
CSE 532, Theory of Database Systems
Stony Brook University

http://www.cs.stonybrook.edu/~cse532

Physical Data Organization and Indexing

(c) Pearson and P.Fodor (CS Stony Brook)

Disks

 Capable of storing large quantities of data cheaply

 Non-volatile

 Extremely slow compared with cpu speed

 Performance of DBMS largely a function of the number of
disk I/O operations that must be performed

2

(c) Pearson and P.Fodor (CS Stony Brook)

Physical Disk Structure

3

(c) Pearson and P.Fodor (CS Stony Brook)

Disks

 The time to access a sector, S, can be divided into three
components:

1. Seek time = the time to position the arm assembly over the
cylinder containing S.

2. Rotational latency = the additional time it takes, after the
arm assembly is over the cylinder, for the platters to rotate
to the angular position at which S is under the read/write
head.

3. Transfer time = the time it takes for the platter to rotate
through the angle subtended by S.

4

(c) Pearson and P.Fodor (CS Stony Brook)

Pages and Blocks

 Data files decomposed into pages
 Fixed size piece of contiguous information in the file
 Unit of exchange between disk and main memory

 Disk divided into page size blocks of storage
 Page can be stored in any block

 Application’s request for read item satisfied by:
 Read page containing item to buffer in DBMS
 Transfer item from buffer to application

 Application’s request to change item satisfied by
 Read page containing item to buffer in DBMS (if it is not

already there)
 Update item in DBMS (main memory) buffer
 (Eventually) copy buffer page to page on disk

5

(c) Pearson and P.Fodor (CS Stony Brook)

I/O Time to Access a Page

 Seek latency – time to position heads over cylinder
containing page (avg = ~10 - 20 ms)

 Rotational latency – additional time for platters to rotate
so that start of block containing page is under head (avg
= ~5 - 10 ms)

 Transfer time – time for platter to rotate over block
containing page (depends on size of block)

 Latency = seek latency + rotational latency
 Our goal – minimize average latency, reduce number of

page transfers

6

(c) Pearson and P.Fodor (CS Stony Brook)

Reducing Latency

 Store pages containing related information close
together on disk
 Justification: If application accesses x, it will next

access data related to x with high probability
 Page size tradeoff:
Large page size – data related to x stored in same

page; hence additional page transfer can be avoided
 Small page size – reduce transfer time, reduce

buffer size in main memory
Typical page size – 4096 bytes

7

(c) Pearson and P.Fodor (CS Stony Brook)

Reducing Number of Page Transfers

Keep cache of recently accessed pages in
main memory
Rationale: request for page can be satisfied

from cache instead of disk
Purge pages when cache is full
For example, use LRU algorithm
Record clean/dirty state of page (clean pages

don’t have to be written)

8

(c) Pearson and P.Fodor (CS Stony Brook)

Accessing Data Through Cache

cache

DBMS

Application

Page frames

Page transfer

blockItem
transfer

9

(c) Pearson and P.Fodor (CS Stony Brook)

RAID Systems

 RAID (Redundant Array of Independent Disks) is
an array of disks configured to behave like a single
disk with
Higher throughput
 Multiple requests to different disks can be handled

independently
 If a single request accesses data that is stored separately on

different disks, that data can be transferred in parallel
 Increased reliability
 Data is stored redundantly
 If one disk should fail, the system can still operate

10

(c) Pearson and P.Fodor (CS Stony Brook)

Striping

Data that is to be stored on multiple disks is
said to be striped
Data is divided into chunks
Chunks might be bytes, disk blocks etc.

