
CSE 532, Theory of Database Systems
Stony Brook University

http://www.cs.stonybrook.edu/~cse532

Relational Normalization Theory

(c) Pearson and P.Fodor (CS Stony Brook)

Limitations of E-R Designs

 Provides a set of guidelines, does not result in a unique
database schema

 Does not provide a way of evaluating alternative schemas

 Normalization theory provides a mechanism for analyzing
and refining the schema produced by an E-R design

2

(c) Pearson and P.Fodor (CS Stony Brook)

Redundancy

 Dependencies between attributes cause redundancy
 Ex. All addresses in the same town have the same zip code

SSN Name Town Zip
1234 Joe Stony Brook 11790
4321 Mary Stony Brook 11790
5454 Tom Stony Brook 11790

………………….

Redundancy

3

(c) Pearson and P.Fodor (CS Stony Brook)

Redundancy and Other Problems

SSN Name Address Hobby
1111 Joe 123 Main biking
1111 Joe 123 Main hiking

…………….

SSN Name Address Hobby
1111 Joe 123 Main {biking, hiking}

ER Model

Relational Model

Redundancy
4

(c) Pearson and P.Fodor (CS Stony Brook)

Anomalies
 Redundancy leads to anomalies:
 Update anomaly: A change in Address must be made in several

places
 Deletion anomaly: Suppose a person gives up all hobbies. Do

we:
 Set Hobby attribute to null? No, since Hobby is part of key
 Delete the entire row? No, since we lose other information in the row

 Insertion anomaly: Hobby value must be supplied for any
inserted row since Hobby is part of key

5

(c) Pearson and P.Fodor (CS Stony Brook)

Decomposition
 Solution: use two relations to store Person information

Person1 (SSN, Name, Address)
Hobbies (SSN, Hobby)

 The decomposition is more general: people with hobbies can
now be described

 No update anomalies:

Name and address stored once
A hobby can be separately supplied or deleted

6

(c) Pearson and P.Fodor (CS Stony Brook)

Normalization Theory
 Result of E-R analysis need further refinement
 Appropriate decomposition can solve problems
 The underlying theory is referred to as normalization theory

and is based on functional dependencies (and other kinds, like
multivalued dependencies)

7

(c) Pearson and P.Fodor (CS Stony Brook)

Functional Dependencies

 Definition: A functional dependency (FD) on a relation
schema R is a constraint X Y, where X and Y are
subsets of attributes of R.

 Definition: An FD X Y is satisfied in an instance r of
R if for every pair of tuples, t and s: if t and s agree on
all attributes in X then they must agree on all attributes
in Y
 Key constraint is a special kind of functional dependency: all

attributes of relation occur on the right-hand side of the FD:
 SSN  SSN, Name, Address

8

(c) Pearson and P.Fodor (CS Stony Brook)

Functional Dependencies

 Address  ZipCode
 Stony Brook’s ZIP is 11733

 ArtistName  BirthYear
 Picasso was born in 1881

 Autobrand  Manufacturer, Engine type
 Pontiac is built by General Motors with gasoline engine

 Author, Title  PublDate
 Shakespeare’s Hamlet published in 1600

9

(c) Pearson and P.Fodor (CS Stony Brook)

Functional Dependency - Example

 Consider a brokerage firm that allows multiple clients to share
an account, but each account is managed from a single office
and a client can have no more than one account in an office
 HasAccount (AcctNum, ClientId, OfficeId)
 keys are (ClientId, OfficeId), (AcctNum, ClientId)

 Client, OfficeId  AcctNum

 AcctNum  OfficeId
 Thus, attribute values need not depend only on key values

10

(c) Pearson and P.Fodor (CS Stony Brook)

Entailment, Closure, Equivalence

 Definition: If F is a set of FDs on schema R and f is
another FD on R, then F entails f if every instance r of R
that satisfies every FD in F also satisfies f
 Ex: F = {A  B, B C} and f is A  C
 If Town  Zip and Zip  AreaCode thenTown  AreaCode

 Definition: The closure of F, denoted F+, is the set of all
FDs entailed by F

 Definition: F and G are equivalent if F entails G and G
entails F

11

(c) Pearson and P.Fodor (CS Stony Brook)

 Satisfaction, entailment, and equivalence are semantic
concepts – defined in terms of the actual relations in the
“real world.”
 They define what these notions are, not how to compute them

 How to check if F entails f or if F and G are equivalent?
 Apply the respective definitions for all possible relations?
 Bad idea: might be infinite number for infinite domains
 Even for finite domains, we have to look at relations of all arities

 Solution: find algorithmic, syntactic ways to compute these
notions
 Important: The syntactic solution must be “correct” with respect to the

semantic definitions
 Correctness has two aspects: soundness and completeness – see later

12

Entailment (cont.)

