
CSE532
Theory of Database Systems
The Relational Data Model
CSE 532, Theory of Database Systems

Ston Brook Uni ersit

e e at o a ata ode

Stony Brook University

http://www.cs.stonybrook.edu/~cse532

Table
 For relational databases data is stored in tables.
 Set of rows (no duplicates)Set of rows (no duplicates)
 Each rowrow describes a different entity
 Each columncolumn states a particular fact about each entity
 Each column has an associated domaindomain
 Domain of Status = {fresh, soph, junior, senior}

Id Name Address Status
1111 John 123 Main fresh
2222 Mary 321 Oak soph2222 Mary 321 Oak soph
1234 Bob 444 Pine soph
9999 Joan 777 Grand senior

(c) Pearson and P.Fodor (CS Stony Brook)

Relation
 Mathematical entity corresponding to a table
 row ~ tuplep
 column ~ attribute

 Values in a tuple are related to each other
h l  John lives at 123 Main

 Relation R can be thought of as predicate R
 R(x,y,z) is true iff tuple (x y z) is in RR(x,y,z) is true iff tuple (x,y,z) is in R
 a tuple is an ordered fixed-sized sequence

 R is a set of tuples: R = {(John, 111 Main St, fresh), ...}

(c) Pearson and P.Fodor (CS Stony Brook)

Creating TablesCreating Tables

CREATE TABLE StudentStudent (
Id INTEGERId INTEGER,
Name CHAR(20),
Address CHAR(50),
St t CHAR(10)Status CHAR(10),
PRIMARY KEY (Id))

ConstraintConstraint

(c) Pearson and P.Fodor (CS Stony Brook)

Operations

 Operations on relations are precisely defined
 Take relation(s) as argument produce new relation as result Take relation(s) as argument, produce new relation as result
 Unary (e.g., delete certain rows)

 Binary (e.g., union, Cartesian product)

 Corresponding operations defined on tables as well

 Using mathematical properties, equivalenceequivalence can be
decided
 Important for query optimizationquery optimization::

?
op1(T1,op2(T2)) = op3(op2(T1),T2)

(c) Pearson and P.Fodor (CS Stony Brook)

Structured Query Language: SQL

 Language for manipulating tables

 D l tiD l ti Statement specifies h t needs to  DeclarativeDeclarative – Statement specifies what needs to
be obtained, not how it is to be achieved (e.g.,
how to access data, the order of operations)how to access data, the order of operations)

 Due to declarativity of SQL, DBMS determines
evaluation strategygy
 This greatly simplifies application programs
 But DBMS is not infallible: programmers should have an idea of

strategies used by DBMS so they can design better tables,
indices, statements, in such a way that DBMS can evaluate
statements efficiently

(c) Pearson and P.Fodor (CS Stony Brook)

y

Structured Query Language (SQL)

SELECT <attribute list>
FROM <table list >

 Language for constructing a new table from argument

FROM table list
WHERE <condition>

g g g g
table(s)
 FROM indicates source tables
 WHERE indicates which rows to retain WHERE indicates which rows to retain
 It acts as a filter

 SELECT indicates which columns to extract from retained rows
 P j ti Projection

 The result is a table.

(c) Pearson and P.Fodor (CS Stony Brook)

Simple Example

SELECT NameSELECT Name
FROM Student
WHERE Id > 4999

Id Name Address Status Name
1234 John 123 Main fresh
5522 Mary 77 Pine senior
9876 Bill 83 Oak junior

Mary
Bill

9876 Bill 83 Oak junior

Student
Result

(c) Pearson and P.Fodor (CS Stony Brook)

More Examples p

SELECT Id, Name FROM StudentStudent

SELECT Id, Name FROM StudentStudent
WHERE Status = ‘senior’

SELECT * FROM StudentStudent
WHERE Status = ‘senior’ result is a table

ith l

SELECT COUNT(*) FROM StudentStudent

with one column
and one row

SELECT COUNT() FROM StudentStudent
WHERE Status = ‘senior’

(c) Pearson and P.Fodor (CS Stony Brook)

Complex Examplep p
 Goal: table in which each row names a senior and gives a

course taken and gradecourse taken and grade

 Combines information in two tables:
 StudentStudent: Id, Name, Address, Status

 TranscriptTranscript: StudId, CrsCode, Semester, Grade

SELECT Name, CrsCode, GradeSELECT Name, CrsCode, Grade
FROM StudentStudent, TranscriptTranscript
WHERE StudId = Id AND Status = ‘senior’

