Distributed Databases

CSE 532, Theory of Database Systems
Stony Brook University

http: / / WWW. cs.stonybrook.edu/ ~cse532

What is a Distributed Database?

® Database whose relations reside on different sites

® Database some of whose relations are replicated at different

sites

e Database whose relations are split between different sites

(c) Pearson and P.Fodor (CS Stony Brook)

~

Two Types of Applications that
Access Distributed Databases

® The application accesses data at the level of SQL
statements

® Example: company has nationwide network of warehouses, each
with its own database; a transaction can access all databases
using their schemas
e The application accesses data at a database using only
stored procedures provided by that database.

® Example: purchase transaction involving a merchant and a credit

card company, each providing stored subroutines for its
subtransactions

(c) Pearson and P.Fodor (CS Stony Brook)

Optimizing Distributed Queries

© Only applications of the first type can access data directly and

hence employ query optimization strategies

® These are the applications we consider in this chapter

(c) Pearson and P.Fodor (CS Stony Brook)

Some Issues

¢ How should a distributed database be designed?
e At what site should each item be stored?
® Which items should be replicated and at which sites?

® How should queries that access multiple databases be

processed?

e How do issues of query optimization affect query design?

(c) Pearson and P.Fodor (CS Stony Brook)

Why Might Data Be Distributed

e Data might be distributed to minimize communication costs
Or response time

® Data might be kept at the site where it was created so that its
creators can maintain control and security

® Data might be replicated to increase its availability in the
event of failure or to decrease response time

(c) Pearson and P.Fodor (CS Stony Brook)

L

Application Designer’s View of a
Distributed Database

® Designer might see the individual schemas of each local
database -- called a multidatabase -- in which case
distribution is visible
® Can be homogeneous (all databases from one vendor) or

heterogeneous (databases from different vendors)

® Designer might see a single global schema that
integrates all local schemas (is a view) in which case
distribution is hidden

® Designer might see a restricted global schema, which
is the union of all the local schemas

® Supported by some vendors of homogeneous systems

(c) Pearson and P.Fodor (CS Stony Brook)

/

Views of Distributed Data

(a) Multidatabase with local schemas

(b) Integrated distributed database with global schema

application

pLogLam

%

|
—

multi p e
lacal

schemas

(a)

DEMS

' application
DEMS
[.'II.'I]gL'E.FFI

1 1

| |

1 1

1 1 o3

1 1

1 1

|

1 |y 1

1 _G 1

1 = 1

1 H 1

]]

! ﬁﬁ] DBMS

| = |

1 el 1

1 1

1

1 1

| |

1 1

1 1

! —_— ! —_—
~lobal multiple
schema local

schemas

(b

(c) Pearson and P.Fodor (CS Stony Brook)

Multidatabases

. Application must explicitly connect to each site

* Application accesses data at a site using SQL statements

based on that site’s schema

. Application may have to do reformatting in order to

integrate data from different sites

® Application must manage replication

® Know where replicas are stored and decide which replica to

aCCESS

(c) Pearson and P.Fodor (CS Stony Brook)

~
Global and Restricted Global Schemas

e Middleware provides integration of local schemas into a
global schema
° Application need not connect to each site

* Application accesses data using global schema

Need not know where data is stored — location transparency
® Global joins are supported
e Middleware performs necessary data reformatting

e Middleware manages replication — replication transparency

(c) Pearson and P.Fodor (CS Stony Brook) /

Partitioning

® Data can be distributed by storing individual tables at

different sites

® Data can also be distributed by decomposing a table and

storing portions at different sites — called partitioning

° Partitioning can be horizontal or vertical

(c) Pearson and P.Fodor (CS Stony Brook)

e
Horizontal Partitioning

® Each partition, T, , of table T contains a subset of the rows

and each row is in exactly one partition:

Ti — GCi (T)
T=UT,
® Horizontal partitioning is lossless T \
1
T,
> T
LE
T,
J

@ (c) Pearson and P.Fodor (CS Stony Brook)

Horizontal Partitioning

® Example: An Internet grocer has a relation describing
inventory at each warehouse

Inventory(StockNum, Amount, Price, Location)

® [t partitions the relation by location and stores each
partition locally: rows with Location = ‘Chicago’ are
stored in the Chicago warehouse in a partition

Inventory_ch(Stoc]eNum, Amount, Price, Location)

* Alternatively, it can use the schema

Inventory_ch(StockNum, Amount, Price)

(c) Pearson and P.Fodor (CS Stony Brook)

Vertical Partitioning

® Each partition, T,, of T contains a subset of the columns,
each column is in at least one partition, and each
partition includes the key:

Ti — Tcattr_listi <T)

T=T, ><]T,... [>T
® Vertical partitioning is lossless
® Example: The Internet grocer has a relation

Employee(SSnum, Name, Salary, Title, Location)

® [t partitions the relation to put some information at
headquarters and some elsewhere:

Emp1(SSnum, Name, Salary) — at headquarters
Emp2(SSnum, Name, Title, Location) — elsewhere

(c) Pearson and P.Fodor (CS Stony Brook)

Replication

® One of the most useful mechanisms in distributed

databases

® Increases
® Availability
If one replica site is down, data can be accessed from another site

® Performance:

Queries can be executed more efficiently because they can access a local

or nearby copy

Updates might be slower because all replicas must be updated

(c) Pearson and P.Fodor (CS Stony Brook)

e
Replication Example

® Internet grocer might have relation
Customer(CustNum, Address, Location)

® Queries are executed

At headquarters to produce monthly mailings

At a warehouse to obtain information about deliveries
® Updates are executed

At headquarters when new customer registers and when information

about a customer Changes

@ (c) Pearson and P.Fodor (CS Stony Brook)

Example (con’t)

o Intuitively it seems appropriate to either or both:
® Store complete relation at headquarters

® Horizontally partition a replica of the relation and store a
YP P

partition at the corresponding warehouse site

® Each row is replicated: one copy at headquarters, one

copy at a warehouse

® The relation can be both distributed and replicated

(c) Pearson and P.Fodor (CS Stony Brook)

Example (con’t): Performance
Analysis

® We consider three alternatives:

® Store the entire relation at the headquarters site and nothing at

the warehouses (no replication)

® Store the partitions at the warehouses and nothing at the

headquarters (no replication)

® Store entire relation at headquarters and a partition at each

warehouse (replication)

(c) Pearson and P.Fodor (CS Stony Brook)

Example (con’t):
Performance Analysis - Assumptions

® To evaluate the alternatives, we estimate the amount of
information that must be sent between sites.

® Assumptions:
® The Customer relation has 100,000 rows

® The headquarters mailing application sends each customer 1
mailing a month

® 500 deliveries are made each day; a single row is read for each

delivery
® 100 new customers/ day

° Changes to customer information occur infrequently

(c) Pearson and P.Fodor (CS Stony Brook)

Example: The Evaluation

® Entire relation at headquarters, nothing at warehouses

® 500 tuples per day from headquarters to warehouses for

deliveries

e Partitions at warehouses. nothing at headquarters

® 100,000 tuples per month from warehouses to headquarters for
mailings (3,300 tuples per day, amortized)
® 100 tuples per day from headquarters to warehouses for new

customer registration

® Entire relation at headquarters, partitions at warehouses

® 100 tuples per day from headquarters to warehouses for new

customer registration

@ (c) Pearson and P.Fodor (CS Stony Brook)

Example: Conclusion

® Replication (case 3) seems best, it we count the number
of transmissions.

® [et us look at other measures:

e If no data stored at warehouses, the time to handle deliveries
might suffer because of the remote access (probably not
important)

® If no data is stored at headquarters, the monthly mailing
requires that 100,000 rows be transmitted in a single day, which
might clog the network

® If we replicate, the time to register a new customer might suffer
because of the remote update

But this update can be done by a separate transaction after the registration
transaction commits (asynchronous update)

(c) Pearson and P.Fodor (CS Stony Brook)

-
Query Planning

® Systems that support a global schema contain a global
query optimizer, which analyzes each global query and
translates it into an appropriate sequence of steps to be

executed at each site

® In a multidatabase system, the query designer must
manually decompose each global query into a sequence
of SQL statements to be executed at each site

® Thus a query designer must be her own query optimizer

@ (c) Pearson and P.Fodor (CS Stony Brook)

~
Global Query Optimization

e A familiarity with algorithms for global query optimization
helps the application programmer in designing

® Global queries that will execute efficiently for a particular
distribution of data

° Algorithms for efficiently evaluating global queries in a
multidatabase system

® The distribution of data that will be accessed by global queries

@ (c) Pearson and P.Fodor (CS Stony Brook)

Planning Global Joins

® Suppose an application at site A wants to join tables at
sites B and C. Two straightforward approaches

® Transmit both tables to site A and do the join there
The application explicitly tests the join condition

This approach must be used in multidatabase systems

® Transmit the smaller of the tables, e.g. the table at site B, to site
C; execute the join there; transmit the result to site A

This approach might be used in a homogenous distributed database
system

(c) Pearson and P.Fodor (CS Stony Brook)