(c) Pearson and P.Fodor (CS Stony Brook)

Armstrong’s Axioms for FDs

 This is the syntactic way of computing/testing the various
properties of FDs

 Reflexivity: If Y  X then X Y (trivial FD)
 Name, Address  Name

 Augmentation: If X Y then XZYZ
 If Town  Zip then Town, Name  Zip, Name

 Transitivity: If X Y and Y  Z then X  Z

13

(c) Pearson and P.Fodor (CS Stony Brook)

Soundness

 Axioms are sound: If an FD f: XY can be derived from a set of
FDs F using the axioms, then f holds in every relation that
satisfies every FD in F.

 Example: Given XY and X Z then

 Thus, XY Z is satisfied in every relation where both XY and XZ
are satisfied
 Therefore, we have derived the union rule for FDs: we can take the union of the

RHSs of FDs that have the same LHS

X  XY Augmentation by X
YX  YZ Augmentation by Y
X  YZ Transitivity

14

(c) Pearson and P.Fodor (CS Stony Brook)

Completeness

 Axioms are complete: If F entails f , then f can be derived from
F using the axioms

 A consequence of completeness is the following (naïve)
algorithm to determining if F entails f:
 Algorithm: Use the axioms in all possible ways to generate F+

(the set of possible FD’s is finite so this can be done) and see if f
is in F+

15

(c) Pearson and P.Fodor (CS Stony Brook)

Correctness

 The notions of soundness and completeness link the syntax
(Armstrong’s axioms) with semantics (the definitions in
terms of relational instances)

 This is a precise way of saying that the algorithm for
entailment based on the axioms is “correct” with respect to
the definitions

16

(c) Pearson and P.Fodor (CS Stony Brook)

Generating F+

F

AB C
AB BCD

A D AB BD AB BCDE AB CDE

D E BCD  BCDE

Thus, AB BD, AB  BCD, AB  BCDE, and AB  CDE
are all elements of F+ (part-of, there are other FDs: AC CD,
AE ED, etc.)

union
aug trans

aug

decomp

17

(c) Pearson and P.Fodor (CS Stony Brook)

Attribute Closure
 Calculating attribute closure leads to a more efficient way of checking

entailment
 The attribute closure of a set of attributes, X, with respect to a set of

functional dependencies, F, (denoted X+
F) is the set of all

attributes, A, such that X  A
 X +F1 is not necessarily the same as X +F2 if F1  F2

 Attribute closure and entailment:
 Algorithm: Given a set of FDs, F, then X Y if and only if X+

F  Y

18

(c) Pearson and P.Fodor (CS Stony Brook)

Example - Computing Attribute Closure

F: AB  C
A  D
D  E
AC  B

X XF
+

A {A, D, E}
AB {A, B, C, D, E}

(Hence AB is a key)
B {B}
D {D, E}

Is AB  E entailed by F? Yes
Is D C entailed by F? No

Result: XF
+ allows us to determine FDs

of the form X  Y entailed by F
19

(c) Pearson and P.Fodor (CS Stony Brook)

Computation of Attribute Closure X+
F

closure := X; // since X  X+
F

repeat
old := closure;
if there is an FD Z  V in F such that

Z  closure and V  closure
then closure := closure  V

until old = closure

– If T  closure then X  T is entailed by F
20

(c) Pearson and P.Fodor (CS Stony Brook)

Example: Computation of Attribute Closure

AB  C (a)
A  D (b)
D  E (c)
AC  B (d)

Problem: Compute the attribute closure of AB with
respect to the set of FDs :

Initially closure = {AB}
Using (a) closure = {ABC}
Using (b) closure = {ABCD}
Using (c) closure = {ABCDE}

Solution:

21

(c) Pearson and P.Fodor (CS Stony Brook)

Normal Forms

 Each normal form is a set of conditions on a schema that
guarantees certain properties (relating to redundancy and
update anomalies)

 First normal form (1NF) is the same as the definition of
relational model (relations = sets of tuples; each tuple =
sequence of atomic values)

 Second normal form (2NF) – a research lab accident; has no
practical or theoretical value:
 no non prime attribute is dependent on any proper subset of any candidate key of

the table (where a non prime attribute of a table is an attribute that is not a part
of any candidate key of the table): every non-prime attribute is either dependent
on the whole of a candidate key, or on another non prime attribute.