 If a file is to be stored on three disks
 First chunk is stored on first disk
 Second chunk is stored on second disk
 Third chunk is stored on third disk
 Fourth chunk is stored on first disk
And so on

11

(c) Pearson and P.Fodor (CS Stony Brook)

F1 F2 F3

F4

The striping of a file across three disks

12

(c) Pearson and P.Fodor (CS Stony Brook)

Levels of RAID System

 Level 0: Striping but no redundancy (no R in
RAID)
A striped array of n disks
The failure of a single disk ruins everything

13

(c) Pearson and P.Fodor (CS Stony Brook)

RAID Levels (con’t)

Level 1: Mirrored Disks (no striping)
An array of n mirrored disks
 All data stored on two disks

 Increases reliability
 If one disk fails, the system can continue

 Increases speed of reads
 Both of the mirrored disks can be read concurrently

Decreases speed of writes
 Each write must be made to two disks

Requires twice the number of disks

14

(c) Pearson and P.Fodor (CS Stony Brook)

RAID Levels (con’t)

Level 3: Data is striped over n disks and an
(n+1)th disk is used to stores the exclusive
or (XOR) of the corresponding bytes on the
other n disks
The (n+1)th disk is called the parity disk
Chunks are bytes

15

(c) Pearson and P.Fodor (CS Stony Brook)

Level 3 (con’t)

Redundancy increases reliability
Setting a bit on the parity disk to be the XOR

of the bits on the other disks makes the
corresponding bit on each disk the XOR of the
bits on all the other disks, including the parity
disk

1 0 1 0 1 1 (parity disk)
 If any disk fails, its information can be

reconstructed as the XOR of the information
on all the other disks

16

(c) Pearson and P.Fodor (CS Stony Brook)

Level 3 (con’t)

Whenever a write is made to any disk, a
write must by made to the parity disk

New_Parity_Bit = Old_Parity_Bit XOR
(Old_Data_Bit XOR New_Data_Bit)

Thus each write requires 4 disk accesses
2 reads and 2 writes

The parity disk can be a bottleneck since all
writes involve a read and a write to the
parity disk

17

(c) Pearson and P.Fodor (CS Stony Brook)

RAID Levels (con’t)

Level 5: Data is striped and parity
information is stored as in level 3, but
The chunks are disk blocks
The parity information is itself striped and

is stored in turn on each disk
Eliminates the bottleneck of the parity disk

Level 5 most often recommended for
transaction processing applications

18

(c) Pearson and P.Fodor (CS Stony Brook)

RAID Levels (con’t)

Level 10: A combination of levels 0 and 1
(not an official level)
A striped array of n disks (as in level 0)
Each of these disks is mirrored (as in level 1)
Achieves best performance of all levels
Requires twice as many disks

19

(c) Pearson and P.Fodor (CS Stony Brook)

Controller Cache
 To further increase the efficiency of RAID

systems, a controller cache can be used in
memory
When reading from the disk, a larger number of disk

blocks than have been requested can be read into
memory

 In write back cache, the RAID system reports that the
write is complete as soon as the data is in the cache
(before it is on the disk)
 Requires some redundancy of information in cache

 If all the blocks in a stripe are to be updated, the new
value of the parity block can be computed in the cache
and all the writes done in parallel

20

(c) Pearson and P.Fodor (CS Stony Brook)

Access Path

Refers to the algorithm + data structure
(e.g., an index) used for retrieving and
storing data in a table

The choice of an access path to use in the
execution of an SQL statement has no effect
on the semantics of the statement

This choice can have a major effect on the
execution time of the statement

21

(c) Pearson and P.Fodor (CS Stony Brook)

Heap Files

Rows appended to end of file as they are
inserted
Hence the file is unordered

Deleted rows create gaps in file
File must be periodically compacted to

recover space

22

(c) Pearson and P.Fodor (CS Stony Brook)

Transcript Stored as a Heap File
666666 MGT123 F1994 4.0
123456 CS305 S1996 4.0 page 0
987654 CS305 F1995 2.0

717171 CS315 S1997 4.0
666666 EE101 S1998 3.0 page 1
765432 MAT123 S1996 2.0
515151 EE101 F1995 3.0

234567 CS305 S1999 4.0
page 2

878787 MGT123 S1996 3.0
23

(c) Pearson and P.Fodor (CS Stony Brook)

