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Disks

 Capable of storing large quantities of data cheaply

 Non-volatile

 Extremely slow compared with cpu speed

 Performance of DBMS largely a function of the number of 
disk I/O operations that must be performed
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Physical Disk Structure
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Disks

 The time to access a sector, S, can be divided into three 
components:

1. Seek time = the time to position the arm assembly over the 
cylinder containing S.

2. Rotational latency = the additional time it takes, after the 
arm assembly is over the cylinder, for the platters to rotate 
to the angular position at which S is under the read/write 
head.

3. Transfer time = the time it takes for the platter to rotate 
through the angle subtended by S.
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Pages and Blocks

 Data files decomposed into pages
 Fixed size piece of contiguous information in the file
 Unit of exchange between disk and main memory

 Disk divided into page size blocks of storage
 Page can be stored in any block

 Application’s request for read item satisfied by:
 Read page containing item to buffer in DBMS 
 Transfer item from buffer to application

 Application’s request to change item satisfied by
 Read page containing item to buffer in DBMS (if it is not 

already there)
 Update item in DBMS (main memory) buffer 
 (Eventually) copy buffer page to page on disk
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I/O Time to Access a Page

 Seek latency – time to position heads over cylinder 
containing page (avg = ~10 - 20 ms)

 Rotational latency – additional time for platters to rotate 
so that start of block containing page is under head (avg 
= ~5 - 10 ms)

 Transfer time – time for platter to rotate over block 
containing page (depends on size of block)

 Latency = seek latency + rotational latency
 Our goal – minimize average latency, reduce number of 

page transfers
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Reducing Latency

 Store pages containing related information close 
together on disk
 Justification:  If application accesses x, it will next 

access data related to x with high probability
 Page size tradeoff:  
Large page size – data related to x stored in same 

page; hence additional page transfer can be avoided
 Small page size – reduce transfer time, reduce 

buffer size in main memory
Typical page size – 4096 bytes
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Reducing Number of Page Transfers

Keep cache of recently accessed pages in 
main memory
Rationale: request for page can be satisfied 

from cache instead of disk
Purge pages when cache is full
For example, use LRU algorithm
Record clean/dirty state of page (clean pages 

don’t have to be written)
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Accessing Data Through Cache

cache

DBMS

Application

Page frames

Page transfer

blockItem
transfer
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RAID Systems

 RAID (Redundant Array of Independent Disks) is 
an array of disks configured to behave like a single 
disk with
Higher throughput
 Multiple requests to different disks can be handled 

independently
 If a single request accesses data that is stored separately on 

different disks, that data can be transferred in parallel
 Increased reliability
 Data is stored redundantly
 If one disk should fail, the system can still operate
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Striping

Data that is to be stored on multiple disks is 
said to be striped
Data is divided into chunks
Chunks might be bytes, disk blocks etc.

 If a file is to be stored on three disks
 First chunk is stored on first disk
 Second chunk is stored on second disk
 Third chunk is stored on third disk
 Fourth chunk is stored on first disk
And so on
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F1 F2 F3

F4

The striping of a file across three disks
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Levels of RAID System

 Level 0:  Striping but no redundancy (no R in 
RAID)
A striped array of n disks
The failure of a single disk ruins everything
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RAID Levels (con’t)

Level 1:  Mirrored Disks (no striping)
An array of n mirrored disks
 All data stored on two disks

 Increases reliability
 If one disk fails, the system can continue

 Increases speed of reads
 Both of the mirrored disks can be read concurrently

Decreases speed of writes
 Each write must be made to two disks

Requires twice the number of disks
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RAID Levels (con’t)

Level 3: Data is striped over n disks and an 
(n+1)th disk is used to stores the exclusive 
or (XOR) of the corresponding bytes on the 
other n disks
The (n+1)th disk is called the parity disk
Chunks are bytes
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Level 3 (con’t)

Redundancy increases reliability
Setting a bit on the parity disk to be the XOR 

of the bits on the other disks makes the 
corresponding bit on each disk the XOR of the 
bits on all the other disks, including the parity 
disk

1  0  1  0  1      1 (parity disk)
 If any disk fails, its information can be 

reconstructed as the XOR of the information 
on all the other disks
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Level 3 (con’t)

Whenever a write is made to any disk, a 
write must by made to the parity disk

New_Parity_Bit = Old_Parity_Bit  XOR 
(Old_Data_Bit  XOR  New_Data_Bit)

Thus each write requires 4 disk accesses
2 reads and 2 writes

The parity disk can be a bottleneck since all 
writes involve a read and a write to the 
parity disk

17



(c) Pearson and P.Fodor (CS Stony Brook)