(c) Pearson and P.Fodor (CS Stony Brook)

Join T1T1 T2

a1 a2 a3
A 1 xxy
B 17 rst

b1 b2
3.2 17
4 8 17

SELECT a1, b1
FROM T1T1, T2T2
WHERE a2 = b2 B 17 rst 4.8 17

O

a1 a2 a3 b1 b2
A 1 xxy 3 2 17

WHERE a2 = b2

FROM T1T1, T2T2
yields:

A 1 xxy 3.2 17
A 1 xxy 4.8 17
B 17 rst 3.2 17
B 17 t 4 8 17B 17 rst 4.8 17

WHERE a2 = b2
yields:

B 17 rst 3.2 17
B 17 t 4 8 17yields: B 17 rst 4.8 17

SELECT a1 b1 B 3.2

(c) Pearson and P.Fodor (CS Stony Brook)

SELECT a1, b1
yields result:

B 3.2
B 4.8

Modifying TablesModifying Tables

UPDATE StudentUPDATE Student
SET Status = ‘soph’
WHERE Id = 111111111

INSERT INTO StudentStudent (Id, Name, Address, Status)
VALUES (999999999, ‘Bill’, ‘432 Pine’, ‘senior’)

DELETE FROM StudentStudent
WHERE Id = 111111111WHERE Id 111111111

(c) Pearson and P.Fodor (CS Stony Brook)

Transactions
 Many enterprises use databases to store information about

their state
 E.g., balances of all depositors

 The occurrence of a real-world event that changes the
enterprise state requires the execution of a program that enterprise state requires the execution of a program that
changes the database state in a corresponding way
 E.g., balance must be updated when you deposit

 A transactiontransaction is a program that accesses the database in response
to real-world events

(c) Pearson and P.Fodor (CS Stony Brook)

Transactions
 Transactions are not just ordinary programs

 Additional requirements are placed on transactions (and  Additional requirements are placed on transactions (and
particularly their execution environment) that go beyond the
requirements placed on ordinary programs.
 Atomicity
 Consistency

I l i ACID properties Isolation
 Durability

ACID properties

(c) Pearson and P.Fodor (CS Stony Brook)

Atomicityy
 A real-world event either happens or does not happen.
 Student either registers or does not register Student either registers or does not register.

 Similarly, the system must ensure that either the transaction
runs to completion (commits) or, if it does not complete, it has p () , p ,
no effect at all (aborts).
 This is not true of ordinary programs. A hardware or software

f l ld l f l ll d dfailure could leave files partially updated.

(c) Pearson and P.Fodor (CS Stony Brook)

Integrity Constraintsg y
 Rules of the enterprise generally limit the occurrence of

certain real-world events.
 Student cannot register for a course if current number

of registrants = maximum allowed
 Correspondingly allowable database states are restricted Correspondingly, allowable database states are restricted.
 cur_reg <= max_reg

 These limitations are expressed as integrityintegrity constraintsconstraints, which p g yg y
are assertions that must be satisfied by the database state.

(c) Pearson and P.Fodor (CS Stony Brook)

Consistencyy

 Transaction designer must ensure that
IF the database is in a state that satisfies all integrity constraints

when execution of a transaction is started
THEN when the transaction completes: THEN when the transaction completes:
 All integrity constraints are once again satisfied (constraints can be violated

in intermediate states)

 N d t b t t ti fi ifi ti f t ti New database state satisfies specifications of transaction

(c) Pearson and P.Fodor (CS Stony Brook)

Isolation

 Deals with the execution of multiple transactions
concurrentlyconcurrently.

 If the initial database state is consistent and accurately
reflects the real-world state, then the serialserial (one after reflects the real world state, then the serialserial (one after
another) execution of a set of consistent transactions
preserves consistency.

 But serial execution is inadequate from a performance
perspective.

(c) Pearson and P.Fodor (CS Stony Brook)

Durability
 The system must ensure that once a transaction commits its

effect on the database state is not lost in spite of subsequent effect on the database state is not lost in spite of subsequent
failures.
 Not true of ordinary systems. For example, a media failure

after a program terminates could cause the file system to be
restored to a state that preceded the execution of the program.

