computational

properties if the logic underlying OWL2 included these primitives

in their generality

17

@ Semantic Web Primer

Two Semantics
 The full set of requirements for an ontology language seems

unobtainable: efficient reasoning support does not exist for a

language as expressive as a combination of RDF Schema with a

full logic

 These requirements have prompted the successive W3C working

groups to split OWL2 into two different sublanguages, each with

a different underlying semantics geared toward fulfilling different

aspects of the full set of requirements:

 OWL2 Full

 OWL2 DL

18

@ Semantic Web Primer

OWL2 Full: RDF-Based Semantics
 OWL2 Full uses all the OWL2 language primitives

 It allows the combination of these primitives in arbitrary ways

with RDF and RDF Schema

 It includes the ability to change the meaning of the predefined

(RDF or OWL2) primitives by applying the language

primitives to each other
 In OWL2 Full, we could impose a cardinality constraint on the class of

all classes, essentially limiting the number of classes that can be

described in any ontology.

 OWL2 Full is mapped to an RDF-based semantics, so it is structurally

and semantically fully upward-compatible with RDF: any legal RDF

document is also a legal OWL2 Full document, and any valid RDF

Schema inference is also a valid OWL2 Full conclusion

 The disadvantage is that the language has become so powerful

as to be undecidable19

@ Semantic Web Primer

OWL2 DL: Direct Semantics
 OWL2 DL is mapped onto a description logic (DL)

 Description logics are a subset of predicate logic for which efficient

reasoning support is possible

 OWL2 DL restricts the way in which the primitives of OWL2, RDF, and

RDFS may be used:

 OWL2 DL does not allow the application of OWL2’s primitives to

each other

 OWL2 DL can only define classes of non-literal resources: all OWL2

DL classes are instances of owl:Class rather than rdfs:Class

 OWL2 DL strictly separates properties for which the range includes

non-literal resources from those that relate to literal values: all OWL2

DL properties are instances of either owl:ObjectProperty or

owl:DatatypeProperty but not both!

 In OWL2 DL a resource cannot be a class, property, or instance at the

same time - they may share the same name (this is called “punning”) but

will always be treated as distinct things by the underlying logic.20

@ Semantic Web Primer

OWL2 DL: Direct Semantics
OWL2 DL can make use of a wide range of

existing reasoners such as Pellet, FaCT, RACER,

and HermiT

The disadvantage is that we lose full compatibility

with RDF

An RDF document will in general have to be

extended in some ways and restricted in others

before it is a legal OWL2 DL document

However, every legal OWL2 DL document is a

legal RDF document
21

@ Semantic Web Primer

OWL2 DL: Direct Semantics
 The subclass relationships between some modeling primitives of OWL2 and

RDF/RDFS:

22

@ Semantic Web Primer

The OWL Language
 Vocabulary:

 The members of classes are commonly called individuals rather

than instances

 When we state that some resource is of a certain type, we call

this an assertion

roger_federer rdf:type Person.

is a class assertion relating the individual roger_federer

to its class.

 When we combine classes, properties, and instances, they form

expressions

_:x rdf:type owl:Class ;

owl:unionOf (:Man :Woman).

is a class expression that specifies the (anonymous) union of the

classes Man and Woman.
23

@ Semantic Web Primer

The OWL Language
 If we then relate definitions to one of our classes, we

create an axiom

Person owl:equivalentClass _:x.

_:x rdf:type owl:Class ;

owl:unionOf (:Man :Woman) .

is an equivalent class axiom that states that the class

Person is equivalent to the union we introduced

above.

Class axioms are sometimes called restrictions, as

they constrain the set of individuals that can be a

member of a class.

24

@ Semantic Web Primer

The OWL Language
OWL2 is essentially a language for describing sets

of things

These sets are called ‘classes.’

Any statement we make about a class in OWL2 is

meant to differentiate that class from the set of

all things

25

@ Semantic Web Primer

Syntax
 OWL2 builds on RDF and RDF Schema and thus can be

expressed using all valid RDF syntaxes

 However, many syntaxes exist for OWL2, each of which has its

own benefits and drawbacks:

 Functional-Style Syntax closely relates to the formal

structure of ontologies
 It is used in the language specification document, in the

definitions of the semantics of OWL2 ontologies, the mappings

from and into RDF syntaxes, and the different profiles of OWL2.

 It is much more compact and readable than many of the other

syntaxes.

 For instance, a class restriction can be written in this syntax as:
EquivalentClasses(Person

ObjectUnionOf(Man Woman))
26

@ Semantic Web Primer

Syntax
 OWL/XML Syntax is an XML syntax for OWL2 that does not

follow the RDF conventions, but closely maps onto the

functional-style syntax.
 http://www.w3.org/TR/owl-xml-serialization/

 The main benefit of this syntax is that it allows us to interact

with ontologies using standard off-the-shelf XML authoring

tools.

 The OWL/XML syntax of an equivalent class axiom is:
<EquivalentClasses>

<Class abbreviatedIRI=":Person"/>

<ObjectUnionOf>

<Class IRI="#Man"/>

<Class IRI="#Woman"/>

</ObjectUnionOf>

</EquivalentClasses>27

http://www.w3.org/TR/owl-xml-serialization/

@ Semantic Web Primer

Syntax
 Manchester Syntax, originally developed at University of

Manchester, this syntax is designed to be as human-readable as

possible.

 It is the syntax used in the user interface of most current

ontology editors such as Protégé

Class: Person

EquivalentTo: Man or Woman

 In addition to these syntaxes, all RDF syntaxes can be used for

OWL (the Turtle syntax is most commonly used)

28

@ Semantic Web Primer

Ontology Documents
 An OWL2 ontology starts with a collection of assertions for

housekeeping purposes.

 These assertions introduce a base namespace, the ontology

itself, its name, possible comments, version control, and

inclusion of other ontologies. For example:
@prefix : <http://www.semanticwebprimer.org/ontologies/apartments.ttl#> .

@prefix dbpedia-owl: <http://dbpedia.org/ontology/> .

@prefix dbpedia: <http://dbpedia.org/resource/> .

