Relational Normalization Theory

CSE 532, Theory of Database Systems
Stony Brook University

http: / / WWW. cs.stonybrook.edu/ ~cse53)

Limitations of E-R Designs

® Provides a set of guidelines, does not result in a unique

database schema
® Does not provide a way of evaluating alternative schemas

® Normalization theory provides a mechanism for analyzing

and refining the schema produced by an E-R design

(c) Pearson and P.Fodor (CS Stony Brook)

Redundancy

o Dependencies between attributes cause redundancy

e Ex. All addresses in the same town have the same zip code

SSN Name Town ZIp
1234 Joe tony Brook 11790
4321 Mary | Stony Brook 11790
5454 Tom tony Brook 11790

/[Redundancy }

(c) Pearson and P.Fodor (CS Stony Brook) /

4 N
Redundancy and Other Problems

ER Model

| SSN Name Address Hobhy
1111 Joe 123 Main {biking, hiking}

Relational Model

SSN Name Address Hobby
< 1111 Joe 123 Main) biking
1111 Joe 123 Main | hiking

\ Redundancy]

(c) Pearson and P.Fodor (CS Stony Brook) /

/
Anomalies

o Redundancy leads to anomalies:

* Update anomaly: A change in Address must be made in several
places
* Deletion anomaly: Suppose a person gives up all hobbies. Do
we:
Set Hobby attribute to null? No, since Hobby is part of key
Delete the entire row? No, since we lose other information in the row
* Insertion anomaly: Hobby value must be supplied for any
inserted row since Hobby is part of key

@ (c) Pearson and P.Fodor (CS Stony Brook)

Decomposition

e Solution: use two relations to store Person information

® Personl (SSN, Name, Address)
® Hobbies (SSN, Hobby)

® The decomposition is more general: people with hobbies can
now be described

e No update anomalies:

® Name and address stored once

o A hobby can be separately supplied or deleted

@ (c) Pearson and P.Fodor (CS Stony Brook)

Normalization Theory

e Result of E-R analysis need further refinement
* Appropriate decomposition can solve problems

e The underlying theory is referred to as normalization theory
and is based on functional dependencies (and other kinds, like

multivalued dependencies)

(c) Pearson and P.Fodor (CS Stony Brook)

Functional Dependencies

¢ Definition: A functional dependency (FD) on a relation
schema R is a constraint X — Y, where X and Y are
subsets of attributes of R.

® Definition: An FD X —Y is satisfied in an instance r of
R if for every pair of tuples, t and s: if t and s agree on
all attributes in X then they must agree on all attributes
in Y
® Key constraint is a special kind of functional dependency: all

attributes of relation occur on the right—hand side of the FD:
SSN — SSN, Name, Address

@ (c) Pearson and P.Fodor (CS Stony Brook)

Functional Dependencies

® Address —> Zz’pCode
* Stony Brook’s ZIP is 11733

® ArtistName — BirthYear

® Picasso was born in 1881

® Autobrand — Manufacturer, Engine type

® Pontiac is built by General Motors with gasoline engine

® Author, Title — PublDate
® Shakespeare’s Hamlet published in 1600

(c) Pearson and P.Fodor (CS Stony Brook)

-

Functional Dependency - Example

Consider a brokerage firm that allows multiple clients to share
an account, but each account is managed from a single office
and a client can have no more than one account in an office

® HasAccount (AcctNum, Clientld, Officeld)
keys are (Clientld, Officeld), (AcctNum, Clientld)

® Client, Officeld —> AcctNum
® AcctNum —> Officeld

Thus, attribute values need not depend only on key values

(c) Pearson and P.Fodor (CS Stony Brook)

Entailment, Closure, Equivalence

* Definition: If Fis a set of FDs on schema R and f is
another FD on R, then F entails f if every instance r of R
that satisfies every FD in F also satisfies f
*Ex:F={4A—>BB—>C}and fisd—>C

If Town — Zip and Zip —> AreaCode then Town —> AreaCode

¢ Definition: The closure of F, denoted F™, is the set of all

FDs entailed by F

® Definition: F and G are equivalent if F entails G and G

entails F

(c) Pearson and P.Fodor (CS Stony Brook)

Entaillment (cont.)

® Satisfaction, entailment, and equivalence are semantic
concepts — defined in terms of the actual relations in the
“real world.”

® They detine what these notions are, not how to compute them

® How to check if F entails f or it F and G are equivalent?
° Apply the respective definitions for all possible relations?