Heap File - Performance
 Assume file contains F pages

 Inserting a row:
 Before the insert, we must ensure that A's key does not

duplicate the key of a row already in the table.
 If a duplicate exists, it will be discovered in F=2 page reads on average,

and at that point the insertion is abandoned

 If the row does not already exist:
 The entire file has to be read in order to conclude that no duplicate is

present, and then the last page (with A inserted) has to be rewritten,
yielding a total cost of F + 1 page transfers

 Deleting a row:
 Access path is scan
 Avg. F/2+1 page transfers if row exists
 F page transfers if row does not exist

24

(c) Pearson and P.Fodor (CS Stony Brook)

Heap File - Performance

 Query
Access path is scan
Organization is efficient if query returns all rows and

order of access is not important
SELECT * FROMTranscript

Organization is inefficient if a few rows are requested
 Average F/2 pages read to get get a single row

SELECT T.Grade
FROM Transcript T
WHERE T.StudId=12345 AND T.CrsCode =‘CS305’

AND T.Semester = ‘S2000’

25

(c) Pearson and P.Fodor (CS Stony Brook)

Heap File - Performance

Organization inefficient when a subset of
rows is requested: F pages must be read

SELECT T.Course, T.Grade
FROM Transcript T -- equality search
WHERE T.StudId = 123456

SELECT T.StudId, T.CrsCode
FROM Transcript T -- range search
WHERE T.Grade BETWEEN 2.0 AND 4.0

26

(c) Pearson and P.Fodor (CS Stony Brook)

Sorted File

 Rows are sorted based on some attribute(s)
 Access path is binary search
 Equality or range query based on that attribute has cost log2F to

retrieve page containing first row
 Successive rows are in same (or successive) page(s) and cache

hits are likely
 By storing all pages on the same track, seek time can be

minimized

 Example –Transcript sorted on StudId :

SELECT T.Course, T.Grade
FROM Transcript T
WHERE T.StudId = 123456

SELECT T.Course, T.Grade
FROM Transcript T
WHERE T.StudId BETWEEN

111111 AND 199999
27

(c) Pearson and P.Fodor (CS Stony Brook)

Transcript Stored as a Sorted File
111111 MGT123 F1994 4.0
111111 CS305 S1996 4.0 page 0
123456 CS305 F1995 2.0

123456 CS315 S1997 4.0
123456 EE101 S1998 3.0 page 1
232323 MAT123 S1996 2.0
234567 EE101 F1995 3.0

234567 CS305 S1999 4.0
page 2

313131 MGT123 S1996 3.0
28

(c) Pearson and P.Fodor (CS Stony Brook)

Maintaining Sorted Order

 Problem: After the correct position for an insert
has been determined, inserting the row requires
(on average) F/2 reads and F/2 writes (because
shifting is necessary to make space)

 Partial Solution 1: Leave empty space in each
page: fillfactor

 Partial Solution 2: Use overflow pages (chains).
Disadvantages:
 Successive pages no longer stored contiguously
Overflow chain not sorted, hence cost no longer log2F

29

(c) Pearson and P.Fodor (CS Stony Brook)

Overflow
3

111111 MGT123 F1994 4.0
111111 CS305 S1996 4.0 page 0
111111 ECO101 F2000 3.0
122222 REL211 F2000 2.0

-
123456 CS315 S1997 4.0
123456 EE101 S1998 3.0 page 1
232323 MAT123 S1996 2.0
234567 EE101 F1995 3.0

-
234567 CS305 S1999 4.0

page 2

313131 MGT123 S1996 3.0

7
111654 CS305 F1995 2.0
111233 PSY 220 S2001 3.0 page 3

Pointer to
overflow chain

Pointer to
next block
in chain

These pages are
Not overflown

30

(c) Pearson and P.Fodor (CS Stony Brook)