@base <http://www.semanticwebprimer.org/ontologies/apartments.ttl> .

<http://www.semanticwebprimer.org/ontologies/apartments.ttl>

rdf:type owl:Ontology ;

rdfs:label "Apartments Ontology"^^xsd:string ;

rdfs:comment "An example OWL2 ontology"^^xsd:string ;

owl:versionIRI <http://www.semanticwebprimer.org/ontologies/apartments.ttl#1.0> ;

owl:imports <http://dbpedia.org/ontology/> ;

owl:imports <http://dbpedia.org/resource/> .

29

@ Semantic Web Primer

Ontology Documents
 Imports: owl:imports points to other ontologies

whose axioms are to be part of the current ontology

Our apartments ontology imports all axioms defined

in the DBPedia ontology, as well as everything in

DBPedia itself.

This immediately highlights one of the problems with

the owl:imports : in order to be able to use some

of the information in DBPedia, we have to import all

672 million triples described in it

30

@ Semantic Web Primer

Ontology Documents
While namespaces are used only for disambiguation,

imported ontologies provide definitions that can be

used.

Typically an ontology contains an import statement for

every namespace it uses, but it is possible to import

additional ontologies

The owl:imports property is transitive; that

is, if ontology Oi imports ontology Oj , and ontology

Oj imports ontology Ok, then ontology Oi also imports

ontology Ok

31

@ Semantic Web Primer

Property Types
 OWL2 distinguishes two types of properties: object properties

and datatype properties

 Object Properties relate individuals to other individuals

 Example: rents:

rents rdf:type owl:ObjectProperty ;

rdfs:domain Person ;

rdfs:range Apartment ;

rdfs:subPropertyOf livesIn .

 Datatype Properties relate individuals to literal values of a certain

data type

 Example: age:

age rdf:type owl:DatatypeProperty ;

rdfs:range xsd:nonNegativeInteger .
32

@ Semantic Web Primer

Property Types
 Just as in RDF,

OWL2 allows one

to use XML Schema

datatypes for

indicating the type

of a literal or

specifying the range

of a datatype

property.
 OWL2 introduces

two additional

datatypes

owl:real and

owl:rational
33

Universal

Datatype
rdfs:Literal

Numbers

owl:rational owl:real

xsd:double xsd:float xsd:decimal xsd:integer

xsd:long xsd:int xsd:short xsd:byte

xsd:nonNegativeInteger xsd:nonPositiveInteger

xsd:positiveInteger xsd:negativeInteger

xsd:unsignedLong xsd:unsignedInt

xsd:unsignedShort xsd:unsignedByte

Strings

rdf:PlainLiteral (RDF plain literals)

xsd:string xsd:NCName xsd:Name
xsd:NMTOK

EN

xsd:token
xsd:languag

e
xsd:normalizedString

Boolean

Values
xsd:boolean (value space: true and false)

Binary Data xsd:base64Binary xsd:hexBinary

IRIs xsd:anyURI

Time

Instants

xsd:dateTime (optional time zone offset)

xsd:dateTimeStamp (required time zone offset)

XML Literals rdf:XMLLiteral

http://www.w3.org/TR/rdf-schema/#ch_literal
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#a_NumericDataTypes
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#a_rational
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#a_real
http://www.w3.org/TR/xmlschema11-2/#double
http://www.w3.org/TR/xmlschema11-2/#float
http://www.w3.org/TR/xmlschema11-2/#decimal
http://www.w3.org/TR/xmlschema11-2/#integer
http://www.w3.org/TR/xmlschema11-2/#long
http://www.w3.org/TR/xmlschema11-2/#int
http://www.w3.org/TR/xmlschema11-2/#short
http://www.w3.org/TR/xmlschema11-2/#byte
http://www.w3.org/TR/xmlschema11-2/#nonNegativeInteger
http://www.w3.org/TR/xmlschema11-2/#nonPositiveInteger
http://www.w3.org/TR/xmlschema11-2/#positiveInteger
http://www.w3.org/TR/xmlschema11-2/#negativeInteger
http://www.w3.org/TR/xmlschema11-2/#unsignedLong
http://www.w3.org/TR/xmlschema11-2/#unsignedInt
http://www.w3.org/TR/xmlschema11-2/#unsignedShort
http://www.w3.org/TR/xmlschema11-2/#unsignedByte
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Strings
http://www.w3.org/TR/2012/REC-rdf-plain-literal-20121211/
http://www.w3.org/TR/xmlschema11-2/#string
http://www.w3.org/TR/xmlschema11-2/#NCName
http://www.w3.org/TR/xmlschema11-2/#Name
http://www.w3.org/TR/xmlschema11-2/#NMTOKEN
http://www.w3.org/TR/xmlschema11-2/#token
http://www.w3.org/TR/xmlschema11-2/#language
http://www.w3.org/TR/xmlschema11-2/#normalizedString
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Boolean_Values
http://www.w3.org/TR/xmlschema11-2/#boolean
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Binary_Data
http://www.w3.org/TR/xmlschema11-2/#base64Binary
http://www.w3.org/TR/xmlschema11-2/#hexBinary
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#IRIs
http://www.w3.org/TR/xmlschema11-2/#anyURI
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#Time_Instants
http://www.w3.org/TR/xmlschema11-2/#dateTime
http://www.w3.org/TR/xmlschema11-2/#dateTimeStamp
http://www.w3.org/TR/2012/REC-owl2-syntax-20121211/#XML_Literals
http://www.w3.org/TR/rdf-concepts/#section-XMLLiteral

@ Semantic Web Primer

Annotation Properties
 Annotation properties are properties that do not carry any

meaning under the direct semantics of OWL2 DL.

 That is, they are ignored by a DL reasoner.

 However, they will be taken into account by RDF Schema and

OWL2 Full reasoners.

 Annotation properties are typically used for adding readable

labels, comments, or explanations to OWL2 ontologies,

classes, properties, and individuals

34

@ Semantic Web Primer

Annotation Properties
 Example: label property to be of type

owl:AnnotationProperty with a range of

rdf:PlainLiteral (a special RDF datatype for natural

language text – that is, plain literals can have a language tag)

label rdf:type owl:AnnotationProperty ;

rdfs:range rdf:PlainLiteral ;

rdfs:subPropertyOf rdf:label .

