
Distributed Databases

CSE 532, Theory of Database Systems
Ston Brook Uni ersitStony Brook University

http://www.cs.stonybrook.edu/~cse532

What is a Distributed Database?

 Database whose relations reside on different sites

 Database some of whose relations are replicated at different  Database some of whose relations are replicated at different
sites

 Database whose relations are split between different sitesp

(c) Pearson and P.Fodor (CS Stony Brook)
2

Two Types of Applications that
Access Distributed DatabasesAccess Distributed Databases

 The application accesses data at the level of SQL pp Q
statements
 Example: company has nationwide network of warehouses, each

ith it d t b t ti ll d t b with its own database; a transaction can access all databases
using their schemas

 The application accesses data at a database using only pp g y
stored procedures provided by that database.
 Example: purchase transaction involving a merchant and a credit

card company each providing stored subroutines for its card company, each providing stored subroutines for its
subtransactions

(c) Pearson and P.Fodor (CS Stony Brook)
3

Optimizing Distributed Queries

 Only applications of the first type can access data directly and
hence employ query optimization strategieshence employ query optimization strategies

 These are the applications we consider in this chapter

(c) Pearson and P.Fodor (CS Stony Brook)
4

Some Issues

 How should a distributed database be designed?

 At h t it h ld h it b t d? At what site should each item be stored?

 Which items should be replicated and at which sites?

 H h ld i th t lti l d t b b  How should queries that access multiple databases be
processed?

 How do issues of query optimization affect query design? How do issues of query optimization affect query design?

(c) Pearson and P.Fodor (CS Stony Brook)
5

Why Might Data Be Distributed
 Data might be distributed to minimize communication costs

or response timep
 Data might be kept at the site where it was created so that its

creators can maintain control and security
D h b l d l b l h  Data might be replicated to increase its availability in the
event of failure or to decrease response time

(c) Pearson and P.Fodor (CS Stony Brook)
6

Application Designer’s View of a
Di t ib t d D t bDistributed Database
 Designer might see the individual schemas of each local

d b ll d h h database -- called a multidatabase -- in which case
distribution is visible
 Can be homogeneous (all databases from one vendor) or Can be homogeneous (all databases from one vendor) or

heterogeneous (databases from different vendors)

 Designer might see a single global schema that
i ll l l h (i i) i hi h integrates all local schemas (is a view) in which case
distribution is hidden

 Designer might see a restricted global schema which  Designer might see a restricted global schema, which
is the union of all the local schemas
 Supported by some vendors of homogeneous systems

(c) Pearson and P.Fodor (CS Stony Brook)
7

Views of Distributed Data

(a) Multidatabase with local schemas

(b) I t t d di t ib t d d t b ith l b l h(b) Integrated distributed database with global schema

(c) Pearson and P.Fodor (CS Stony Brook)
8

Multidatabases

 Application must explicitly connect to each site

 A li ti d t t it i SQL t t t  Application accesses data at a site using SQL statements
based on that site’s schema

 Application may have to do reformatting in order to  Application may have to do reformatting in order to
integrate data from different sites

 Application must manage replicationApplication must manage replication
 Know where replicas are stored and decide which replica to

access

(c) Pearson and P.Fodor (CS Stony Brook)
9

Global and Restricted Global Schemas

 Middleware provides integration of local schemas into a
global schemaglobal schema
 Application need not connect to each site
 Application accesses data using global schemapp g g
 Need not know where data is stored – location transparency

 Global joins are supported
 Middl f d t f tti Middleware performs necessary data reformatting
 Middleware manages replication – replication transparency

(c) Pearson and P.Fodor (CS Stony Brook)
10

Partitioning

 Data can be distributed by storing individual tables at
different sitesdifferent sites

 Data can also be distributed by decomposing a table and
storing portions at different sites – called partitioning

 Partitioning can be horizontal or vertical

(c) Pearson and P.Fodor (CS Stony Brook)
11

Horizontal Partitioning

 Each partition, Ti , of table T contains a subset of the rows
and each row is in exactly one partition:and each row is in exactly one partition:

Ti = Ci
(T)

T =  Tii

 Horizontal partitioning is lossless

T

T1

T3

T2

T

T4

(c) Pearson and P.Fodor (CS Stony Brook)
12

Horizontal Partitioning

 Example: An Internet grocer has a relation describing
inventory at each warehousey

InventoryInventory(StockNum, Amount, Price, Location)

 It partitions the relation by location and stores each
partition locally: rows with Location = ‘Chicago’ are
stored in the Chicago warehouse in a partition

Inventory chInventory ch(StockNum Amount Price Location)Inventory_chInventory_ch(StockNum, Amount, Price, Location)

 Alternatively, it can use the schema
Inventory_chInventory_ch(StockNum, Amount, Price)yy

(c) Pearson and P.Fodor (CS Stony Brook)
13

Vertical Partitioning

 Each partition, Ti, of T contains a subset of the columns,
each column is in at least one partition, and each p ,
partition includes the key:

Ti = attr_listi
(T)

T T T TT = T1 T2 ….. Tn

 Vertical partitioning is lossless

 Example: The Internet grocer has a relationExample: The Internet grocer has a relation
EmployeeEmployee(SSnum, Name, Salary, Title, Location)

 It partitions the relation to put some information at
h d t d l hheadquarters and some elsewhere:
Emp1Emp1(SSnum, Name, Salary) – at headquarters
Emp2Emp2(SSnum, Name, Title, Location) – elsewhere

(c) Pearson and P.Fodor (CS Stony Brook)

pp

14

Replication

 One of the most useful mechanisms in distributed
databasesdatabases

 Increases
 AvailabilityAvailability
 If one replica site is down, data can be accessed from another site

 Performance:
 Queries can be executed more efficiently because they can access a local

or nearby copy

 Updates might be slower because all replicas must be updated

(c) Pearson and P.Fodor (CS Stony Brook)
15

Replication Example

 Internet grocer might have relation
CustomerCustomer(CustNum Address Location)CustomerCustomer(CustNum, Address, Location)

 Queries are executed
 At headquarters to produce monthly mailings

 At a warehouse to obtain information about deliveries

 Updates are executed
 At headquarters when new customer registers and when information q g

about a customer changes

(c) Pearson and P.Fodor (CS Stony Brook)
16

Example (con’t)

 Intuitively it seems appropriate to either or both:
 Store complete relation at headquarters Store complete relation at headquarters
 Horizontally partition a replica of the relation and store a

partition at the corresponding warehouse site

 Each row is replicated: one copy at headquarters, one
copy at a warehouse

 The relation can be both distributed and replicated

(c) Pearson and P.Fodor (CS Stony Brook)
17

Example (con’t): Performance
AnalysisAnalysis
 We consider three alternatives:
 Store the entire relation at the headquarters site and nothing at

the warehouses (no replication)
 Store the partitions at the warehouses and nothing at the  Store the partitions at the warehouses and nothing at the

headquarters (no replication)
 Store entire relation at headquarters and a partition at each

warehouse (replication)

(c) Pearson and P.Fodor (CS Stony Brook)
18

Example (con’t):
Performance Analysis - AssumptionsPerformance Analysis Assumptions

 To evaluate the alternatives, we estimate the amount of
i f ti th t t b t b t it information that must be sent between sites.

 Assumptions:
 The CustomerCustomer relation has 100,000 rowsThe CustomerCustomer relation has 100,000 rows
 The headquarters mailing application sends each customer 1

mailing a month
 500 d li i d h d i l i d f h  500 deliveries are made each day; a single row is read for each

delivery
 100 new customers/day
 Changes to customer information occur infrequently

(c) Pearson and P.Fodor (CS Stony Brook)
19

Example: The Evaluation

 Entire relation at headquarters, nothing at warehouses
 500 tuples per day from headquarters to warehouses for  500 tuples per day from headquarters to warehouses for

deliveries

 Partitions at warehouses, nothing at headquartersg q
 100,000 tuples per month from warehouses to headquarters for

mailings (3,300 tuples per day, amortized)
100 l d f h d h f  100 tuples per day from headquarters to warehouses for new
customer registration

 Entire relation at headquarters partitions at warehousesEntire relation at headquarters, partitions at warehouses
 100 tuples per day from headquarters to warehouses for new

customer registration

(c) Pearson and P.Fodor (CS Stony Brook)
20

Example: Conclusion

 Replication (case 3) seems best, if we count the number
of transmissions.