Bad idea: might be infinite number for infinite domains

Even for finite domains, we have to look at relations of all arities
* Solution: find algorithmic, syntactic ways to compute these
notions

Important: The syntactic solution must be “correct” with respect to the
semantic definitions

Correctness has two aspects: soundness and completeness — see later

(c) Pearson and P.Fodor (CS Stony Brook)

4 | N
Armstrong’s Axioms for FDs

e This is the syntactic way of computing/ testing the various
properties of FDs

* Reflexivity: If Y C X then X =Y (trivial FD)
® Name, Address —> Name

* Augmentation: If X =Y then XZ—>YZ
® If Town —> Zip then Town, Name — Zip, Name

© Transitivity: fX—>Y andY—> Zthen X—> 7

@ (c) Pearson and P.Fodor (CS Stony Brook) /

/
Soundness

® Axioms are sound: It an FD f: X—Y can be derived from a set of
FDs F using the axioms, then f holds in every relation that
satisfies every FD in F.

® Example: Given X—Y and X— Z then

X —> XY Augmentation by X
YX —> YZ Augmentation by Y
X—>YZ Transitivity

® Thus, X—7Y Z is satistied in every relation where both X—Y and X—Z
are satistied

Therefore, we have derived the union rule for FDs: we can take the union of the
RHSs of FDs that have the same LHS

@ (c) Pearson and P.Fodor (CS Stony Brook)

Completeness

® Axioms are complete: It F entails f, then f can be derived from

F using the axioms
* A consequence of completeness is the following (naive)
algorithm to determining if F entails f:

® Algorithm: Use the axioms in all possible ways to generate F"
(the set of possible FD’s is finite so this can be done) and see if f

isin F'

(c) Pearson and P.Fodor (CS Stony Brook)

/
Correctness

® The notions of soundness and completeness link the syntax
(Armstrong’s axioms) with semantics (the definitions in

terms of relational instances)

® Thisis a precise way of saying that the algorithm for
entailment based on the axioms is “correct” with respect to

the definitions

@ (c) Pearson and P.Fodor (CS Stony Brook)

4 | N
Generating F*

F
AB— C s
. union"’AB— BCD .| decomp
A->D 2%p 5 BD - trans AB—> BCDE - AB—> CDE
D E -3Y9. BCD —» BCDE -

Thus, AB— BD, AB —» BCD, AB — BCDE, and AB — CDE
are all elements of F* (part-of, there are other FDs: AC— CD,
AE— ED, etc.)

@ (c) Pearson and P.Fodor (CS Stony Brook) /

/
Attribute Closure

* Calculating attribute closure leads to a more efficient way of checking
entailment

® The attribute closure of a set of attributes, X, with respect to a set of
functional dependencies, F, (denoted X ;) is the set of all
attributes, A, such that X — 4

® X T is not necessarily the same as X Ty it FI ZF2

® Attribute closure and entailment:
* Algorithm: Given a set of FDs, F, then X =Y ifand onlyif X", DY

@ (c) Pearson and P.Fodor (CS Stony Brook)

4 N
Example - Computing Attribute Closure

X X *
A—D AB {AB,C,D,E}
D—E (Hence AB is a key)
AC > B B {B}
D {D, E}

Is AB — E entailed by F? Yes
Is D— C entailedby F? No

Result: X" allows us to determine FDs
@ of the form X — Y entailed by F
.

(c) Pearson and P.Fodor (CS Stony Brook) /

/

Computation of Attribute Closure X'

closure := X; /I since X< X'
repeat
old := closure;
If thereisan FD Z — V In F such that
Z < closure and V & closure
then closure := closure U V
until old = closure

— If T < closure then X — T Is entailed by F

@ (c) Pearson and P.Fodor (CS Stony Brook)

/

Solution:

Example: Computation of Attribute Closure

Problem: Compute the attribute closure of AB with
respecttothe setof FDs: A > C (a)

A—-D (b
D—>E (¢
AC —>B (d)

Initially closure = {AB}

Using (a) closure = {ABC}
Using (b) closure = {ABCD}
Using (c) closure = {ABCDE}

(c) Pearson and P.Fodor (CS Stony Brook)

~

8 Normal Forms

® Each normal form is a set of conditions on a schema that
guarantees certain properties (relating to redundancy and
update anomalies)

® First normal form (1NF) is the same as the detinition of
relational model (relations = sets of tuples; each tuple =
sequence of atomic values)

® Second normal form (2NF) — a research lab accident; has no
practical or theoretical value:

® no non prime attribute is dependent on any proper subset of any candidate key of
the table (where a non prime attribute of a table is an attribute that is not a part
of any candidate key of the table): every non-prime attribute is either dependent
on the whole of a candidate key, or on another non prime attribute.