Apartment :label "Apartment"@en,

"Appartement"@nl,

"Apartament"@ro .

 We defined the label property to be a subproperty of

rdf:label, and then give three labels to the

Apartment class in English, Dutch, and Romanian

35

@ Semantic Web Primer

Top and Bottom Properties
 All object properties in OWL2 are a subproperty of

owl:topObjectProperty

 This property is defined as the property that relates all

individuals in the ontology.

 Conversely, owl:bottomObjectProperty is the

property that relates no individuals.

 Similarly, owl:topDataProperty relates all individuals

to any possible literal value, and

owl:bottomDataProperty relates no individual to any

literal value

36

@ Semantic Web Primer

Transitive Properties
 We know that rdfs:subClassOf is transitive: every class is

a subclass of all superclasses of its direct superclass.

 There are other relations which are transitive as well, such as

isPartOf

 We can define a property as transitive as follows:

isPartOf rdf:type owl:ObjectProperty ;

rdf:type owl:TransitiveProperty .

37

@ Semantic Web Primer

Transitive Properties
 Transitive properties are so-called composite properties: they can

be said to be composed of multiple steps

 For instance, given:
BaronWayApartment isPartOf BaronWayBuilding .

BaronWayKitchen isPartOf BaronWayApartment .

a reasoner will infer:

BaronWayKitchen isPartOf BaronWayBuilding .

 This last isPartOf relation is composed of the two

preceding property assertions.

38

@ Semantic Web Primer

Transitive Properties
 Because of this composition, transitive properties are

subject to a number of restrictions

Composite properties may not occur in the following

axioms:
 Qualified and non-qualified cardinality restrictions on

classes;

 Self restrictions on classes,

 Disjoint property axioms.

They may furthermore not be assigned the following

property types:
 Functional or inverse functional;

 Irreflexive;

 Asymmetric.39

@ Semantic Web Primer

Symmetric and Asymmetric Properties
 Some properties, such as isAdjacentTo, are

symmetric: if a isAdjacentTo b, the inverse

holds as well: b isAdjacentTo a

 In other words, symmetric properties are equivalent to

their inverse
isAdjacentTo rdf:type owl:ObjectProperty ;

rdf:type owl:SymmetricProperty .

40

@ Semantic Web Primer

Symmetric and Asymmetric Properties
 For other properties, this will never be the case - for

instance, the isCheaperThan relation is

asymmetric, since nothing can be more expensive than

something that they are cheaper than:
isCheaperThan rdf:type owl:ObjectProperty;

rdf:type owl:AsymmetricProperty ;

rdf:type owl:TransitiveProperty .

41

@ Semantic Web Primer

Functional and Inverse-Functional Properties
 For some properties we know that every individual can

always have at most one other individual related via that

property

For instance, hasNumberOfRooms is a functional

property: one apartment can only have one number of

rooms:
hasNumberOfRooms rdf:type owl:DatatypeProperty ;

rdf:type owl:FunctionalProperty .

42

@ Semantic Web Primer

Functional and Inverse-Functional Properties
 If two apartments a1 and a2 are related via hasRoom

to the same room r, this is not necessarily inconsistent:

the individuals will simply be inferred to be the same

The hasRoom property is called to be inverse-

functional:
hasRoom rdf:type owl:ObjectProperty ;

rdf:type owl:InverseFunctionalProperty.

43

@ Semantic Web Primer

Reflexive and Irreflexive Properties
 Reflexivity of a property means that every individual is

related via that property to itself

For instance, everything isPartOf itself
isPartOf rdf:type owl:ObjectProperty ;

rdf:type owl:ReflexiveProperty .

 Irreflexivity means that no individual is related to itself

via that property.

Most properties with disjoint domain and range are

actually irreflexive
 An example is the rents property:

rents rdf:type owl:ObjectProperty ;

rdf:type owl:IrreflexiveProperty
44

@ Semantic Web Primer

Property Axioms
 In addition to the property types discussed, we can

specify additional characteristics of properties in terms

of how they relate to classes and other properties

45

@ Semantic Web Primer

Property Axioms
 Domain and Range: the way in which OWL2 treats domain and

range for properties is exactly the same as in RDF Schema:

 If more than one rdfs:range or rdfs:domain is

asserted for a property, the actual range or domain is the

intersection of the classes specified in the property axiom

 A common misunderstanding is that domain and range work as

a constraint on the types of individuals that may be related via a

property

 In fact, domains and ranges can only be used to determine class

membership for these individuals
 Given the definition of rents, any two individuals p and a such that

p rents a will be classified as members of Person and

Apartment respectively.

46

@ Semantic Web Primer

Property Axioms
 Inverse Properties: the pair rents and isRentedBy are

inverse

 For instance:

isRentedBy rdf:type owl:ObjectProperty;

owl:inverseOf :rents

means that a reasoner will determine that any two individuals p

and m that have the relation m isRentedBy p in addition

to a stated relation p rents m

 Domain and range are inherited from the inverse property:

isRentedBy has Apartment as domain and

Person as range.

 In OWL2 DL, only object properties can have an inverse

47

@ Semantic Web Primer

Property Axioms
 Equivalent Properties: Properties can also be defined as

equivalent - that is, every two individuals related via a property

will always be related via its equivalent, and vice versa.

 Equivalence is a convenient mechanism for mapping elements

of different ontologies to each other.

 For instance:

isPartOf rdf:type owl:ObjectProperty ;

owl:equivalentProperty dbpedia:partOf.

48

@ Semantic Web Primer

Property Axioms
 Disjoint Properties: For some properties we know that no two

individuals related via one property can be related via the other:

the sets of pairs of individuals for which the properties can hold

are disjoint.

 For examples, the rents and owns properties: clearly, you

cannot rent something you own

rents rdf:type owl:ObjectProperty ;

rdfs:domain Person ;

rdfs:range Apartment ;

owl:disjointProperty owns .