 Let us look at other measures:
 If no data stored at warehouses, the time to handle deliveries

h ff b f h b blmight suffer because of the remote access (probably not
important)

 If no data is stored at headquarters, the monthly mailing q y g
requires that 100,000 rows be transmitted in a single day, which
might clog the network

 If we replicate, the time to register a new customer might suffer p , g g
because of the remote update
 But this update can be done by a separate transaction after the registration

transaction commits (asynchronous update)

(c) Pearson and P.Fodor (CS Stony Brook)

(y p)

21

Query Planning

 Systems that support a global schema contain a global
query optimizer which analyzes each global query and query optimizer, which analyzes each global query and
translates it into an appropriate sequence of steps to be
executed at each site

 In a multidatabase system, the query designer must
manually decompose each global query into a sequence
of SQL statements to be executed at each site
 Thus a query designer must be her own query optimizer

(c) Pearson and P.Fodor (CS Stony Brook)
22

Global Query Optimization
 A familiarity with algorithms for global query optimization

helps the application programmer in designingp pp p g g g
 Global queries that will execute efficiently for a particular

distribution of data
 Algorithms for efficiently evaluating global queries in a  Algorithms for efficiently evaluating global queries in a

multidatabase system
 The distribution of data that will be accessed by global queries

(c) Pearson and P.Fodor (CS Stony Brook)
23

Planning Global Joins

 Suppose an application at site A wants to join tables at
sites B and C. Two straightforward approachesg pp
 Transmit both tables to site A and do the join there
 The application explicitly tests the join condition
 This approach must be used in multidatabase systems This approach must be used in multidatabase systems

 Transmit the smaller of the tables, e.g. the table at site B, to site
C; execute the join there; transmit the result to site A

Thi h i h b d i h di ib d d b  This approach might be used in a homogenous distributed database
system

(c) Pearson and P.Fodor (CS Stony Brook)
24

Global Join Example

 Site B
StudentStudent(Id Major)StudentStudent(Id, Major)

 Site C
TranscriptTranscript(StudId, CrsCode)pp ()

 Application at Site A wants to compute join with join
condition

StudentStudent.Id = TranscriptTranscript.StudId

(c) Pearson and P.Fodor (CS Stony Brook)
25

Assumptions

 Lengths of attributes
 Id and StudId: 9 bytes Id and StudId: 9 bytes
 Major: 3 bytes
 CrsCode: 6 bytesy

 Student:Student: 15,000 tuples, each of length 12 bytes

 Transcript: Transcript: 20,000 tuples, each of length 15 bytespp p g y
 5000 students are registered for at least 1 course (10,000

students are not registered – summer session)
E h d d f 4 h  Each student is registered for 4 courses on the average

(c) Pearson and P.Fodor (CS Stony Brook)
26

Comparison of Alternatives

 Send both tables to site A, do join there:
 have to send 15 000*12 + 20 000*15 = 480 000 bytes have to send 15,000*12 + 20,000*15 = 480,000 bytes

 Send the smaller table, StudentStudent, from site B to site C,
compute the join there. Then send result to Site A:co pute t e jo t e e. e se esu t to S te :
 have to send 15,000*12 + 20,000*18 = 540,000 bytes

 Alternative 1 is better

(c) Pearson and P.Fodor (CS Stony Brook)
27

Another Alternative: Semijoin
 Step1:

At site C: Compute PP = StudId(TranscriptTranscript)
Send PP to site BSend PP to site B