® The two commonly used normal forms are third normal form

(3NF) and Boyce-Codd normal form (BCNF)
©

(c) Pearson and P.Fodor (CS Stony Brook)

4 N
BCNF

e Definition: A relation schema R is in BCNF if for every FD X—Y
associated with R either

*YC X (i.e., the FD is trivial) or
®*Xisa superkey of R

Remember: a superkey is a combination of attributes that can be used to uniquely identify a
database record. A table might have many superkeys.

Remember: a candidate key is a special subset of superkeys that do not have any extraneous
information in them: it is a minimal superkey.

* Example: Personl(SSN, Name, Address)
® The only FD is SSN — Name, Address
® Since SSN is a key, Person1 is in BCNF

@ (c) Pearson and P.Fodor (CS Stony Brook) /

p
(non) BCNF Examples

® Person (SSN, Name, Address, Hobby)

® The FD SSN — Name, Address does not satisty requirements of BCNF
since the key is (SSN, Hobby)
* HasAccount (AcctNum, Clientld, Officeld)

® The FD AcctNum—> Officeld does not satisty BCNF requirements
since keys are (Clientld, Officeld) and (AcctNum, Clientld); not AcctNum.

@ (c) Pearson and P.Fodor (CS Stony Brook)

. Redundancy

* Suppose R has a FD A — B, and A is not a superkey. 1f an instance has
2 rows with same value in 4, they must also have same value in B
(=> redundancy, if the A-value repeats twice)

S— SSN — Name, Address
e .= | SSN__ Name Address Hobby

< 1111 Joe 123 Main \stamps
1111 Joe 123 Main jcoins

* If Ais a superkey, there cannot be two rows with same value of 4

® Hence, BCNF eliminates redundancy

@ (c) Pearson and P.Fodor (CS Stony Brook)

a N
Third Normal Form

® A relational schema R is in 3NF if for every FD X— Y

associated with R either:

*YC X (i.e., the FD is trivial); or

® X is a superkey of R; or

®Every A€ Y is part of some key of R BCNF

* 3NF is weaker than BCNF (every schema that is in BCNFis
also in 3NF)

@ (c) Pearson and P.Fodor (CS Stony Brook) /

3NF Example

® HasAccount (AcctNum, Clientld, Officeld)

® (lientld, Ojﬁce[d —> Acct Num
OK since LHS contains a key

® AcctNum —> Officeld
OK since RHS is part of a key
* HasAccount is in 3NF but it might still contain
redundant information due to AcctNum > Officeld (which
is not allowed by BCNF)

@ (c) Pearson and P.Fodor (CS Stony Brook)

3NF (Non) Example

® Person (SSN, Name, Address, Hobby)
® (SSN, Hobby) is the only key.

® SSN— Name violates 3NF conditions since Name

is not part of a key and SSN is not a superkey

(c) Pearson and P.Fodor (CS Stony Brook)

e
Decompositions

e Goal: Eliminate redundancy by decomposing a relation into

several relations in a higher normal form

® Decomposition must be lossless: it must be possible to
reconstruct the original relation from the relations in the

decomposition

@ (c) Pearson and P.Fodor (CS Stony Brook)

Decomposition
® Schema R = (R, F)
® R is set a of attributes

e Fis a set of functional dependencies over R
Each key is described by a FD

® The decomposition of schema R is a collection of schemas
R. = (R, F,)) where
® R=\U.R. foralli (no new attributes)

® F.isaset of functional dependences involving only attributes of
R

® Fentails F, for all i (no new FDs)

® The decomposition of an instance, r, of R is a set of
relations r; = 7 (r) for all i

@ (c) Pearson and P.Fodor (CS Stony Brook)

~
Example Decomposition

Schema (R, F) where
R = {SSN, Name, Address, Hobby}
F = {SSN— Name, Address}
can be decomposed Into
R, = {SSN, Name, Address}
F, = {SSN — Name, Address}
and
R, = {SSN, Hobby}