Index

 Mechanism for efficiently locating row(s) without
having to scan entire table

 Based on a search key: rows having a particular
value for the search key attributes can be quickly
located

 Don’t confuse candidate key with search key:
Candidate key: set of attributes; guarantees uniqueness
 Search key: sequence of attributes; does not guarantee

uniqueness –just used for search

31

(c) Pearson and P.Fodor (CS Stony Brook)

Index Structure
 Contains:
 Index entries
 Can contain the data tuple itself (index and table are integrated

in this case); or
 Search key value and a pointer to a row having that value;

table stored separately in this case – unintegrated index
 Location mechanism
 Algorithm + data structure for locating an index entry with a

given search key value
 Index entries are stored in accordance with the search

key value:
 Entries with the same search key value are stored together

(hash, B- tree)
 Entries may be sorted on search key value (B-tree)

32

(c) Pearson and P.Fodor (CS Stony Brook)

Index Structure

Location Mechanism

Index entries

S
Search key
value

Location mechanism
facilitates finding
index entry for S

S

S, …….
Once index entry is
found, the row can
be directly accessed

33

(c) Pearson and P.Fodor (CS Stony Brook)

Index File With Separate Storage Structure
In this case, the storage structure might be a heap or sorted file,
but often is an integrated file with another index (on a different
search key – typically the primary key)

Storage
structure
for table

Location mechanism

Index entriesIn
de

x
fil

e

34

(c) Pearson and P.Fodor (CS Stony Brook)

Indices: The Down Side

 Additional I/O to access index pages (except if index is
small enough to fit in main memory)

 Index must be updated when table is modified.

 SQL-92 does not provide for creation or deletion of
indices
 Index on primary key generally created automatically
 Vendor specific statements:
 CREATE INDEX ind ON Transcript (CrsCode)

 DROP INDEX ind

35

(c) Pearson and P.Fodor (CS Stony Brook)

Examples

 DROP INDEX CourseTran;

 CREATE INDEX CourseTran ON Transcript (CourseId);

 DROP INDEX DeptProf;

 CREATE INDEX DeptProf ON Professor (DeptId);

36

(c) Pearson and P.Fodor (CS Stony Brook)

Clustered Index

 Clustered index: index entries and rows are ordered in the
same way
An integrated storage structure is always clustered

(since rows and index entries are the same)
The particular index structure (eg, hash, tree) dictates

how the rows are organized in the storage structure
There can be at most one clustered index on a table

CREATE TABLE generally creates an integrated,
clustered (main) index on primary key

37

(c) Pearson and P.Fodor (CS Stony Brook)

Clustered Main Index

Storage structure
contains table
and (main) index;
rows are contained
in index entries

38

(c) Pearson and P.Fodor (CS Stony Brook)

Clustered Secondary Index

39

(c) Pearson and P.Fodor (CS Stony Brook)

Unclustered Index

 Unclustered (secondary) index: index entries and
rows are not ordered in the same way

 An secondary index might be clustered or
unclustered with respect to the storage structure
it references
 It is generally unclustered (since the organization of

rows in the storage structure depends on main index)
 There can be many secondary indices on a table
 Index created by CREATE INDEX is generally an

unclustered, secondary index

40

(c) Pearson and P.Fodor (CS Stony Brook)

Unclustered Secondary Index

41

(c) Pearson and P.Fodor (CS Stony Brook)

Clustered Index

 Good for range searches when a range of search
key values is requested
Use location mechanism to locate index entry at start

of range
 This locates first row.