 The two commonly used normal forms are third normal form
(3NF) and Boyce-Codd normal form (BCNF)

22

(c) Pearson and P.Fodor (CS Stony Brook)

BCNF

 Definition: A relation schema R is in BCNF if for every FD XY
associated with R either

Y  X (i.e., the FD is trivial) or
X is a superkey of R

 Remember: a superkey is a combination of attributes that can be used to uniquely identify a
database record. A table might have many superkeys.

 Remember: a candidate key is a special subset of superkeys that do not have any extraneous
information in them: it is a minimal superkey.

Example: Person1(SSN, Name, Address)
The only FD is SSN  Name, Address

Since SSN is a key, Person1 is in BCNF

23

(c) Pearson and P.Fodor (CS Stony Brook)

(non) BCNF Examples

 Person (SSN, Name, Address, Hobby)
 The FD SSN  Name, Address does not satisfy requirements of BCNF
 since the key is (SSN, Hobby)

 HasAccount (AcctNum, ClientId, OfficeId)
 The FD AcctNum OfficeId does not satisfy BCNF requirements
 since keys are (ClientId, OfficeId) and (AcctNum, ClientId); not AcctNum.

24

(c) Pearson and P.Fodor (CS Stony Brook)

Redundancy

 Suppose R has a FD A  B, and A is not a superkey. If an instance has
2 rows with same value in A, they must also have same value in B
(=> redundancy, if the A-value repeats twice)

 If A is a superkey, there cannot be two rows with same value of A
 Hence, BCNF eliminates redundancy

SSN  Name, Address
SSN Name Address Hobby
1111 Joe 123 Main stamps
1111 Joe 123 Main coins

redundancy

25

(c) Pearson and P.Fodor (CS Stony Brook)

Third Normal Form

 A relational schema R is in 3NF if for every FD X Y
associated with R either:

Y  X (i.e., the FD is trivial); or
X is a superkey of R; or
Every AY is part of some key of R

 3NF is weaker than BCNF (every schema that is in BCNF is
also in 3NF)

BCNF
conditions

26

(c) Pearson and P.Fodor (CS Stony Brook)

3NF Example

 HasAccount (AcctNum, ClientId, OfficeId)
 ClientId, OfficeId  AcctNum

 OK since LHS contains a key

 AcctNum  OfficeId

 OK since RHS is part of a key

 HasAccount is in 3NF but it might still contain
redundant information due to AcctNum  OfficeId (which
is not allowed by BCNF)

27

(c) Pearson and P.Fodor (CS Stony Brook)

3NF (Non) Example

 Person (SSN, Name, Address, Hobby)

(SSN, Hobby) is the only key.
SSN Name violates 3NF conditions since Name

is not part of a key and SSN is not a superkey

28

(c) Pearson and P.Fodor (CS Stony Brook)

Decompositions

 Goal: Eliminate redundancy by decomposing a relation into
several relations in a higher normal form

 Decomposition must be lossless: it must be possible to
reconstruct the original relation from the relations in the
decomposition

29

(c) Pearson and P.Fodor (CS Stony Brook)

Decomposition
 Schema R = (R, F)
 R is set a of attributes
 F is a set of functional dependencies over R
 Each key is described by a FD

 The decomposition of schema R is a collection of schemas
Ri = (Ri, Fi) where
 R = i Ri for all i (no new attributes)
 Fi is a set of functional dependences involving only attributes of

Ri

 F entails Fi for all i (no new FDs)

 The decomposition of an instance, r, of R is a set of
relations ri = Ri(r) for all i

30

(c) Pearson and P.Fodor (CS Stony Brook)

Example Decomposition

Schema (R, F) where
R = {SSN, Name, Address, Hobby}
F = {SSN Name, Address}

can be decomposed into
R1 = {SSN, Name, Address}
F1 = {SSN  Name, Address}

and
R2 = {SSN, Hobby}
F2 = { }

31

(c) Pearson and P.Fodor (CS Stony Brook)