F,={}

~
Lossless Schema Decomposition

o A decomposition should not lose information

® A decomposition (R,,...,R) of a schema, R, is lossless it every
valid instance, r, of R can be reconstructed from its components:

r=r, X r, <k ... X,

® where each r, = T, (1)

@ (c) Pearson and P.Fodor (CS Stony Brook)

L

Lossy Decomposition

The following is always the case:

rcr, X, oo X,
But the following is not always true:

ror, > r, ... X r,
Example: 71_5 r, r,

SSN Name Address SSN Name Name Address
1111 Joe 1 Pine 1111 Joe Joe 1 Pine
2222 Alice 2 Oak 2222 Alice{ LAlice 2 Oak
3333 Alice 3Pine | | 3333 Alice /JAlice 3 Pine

The tuples (2222, Alice, 3 Pine) and (3333, Alice, 2 Oak) are In the join,
but not in the original

(c) Pearson and P.Fodor (CS Stony Brook)

/

. Lossy Decompositions:
What is Actually Lost?

® In the previous example, the tuples (2222, Alice, 3 Pine) and
(3333, Alice, 2 Oak) were gained, not lost!
® Why do we say that the decomposition was lossy?

® What was lost is information:
® That 2222 lives at 2 Oak:
In the decomposition, 2222 can live at either 2 Oak or 3 Pine
® That 3333 lives at 3 Pine:

In the decomposition, 3333 can live at either 2 Oak or 3 Pine

@ (c) Pearson and P.Fodor (CS Stony Brook)

p
Testing for Losslessness

* A (binary) decomposition of R = (R, F)
into R, = (R, F)) and R, = (R,, F,) is
lossless if and only if :
® cither the FD

(R, "R,) =R, isin F"
® or the FD
(R, R,) =R, isin F*

@ (c) Pearson and P.Fodor (CS Stony Brook)

Example
Schema (R, F) where
R = {SSN, Name, Address, Hobby}
F = {SSN — Name, Address}
can be decomposed Into
R, = {SSN, Name, Address}
F, = {SSN — Name, Address}
and
R, = {SSN, Hobby}
F,={}
Since R, m R, =SSN and SSN — R, the
decomposition is lossless

(c) Pearson and P.Fodor (CS Stony Brook)

-

Intuition Behind the Test for
Losslessness

® Suppose R, " R, >R, . Then a row of r, can combine with
exactly one row of r, in the natural join (since in r, a
particular set of values for the attributes in R; M R, detines a
unique row)

............. C N s I N
............ al«" I 4 b
-
............ b S Y o
clv
Iy I

(c) Pearson and P.Fodor (CS Stony Brook)

g Proof of Lossless Condition

e Ircr, p<d I, —thisistrue for any decomposition

e rorp > hy

If R, » R, >R, then
card (r; <1 T,)=card (ry)
(since each row of r; joins with exactly one row of r,)

But card (r) > card (I';) (since r, is a projection of r)
and therefore card (r) > card (r, ><r,)

Hencer=r, > ,

@ (c) Pearson and P.Fodor (CS Stony Brook)

g Dependency Preservation

® Consider a decomposition of R = (R, F) into R; = (R,, F,) and
R,=(R,F)
* AnFD X =>Yof Frisin F, iff X UYC R

® An FD, f € F" may be in neither F, nor F,, nor even (F, U F,)"
Checking that f is true inr; or r, is (relatively) easy
Checking f in r,[X r, is harder — requires a join

Ideally: want to check FDs locally, in r; and r,, and have a guarantee that every
f€F holdsinr X r,

® The decomposition is dependency preserving itf the sets F and
F,U F, are equivalent: F" = (F, U F,)"
® Then checking all FDs in F, as r; and r, are updated, can be done by
checking F,inr, and F, in r,

@ (c) Pearson and P.Fodor (CS Stony Brook)

p
Dependency Preservation

° It fisan FD in F, but f isnotin F, U F,, there are two
possibilities:
+
°fe (F/VUF,)
If the constraints in F,; and F, are maintained, f will be maintained

automatically.
‘f g (F] U F2)+
f can be checked only by first taking the join of r, and r,. This is costly.