 P contains Ids of students registered for at least 1 course
 StudentStudent tuples having Ids not in P do not contribute to join, so no need to

send them

 Step 2:
At site B: Compute QQ = StudentStudent Id = StudId PP
Send QQ to site ASend QQ, to site A

 Q contains tuples of StudentStudent corresponding to students registered for at least
1 course (i.e., 5,000 students out of 15,000)

 Q is a semijoinsemijoin – the set of all StudentStudent tuples that will participate in the joinjj p p p j

 Step 3:
Send TranscriptTranscript to site A
At site A: Compute Transcript Transcript QQ

(c) Pearson and P.Fodor (CS Stony Brook)

At site A: Compute Transcript Transcript Id = StudId QQ

28

Comparison Semijoin with Previous
Al iAlternatives
 In step 1: 45,000 = 5,000*9 bytes sentp , , y

 In step 2: 60,000 = 5,000*12 bytes sent

 In step 3: 300,000 = 20,000*15 bytes sentp , , y

 In total: 405,000 = 45,000 + 60,000 + 300,000 bytes sent

 Semijoin is the best of the three alternatives

(c) Pearson and P.Fodor (CS Stony Brook)
29

Definition of Semijoin

 The semijoin of two relations, T1 and T2, is defined as:

T1 join_cond T2 = attributes(T1)(T1 join_cond T2)
= T1 join-attributes(T2)

 In other words, the semijoin consists of the tuples in T1 that
participate in the join with T2p p j 2

(c) Pearson and P.Fodor (CS Stony Brook)
30

Using the Semijoin

 To compute T1 join_cond T2 using a semijoin, first compute

T T then join it with T :T1 join_cond T2 then join it with T2:

attributes(T1)(T1 join_cond T2) join_cond T2

(c) Pearson and P.Fodor (CS Stony Brook)
31

Queries that Involve Joins and
SelectionsSelections

 Suppose the Internet grocer relation EmployeeEmployee is pp g p yp y
vertically partitioned as

Emp1Emp1(SSnum, Name, Salary) at Site B
E 2E 2(SS T l L) Si CEmp2Emp2(SSnum, Title, Location) at Site C

 A query at site A wants the names of all employees with
Title = ‘manager’ and Salary > ‘20000’Title manager and Salary 20000

 Solution 1: First do join then selection:

((E 1E 1 E 2E 2))

 Semijoin not helpful here: all tuples of each table must be
brought together to form the join (the join is on SSNum)

Name (Title=‘manager’ AND Salary>’20000’ (Emp1Emp1 Emp2Emp2))

(c) Pearson and P.Fodor (CS Stony Brook)

brought together to form the join (the join is on SSNum)

32

Queries that Involve Joins and Selections

 Solution 2: Do selections before the join:
 ((S l ’20000’(Emp1Emp1)) ( l ‘ ’(Emp2Emp2)))

 At site B, select all tuples from Emp1Emp1 satisfying Salary >
‘20000’; call the result R1R1

Name((Salary>’20000’(Emp1Emp1)) (Title=‘manager’(Emp2Emp2)))

 At site C, select all tuples from Emp2Emp2 satisfying
Title=‘manager’; call the result R2R2

 At some site to be determined by minimizing
communication costs, compute Name(R1 R1 R2)R2);
Send result to site ASend result to site A
 In a multidatabase, join must be performed at Site A, but

communication costs are reduced because only “selected” data
d b

(c) Pearson and P.Fodor (CS Stony Brook)

needs to be sent

33

Summary: Choices to be Made by a
Distributed Database Application DesignerDistributed Database Application Designer

 Place tables at different sites

 Partition tables in different ways and place partitions at
different sites

 Replicate tables or data within tables and place replicas
at different sites

 In multidatabase systems, do manual “query
optimization”: choose an optimal sequence of SQL
t t t t b t d t h itstatements to be executed at each site

(c) Pearson and P.Fodor (CS Stony Brook)
34