 Subsequent rows are stored in successive locations if
index is clustered (not so if unclustered)

Minimizes page transfers and maximizes likelihood of
cache hits

42

(c) Pearson and P.Fodor (CS Stony Brook)

Example – Cost of Range Search

 Data file has 10,000 pages, 100 rows in search range
 Page transfers for table rows (assume 20 rows/page):
 Heap: 10,000 (entire file must be scanned)
 File sorted on search key: log2 10000 (to locate)+ (5 or 6

pages=~100rows)  19
 Unclustered secondary index:  100 (range index)
 Clustered index: 5 or 6 (constant to locate + pages~100rows)

 Page transfers for index entries (assume 200 entries/page)
 Heap and sorted: 0
 Unclustered secondary index: 1 or 2 (all index entries for the

rows in the range must be read)
 Clustered secondary index: 1 (only first entry must be read)

43

(c) Pearson and P.Fodor (CS Stony Brook)

Sparse vs. Dense Index

Dense index: has index entry for each data
record
Unclustered index must be dense
Clustered index need not be dense

 Sparse index: has index entry for each page of
data file
Clustered index

44

(c) Pearson and P.Fodor (CS Stony Brook)

Sparse Vs. Dense Index

Sparse,
clustered
index sorted
on Id

Dense,
unclustered
index sorted
on Name

Data file sorted on Id

Id Name Dept

45

(c) Pearson and P.Fodor (CS Stony Brook)

Sparse Index

Search key should
be candidate key of
data file

46

(c) Pearson and P.Fodor (CS Stony Brook)

Multiple Attribute Search Key

 CREATE INDEX Inx ON Tbl (Att1, Att2)
 Search key is a sequence of attributes; index entries are

lexically ordered
 Supports finer granularity equality search:
 “Find row with value (A1, A2) ”

 Supports range search (tree index only):
 “Find rows with values between (A1, A2) and (A1, A2) ”

 Supports partial key searches (tree index only):
 Find rows with values of Att1 between A1 and A1
 But not “Find rows with values of Att2 between A2 and A2 ”

47

(c) Pearson and P.Fodor (CS Stony Brook)

Locating an Index Entry

Use binary search (index entries sorted)
 If Q pages of index entries, then log2Q page

transfers (which is a big improvement over
binary search of the data pages of a F page
data file since F >>Q)

Use multilevel index: Sparse index on
sorted list of index entries

48

(c) Pearson and P.Fodor (CS Stony Brook)

Two-Level Index

– Separator level is a sparse index over pages of index entries
– Leaf level contains index entries
– Cost of searching the separator level << cost of searching index level

since separator level is sparse
– Cost or retrieving row once index entry is found is 0 (if integrated)

or 1 (if not)

49

(c) Pearson and P.Fodor (CS Stony Brook)

Multilevel Index

– Search cost = number of levels in tree
– If  is the fanout of a separator page, cost is log Q + 1
– Example: if  = 100 and Q = 10,000, cost = 3

(reduced to 2 if root is kept in main memory)
50

(c) Pearson and P.Fodor (CS Stony Brook)

Index Sequential Access Method (ISAM)

 Generally an integrated storage structure
 Clustered, index entries contain rows

 Separator entry = (ki , pi); ki is a search key value; pi is a
pointer to a lower level page

 ki separates set of search key values in the two subtrees
pointed at by pi-1 and pi.

51

(c) Pearson and P.Fodor (CS Stony Brook)

Index Sequential Access Method
Lo

ca
tio

n
m

ec
ha

ni
sm

52

(c) Pearson and P.Fodor (CS Stony Brook)

Index Sequential Access Method

 The index is static:
 Once the separator levels have been constructed, they never

change
 Number and position of leaf pages in file stays fixed

 Good for equality and range searches
 Leaf pages stored sequentially in file when storage structure is

created to support range searches
 if, in addition, pages are positioned on disk to support a scan, a range

search can be very fast (static nature of index makes this possible)

 Supports multiple attribute search keys and partial key
searches

53

(c) Pearson and P.Fodor (CS Stony Brook)

Overflow Chains
- Contents of leaf pages change
– Row deletion yields empty slot

in leaf page
– Row insertion can result in

overflow leaf page and
ultimately overflow chain
– Chains can be long, unsorted,

scattered on disk
– Thus ISAM can be inefficient

if table is dynamic

54

(c) Pearson and P.Fodor (CS Stony Brook)