 Under the direct semantics of OWL2 DL, the

owl:ObjectProperty and

owl:DatatypeProperty are disjoint
49

@ Semantic Web Primer

Property Axioms
 Property Chains: Sometimes it is useful to specify shortcuts along the

graph of properties relating various individuals.

 For instance, if we know that Paul rents the

BaronWayApartment, and that the BaronWayApartment

isPartOf the BaronWayBuilding, for which the

dbpedia:location is dbpedia:Amsterdam, we infer that

Paul must have a livesIn relation with Amsterdam.

 In OWL2 we can specify the livesIn property using a property chain

axiom:

livesIn rdf:type owl:ObjectProperty ;

owl:propertyChainAxiom

(rents isPartOf location) .

The property chain axiom does not make the livesIn property

equivalent to the chain of properties (if we have declared instances of

livesIn we don't infer anonymous resources for the components of the

chain); it is rather only inferred from the chain. 50

@ Semantic Web Primer

Property Axioms
 Property Chains:

 dotted lines are inferred by the reasoner

51

@ Semantic Web Primer

Property Axioms
 Property Chains:

 In OWL2 DL, property chains may only involve object

properties, though most reasoners can handle chains that have

a datatype property as last step.

 Property chains are subject to a number of restrictions

 Just like transitive properties, the superproperty of property

chains is composite - it means that they cannot be used in a

number of axioms

 The property chain may not be recursive: the

superproperty of the chain, its inverse, or one of its

subproperties (or their inverse) may not occur in the

property chain axiom.

52

@ Semantic Web Primer

Property Axioms
 Property Chains:

 OWL2 DL does not allow us to extend the livesIn

property in the following way:
livesIn rdf:type owl:ObjectProperty ;

owl:propertyChainAxiom

(rents isPartOf dbpedia-owl:location) ;

owl:propertyChainAxiom

(livesIn dbpedia-owl:country) .

even though it would allow us to infer that because Paul lives in

dbpedia:Amsterdam, he must live in

dbpedia:Netherlands as well.

53

@ Semantic Web Primer

Class Axioms
 Classes are defined by asserting a resource to be of type

owl:Class

 There are two predefined classes that play an important role in

reasoning:
 owl:Thing is the most general class: every possible OWL2

individual is a member of this class, and every instance of

owl:Class is a subclass of owl:Thing

 Restrictions on owl:Thing have very far-reaching consequences:

they hold for every class and individual in the ontology

 owl:Nothing is the empty class: it has no members, and every

instance of owl:Class is a superclass of that class.

 Inconsistent classes cannot have any members, and are therefore

equivalent to owl:Nothing

54

@ Semantic Web Primer

Class Axioms
 Subclass Relations:

 Subclass relations are defined as in RDF Schema

 For example, we can define a class LuxuryApartment

as follows:

LuxuryApartment rdf:type owl:Class ;

rdfs:subClassOf :Apartment .

55

@ Semantic Web Primer

Class Axioms
 Class Equivalence:

 Equivalence of classes means that every member of a class must

also be a member of the equivalent class, and vice versa.

 In other words, both classes cover exactly the same set of

individuals.

 Class equivalence can be defined using an

owl:equivalentClass property:

Apartment owl:equivalentClass dbpedia:Apartment .

states that the Apartment class in our apartment ontology is

equivalent to the dbpedia:Apartment imported from

DBPedia.

56

@ Semantic Web Primer

Class Axioms
 Class Equivalence:

 Asserting an equivalence relation between classes is equivalent

to asserting subclass relations in both directions:
Apartment rdfs:subClassOf dbpedia:Apartment .

and
dbpedia:Apartment rdfs:subClassOf Apartment .

57

@ Semantic Web Primer

Class Axioms
 Punning:

 The DBPedia apartment definition comes from the dbpedia

namespace instead of from dbpedia-owl
 It is not a class, but an individual

 Compared to our ontology, DBPedia describes apartments at a

higher level of abstraction: the classes in the DBPedia ontology

are not intended to classify individual entities (such as

apartments in Amsterdam), but rather individual topics.

 Treating individuals as classes is called meta-modeling.
 Although the direct semantics of OWL2 do not allow for meta-

modeling, OWL2 DL circumvents this limitation by a syntactic trick

called punning, or ‘word play.’

58

@ Semantic Web Primer

Class Axioms
 Punning:

 Means that whenever an URI, such as

dbpedia:Apartment appears in a class axiom, it is

treated as a class, and when it appears in an individual

assertion, it is treated as individual.

 Punning is allowed in the following situations: class names,

individual names, and property names may be freely

interchanged.

 However, object property names and datatype property names

may not mix.

59

@ Semantic Web Primer

Class Axioms
 Enumerations:

 The most straightforward (though inexpressive and

computationally expensive) way to define a class is by explicitly

enumerating all individuals it consists of:
BaronWayRooms rdf:type owl:Class;

owl:oneOf (

BaronWayKitchen

BaronWayBedroom1

BaronWayBedroom2

BaronWayBedroom3

BaronWayLivingroom

BaronWayBathroom

…).

 This defines the class of all rooms: this type of class definition can be very

cumbersome if the list of known members is very long, or even

impossible if we do not currently know all individuals
60

@ Semantic Web Primer

Class Axioms
 Disjoint Classes:

 Disjointness of classes means that no member of one class can

also be a member of the other class.

 The sets of individuals described by the classes do not

overlap.

 For example, the LuxuryApartment class is disjoint

from ColdWaterFlat using the

owl:disjointWith property:

LuxuryApartment owl:disjointWith ColdWaterFlat.

means that no LuxuryApartment can be a

ColdWaterFlat at the same time.

61

@ Semantic Web Primer

Class Axioms
 Complement:

 The complement C of a class A is the class of all things not

belonging to A.

 In other words, the union of A and C is equivalent to

owl:Thing

 this means that the complement is always a superclass of

the disjoint classes of A.

 For instance:
FurnishedApartment rdfs:subClassOf Apartment .