@ (c) Pearson and P.Fodor (CS Stony Brook)

Example

Schema (R, F) where
R = {SSN, Name, Address, Hobby}
F = {SSN — Name, Address}
can be decomposed into
R, = {SSN, Name, Address}
F, = {SSN — Name, Address}
and
R, = {SSN, Hobby}
F,={}
Since F = F, U F, the decomposition Is
dependency preservmg

and P.Fodor (CS Stony Brook)

Example

e Schema: (ABC; F), F= {4 > B,B> C,C> B}
L Decomposition:
® (AC, F,), F, = {A2>C}
Note: A2C ¢ F,butin F'
* (BC, F,), F,= {B> C,C> B}

*A>B¢ (F, UF,), but A2 Be (F, UF,)".

® So F" = (F, U F,)" and thus the decompositions is still dependency
preserving

@ (c) Pearson and P.Fodor (CS Stony Brook)

" Example A

® HasAccount (AcctNum, Clientld, Officeld)
fi: AcctNum —> Officeld
f>: Clientld, Officeld —> AcctNum

® Decomposition:

R, = (AcctNum, Officeld; {AcctNum —> Officeld})
R, = (AcctNum, Clientld; {})

® Decomposition is lossless:
R, N R,= {AcctNum} and AcctNum —> Officeld

®* In BCNF
* Not dependency preserving: f, & (F, U F,)"

® HasAccount does not have BCNF decompositions that are both lossless and
dependency preserving! (Check, eg, by enumeration)

® Hence: BCNF-I-lossless-l-dependency preserving decompositions are not
always achievable!

@ (c) Pearson and P.Fodor (CS Stony Brook) /

-
BCNF Decomposition Algorithm

Input: R=(R; F)

Decomp := R

while there is S=(S; F”) € Decomp and S notin BCNF do
Find X - Y e F” that violates BCNF // X 'isn’t a superkey in S
Replace S in Decomp with S; = (XY; F;), S,=(S- (Y -X); F,)
/I F; = all FDs of F” involving only attributes of XY
/Il F, = all FDs of F” involving only attributes of S - (Y - X)

end
return Decomp

@ (c) Pearson and P.Fodor (CS Stony Brook)

Simple Example

® HasAccount :

(Clientld, Officeld, AcctNum) Clientld,Officeld - AcctNum
AcctNum — Officeld

e Decompose using AcctNum — Officeld :

(Officeld, AcctNum) (Clientld , AcctNum)

BCNF: AcctNum is key BCNF (only trivial FDs)
FD: AcctNum — Officeld

(c) Pearson and P.Fodor (CS Stony Brook)

~ A Larger Example A

Given: R =(R; F) where R = ABCDEGHK and

F ={ABH— C, A~ DE, BGH— K, K—» ADH, BH— GE}
step 1: Find a FD that violates BCNF

Not ABH — C since (ABH)* includes all attributes

(BH is a key)

A — DE violates BCNF since A is not a superkey (A*=ADE)
step 2: Split R into:

R, = (ADE, F,.={A—> DE})

R, = (ABCGHK; F,={ABH—C, BGH—>K, K»>AH, BH—>G})

Note 1: R, isin BCNF

Note 2: Decomposition is lossless since A is a key of R,

Note 3: FDs K — D and BH — E are notin F, or F,. But

both can be derived from F,uU F,
(E.g., K> A and A— D implies K— D)
Hence, decomposition is dependency preserving.

@ (c) Pearson and P.Fodor (CS Stony Brook) /

4 N
Example (con’t)

Given: R, = (ABCGHK; {ABH—C, BGH—K, K»>AH, BH—->G})
step 1: Find a FD that violates BCNF.

Not ABH —» C or BGH — K, since BH is a key of R,

K— AH violates BCNF since K is not a superkey (K* =AH)
step 2: Split R, into:

R,, = (KAH, F,;={K — AH})

R;, = (BCGK; Fyu={})

Note 1: Both R,; and R,, are in BCNF.
Note 2: The decomposition is lossless (since K is a key of R,,)
Note 3: FDs ABH— C, BGH— K, BH— G arenotinF,,
or F,,,and they can’t be derived from F, U F,, U F,,.
Hence the decomposition is not dependency-preserving

@ (c) Pearson and P.Fodor (CS Stony Brook) /

4 Properties of BCNF Decomposition Algorithm A

Let X =Y violate BCNFin R = (R,F) and R, = (R, F)),
R, = (R, F,) is the resulting decomposition. Then:

® There are fewer violations of BCNF in R; and R, than there

were in R

® X —Y implies X is a key of R,

® Hence X —Y € F, does not violate BCNF in R, and, since
X—Y¢&F,, does not violate BCNF in R, either

® Suppose [is X' —>Y and f€E€F doesn’t violate BCNF in R. Iffe F,
or F, it does not violate BCNF in R, or R, either since X “is a

superkey of R and hence also of R, and R, .