RAID Levels (con’t)

Level 5: Data is striped and parity 
information is stored as in level 3, but
The chunks are disk blocks
The parity information is itself striped and 

is stored in turn on each disk
Eliminates the bottleneck of the parity disk

Level 5 most often recommended for 
transaction processing applications
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RAID Levels (con’t)

Level 10: A combination of levels 0 and 1 
(not an official level)
A striped array of n disks (as in level 0)
Each of these disks is mirrored (as in level 1)
Achieves best performance of all levels
Requires twice as many disks
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Controller Cache
 To further increase the efficiency of RAID 

systems, a controller cache can be used in 
memory
When reading from the disk, a larger number of disk 

blocks than have been requested can be read into 
memory

 In write back cache, the RAID system reports that the 
write is complete as soon as the data is in the cache 
(before it is on the disk)
 Requires some redundancy of information in cache

 If all the blocks in a stripe are to be updated, the new 
value of the parity block can be computed in the cache 
and all the writes done in parallel
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Access Path

Refers to the algorithm + data structure 
(e.g., an index) used for retrieving and 
storing data in a table

The choice of an access path to use in the 
execution of an SQL statement has no effect 
on the semantics of the statement

This choice can have a major effect on the 
execution time of the statement
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Heap Files

Rows appended to end of file as they are 
inserted  
Hence the file is unordered

Deleted rows create gaps in file
File must be periodically compacted to 

recover space
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Transcript Stored as a Heap File
666666      MGT123    F1994    4.0
123456      CS305        S1996    4.0         page 0
987654      CS305        F1995    2.0

717171      CS315        S1997    4.0
666666      EE101        S1998    3.0         page 1
765432      MAT123    S1996    2.0
515151      EE101        F1995    3.0

234567      CS305        S1999    4.0
page 2

878787      MGT123    S1996    3.0
23
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Heap File - Performance
 Assume file contains F pages

 Inserting a row:
 Before the insert, we must ensure that A's key does not 

duplicate the key of a row already in the table.
 If a duplicate exists, it will be discovered in F=2 page reads on average, 

and at that point the insertion is abandoned

 If the row does not already exist:
 The entire file has to be read in order to conclude that no duplicate is 

present, and then the last page (with A inserted) has to be rewritten, 
yielding a total cost of F + 1 page transfers

 Deleting a row:
 Access path is scan
 Avg. F/2+1 page transfers if row exists
 F  page transfers if row does not exist
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Heap File - Performance

 Query
Access path is scan 
Organization is efficient if query returns all rows and 

order of access is not important
SELECT * FROMTranscript

Organization is inefficient if a few rows are requested
 Average F/2 pages read to get get a single row

SELECT T.Grade
FROM Transcript T
WHERE T.StudId=12345 AND T.CrsCode =‘CS305’

AND T.Semester = ‘S2000’
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Heap File - Performance

Organization inefficient when a subset of 
rows is requested:  F pages must be read

SELECT T.Course, T.Grade
FROM Transcript T                             -- equality search
WHERE T.StudId = 123456

SELECT  T.StudId, T.CrsCode
FROM Transcript T                              -- range search
WHERE T.Grade BETWEEN 2.0 AND 4.0
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Sorted File

 Rows are sorted  based on some attribute(s)
 Access path is binary search
 Equality or range query based on that attribute has cost log2F to 

retrieve page containing first row
 Successive rows are in same (or successive) page(s) and cache 

hits are likely
 By storing all pages on the same track, seek time can be 

minimized

 Example –Transcript sorted on StudId :

SELECT T.Course, T.Grade
FROM Transcript T                             
WHERE T.StudId = 123456

SELECT T.Course, T.Grade
FROM Transcript T
WHERE T.StudId BETWEEN

111111 AND 199999
27
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Transcript Stored as a Sorted File
111111      MGT123    F1994    4.0
111111      CS305        S1996    4.0         page 0
123456      CS305        F1995    2.0

123456      CS315        S1997    4.0
123456      EE101        S1998    3.0         page 1
232323      MAT123    S1996    2.0
234567      EE101        F1995    3.0

234567      CS305        S1999    4.0
page 2

313131      MGT123    S1996    3.0
28
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Maintaining Sorted Order

 Problem: After the correct position for an insert 
has been determined, inserting the row requires 
(on average) F/2 reads and F/2 writes (because 
shifting is necessary to make space) 

 Partial Solution 1:  Leave empty space in each 
page:  fillfactor

 Partial Solution 2:  Use overflow pages (chains).
Disadvantages:  
 Successive pages no longer stored contiguously
Overflow chain not sorted, hence cost no longer log2F
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Overflow
3