(c) Pearson and P.Fodor (CS Stony Brook)

More on Isolation
 Concurrent (interleaved) execution of a set of transactions

offers performance benefits, but might not be correct.p , g
 Example: Two students execute the course registration

transaction at about the same time
(cur_reg is the number of current registrants)

T1: read(cur_reg : 29) write(cur_reg : 30)
T2: read(cur_reg : 29) write(cur_reg : 30)

time 

Result: Database state no longer corresponds to

(c) Pearson and P.Fodor (CS Stony Brook)

real-world state, integrity constraint violated.

More on Isolation
 The effect of concurrently executing a set of transactions

must be the same as if they had executed serially in some y y
order
 The execution is thus not serial, but serializableserializable

S l bl h b f h l  Serializable execution has better performance than serial,
but performance might still be inadequate. Database
systems offer several isolation levels with different syste s o e seve a so at o eve s w t e e t
performance characteristics (but some guarantee
correctness only for certain kinds of transactions – not in

l)general)

(c) Pearson and P.Fodor (CS Stony Brook)

ACID PropertiesACID Properties
 The transaction monitor is responsible for ensuring

atomicity, durability, and (the requested level of) y, y, (q)
isolation.
 Hence it provides the abstraction of failure-free, non-

t i t tl i lif i th t k f th concurrent environment, greatly simplifying the task of the
transaction designer.

 The transaction designer is responsible for ensuring the g p g
consistency of each transaction, but doesn’t need to
worry about concurrency and system failures.

(c) Pearson and P.Fodor (CS Stony Brook)

Data and Its Structure

 Data is actually stored as bits, but it is difficult to work
with data at this levelwith data at this level.

 It is convenient to view data at different levels of
abstraction.abstraction.

 Schema: Description of data at some abstraction level.
Each level has its own schema.

 We will be concerned with three schemas: physicalphysical,
conceptualconceptual, and externalexternal.pp

(c) Pearson and P.Fodor (CS Stony Brook)

Physical Data Level

 Physical schemaPhysical schema describes details of how data is stored: tracks,
cylinders, indices etc.y ,

 Early applications worked at this level – explicitly dealt with details.

 Problem: Routines were hard-coded to deal with physical p y
representation.
 Changes to data structure difficult to make.
 Application code becomes complex since it must deal with details.
 Rapid implementation of new features impossible.

(c) Pearson and P.Fodor (CS Stony Brook)

Conceptual Data Level

 Hides details.
 I th l ti l d l th t l h  In the relational model, the conceptual schema

presents data as a set of tables.

 DBMS maps from conceptual to physical schema p p p y
automatically.

 Physical schema can be changed without
ApplicationApplication

Conceptual
view of data

Physical
y g

changing application:
 DBMS would change mapping from conceptual to

DBMSDBMS
Physical
view of data

physical transparently
 This property is referred to as physical data

independence

(c) Pearson and P.Fodor (CS Stony Brook)

p

External Data Level
 In the relational model, the external schemaexternal schema also presents data

as a set of relations.
 An external schema specifies a viewview of the data in terms of the

conceptual level. It is tailored to the needs of a particular
category of userscategory of users.
 Portions of stored data should not be seen by some users.
 Students should not see their files in full.
 Faculty should not see billing data.

 Information that can be derived from stored data might be
viewed as if it were stored.
 GPA not stored, but calculated when needed.

(c) Pearson and P.Fodor (CS Stony Brook)

External Data Level (con’t)

 Application is written in terms of an external schema.
 A view is computed when accessed (not stored) A view is computed when accessed (not stored).
 Different external schemas can be provided to different

categories of users.g
 Translation from external to conceptual done

automatically by DBMS at run time.
 Conceptual schema can be changed without changing

application:
 Mapping from external to conceptual must be changed Mapping from external to conceptual must be changed.

 Referred to as conceptual data independence.

(c) Pearson and P.Fodor (CS Stony Brook)

Levels of Abstraction

billi

Vi 3Vi 2Vi 1

payroll recordsbilling

ExternalView 3View 2View 1

Conceptual schema

External
schemas

Conceptual schema

Physical schema

(c) Pearson and P.Fodor (CS Stony Brook)

Data Model
 Schema: description of data at some level (e.g., tables,

attributes, constraints, domains)
d l l d l f d b Model: tools and language for describing:

 Conceptual and external schema
 Data definition language (DDL)f g g ()

 Integrity constraints, domains (DDL)
 Operations on data

 Data manipulation language (DML) Data manipulation language (DML)

 Directives that influence the physical schema (affects
performance, not semantics)

 S d fi i i l (SDL) Storage definition language (SDL)

(c) Pearson and P.Fodor (CS Stony Brook)