@ (c) Pearson and P.Fodor (CS Stony Brook) /

-
Properties of BCNF Decomposition Algorithm

e A BCNF decomposition is not necessarily dependency preserving

® But always lossless:
since R, "R, =X, X—Y, and R, = XY

® BCNF+lossless+dependency preserving is sometimes unachievable

(recall HasAccount)

@ (c) Pearson and P.Fodor (CS Stony Brook)

e
Third Normal Form

® Compromise — Not all redundancy removed, but
dependency preserving decompositions are always possible

(and, of course, lossless)

e 3NF decomposition is based on a minimal cover

@ (c) Pearson and P.Fodor (CS Stony Brook)

/

©

Minimal Cover

A minimal cover of a set of dependencies, F, is a set of
dependencies, U, such that:

® Uis equivalentto F (F" = U")

® Al FDs in U have the form X — A where 4 is a single attribute

® Itis not possible to make U smaller (while preserving equivalence) by
Deleting an FD
Deleting an attribute from an FD (either from LHS or RHS)

® Ds and attributes that can be deleted in this way are called redundant

(c) Pearson and P.Fodor (CS Stony Brook)

-
Computing Minimal Cover

* Example: F = {4BH — CK,A— D,C — L,
BGH— L, L ->AD,E — L,BH — E}
* step 1: Make RHS of each FD into a single attribute

® Algorithm: Use the decomposition inference rule for FDs
® Example: L -4D replaced by L -4,L - D; ABH — CK by ABH —C, ABH
K
* step 2: Eliminate redundant attributes from LHS.

® Algorithm: It FD XB —> A € F (where B is a single attribute) and X — 4
is entailed by F, then B was unnecessary
® Example: Can an attribute be deleted from ABH — C?
Compute AB*, AH", BH"..
Since C € (BH)"p, BH—> C is entailed by F and 4 is redundant in ABH —> C.

@ (c) Pearson and P.Fodor (CS Stony Brook)

Computing Minimal Cover (con’t)

* step 3: Delete redundant FDs from F
® Algorithm: 1f F — {f} entails f, then f is redundant
If fis X — A then check if A EXJ“F_{],}

® Example: BGH —> Lis entailed by E— L, BH — E, so it is
redundant

® Note: The order of steps 2 and 3 cannot be interchanged!!
See the textbook for a counterexample

@ (c) Pearson and P.Fodor (CS Stony Brook)

4 N
Synthesizing a 3SNF Schema

Starting with a schema R = (R, F)

* step 1: Compute a minimal cover, U, of F. The decomposition is

based on U, but since U" = F the same functional dependencies will

hold

® A minimal cover for

F={ABH—CK, A—>D, C—E, BGH—L, L>AD, E— L, BH — E}
1S

U={BH—C, BH—K, A—D, C—>E, L>A, E—>L}

@ (c) Pearson and P.Fodor (CS Stony Brook) /

4 N
Synthesizing a 3NF schema (con’t)

* step 2: Partition U into sets U, U,, ... U, such that the LHS

of all elements of U, are the same
U, = {BH— C BH —»K},U,= {4 — D},
U,={C>E}, U ={L>A4},,U.={E—>L}

@ (c) Pearson and P.Fodor (CS Stony Brook) /

4 N
Synthesizing a 3NF schema (con’t)

* step 3: For each U, form schema R; = (R, U,), where R, is the set of

all attributes mentioned in U,

® Each FD of U will be in some R;. Hence the decomposition is dependency

preserving
R; = (BHCK; BH—C, BH—>K),
R, = (4D; A—>D),
R; = (CE; C —> E),
R, = (AL; L—4),
R. = (EL; E—>I)

@ (c) Pearson and P.Fodor (CS Stony Brook) /

~
Synthesizing a 3NF schema (con't)

* step 4: If no R, is a superkey of R, add schema R, = (R, {})
where R is a key of R.
* Ry = (BGH, {})
R, might be needed when not all attributes are necessarily contained in
R,UR,...UR
* A missing attribute, 4, must be part of all keys

(since it’s not in any FD of U, deriving a key constraint from U involves the
augmentation axiom)

R, might be needed even if all attributes are accounted for in R,UR, ...\UR|
* Example: (4BCD; {A=>B, C>D}).
Step 3 decomposition: R, = (4B; {A=2B}), R, = (CD; {C>D}).
Lossy! Need to add (AC; { }), for losslessness

® Step 4 guarantees lossless decomposition.