B+ Tree

 Supports equality and range searches, multiple attribute keys
and partial key searches

 Either a secondary index (in a separate file) or the basis for an
integrated storage structure

Responds to dynamic changes in the table

55

(c) Pearson and P.Fodor (CS Stony Brook)

B+ Tree Structure

– Leaf level is a (sorted) linked list of index entries
– Sibling pointers support range searches in spite of
allocation and deallocation of leaf pages (but leaf
pages might not be physically contiguous on disk)

56

(c) Pearson and P.Fodor (CS Stony Brook)

Insertion and Deletion in B+ Tree

 Structure of tree changes to handle row insertion and
deletion – no overflow chains

 Tree remains balanced: all paths from root to index
entries have same length

 Algorithm guarantees that the number of separator
entries in an index page is between /2 and 
Hence the maximum search cost is log/2Q + 1 (with

ISAM search cost depends on length of overflow chain)

57

(c) Pearson and P.Fodor (CS Stony Brook)

Handling Insertions - Example

- Insert “vince”

58

(c) Pearson and P.Fodor (CS Stony Brook)

Handling Insertions (cont’d)
– Insert “vera”: Since there is no room in leaf page:

1. Create new leaf page, C
2. Split index entries between B and C (but maintain

sorted order)
3. Add separator entry at parent level

59

(c) Pearson and P.Fodor (CS Stony Brook)

Handling Insertions (con’t)
– Insert “rob”. Since there is no room in leaf page A:

1. Split A into A1 and A2 and divide index entries
between the two (but maintain sorted order)

2. Split D into D1 and D2 to make room for additional
pointer

3. Three separators are needed: “sol”, “tom” and “vince”

60

(c) Pearson and P.Fodor (CS Stony Brook)

Handling Insertions (cont’d)
– When splitting a separator page, push a separator up
– Repeat process at next level
– Height of tree increases by one

61

(c) Pearson and P.Fodor (CS Stony Brook)

Handling Deletions

 Deletion can cause page to have fewer than /2
entries
 Entries can be redistributed over adjacent pages to

maintain minimum occupancy requirement
Ultimately, adjacent pages must be merged, and if

merge propagates up the tree, height might be reduced
 See book

 In practice, tables generally grow, and merge
algorithm is often not implemented
 Reconstruct tree to compact it

62

(c) Pearson and P.Fodor (CS Stony Brook)

Hash Index

 Index entries partitioned into buckets in accordance with
a hash function, h(v), where v ranges over search key
values
 Each bucket is identified by an address, a

 Bucket at address a contains all index entries with search key v
such that h(v) = a

 Each bucket is stored in a page (with possible overflow
chain)

 If index entries contain rows, set of buckets forms an
integrated storage structure; else set of buckets forms an
(unclustered) secondary index

63

(c) Pearson and P.Fodor (CS Stony Brook)

Equality Search with Hash Index

Given v:
1. Compute h(v)
2. Fetch bucket at h(v)
3. Search bucket

Cost = number of pages
in bucket (cheaper than
B+ tree, if no overflow
chains)

Location
mechanism

64

(c) Pearson and P.Fodor (CS Stony Brook)

Choosing a Hash Function

 Goal of h: map search key values randomly
Occupancy of each bucket roughly same for an

average instance of indexed table

 Example: h(v) = (c1 v + c2) mod M
M must be large enough to minimize the

occurrence of overflow chains
M must not be so large that bucket occupancy is

small and too much space is wasted

65

(c) Pearson and P.Fodor (CS Stony Brook)

Hash Indices – Problems

 Does not support range search
Since adjacent elements in range might hash to

different buckets, there is no efficient way to
scan buckets to locate all search key values v
between v1 and v2

 Although it supports multi-attribute keys, it does
not support partial key search
Entire value of v must be provided to h

 Dynamically growing files produce overflow
chains, which negate the efficiency of the
algorithm

66

(c) Pearson and P.Fodor (CS Stony Brook)