Lossless Schema Decomposition

 A decomposition should not lose information
 A decomposition (R1,…,Rn) of a schema, R, is lossless if every

valid instance, r, of R can be reconstructed from its components:

 where each ri = Ri(r)

r = r1 r2 rn…

32

(c) Pearson and P.Fodor (CS Stony Brook)

Lossy Decomposition

r  r1 r2 ... rn

SSN Name Address SSN Name Name Address
1111 Joe 1 Pine 1111 Joe Joe 1 Pine
2222 Alice 2 Oak 2222 Alice Alice 2 Oak
3333 Alice 3 Pine 3333 Alice Alice 3 Pine

r  r1 r2 rn...

r1 r2r 

The following is always the case:

But the following is not always true:

Example:

The tuples (2222, Alice, 3 Pine) and (3333, Alice, 2 Oak) are in the join,
but not in the original33

(c) Pearson and P.Fodor (CS Stony Brook)

Lossy Decompositions:
What is Actually Lost?

 In the previous example, the tuples (2222, Alice, 3 Pine) and
(3333, Alice, 2 Oak) were gained, not lost!
 Why do we say that the decomposition was lossy?

 What was lost is information:
 That 2222 lives at 2 Oak:

In the decomposition, 2222 can live at either 2 Oak or 3 Pine

 That 3333 lives at 3 Pine:
In the decomposition, 3333 can live at either 2 Oak or 3 Pine

34

(c) Pearson and P.Fodor (CS Stony Brook)

Testing for Losslessness

A (binary) decomposition of R = (R, F)
into R1 = (R1, F1) and R2 = (R2, F2) is
lossless if and only if :
either the FD
 (R1  R2)  R1 is in F+

or the FD
 (R1  R2)  R2 is in F+

35

(c) Pearson and P.Fodor (CS Stony Brook)

Example
Schema (R, F) where

R = {SSN, Name, Address, Hobby}
F = {SSN  Name, Address}

can be decomposed into
R1 = {SSN, Name, Address}
F1 = {SSN  Name, Address}

and
R2 = {SSN, Hobby}
F2 = { }

Since R1  R2 = SSN and SSN  R1 the
decomposition is lossless

36

(c) Pearson and P.Fodor (CS Stony Brook)

Intuition Behind the Test for
Losslessness
 Suppose R1  R2  R2 . Then a row of r1 can combine with

exactly one row of r2 in the natural join (since in r2 a
particular set of values for the attributes in R1  R2 defines a
unique row)

R1  R2 R1  R2
…………. a a ………...
………… a b ………….
………… b c ………….
………… c

r1 r2

37

(c) Pearson and P.Fodor (CS Stony Brook)

If R1  R2  R2 then
card (r1

Proof of Lossless Condition

• r  r1 r2 – this is true for any decomposition

r2) = card (r1)

But card (r)  card (r1) (since r1 is a projection of r)
and therefore card (r)  card (r1 r2)

Hence r = r1 r2

• r  r1 r2

(since each row of r1 joins with exactly one row of r2)

38

(c) Pearson and P.Fodor (CS Stony Brook)

Dependency Preservation
 Consider a decomposition of R = (R, F) into R1 = (R1, F1) and

R2 = (R2, F2)
 An FD X Y of F+ is in Fi iff X Y  Ri

 An FD, f F+ may be in neither F1, nor F2, nor even (F1  F2)+

 Checking that f is true in r1 or r2 is (relatively) easy
 Checking f in r1 r2 is harder – requires a join
 Ideally: want to check FDs locally, in r1 and r2, and have a guarantee that every

fF holds in r1 r2

 The decomposition is dependency preserving iff the sets F and
F1 F2 are equivalent: F+ = (F1  F2)+

 Then checking all FDs in F, as r1 and r2 are updated, can be done by
checking F1 in r1 and F2 in r2

39

(c) Pearson and P.Fodor (CS Stony Brook)

Dependency Preservation

 If f is an FD in F, but f is not in F1  F2, there are two
possibilities:
 f  (F1  F2)+

 If the constraints in F1 and F2 are maintained, f will be maintained
automatically.

 f (F1  F2)+

 f can be checked only by first taking the join of r1 and r2. This is costly.