111111      MGT123    F1994    4.0
111111      CS305        S1996    4.0         page 0
111111      ECO101     F2000    3.0
122222      REL211     F2000    2.0

-
123456      CS315        S1997    4.0
123456      EE101        S1998    3.0         page 1
232323      MAT123    S1996    2.0
234567      EE101        F1995    3.0

-
234567      CS305        S1999    4.0

page 2

313131      MGT123    S1996    3.0

7
111654      CS305        F1995    2.0
111233      PSY 220     S2001    3.0         page 3

Pointer to
overflow chain

Pointer to
next block
in chain

These pages are
Not overflown
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Index

 Mechanism for efficiently locating row(s) without 
having to scan entire table

 Based on a search key: rows having a particular 
value for the search key attributes can be quickly 
located

 Don’t confuse candidate key with search key:
Candidate key: set of attributes; guarantees uniqueness
 Search key: sequence of attributes; does not guarantee

uniqueness –just used for search
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Index Structure
 Contains:
 Index entries
 Can contain the data tuple itself (index and table are integrated

in this case); or
 Search key value and a pointer to a row having that value; 

table stored separately in this case – unintegrated index
 Location mechanism
 Algorithm + data structure for locating an index entry with a 

given search key value
 Index entries are stored in accordance with the search 

key value:
 Entries with the same search key value are stored together 

(hash, B- tree)
 Entries may be sorted on search key value (B-tree)
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Index Structure

Location Mechanism

Index entries

S
Search key
value

Location mechanism
facilitates finding
index entry for S

S

S, …….
Once index entry is 
found, the row can 
be directly accessed
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Index File With Separate Storage Structure
In this case, the storage structure might be a heap or sorted file, 
but often is an integrated file with another index (on a different 
search key – typically the primary key)

Storage
structure
for table

Location mechanism

Index entriesIn
de

x 
fil

e 
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Indices: The Down Side

 Additional I/O to access index pages (except if index is 
small enough to fit in main memory)

 Index must be updated when table is modified.

 SQL-92 does not provide for creation or deletion of 
indices
 Index on primary key generally  created automatically
 Vendor specific statements:
 CREATE INDEX ind ON Transcript (CrsCode)

 DROP INDEX ind
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Examples

 DROP INDEX CourseTran;

 CREATE INDEX CourseTran ON Transcript (CourseId);

 DROP INDEX DeptProf;

 CREATE INDEX DeptProf ON Professor (DeptId);
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Clustered Index

 Clustered index:  index entries and rows are ordered in the 
same way
An integrated storage structure is always clustered 

(since rows and index entries are the same)
The particular index structure (eg, hash, tree) dictates 

how the rows are organized in the storage structure
There can be at most one clustered index on a table

CREATE TABLE generally creates an integrated, 
clustered (main) index on primary key
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Clustered Main Index

Storage structure
contains table
and (main) index;
rows are contained
in index entries
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Clustered Secondary Index

39



(c) Pearson and P.Fodor (CS Stony Brook)

Unclustered Index

 Unclustered (secondary) index: index entries and 
rows are not ordered in the same way

 An secondary index might be clustered or 
unclustered with respect to the storage structure 
it references
 It is generally unclustered (since the organization of 

rows in the storage structure depends on main index)
 There can be many secondary indices on a table
 Index created by CREATE INDEX is generally an 

unclustered, secondary  index
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Unclustered Secondary Index
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Clustered Index

 Good for range searches when a range of search 
key values is requested
Use location mechanism to locate index entry at start 

of range
 This locates first row.

 Subsequent rows are stored in successive locations if 
index is clustered (not so if unclustered)

Minimizes page transfers and maximizes likelihood of 
cache hits
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Example – Cost of Range Search

 Data file has 10,000 pages, 100 rows in search range
 Page transfers for table rows (assume 20 rows/page):
 Heap:  10,000 (entire file must be scanned)
 File sorted on search key: log2 10000 (to locate )+ (5 or 6 

pages=~100rows)  19
 Unclustered secondary index:   100 (range index)
 Clustered index:  5 or 6 (constant to locate + pages~100rows)

 Page transfers for index entries (assume 200 entries/page)
 Heap and sorted: 0
 Unclustered secondary index:  1 or 2 (all index entries for the 

rows in the range must be read) 
 Clustered secondary index:  1 (only first entry must be read)
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Sparse vs. Dense Index

Dense index:  has index entry for each data 
record  
Unclustered index must be dense
Clustered index need not be dense

 Sparse index: has index entry for each page of 
data file
Clustered index
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Sparse Vs. Dense Index