Global Join Example

® Site B
Student(Id, Major)
® Site C
Transcript(Studld, CrsCode)

o Application at Site A wants to compute join with join

condition

Student./d = Transcript. Studld

(c) Pearson and P.Fodor (CS Stony Brook)

Assumptions

® Lengths of attributes
® Id and Studld: 9 bytes
® Major: 3 bytes
® CrsCode: 6 bytes

* Student: 15,000 tuples, each of length 12 bytes

® Transcript: 20,000 tuples, each of length 15 bytes
® 5000 students are registered for at least 1 course (10,000

students are not registered — summer session)

e Each student is registered for 4 courses on the average

(c) Pearson and P.Fodor (CS Stony Brook)

Comparison of Alternatives

* Send both tables to site A, do join there:
® have to send 15,000*%12 + 20,000*15 = 480,000 bytes

¢ Send the smaller table, Student, from site B to site C,
compute the join there. Then send result to Site A:
® have to send 15,000*%12 + 20,000*18 = 540,000 bytes

® Alternative 1 is better

(c) Pearson and P.Fodor (CS Stony Brook)

Another Alternative: Semijoin

® Stepl:
Atsite C: Compute P = 7, . .(Transcript)
Send P to site B

® P contains Ids of students registered for at least 1 course

* Student tuples having Ids not in P do not contribute to join, so no need to
send them

® Step 2:
At site B: Compute Q = Student[>< ,_ P
Send Q, to site A

®* Q contains tuples of Student corresponding to students registered for at least
1 course (i.e., 5,000 students out of 15,000)

® Q is a semijoin — the set of all Student tuples that will participate in the join
® Step 3:
Send Transcript to site A
At site A: Compute Transcript > 1= seudid Q

@ (c) Pearson and P.Fodor (CS Stony Brook)

Comparison Semijoin with Previous
Alternatives

® Instep 1: 45,000 = 5,000*9 bytes sent

® Instep 2: 60,000 = 5,000*12 bytes sent

* Instep 3: 300,000 = 20,000*15 bytes sent

® In total: 405,000 = 45,000 + 60,000 + 300,000 bytes sent

® Semijoin is the best of the three alternatives

(c) Pearson and P.Fodor (CS Stony Brook)

~
Definition of Semijoin

® The semijoin of two relations, T, and T, is defined as:

Tl I><j01'n_condT2 — Tcattributes(Tl)(Tl [><] join_condT2)
— Tl [><] choin—attributes(TZ)

® In other words, the semijoin consists of the tuples inT, that

participate in the join with T,

@ (c) Pearson and P.Fodor (CS Stony Brook)

Using the Semijoin

® To compute T1NJ
T,
-

T2 using a semijoin, first compute

oin__cond

oin__cond

T, then join it withT,:
J

o N
Tcattributes(Tl)(Tl N join_cond TZ) N join_cond T2

(c) Pearson and P.Fodor (CS Stony Brook)

o

Queries that Involve Joins and
Selections

® Suppose the Internet grocer relation Employee is
vertically partitioned as
Emp1(SSnum, Name, Salary) at Site B
Emp2(S$Snum, Title, Location) at Site C

® A query at site A wants the names of all employees with

Title = ‘rnanager’ and Salary > ‘20000’

® Solution 1: First do join then selection:

TlName (GTitIe:‘manager’ AND Salary>’20000’ (Empl N Emp2))

® Semijoin not helpful here: all tuples of each table must be
brought together to form the join (the join is on SSNum)

(c) Pearson and P.Fodor (CS Stony Brook)

/

~

Queries that Involve Joins and Selections

L

* Solution 2: Do selections betore the join:

TCName((GSalary>’20000’(Empl)) N (GTitIe:‘manager’(Empz)))

* Atsite B, select all tuples from Empl1 satistying Salary >
‘20000’; call the result R1

* Atsite C, select all tuples from Emp?2 satistying
Title="manager’; call the result R2

* At some site to be determined by minimizin
communication costs, compute T, __ (R1 R2);

Send result to site A

® In a multidatabase, join must be performed at Site A, but
communication costs are reduced because only “selected” data
needs to be sent

(c) Pearson and P.Fodor (CS Stony Brook)

. Summary: Choices to be Made by a A
Distributed Database Application Designer

® Place tables at different sites

e Partition tables in different ways and place partitions at

different sites

® Replicate tables or data within tables and place replicas

at different sites

® In multidatabase systems, do manual “query
optimization”: choose an optimal sequence of SQL

statements to be executed at each site

@ (c) Pearson and P.Fodor (CS Stony Brook) /