40

(c) Pearson and P.Fodor (CS Stony Brook)

Example
Schema (R, F) where

R = {SSN, Name, Address, Hobby}
F = {SSN  Name, Address}

can be decomposed into
R1 = {SSN, Name, Address}
F1 = {SSN  Name, Address}

and
R2 = {SSN, Hobby}
F2 = { }

Since F = F1  F2 the decomposition is
dependency preserving

41

(c) Pearson and P.Fodor (CS Stony Brook)

Example

 Schema: (ABC; F) , F = {A  B, B C, C B}
 Decomposition:
 (AC, F1), F1 = {AC}
 Note: AC  F, but in F+

 (BC, F2), F2 = {B C, C B}

 A  B  (F1  F2), but A  B  (F1  F2)+.
 So F+ = (F1  F2)+ and thus the decompositions is still dependency

preserving

42

(c) Pearson and P.Fodor (CS Stony Brook)

Example
 HasAccount (AcctNum, ClientId, OfficeId)

f1: AcctNum  OfficeId
f2: ClientId, OfficeId  AcctNum

 Decomposition:
R1 = (AcctNum, OfficeId; {AcctNum  OfficeId})
R2 = (AcctNum, ClientId; {})

 Decomposition is lossless:
R1  R2= {AcctNum} and AcctNum  OfficeId

 In BCNF

 Not dependency preserving: f2  (F1  F2)+

 HasAccount does not have BCNF decompositions that are both lossless and
dependency preserving! (Check, eg, by enumeration)

 Hence: BCNF+lossless+dependency preserving decompositions are not
always achievable!

43

(c) Pearson and P.Fodor (CS Stony Brook)

BCNF Decomposition Algorithm

Input: R = (R; F)

Decomp := R
while there is S = (S; F’)  Decomp and S not in BCNF do

Find X  Y  F’ that violates BCNF // X isn’t a superkey in S
Replace S in Decomp with S1 = (XY; F1), S2 = (S - (Y - X); F2)
// F1 = all FDs of F’ involving only attributes of XY
// F2 = all FDs of F’ involving only attributes of S - (Y - X)

end
return Decomp

44

(c) Pearson and P.Fodor (CS Stony Brook)

Simple Example
 HasAccount :

(ClientId, OfficeId, AcctNum)

(ClientId , AcctNum)

BCNF (only trivial FDs)

• Decompose using AcctNum  OfficeId :

(OfficeId, AcctNum)

BCNF: AcctNum is key
FD: AcctNum  OfficeId

ClientId,OfficeId  AcctNum
AcctNum  OfficeId

45

(c) Pearson and P.Fodor (CS Stony Brook)

A Larger Example
Given: R = (R; F) where R = ABCDEGHK and

F = {ABH C, A DE, BGH K, K ADH, BH GE}
step 1: Find a FD that violates BCNF

Not ABH  C since (ABH)+ includes all attributes
(BH is a key)

A  DE violates BCNF since A is not a superkey (A+ =ADE)
step 2: Split R into:

R1 = (ADE, F1={A DE })
R2 = (ABCGHK; F1={ABHC, BGHK, KAH, BHG})
Note 1: R1 is in BCNF
Note 2: Decomposition is lossless since A is a key of R1.
Note 3: FDs K  D and BH  E are not in F1 or F2. But

both can be derived from F1 F2
(E.g., K A and A D implies K D)

Hence, decomposition is dependency preserving.
46

(c) Pearson and P.Fodor (CS Stony Brook)

Example (con’t)
Given: R2 = (ABCGHK; {ABHC, BGHK, KAH, BHG})
step 1: Find a FD that violates BCNF.

Not ABH  C or BGH  K, since BH is a key of R2
K AH violates BCNF since K is not a superkey (K+ =AH)

step 2: Split R2 into:
R21 = (KAH, F21={K  AH})
R22 = (BCGK; F22={})

Note 1: Both R21 and R22 are in BCNF.
Note 2: The decomposition is lossless (since K is a key of R21)
Note 3: FDs ABH C, BGH K, BH G are not in F21

or F22 , and they can’t be derived from F1  F21  F22 .
Hence the decomposition is not dependency-preserving

47

(c) Pearson and P.Fodor (CS Stony Brook)

Properties of BCNF Decomposition Algorithm

Let X Y violate BCNF in R = (R,F) and R1 = (R1,F1),
R2 = (R2,F2) is the resulting decomposition. Then:

 There are fewer violations of BCNF in R1 and R2 than there
were in R
 X Y implies X is a key of R1

 Hence X Y  F1 does not violate BCNF in R1 and, since
XYF2, does not violate BCNF in R2 either

 Suppose f is X’Y’ and f  F doesn’t violate BCNF in R. If f  F1

or F2 it does not violate BCNF in R1 or R2 either since X’ is a
superkey of R and hence also of R1 and R2 .