R l ti l M d lRelational Model
 A particular way of structuring data (using relations)p y g (g)
 Simple
 Mathematically based
 Expressions ( queriesqueries) can be analyzed by DBMS
 Queries are transformed to equivalent expressions automatically

(query optimization)(q y p)
 Optimizers have limits (=> programmer needs to know how queries are

evaluated and optimized)

(c) Pearson and P.Fodor (CS Stony Brook)

Relation Instance
 Relation is a set of tuples
 Tuple ordering immaterial Tuple ordering immaterial
 No duplicates
 CardinalityCardinality of relation = number of tuples

 All tuples in a relation have the same structure;
constructed from the same set of attributes
 Attributes are named (ordering is immaterial)
 Value of an attribute is drawn from the attribute’s domaindomain
 There is also a special value null (value unknown or undefined) which  There is also a special value null (value unknown or undefined), which

belongs to no domain

 ArityArity of relation = number of attributes

(c) Pearson and P.Fodor (CS Stony Brook)

Relation Schema
 Relation name
 Attribute names & domainsAttribute names & domains
 Integrity constraints like
 The values of a particular attribute in all tuples are unique
 The values of a particular attribute in all tuples are greater than 0

 Default values

(c) Pearson and P.Fodor (CS Stony Brook)

Relational Database
 Finite set of relations
 Each relation consists of a schema and an instanceEach relation consists of a schema and an instance
 Database schemaDatabase schema = set of relation schemas constraints among

relations (interinter--relationalrelational constraints)
 Database instanceDatabase instance = set of (corresponding) relation instances

(c) Pearson and P.Fodor (CS Stony Brook)

Database Schema (Example)

 StudentStudent (Id: INT, Name: STRING, Address: STRING,
Status: STRING)Status: STRING)

 ProfessorProfessor (Id: INT, Name: STRING, DeptId: DEPTS)
 CourseCourse (DeptId: DEPTS, CrsName: STRING, CourseCourse (DeptId: DEPTS, CrsName: STRING,

CrsCode: COURSES)
 TranscriptTranscript (CrsCode: COURSES, StudId: INT,pp (, ,

Grade: GRADES, Semester: SEMESTERS)
 DepartmentDepartment(DeptId: DEPTS, Name: STRING)

(c) Pearson and P.Fodor (CS Stony Brook)

Integrity Constraints

 Part of schema
 Restriction on state (or of sequence of states) of data  Restriction on state (or of sequence of states) of data

base
 Enforced by DBMSy
 IntraIntra--relationalrelational - involve only one relation
 Part of relation schema

 ll  e.g., all Ids are unique

 InterInter--relationalrelational - involve several relations
 Part of relation schema or database schemaPart of relation schema or database schema

(c) Pearson and P.Fodor (CS Stony Brook)

Constraint Checking

 Automatically checked by DBMS

 Protects database from errors Protects database from errors

 Enforces enterprise rules

(c) Pearson and P.Fodor (CS Stony Brook)

Kinds of Integrity Constraints

 Static – restricts legal states of database
 Syntactic (structural)Syntactic (structural)
 e.g., all values in a column must be unique

 Semantic (involve meaning of attributes)
 e.g., cannot register for more than 18 credits

 Dynamic – limitation on sequences of database states
 e g cannot raise salary by more than 5% e.g., cannot raise salary by more than 5%

(c) Pearson and P.Fodor (CS Stony Brook)

Key Constraint

 A key constraintkey constraint is a sequence of attributes A1,…,An
(n=1 possible) of a relation schema, S, with the (p) , ,
following property:
 A relation instance s of S satisfies the key constraint iff at most

one row in s can contain a particular set of values a a for one row in s can contain a particular set of values, a1,…,an, for
the attributes A1,…,An

 Minimality: no subset of A1,…,An is a key constraint

 Key
 Set of attributes mentioned in a key constraint
 e g Id in StudentStudent e.g., Id in StudentStudent,
 e.g., (StudId, CrsCode, Semester) in TranscriptTranscript

 It is minimal: no subset of a key is a key
 (Id Name) is not a key of StudentStudent

(c) Pearson and P.Fodor (CS Stony Brook)

 (Id, Name) is not a key of StudentStudent

Key Constraint (cont’d)

 Superkey - set of attributes containing key
 (Id Name) is a superkey of StudentStudent(Id, Name) is a superkey of StudentStudent

 Every relation has a key

 Relation can have several keys:y :
 primary key: Id in Student (can’t be Student (can’t be nullnull)
 candidate key: (Name, Address) in StudentStudent