Sparse, 
clustered
index sorted
on Id

Dense, 
unclustered
index sorted
on Name

Data file sorted on Id

Id Name Dept
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Sparse Index

Search key should
be candidate key of
data file
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Multiple Attribute Search Key

 CREATE INDEX Inx ON Tbl (Att1, Att2)
 Search key is a sequence of attributes; index entries are 

lexically ordered
 Supports finer granularity equality search: 
 “Find row with value (A1, A2) ”

 Supports range search (tree index only):
 “Find rows with values between (A1, A2) and (A1, A2) ”

 Supports partial key searches (tree index only):
 Find rows with values of Att1 between A1 and A1
 But not “Find rows with values of Att2 between A2 and A2 ” 
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Locating an Index Entry

Use binary search (index entries sorted)
 If Q pages of index entries, then log2Q page 

transfers (which is a big improvement over 
binary search of the data pages of a F page 
data file since  F >>Q)

Use multilevel index:  Sparse index on 
sorted list of index entries
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Two-Level Index

– Separator level is a sparse index over pages of index entries
– Leaf level contains index entries 
– Cost of searching the separator level << cost of searching index level

since separator level is sparse
– Cost or retrieving row once index entry is found is 0 (if integrated)  

or 1 (if not)
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Multilevel Index

– Search cost = number of levels in tree
– If  is the fanout of a separator page, cost is log Q + 1
– Example: if  = 100 and Q = 10,000, cost = 3

(reduced to 2 if root is kept in main memory)
50
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Index Sequential Access Method (ISAM)

 Generally an integrated storage structure
 Clustered, index entries contain rows

 Separator entry = (ki , pi); ki is a search key value; pi is a 
pointer to a lower level page

 ki separates set of search key values in the two subtrees 
pointed at by pi-1 and pi.
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Index Sequential Access Method
Lo

ca
tio

n
m

ec
ha

ni
sm
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Index Sequential Access Method

 The index is static:  
 Once the separator levels have been constructed, they never 

change
 Number and position of leaf pages in file stays fixed

 Good for equality and range searches
 Leaf pages stored sequentially in file when storage structure is 

created to support range searches 
 if, in addition, pages are positioned on disk to support a scan, a range 

search can be very fast (static nature of index makes this possible)

 Supports multiple attribute search keys and partial key 
searches
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Overflow Chains
- Contents of leaf pages change 
– Row deletion yields empty slot   

in leaf page
– Row insertion can result in  

overflow leaf page and  
ultimately overflow chain
– Chains can be long, unsorted,

scattered on disk
– Thus ISAM can be inefficient 

if table is dynamic
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B+ Tree

 Supports equality and range searches, multiple attribute keys 
and partial key searches

 Either a secondary index (in a separate file) or the basis for an 
integrated storage structure

Responds to dynamic changes in the table
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B+ Tree Structure

– Leaf level is a (sorted) linked list of index entries
– Sibling pointers support range searches in spite of
allocation and deallocation of leaf pages (but leaf 
pages might not be physically contiguous on disk)
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Insertion and Deletion in B+ Tree

 Structure of tree changes to handle row insertion and 
deletion – no overflow chains

 Tree remains balanced:  all paths from root to index 
entries have same length

 Algorithm guarantees that the number of separator 
entries in an index page is between /2 and 
Hence the maximum search cost is log/2Q + 1 (with 

ISAM search cost depends on length of overflow chain)
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Handling Insertions - Example

- Insert “vince”
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Handling Insertions (cont’d)
– Insert “vera”:  Since there is no room in leaf page:

1. Create new leaf page, C
2. Split index entries between B and C (but maintain

sorted order)
3. Add separator entry at parent level
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Handling Insertions (con’t)
– Insert “rob”. Since there is no room in leaf page A:

1. Split A into A1 and A2 and divide index entries
between the two (but maintain sorted order)

2. Split D into D1 and D2 to make room for additional
pointer

3. Three separators are needed: “sol”, “tom” and “vince”
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Handling Insertions (cont’d)
– When splitting a separator page, push a separator up
– Repeat process at next level
– Height of tree increases by one
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Handling Deletions

 Deletion can cause page to have fewer than /2
entries
 Entries can be redistributed over adjacent pages to 

maintain minimum occupancy requirement
Ultimately, adjacent pages must be merged, and if 

merge propagates up the tree, height might be reduced
 See book

 In practice, tables generally grow, and merge 
algorithm is often not implemented
 Reconstruct tree to compact it
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Hash Index

 Index entries partitioned into buckets in accordance with 
a hash function,  h(v), where v ranges over search key 
values
 Each bucket is identified by an address, a 

 Bucket at address a contains all index entries with search key v
such that h(v) = a