UnFurnishedApartment rdfs:subClassOf Apartment;

owl:complementOf FurnishedApartment .

states that the class of furnished apartments is the complement

of the class of apartments without furnishing

62

@ Semantic Web Primer

Class Axioms
 Complement:

 Complementarity is a very powerful modeling construct that should be

used with care

 Apartment covers both FurnishedApartment and its

complement UnfurnishedApartment, so Apartment will

be equivalent to owl:Thing: there cannot be an individual not

belonging to a class nor its complement.

 If we then additionally introduce a class that is disjoint with

Apartment, this class is effectively disjoint with owl:Thing.
 If we state:

SemiDetached owl:disjointWith Apartment .

 the SemiDetached class will be empty because the class

Apartment covered both FurnishedApartment and its

complement, so Apartment was equivalent to owl:Thing

63

@ Semantic Web Primer

Class Axioms
 Union and Disjoint Union:

 We often know for some class that it is equivalent to two or

more other classes: every member of the class is a member of

at least one of the classes in the union

 This can be specified using the owl:unionOf construct
Apartment rdf:type owl:Class ;

owl:unionOf (ColdWaterFlat

LuxuryApartment

PenthouseApartment

StudioApartment

BasementApartment

FurnishedApartment

UnFurnishedApartment

) .

64

@ Semantic Web Primer

Class Axioms
 Union and Disjoint Union:

 In many cases, the member classes of the union are mutually

disjoint.

 Of course, we can explicitly assert owl:disjointWith

relations between each class, but it is more convenient to state

this directly:
Apartment rdf:type owl:Class;

owl:disjointUnionOf (

FurnishedApartment

UnFurnishedApartment

) .

65

@ Semantic Web Primer

Class Axioms
 Intersection:

 We can state that a class is exactly the intersection of two or

more other classes: every member of the class is a member of

each of the classes in the intersection.
 For example:

LuxuryApartment rdf:type owl:Class ;

owl:intersectionOf (GoodLocationApartment

LargeApartment NiceViewApartment

LuxuryBathroomApartment) .

states that the LuxuryApartment class is populated by those

individual apartments that have a good location, are of large size,

have a nice view, and have a luxury bathroom.

66

@ Semantic Web Primer

Class Axioms on Properties
 Class restriction axioms are axioms that restrict the set of

individuals that may be considered to be members of a class by

looking at their properties (they allow us to automatically infer

class membership by attaching to an owl:Class a special type

of anonymous class owl:Restriction)

 Universal Restrictions: A universal restriction on a class C and

property p stating that for every member of C all values of p

belong to a certain class

 The universal restriction can be used to specify a range for a

property that is local to the restricted class

67

@ Semantic Web Primer

Class Axioms on Properties
 Universal Restrictions are built using owl:allValuesFrom:
:LuxuryBathroomApartment

rdf:type owl:Class;

rdfs:subClassOf [rdf:type owl:Restriction;

owl:onProperty :hasBathroom ;

owl:allValuesFrom :LuxuryBathroom] .

defines the :LuxuryBathroomApartment class as a subclass of the set of

individuals that only have instances of :LuxuryBathroom as value for the

:hasBathroom property.

 An owl:allValuesFrom restriction merely states that if a member of

the restricted class has a value for the property, then that value must be a

member of the specified class.

 The restriction does not require the property to have any value at all: in

that case, the restriction is trivially satisfied (vacuously true).

 In our apartment example, the definition does not require that a

luxury bathroom apartment have a bathroom at all
68

@ Semantic Web Primer

Class Axioms on Properties
 Universal Restrictions can also be used with datatype

properties

 For instance, to state that the value of a property must be of a

certain type or fall within a certain data range

69

@ Semantic Web Primer

Class Axioms on Properties
 Existential Restrictions: An existential restriction on a class C

and property p states that for every member of C there exists at

least some value for p that belongs to a certain class.

 These restrictions are specified using owl:someValuesFrom
:LuxuryBathroomApartment

rdf:type owl:Class;

rdfs:subClassOf [rdf:type owl:Restriction;

owl:onProperty :hasBathroom ;

owl:someValuesFrom :LuxuryBathroom] .

defines the :LuxuryBathroomApartment class as a subclass of the set of

individuals that have at least one instance of :LuxuryBathroom as value for

the :hasBathroom property.

70

@ Semantic Web Primer

Class Axioms on Properties
 Necessary and Sufficient Conditions: Instead of using the

rdfs:subClassOf property to relate our classes to the restrictions, we

could also have used an owl:equivalentClass property to state that the

restricted class is exactly the class described by the restriction

 In both cases, if we explicitly assert an individual to be an

instance of the :LuxuryBathroomApartment class, the reasoner

will infer that there is at least some (unknown) individual of

type :LuxuryBathroom as value for the :hasBathroom

property.

 However, the rdfs:subClassOf restriction states necessary

conditions for class membership, while the

owl:equivalentClass restriction states necessary and

sufficient conditions

71

@ Semantic Web Primer

Class Axioms on Properties
 Necessary and Sufficient Conditions:

 For instance, the existential restriction will not make a

reasoner conclude that every individual that has a

:hasBathroom relation with an individual of type

:LuxuryBathroom must be an instance of

:LuxuryBathroomApartment.

 The apartment is only a subclass of the restriction, and we do

not have enough information to determine whether the

individual is also a member of the class itself.

 If we make the class equivalent to the class specified by the

restriction, it is clear that any individual that satisfies the

restriction must also be a member of the class.

72

@ Semantic Web Primer

Class Axioms on Properties
 Value Restrictions are used when we want to define a class

based on relations with known individuals, or specific

values for datatype properties.

 For example, we can define the class of all apartments in

Amsterdam:
:AmsterdamApartment

rdf:type owl:Class;

owl:equivalentClass [

rdf:type owl:Restriction;

owl:onProperty dbpedia-owl:location ;

owl:hasValue dbpedia:Amsterdam] .