48

(c) Pearson and P.Fodor (CS Stony Brook)

Properties of BCNF Decomposition Algorithm

 A BCNF decomposition is not necessarily dependency preserving

 But always lossless:
since R1  R2 = X, X Y, and R1 = XY

 BCNF+lossless+dependency preserving is sometimes unachievable
(recall HasAccount)

49

(c) Pearson and P.Fodor (CS Stony Brook)

Third Normal Form

 Compromise – Not all redundancy removed, but
dependency preserving decompositions are always possible
(and, of course, lossless)

 3NF decomposition is based on a minimal cover

50

(c) Pearson and P.Fodor (CS Stony Brook)

Minimal Cover

 A minimal cover of a set of dependencies, F, is a set of
dependencies, U, such that:
 U is equivalent to F (F+ = U+)

 All FDs in U have the form X  A where A is a single attribute
 It is not possible to make U smaller (while preserving equivalence) by
 Deleting an FD

 Deleting an attribute from an FD (either from LHS or RHS)

 FDs and attributes that can be deleted in this way are called redundant

51

(c) Pearson and P.Fodor (CS Stony Brook)

Computing Minimal Cover
 Example: F = {ABH  CK, A  D, C  E,

BGH  L, L  AD, E  L, BH  E}

 step 1: Make RHS of each FD into a single attribute
 Algorithm: Use the decomposition inference rule for FDs
 Example: L  AD replaced by L  A, L  D ; ABH  CK by ABH C, ABH
K

 step 2: Eliminate redundant attributes from LHS.
 Algorithm: If FD XB  A  F (where B is a single attribute) and X  A

is entailed by F, then B was unnecessary
 Example: Can an attribute be deleted from ABH  C ?
 Compute AB+

F, AH+
F, BH+

F.
 Since C  (BH)+

F , BH  C is entailed by F and A is redundant in ABH  C.

52

(c) Pearson and P.Fodor (CS Stony Brook)

Computing Minimal Cover (con’t)

 step 3: Delete redundant FDs from F
 Algorithm: If F – {f} entails f, then f is redundant
 If f is X  A then check if A  X+

F-{f}

 Example: BGH  L is entailed by E  L, BH  E, so it is
redundant

 Note: The order of steps 2 and 3 cannot be interchanged!!
See the textbook for a counterexample

53

(c) Pearson and P.Fodor (CS Stony Brook)

Synthesizing a 3NF Schema

 step 1: Compute a minimal cover, U, of F. The decomposition is
based on U, but since U+ = F+ the same functional dependencies will
hold
 A minimal cover for

F={ABHCK, AD, CE, BGHL, LAD, E L, BH  E}
is

U={BHC, BHK, AD, CE, LA, EL}

Starting with a schema R = (R, F)

54

(c) Pearson and P.Fodor (CS Stony Brook)

Synthesizing a 3NF schema (con’t)

 step 2: Partition U into sets U1, U2, … Un such that the LHS
of all elements of Ui are the same

U1 = {BH  C, BH  K}, U2 = {A  D},

U3 = {C  E}, U4 = {L  A}, U5 = {E  L}

55

(c) Pearson and P.Fodor (CS Stony Brook)

Synthesizing a 3NF schema (con’t)

 step 3: For each Ui form schema Ri = (Ri, Ui), where Ri is the set of
all attributes mentioned in Ui

 Each FD of U will be in some Ri. Hence the decomposition is dependency
preserving

R1 = (BHCK; BHC, BH K),
R2 = (AD; AD),
R3 = (CE; C  E),
R4 = (AL; LA),
R5 = (EL; E  L)

56

(c) Pearson and P.Fodor (CS Stony Brook)

Synthesizing a 3NF schema (con’t)

 step 4: If no Ri is a superkey of R, add schema R0 = (R0,{})
where R0 is a key of R.
 R0 = (BGH, {})
 R0 might be needed when not all attributes are necessarily contained in

R1R2…Rn

 A missing attribute, A, must be part of all keys
(since it’s not in any FD of U, deriving a key constraint from U involves the
augmentation axiom)

 R0 might be needed even if all attributes are accounted for in R1R2 …Rn

 Example: (ABCD; {AB, CD}).
Step 3 decomposition: R1 = (AB; {AB}), R2 = (CD; {CD}).