 Each bucket is stored in a page (with possible overflow 
chain)

 If index entries contain rows, set of buckets forms an 
integrated storage structure; else set of buckets forms an 
(unclustered) secondary index
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Equality Search with Hash Index

Given v:
1. Compute h(v)
2. Fetch bucket at h(v)
3. Search bucket

Cost = number of pages
in bucket (cheaper than
B+ tree, if no overflow 
chains)

Location
mechanism
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Choosing a Hash Function

 Goal of h: map search key values randomly
Occupancy of each bucket roughly same for an 

average instance of indexed table

 Example: h(v) = (c1 v + c2) mod  M
M must be large enough to minimize the 

occurrence of overflow chains
M must not be so large that bucket occupancy is 

small and too much space is wasted
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Hash Indices – Problems

 Does not support range search
Since adjacent elements in range might hash to 

different buckets, there is no efficient way to 
scan buckets to locate all search key values v 
between v1 and v2

 Although it supports multi-attribute keys, it does 
not support partial key search
Entire value of v must be provided to h

 Dynamically growing files produce overflow 
chains, which negate the efficiency of the 
algorithm
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Extendable Hashing

 Eliminates overflow chains by splitting a bucket 
when it overflows

 Range of hash function has to be extended to 
accommodate additional buckets

 Example: family of hash functions based on h:
hk(v) = h(v) mod 2k  (use the last k bits of h(v))
At any given time a unique hash, hk , is used 

depending on the number of times buckets have 
been split
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Extendable Hashing – Example

v             h(v) 
pete        11010 
mary       00000  
jane        11110
bill          00000
john        01001
vince      10101
karen      10111

Extendable hashing uses a directory  (level of indirection) to
accommodate family of hash functions

Suppose next action is to insert sol, where h(sol) = 10001.
Problem:  This causes overflow in B1 

Location 
mechanism
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Example (cont’d)
Solution: 

1. Switch  to h3
2. Concatenate copy of old

directory to new directory
3. Split overflowed bucket, B,

into B and B, dividing 
entries in B between the
two using h3

4. Pointer to B in directory
copy replaced by pointer
to B

Note: Except for B , pointers in directory copy refer to original buckets.
current_hash identifies current hash  function.
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Example (cont’d)

Next action:  Insert judy,
where h(judy) = 00110 

B2 overflows, but directory
need not be extended

Problem:  When Bi overflows, we need a mechanism for deciding 
whether the directory has to be doubled

Solution:  bucket_level[i] records the number of times Bi has been
split.  If current_hash > bucket_level[i], do not enlarge directory
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Example (cont’d)
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Extendable Hashing

 Deficiencies:
Extra space for directory
Cost of added level of indirection:  
 If directory cannot be accommodated in main 

memory, an additional page transfer is necessary.
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Choosing An Index
 An index should support a query of the application that has a 

significant impact on performance
 Choice based on frequency of invocation, execution time, 

acquired locks, table size

Example 1:  SELECT  E.Id
FROM   Employee E
WHERE   E.Salary < :upper  AND  E.Salary > :lower

– This is a range search on Salary.  
– Since the primary key is Id, it is likely that there is a clustered, 

main index on that attribute that is of no use for this query.
– Choose  a secondary, B+ tree index with  search key Salary
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Choosing An Index (cont’d)
Example 2:      SELECT T.StudId

FROM    Transcript T
WHERE  T.Grade = :grade

- This is an equality search on Grade.  
- Since the primary key is (StudId, Semester, CrsCode) it is

likely that there is a main, clustered index on these attributes
that is of no use for this query.  

- Choose a secondary, B+ tree or hash index with search key
Grade
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Choosing an Index (cont’d)
Example 3:

SELECT   T.CrsCode, T.Grade
FROM     Transcript T
WHERE    T.StudId = :id  AND  T.Semester = ‘F2000’

– Equality search on StudId and Semester. 
– If the primary key is (StudId, Semester, CrsCode) it is 

likely that there is a main, clustered index on this 
sequence of attributes.

– If the main index is a B+ tree it can be used for this search. 
– If the main index is a hash it cannot be used for this 

search.  Choose B+ tree or hash with search key StudId
(since Semester is not as selective as StudId) or
(StudId, Semester)
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Choosing An Index (cont’d)

Example 3  (cont’d):  
SELECT   T.CrsCode, T.Grade
FROM  Transcript T
WHERE  T.StudId = :id  AND  T.Semester = ‘F2000’

- Suppose Transcript has primary key (CrsCode, StudId, Semester).
Then the main index is of no use (independent of whether it is a
hash or B+ tree).
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