73

@ Semantic Web Primer

Class Axioms on Properties
 Cardinality Restrictions constrain the number of values a

certain property may have for a class
:StudioApartment

rdf:type owl:Class;

rdfs:subClassOf [rdf:type owl:Restriction;

owl:onProperty :hasRoom ;

owl:cardinality "1"^^xsd:integer] .

specifies that a studio apartment can have exactly one value for the

:hasRoom property

74

@ Semantic Web Primer

Class Axioms on Properties
 Cardinality Restrictions

 If we additionally specify the class these values need to belong

to, the restriction is said to be qualified
:StudioApartment

rdf:type owl:Class;

rdfs:subClassOf [rdf:type owl:Restriction;

owl:onProperty :hasRoom ;

owl:qualifiedCardinality "1"^^xsd:integer

owl:onClass [owl:unionOf (:LivingRoom

:Kitchen :Bedroom)]] .

specifies that a studio apartment can have exactly one value for the

:hasRoom property with the values :LivingRoom, :Kitchen and

:Bedroom
 The qualified restriction still allows for the members of the restricted class to have additional

values for the property, provided that these belong to the complement of the qualifier class

 A qualified cardinality restriction on owl:Thing is equivalent to a restriction without qualifier
75

@ Semantic Web Primer

Class Axioms on Properties
 Cardinality Restrictions

 Cardinality restrictions in OWL2:

76

@ Semantic Web Primer

Class Axioms on Properties
 Data Range Restrictions and Datatypes:

 Universal and existential restrictions on datatype properties

allow members of a class to have any value from the specified

datatype as value for the property.

 Sometimes we need more precise definitions on the range of

values allowed for a property:
 For instance, the class of people who can rent apartments must be

adults, or the minimum size of apartments

77

@ Semantic Web Primer

Class Axioms on Properties
 Data Range Restrictions and Datatypes:
:Adult rdfs:subClassOf dbpedia:Person ;

rdfs:subClassOf [rdf:type owl:Restriction ;

owl:onProperty :hasAge ;

owl:someValuesFrom [rdf:type rdfs:Datatype ;

owl:onDatatype xsd:integer ;

owl:withRestrictions (

[xsd:minInclusive "18"^^xsd:integer])]].

:Adult is the subclass of persons that have a value for the :hasAge that

falls within the range of integers equal to or larger than 18.

 The data range is defined as an anonymous class of type

rdfs:Datatype.

78

@ Semantic Web Primer

Class Axioms on Properties
 Data Range Restrictions and Datatypes:

 A new named datatype that we could reuse throughout the

ontology:
:AdultAge rdf:type rdfs:Datatype ;

owl:onDatatype xsd:integer ;

owl:withRestrictions (

[xsd:minInclusive "18"^^xsd:integer]) .

:Adult rdf:type owl:Class ;

rdfs:subClassOf dbpedia:Person ;

rdfs:subClassOf [rdf:type owl:Restriction ;

owl:onProperty :hasAge ;

owl:someValuesFrom :AdultAge] .

79

@ Semantic Web Primer

Class Axioms on Properties
 Data Range Restrictions and Datatypes:

 OWL2 allows the use of XML Schema to define datatypes.
 Only datatypes defined using XML Schema facets can be used in

restrictions.

 https://www.w3schools.com/xml/schema_facets.asp

XSD Restrictions/Facets are used to define acceptable

values for XML elements or attributes
<xs:simpleType>

<xs:restriction base="xs:integer">

<xs:minInclusive value="0"/>

<xs:maxInclusive value="120"/>

</xs:restriction>

</xs:simpleType>.
80

https://www.w3schools.com/xml/schema_facets.asp

@ Semantic Web Primer

XSD Restrictions/Facets examples
<xs:restriction base="xs:string">

<xs:enumeration value="Audi"/>

<xs:enumeration value="Golf"/>

<xs:enumeration value="BMW"/>

</xs:restriction>

<xs:restriction base="xs:string">

<xs:pattern value="[a-z]"/>

</xs:restriction>

<xs:restriction base="xs:string">

<xs:pattern value="([a-z])*"/>

</xs:restriction>

<xs:restriction base="xs:string">

<xs:length value="8"/>

</xs:restriction>

81

@ Semantic Web Primer

XSD Restrictions/Facets examples

82

Constraint Description

enumeration Defines a list of acceptable values

fractionDigits Specifies the maximum number of decimal places allowed. Must be equal to or greater than

zero

length Specifies the exact number of characters or list items allowed. Must be equal to or greater than

zero

maxExclusive Specifies the upper bounds for numeric values (the value must be less than this value)

maxInclusive Specifies the upper bounds for numeric values (the value must be less than or equal to this

value)

maxLength Specifies the maximum number of characters or list items allowed. Must be equal to or greater

than zero

minExclusive Specifies the lower bounds for numeric values (the value must be greater than this value)

minInclusive Specifies the lower bounds for numeric values (the value must be greater than or equal to this

value)

minLength Specifies the minimum number of characters or list items allowed. Must be equal to or greater

than zero

pattern Defines the exact sequence of characters that are acceptable

totalDigits Specifies the exact number of digits allowed. Must be greater than zero

whiteSpace Specifies how white space (line feeds, tabs, spaces, and carriage returns) is handled

@ Semantic Web Primer

Class Axioms on Properties
 Self Restrictions:

 good apartments will sell well
:GoodApartment

rdf:type owl:Class ;

rdfs:subClassOf [rdf:type owl:Restriction ;

owl:onProperty :sells ;

owl:hasSelf "true"^^xsd:boolean;] .

every instance of :GoodApartment has a :sells property with the

value true

83

@ Semantic Web Primer

Class Axioms on Properties
 Keys:

 Databases typically use keys to identify records in a table

 OWL2 allows us to indicate that for certain classes (read: tables)

the value of a specific datatype property (or combination of

properties) should be regarded as a unique identifier
 For example, the combination of postcode and street address number

will provide a unique identifier for any dwelling in the Netherlands:

:postcode rdf:type owl:DatatypeProperty .

:addressNumber rdf:type owl:DatatypeProperty .

:Dwelling

rdf:type owl:Class ;

owl:hasKey (:postcode :addressNumber) .

84

@ Semantic Web Primer

Class Axioms on Properties
 Keys:

 The key mechanism allows us to define inverse functional

datatype properties that are local to a class
 For example: any two individuals of type :Dwelling that have the

same value for the :postcode and :addressNumber must be

considered to be the same.