(c) Pearson and P.Fodor (CS Stony Brook)

Foreign Key Constraint

 Referential integrity: Item named in one relation must refer to tuples
that describe that item in another

f TranscriptTranscript (CrsCode) references CourseCourse(CrsCode)

 ProfessorProfessor(DeptId) references DepartmentDepartment(DeptId)

 Attribute A1 is a foreign key of R1R1 referring to attribute A2 in R2R2, if 1 f g y g 2 ,
whenever there is a value v of A1, there is a tuple of R2R2 in which A2 has
value v, and A2 is a key of R2R2
 This is a special case of referential integrity: A must be a candidate key of R2R2 (e g  This is a special case of referential integrity: A2 must be a candidate key of R2R2 (e.g.,

CrsCode is a key of Course Course in the above)

 If no row exists in R2 => violation of referential integrity

 N t ll f R2 d t b f d l ti hi i t t i ( Not all rows of R2 need to be referenced: relationship is not symmetric (e.g., some
course might not be taught)

 Value of a foreign key might not be specified (DeptId column of some professor
i ht b ll)

(c) Pearson and P.Fodor (CS Stony Brook)

might be null)

Foreign Key Constraint (Example)

A2
v3A1 v3
v5
v1
v6

A1
v1
v2
v3

v2
v7
v4

v4
null
v3

R1R1 R2R2
Foreign key

Candidate key

(c) Pearson and P.Fodor (CS Stony Brook)

Foreign Key (cont’d)

 Names of the attrs A1 and A2 need not be the same.
 With tables:

TeachingTeaching(CrsCode: COURSES Sem: SEMESTERS ProfId: INT)

ProfId attribute of TeachingTeaching references Id attribute of ProfessorProfessor

TeachingTeaching(CrsCode: COURSES, Sem: SEMESTERS, ProfId: INT)
ProfessorProfessor(Id: INT, Name: STRING, DeptId: DEPTS)

 R1R1 and R2R2 need not be distinct.
 Employee(Id:INT, MgrId:INT, ….)
 EmployeeEmployee(MgrId) references EmployeeEmployee(Id) EmployeeEmployee(MgrId) references EmployeeEmployee(Id)

 Every manager is also an employee and hence has a unique row in
EmployeeEmployee

(c) Pearson and P.Fodor (CS Stony Brook)

Foreign Key (cont’d)

 Foreign key might consist of several columns
 (CrsCode Semester) of TranscriptTranscript references  (CrsCode, Semester) of TranscriptTranscript references

(CrsCode, Semester) of TeachingTeaching

 R1R1(A1, …An) references R2R2(B1, …Bn)(1 n) (1 n)
 Ai and Bi must have same domains (although not necessarily the same

names)
B B b d d k f R2R2 B1,…,Bn must be a candidate key of R2R2

(c) Pearson and P.Fodor (CS Stony Brook)

Inclusion DependencyInclusion Dependency

 Referential integrity constraint that is not a foreign key g y g y
constraint

 TeachingTeaching(CrsCode, Semester) referencesgg(,)
TranscriptTranscript(CrsCode, Semester)

(no empty classes allowed)

 Target attributes do not form a candidate key in
Transcript Transcript (StudId missing)

 No simple enforcement mechanism for inclusion
dependencies in SQL (requires assertions -- later)

(c) Pearson and P.Fodor (CS Stony Brook)

SQL

 Language for describing database schema and operations on
tablestables

 Data Definition Language (DDL): sublanguage of SQL
for describing schema

(c) Pearson and P.Fodor (CS Stony Brook)

Tables

 SQL entity that corresponds to a relation

 An element of the database schema An element of the database schema

 SQL-92 is currently the most supported standard but is now
superseded by SQL:1999 and SQL:2003p y Q Q

 Database vendors generally deviate from the standard, but
eventually converge

(c) Pearson and P.Fodor (CS Stony Brook)

Table Declaration

CREATE TABLE StudentStudent (
Id: INTEGER,,
Name: CHAR(20),
Address: CHAR(50),
Status: CHAR(10)Status: CHAR(10)

)

101222333 John 10 Cedar St Freshman

Id Name Address Status

234567890 Mary 22 Main St Sophomore

(c) Pearson and P.Fodor (CS Stony Brook)