@ (c) Pearson and P.Fodor (CS Stony Brook)

BCNF Design Strategy

n?’

® The resulting decomposition, Ry, Ry, ... R, is

® Dependency preserving (since every FD in Uis a FD of some
schema)

® Lossless (although this is not obvious)
® In 3NF (although this is not obvious)

* Strategy for decomposing a relation

® Use 3NF decomposition first to get lossless, dependency
preserving decomposition

® If any resulting schema is not in BCNF, split it using the BCNF
algorithm (but this may yield a non-dependency preserving
result)

(c) Pearson and P.Fodor (CS Stony Brook)

Normalization Drawbacks

® By limiting redundancy, normalization helps maintain
consistency and saves space

e But performance of querying can suffer because related
information that was stored in a single relation is now
distributed among several

* Example: A join is required to get the names and grades
of all students taking CS305 in S2002.

SELECT S.Name, T.Grade
FROM Student S, Transcript T
WHERE S.Id = T.Studld AND
T.CrsCode = “CS305” AND T.Semester = ‘S2002’

(c) Pearson and P.Fodor (CS Stony Brook)

/
Denormalization

* Tradeoff: Judiciously introduce redundancy to improve
performance of certain queries

o Example: Add attribute Name to Transcript

SELECT T.Name, T.Grade
FROM Transcript' T
WHERE T.CrsCode = ‘CS305” aND T.Semester = “‘S2002’

® Join is avoided
® If queries are asked more frequently than Transcript is modified, added
redundancy might improve average performance

° But,Transcript' is no longer in BCNF since key is (Studld, CrsCode,
Semester) and Studld —> Name

@ (c) Pearson and P.Fodor (CS Stony Brook)

/

©

Fourth Normal Form

SSN PhoneN ChildSSN
Al 111111 123-4444) 222222
--------------- o) 111111 123-4444 /333333
. redundancy 7717113215555 -, 222222
"""""""""" | 111111 321-5555 . 333333
222222 987-6666 444444
222222 TTT-T777 444444

-| 222222 987-6666 555555 -

\| 222222 " 777-7777.~ 555555

e Relation has redundant data

not because of the FDs

(c) Pearson and P.Fodor (CS Stony Brook)

Person

® Yet it is in BCNF (since there are no non-trivial FDs)

® Redundancy is due to set valued attributes (in the E-R sense),

-
Multi-Valued Dependency

® Problem: multi-valued (or binary join) dependency

* Definition: If every instance of schema R can be (losslessly)
decomposed using attribute sets (X,Y) such that:

r=rxy(r) D 7my(r)

then a multi-valued dependency
R=7zx(R) X 7v(R)
holdsinr

EX: Person=~rrgy pnonen (PESON) <] TT ssn chitassn (Person)

@ (c) Pearson and P.Fodor (CS Stony Brook)

-
Fourth Normal Form (4NF)

® A schema is in fourth normal form (4NF) it for every multi-

valued dependency

R=XY
In that schema, either:
-XcYorYc X (trivial case); or
- XN Yisasuperkey of R (e, XN Y—>R)

@ (c) Pearson and P.Fodor (CS Stony Brook)

~
Fourth Normal Form (Cont’d)

® Intuition: it X MY—> R, there is a unique row in relation r for
cach value of X MY (hence no redundancy)

® Ex: SSN does not uniquely determine PhoneN or ChildSSN, thus
Person is not in 4NF.

® Solution: Decompose R into X and Y

® Decomposition is lossless — but not necessarily dependency
preserving (since 4NF implies BCNF — next)

@ (c) Pearson and P.Fodor (CS Stony Brook)

" 4ANF Implies BCNF

® Suppose R is in 4NF and X —>Yis an FD.

® RI = XY, R2 =R —Yis alossless decomposition of R

® Thus R has the multi-valued dependency:

R=R, 1 R,

— Since R is Iin 4NF, one of the following must hold :
— XY R-Y (an impossibility)

— R-Yc XY (l.e., R=XY anc
- XYNR=Y (=X) lIsasuper

X 1S a superkey)
Key

— Hence X —> Y satisfies BCNF cono

@ (c) Pearson and P.Fodor (CS Stony Brook)

ition