85

@ Semantic Web Primer

Individual Facts
 Statements about individuals are usually called assertions

 Class membership and property assertions in OWL2 are stated in

the same way as in RDF Schema:
:Apartment rdf:type owl:Class .

:BaronWayApartment rdf:type :Apartment ;

:hasNumberOfRooms "4"^^xsd:integer ;

:isRentedBy :Paul .

 Under the semantics of OWL2 DL, the rdf:type relations may

hold only between two strictly separated levels: that of classes,

and that of individuals

86

@ Semantic Web Primer

Individual Facts
 Identity Assertions:

 OWL2 has the open world assumption, that is we can never

assume that two individuals with different URIs must be

different entities -> we might be dealing with a single

individual that has multiple names

 Although we have seen that in some cases we can infer

identity relations automatically, it is often more convenient

to state them explicitly:
:BaronWayApartment owl:sameAs :PaulsApartment ;

owl:differentFrom :FranksApartment .

87

@ Semantic Web Primer

Open-world assumption
 Open-world assumption: we cannot conclude some statement x

to be false simply because we cannot show x to be true

 We may not deduce falsity from the absence of truth

 Question: "Did it rain in Tokyo yesterday?"

 Answer: "I don’t know that it rained , but that’s not enough

reason to conclude that it didn’t rain"

 Closed-world assumption allow deriving falsity from the

inability to derive truth

 Question: " Was there a big earthquake disaster in Tokyo

yesterday? "

 Answer: " I don’t know that there was, but if there had been

such a disaster, I’d have heard about it. Therefore I conclude

that there wasn’t such a disaster"
88

@ Semantic Web Primer

Unique-name assumption (UNA)
 Unique-name assumption (UNA): when two individuals are

known by different names, they are in fact different individuals

 This is an assumption that sometimes works (ex. Product codes)

and sometimes doesn’t (ex. Social environment: people names)

 OWL does not make the unique-name assumption

89

@ Semantic Web Primer

Individual Facts
 Identity Assertions:

 The list of different individuals can easily grow quite long.
 For instance, a small city will contain hundreds of apartments for

which we would need to assert pairwise owl:differentFrom

relations

 We can state this a bit more elegantly using the

owl:AllDifferent construct:

_:x rdf:type owl:AllDifferent ;

owl:members (

:FranksApartment

:PaulsApartment

:PhongsApartment

:RahulsApartment

:LumingsApartment

) .
90

@ Semantic Web Primer

Individual Facts
 Negative Assertions:

 Sometimes we know something not to be the case and we want

to state it in the knowledge
 For instance, the knowledge that :BaronWayApartment is not

rented by :Frank may allow us to infer that it is not

:FranksApartment:

_:x rdf:type owl:NegativePropertyAssertion ;

owl:sourceIndividual :BaronWayApartment ;

owl:assertionProperty :isRentedBy ;

owl:targetIndividual :Frank .

 If the owl:assertionProperty points to datatype property, we

use owl:targetValue instead of owl:targetIndividual

91

@ Semantic Web Primer

Individual Facts
 Negative Assertions:

 If we know that an individual is not a member of a certain class, we can

also state this explicitly by asserting it to be a member of that class’s

complement:

:BaronWayApartment rdf:type

[owl:complementOf :LuxuryApartment] .

states that :BaronWayApartment is not a :LuxuryApartment

92

@ Semantic Web Primer

OWL2 Profiles
 The OWL2 specification includes a number of profiles .

http://ww.w3.org/TR/owl2-profiles/:

 some are subsets of the OWL2 DL

 some are more expressive but do not have the full semantics of

OWL2 Full

 Motivation: many existing ontologies use only a particular

subset of the language constructs available in DL and we can

achieve a significant increase of reasoner performance by using a

less expressive language

 It is very useful in the practice of ontology engineering to have

a standard library of logical profiles with tradeoffs between

expressiveness and computational complexity

93

http://ww.w3.org/TR/owl2-profiles/

@ Semantic Web Primer

OWL2 Profiles
 These profiles are:

restricted by syntax

defined by logics that can handle at least some

interesting inference service in polynomial time,

irrespective to:

 the number of facts in the ontology, or

 the size of the ontology

94

@ Semantic Web Primer

OWL2 Profiles
 OWL2 EL profile:

 is an extension of the EL description logic
 polynomial time on ontologies with a large number of class

axioms with conjunctions and existential restrictions

 The most significant difference with OWL2 DL is that it

drops the owl:allValuesFrom restriction, though it

does support rdfs:range restrictions on properties,

which can have a similar effect.

95

@ Semantic Web Primer

OWL2 Profiles
 owl:allValuesFrom vs. rdfs:range :
:Person

a owl:Class ;

rdfs:subClassOf

[a owl:Restriction ;

owl:onProperty :hasParent ;

owl:allValuesFrom :Person

] .

With allValuesFrom restriction, it's possible to say that Persons have

Person-parents and that dogs have dog-parents, etc.

With domain/range, you cannot separate persons from dogs and other.

:hasParent rdfs:range :Person.

:hasParent rdfs:domain :Person.

:hasParent rdfs:range :Dog.