Extendable Hashing

 Eliminates overflow chains by splitting a bucket
when it overflows

 Range of hash function has to be extended to
accommodate additional buckets

 Example: family of hash functions based on h:
hk(v) = h(v) mod 2k (use the last k bits of h(v))
At any given time a unique hash, hk , is used

depending on the number of times buckets have
been split

67

(c) Pearson and P.Fodor (CS Stony Brook)

Extendable Hashing – Example

v h(v)
pete 11010
mary 00000
jane 11110
bill 00000
john 01001
vince 10101
karen 10111

Extendable hashing uses a directory (level of indirection) to
accommodate family of hash functions

Suppose next action is to insert sol, where h(sol) = 10001.
Problem: This causes overflow in B1

Location
mechanism

68

(c) Pearson and P.Fodor (CS Stony Brook)

Example (cont’d)
Solution:

1. Switch to h3
2. Concatenate copy of old

directory to new directory
3. Split overflowed bucket, B,

into B and B, dividing
entries in B between the
two using h3

4. Pointer to B in directory
copy replaced by pointer
to B

Note: Except for B , pointers in directory copy refer to original buckets.
current_hash identifies current hash function.

69

(c) Pearson and P.Fodor (CS Stony Brook)

Example (cont’d)

Next action: Insert judy,
where h(judy) = 00110

B2 overflows, but directory
need not be extended

Problem: When Bi overflows, we need a mechanism for deciding
whether the directory has to be doubled

Solution: bucket_level[i] records the number of times Bi has been
split. If current_hash > bucket_level[i], do not enlarge directory

70

(c) Pearson and P.Fodor (CS Stony Brook)

Example (cont’d)

71

(c) Pearson and P.Fodor (CS Stony Brook)

Extendable Hashing

 Deficiencies:
Extra space for directory
Cost of added level of indirection:
 If directory cannot be accommodated in main

memory, an additional page transfer is necessary.

72

(c) Pearson and P.Fodor (CS Stony Brook)

Choosing An Index
 An index should support a query of the application that has a

significant impact on performance
 Choice based on frequency of invocation, execution time,

acquired locks, table size

Example 1: SELECT E.Id
FROM Employee E
WHERE E.Salary < :upper AND E.Salary > :lower

– This is a range search on Salary.
– Since the primary key is Id, it is likely that there is a clustered,

main index on that attribute that is of no use for this query.
– Choose a secondary, B+ tree index with search key Salary

73

(c) Pearson and P.Fodor (CS Stony Brook)

Choosing An Index (cont’d)
Example 2: SELECT T.StudId

FROM Transcript T
WHERE T.Grade = :grade

- This is an equality search on Grade.
- Since the primary key is (StudId, Semester, CrsCode) it is

likely that there is a main, clustered index on these attributes
that is of no use for this query.

- Choose a secondary, B+ tree or hash index with search key
Grade

74

(c) Pearson and P.Fodor (CS Stony Brook)

Choosing an Index (cont’d)
Example 3:

SELECT T.CrsCode, T.Grade
FROM Transcript T
WHERE T.StudId = :id AND T.Semester = ‘F2000’

– Equality search on StudId and Semester.
– If the primary key is (StudId, Semester, CrsCode) it is

likely that there is a main, clustered index on this
sequence of attributes.

– If the main index is a B+ tree it can be used for this search.
– If the main index is a hash it cannot be used for this

search. Choose B+ tree or hash with search key StudId
(since Semester is not as selective as StudId) or
(StudId, Semester)

75

(c) Pearson and P.Fodor (CS Stony Brook)

Choosing An Index (cont’d)

Example 3 (cont’d):
SELECT T.CrsCode, T.Grade
FROM Transcript T
WHERE T.StudId = :id AND T.Semester = ‘F2000’

- Suppose Transcript has primary key (CrsCode, StudId, Semester).
Then the main index is of no use (independent of whether it is a
hash or B+ tree).

76