Lossy! Need to add (AC; { }), for losslessness

 Step 4 guarantees lossless decomposition.

57

(c) Pearson and P.Fodor (CS Stony Brook)

BCNF Design Strategy

 The resulting decomposition, R0, R1, … Rn , is
 Dependency preserving (since every FD in U is a FD of some

schema)
 Lossless (although this is not obvious)
 In 3NF (although this is not obvious)

 Strategy for decomposing a relation
 Use 3NF decomposition first to get lossless, dependency

preserving decomposition
 If any resulting schema is not in BCNF, split it using the BCNF

algorithm (but this may yield a non-dependency preserving
result)

58

(c) Pearson and P.Fodor (CS Stony Brook)

Normalization Drawbacks
 By limiting redundancy, normalization helps maintain

consistency and saves space
 But performance of querying can suffer because related

information that was stored in a single relation is now
distributed among several

 Example: A join is required to get the names and grades
of all students taking CS305 in S2002.

SELECT S.Name, T.Grade
FROM Student S, Transcript T
WHERE S.Id = T.StudId AND

T.CrsCode = ‘CS305’ AND T.Semester = ‘S2002’

59

(c) Pearson and P.Fodor (CS Stony Brook)

Denormalization
 Tradeoff: Judiciously introduce redundancy to improve

performance of certain queries
 Example: Add attribute Name to Transcript

 Join is avoided
 If queries are asked more frequently than Transcript is modified, added

redundancy might improve average performance
 But, Transcript’ is no longer in BCNF since key is (StudId, CrsCode,

Semester) and StudId  Name

SELECT T.Name, T.Grade
FROM Transcript’ T
WHERE T.CrsCode = ‘CS305’ AND T.Semester = ‘S2002’

60

(c) Pearson and P.Fodor (CS Stony Brook)

Fourth Normal Form

 Relation has redundant data
 Yet it is in BCNF (since there are no non-trivial FDs)

 Redundancy is due to set valued attributes (in the E-R sense),
not because of the FDs

SSN PhoneN ChildSSN

111111 123-4444 222222
111111 123-4444 333333
111111 321-5555 222222
111111 321-5555 333333
222222 987-6666 444444
222222 777-7777 444444
222222 987-6666 555555
222222 777-7777 555555

redundancy
Person

61

(c) Pearson and P.Fodor (CS Stony Brook)

Multi-Valued Dependency

 Problem: multi-valued (or binary join) dependency
 Definition: If every instance of schema R can be (losslessly)

decomposed using attribute sets (X, Y) such that:

r =  X (r)  Y (r)

then a multi-valued dependency
R =  X (R)  Y (R)

holds in r

Ex: Person=SSN,PhoneN (Person)  SSN,ChildSSN (Person)

62

(c) Pearson and P.Fodor (CS Stony Brook)

Fourth Normal Form (4NF)

 A schema is in fourth normal form (4NF) if for every multi-

valued dependency

R = X Y
in that schema, either:

- X  Y or Y  X (trivial case); or
- X  Y is a superkey of R (i.e., X  Y R)

63

(c) Pearson and P.Fodor (CS Stony Brook)

Fourth Normal Form (Cont’d)

 Intuition: if X Y R, there is a unique row in relation r for
each value of X Y (hence no redundancy)
 Ex: SSN does not uniquely determine PhoneN or ChildSSN, thus

Person is not in 4NF.

 Solution: Decompose R into X and Y
 Decomposition is lossless – but not necessarily dependency

preserving (since 4NF implies BCNF – next)

64

(c) Pearson and P.Fodor (CS Stony Brook)

4NF Implies BCNF

 Suppose R is in 4NF and X Y is an FD.
 R1 = XY, R2 = R –Y is a lossless decomposition of R
 Thus R has the multi-valued dependency:

R = R1 R2

– Since R is in 4NF, one of the following must hold :
– XY R – Y (an impossibility)
– R – Y  XY (i.e., R = XY and X is a superkey)
– XY  R – Y (= X) is a superkey

– Hence X  Y satisfies BCNF condition
65