:hasParent rdfs:domain :Dog.
96

@ Semantic Web Primer

OWL2 Profiles
 OWL2 EL profile:

 it was designed to cover the expressive power of

several existing large-scale ontologies in the health care

and life sciences domain
 SNOMED-CT http://www.snomed.org

 Gene Ontology http://www.geneontology.org

 GALEN http://www.openclinical.org/prj_galen.html

97

http://www.snomed.org/
http://www.geneontology.org/
http://www.openclinical.org/prj_galen.html

@ Semantic Web Primer

OWL2 Profiles
 OWL2 RL profile:

 is based on so-called Description Logic Programs and

enables interaction between description logics and

rules (it is the largest syntactic fragment of OWL2 DL

that is implementable using rules)
 rules can efficiently be run in parallel, allowing for scalable

reasoning implementations

 rule reasoners can easily disregard the restrictions of OWL

DL (such as the separation between classes and individuals)

 rule implementations of OWL2 RL can implement subsets

of OWL Full

98

@ Semantic Web Primer

OWL2 Profiles
 OWL2 RL profile:

Many of the most scalable reasoners for Semantic Web

languages implement OWL2 RL or a very similar

language called pD* or OWL-Horst

The set of rules that have to be implemented is

published as part of the OWL2 RL specification:
 https://www.w3.org/TR/owl2-profiles/#OWL_2_RL

 https://www.w3.org/TR/rif-owl-rl/

99

https://www.w3.org/TR/owl2-profiles/#OWL_2_RL
https://www.w3.org/TR/rif-owl-rl/

@ Semantic Web Primer

OWL Tools
 There are two types of tools addressing the two main

stages of the ontology lifecycle:

ontology editors are used to create and edit ontologies

ontology reasoners are used to query ontologies for

implicit knowledge, i.e., they determine whether a

statement in question is a logical consequence of an

ontology.

100

@ Semantic Web Primer

OWL Tools
 The currently most widely used OWL editor is Protégé,

a free open-source editing framework developed at

Stanford University

 Other editors:

TopQuadrant's commercialTopBraid Composer

SWOOP (open-source)

NeOn-Toolkit (open-source)

101

http://protege.stanford.edu/
http://www.topquadrant.com/products/TB_Composer.html
http://code.google.com/p/swoop/
http://www.neon-toolkit.org/

@ Semantic Web Primer

OWL Tools
 Reasoners for OWL DL differ in terms of coverage of

the supported reasoning features

Test Suite Status lists to which extent some of the

reasoners comply with the test cases

102

http://www.w3.org/2007/OWL/wiki/Test_Suite_Status

@ Semantic Web Primer

OWL Tools
 General-purpose reasoners aiming at supporting all of

OWL DL:

Fact++ by the University of Manchester

Hermit by Oxford University Computing Laboratory

Pellet by Clark & Parsia, LLC

RacerPro by Racer Systems

103

http://owl.cs.manchester.ac.uk/fact++/
http://hermit-reasoner.com/
http://clarkparsia.com/pellet
http://www.racer-systems.com/

@ Semantic Web Primer

OWL Tools
 Reasoning systems tailored to the tractable profiles of

OWL:

CEL by Dresden University of Technology supports

OWL EL

QuOnto by Sapienza Università di Roma supports

OWL QL

ORACLE 11g supports OWL RL

104

http://lat.inf.tu-dresden.de/systems/cel/
http://www.dis.uniroma1.it/~quonto/
http://www.oracle.com/technology/tech/semantic_technologies/index.html

@ Semantic Web Primer

OWL Tools
 APIs:

OWL API

Apache Jena: https://jena.apache.org/

 Other OWL tools can be found at semanticweb.org and

in the ESW-Wiki

105

http://owlapi.sourceforge.net/
https://jena.apache.org/
http://semanticweb.org/wiki/Tools
http://esw.w3.org/topic/SemanticWebTools

@ Semantic Web Primer

OWL Versioning Information
<http://www.semanticwebprimer.org/ontologies/apartments.ttl>
owl:versionIRI <http://www.semanticwebprimer.org/ontologies/apartments.ttl#1.0> ;

 owl:versionInfo generally contains a string giving information about

the current version, e.g. keywords

 owl:priorVersion indicates earlier versions of the current ontology

 No formal meaning, can be exploited for ontology management

 owl:backwardCompatibleWith contains a reference to another

ontology

 All identifiers from the previous version have the same intended

interpretations in the new version

 Thus documents can be safely changed to commit to the new version

 owl:incompatibleWith indicates that the containing ontology is a later

version of the referenced ontology but is not backward compatible with it

106

@ Semantic Web Primer

Relation of OWL to other languages

107

@ Semantic Web Primer

Summary
 OWL2 extends RDF and RDF Schema with a number of very expressive

language features, such as cardinality constraints, class equivalence,

intersection, and disjunction

 Formal semantics and reasoning support is provided through the

correspondence of OWL with logics.

 OWL2 comes in two flavors:

 OWL2 DL is a language that imposes some restrictions on the

combination of OWL2 and RDFS language elements to retain decidability

 OWL2 Full is a fully compatible extension of RDF Schema with all

OWL2 language features, but it is known to be undecidable

 Three profiles, OWL2 EL, OWL2 QL, and OWL2 RL, are syntactic subsets

that have desirable computational properties

 In particular, OWL2 RL is implementable using rule-based technology

and has become the de facto standard for expressive reasoning on the

Semantic Web.
108

@ Semantic Web Primer

Summary
 OWL2 has four standard syntaxes:

 RDF/XML

 Manchester Syntax

 OWL/XML

 Functional Style syntax

 References:

 http://www.w3.org/TR/owl2-primer/

 http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/

109

http://www.w3.org/TR/owl2-primer/
http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/

@ Semantic Web Primer

Summary
 Protégé, the de facto editing environment for OWL ontologies, developed

by Stanford University. It has several reasoners built in.

http://protege.stanford.edu

 CEL (University of Dresden), an OWL reasoner optimized for the OWL2

EL profile: http://lat.inf.tu-dresden.de/systems/cel/

 HermiT, a fast OWL reasoner for ontologies, developed at Oxford

University: http://www.hermit-reasoner.com

 OWLIM, a OWL reasoner for the OWL2 RL profile, developed by

Ontotext: http://www.ontotext.com/owlim

 Pellet, one of the most feature-rich OWL reasoners, developed by Clark &

Parsia: http://pellet.owldl.com

 TopBraid Composer, an RDF-based editing environment for OWL

ontologies, developed by TopQuadrant. It supports SPARQL, connection to

triple stores, and inferencing using the OWLIM reasoner

http://www.topquadrant.com/products/TB_Composer.html
110

http://protege.stanford.edu/
http://lat.inf.tu-dresden.de/systems/cel/
http://www.hermit-reasoner.com/
http://www.ontotext.com/owlim
http://pellet.owldl.com/
http://www.topquadrant.com/products/TB_Composer.html