StudentStudent

Primary/Candidate Keys

CREATE TABLE CourseCourse (
CrsCode CHAR(6),
CrsName CHAR(20),
DeptId CHAR(4),
Descr CHAR(100),Descr CHAR(100),
PRIMARY KEY (CrsCode),
UNIQUE (DeptId, CrsName) -- candidate key

))

Comments start

(c) Pearson and P.Fodor (CS Stony Brook)

with 2 dashes

Null

 Problem: Not all information might be known when row
is inserted (e.g., Grade might be missing from TranscriptTranscript)

 l h b l bl f l  A column might not be applicable for a particular row
(e.g., MaidenName if row describes a male)

 Solution: Use place holder null Solution: Use place holder – null
 Not a value of any domain (although called null value)
 Indicates the absence of a value

 Not allowed in certain situations
 Primary keys and columns constrained by NOT NULL

(c) Pearson and P.Fodor (CS Stony Brook)

Default Value

-Value to be assigned if attribute value in a row
is not specifiedis not specified

CREATE TABLE StudentStudent (
Id INTEGER,,
Name CHAR(20) NOT NULL,
Address CHAR(50),
Status CHAR(10) DEFAULT ‘freshman’Status CHAR(10) DEFAULT freshman ,
PRIMARY KEY (Id))

(c) Pearson and P.Fodor (CS Stony Brook)

Semantic Constraints in SQL

 Primary key and foreign key are examples of structural
constraintsconstraints

 Semantic constraints
 Express the logic of the application at hand:p g pp
 e.g., number of registered students  maximum enrollment

(c) Pearson and P.Fodor (CS Stony Brook)

Semantic Constraints (cont’d)Semantic Constraints (cont d)

 Used for application dependent conditionspp p
 Example: limit attribute values

CREATE TABLE T i tT i t (CREATE TABLE TranscriptTranscript (
StudId INTEGER,
CrsCode CHAR(6),
Semester CHAR(6),
Grade CHAR(1),
CHECK (Grade IN (‘A’, ‘B’, ‘C’, ‘D’, ‘F’)),

E h i bl i f di i

CHECK (Grade IN (A , B , C , D , F)),
CHECK (StudId > 0 AND StudId < 1000000000))

(c) Pearson and P.Fodor (CS Stony Brook)

 Each row in table must satisfy condition

Semantic Constraints (cont’d)

 Example: relate values of attributes in different columns

CREATE TABLE EmployeeEmployee (
Id INTEGER,
Name CHAR(20),
Salary INTEGER,
MngrSalary INTEGER,MngrSalary INTEGER,
CHECK (MngrSalary > Salary))

(c) Pearson and P.Fodor (CS Stony Brook)

Constraints – Problems

 Problem 1: Empty table always satisfies all CHECK
constraints (an idiosyncrasy of the SQL standard) constraints (an idiosyncrasy of the SQL standard)

CREATE TABLE EmployeeEmployee (
Id INTEGERId INTEGER,
Name CHAR(20),
Salary INTEGER,
M S l INTEGERMngrSalary INTEGER,
CHECK (0 < (SELECT COUNT (*) FROM EmployeeEmployee)))

 If EmployeeEmployee is empty, there are no rows on which to evaluate
the CHECK condition.

(c) Pearson and P.Fodor (CS Stony Brook)

Constraints – ProblemsConstraints Problems

 Problem 2: Inter-relational constraints should be symmetric
CREATE TABLE EmployeeEmployee (

Id INTEGER,
Name CHAR(20)Name CHAR(20),
Salary INTEGER,
MngrSalary INTEGER,

 Why should constraint be in EmployeeEmployee an not ManagerManager?

CHECK ((SELECT COUNT (*) FROM ManagerManager) <
(SELECT COUNT (*) FROM EmployeeEmployee)))

Why should constraint be in EmployeeEmployee an not ManagerManager?
 What if EmployeeEmployee is empty?

(c) Pearson and P.Fodor (CS Stony Brook)

Assertion

 Element of schema (like table)

 S t i ll ifi i t l ti l t i t Symmetrically specifies an inter-relational constraint

 Applies to entire database (not just the individual rows of a
single table) single table)
 hence it works even if EmployeeEmployee is empty

CREATE ASSERTION DontFireEveryoneDontFireEveryone
CHECK (0 < SELECT COUNT (*) FROM EmployeeEmployee)

(c) Pearson and P.Fodor (CS Stony Brook)

Assertion

CREATE ASSERTION KeepEmployeeSalariesDownKeepEmployeeSalariesDown
CHECK (NOT EXISTS(

SELECT * FROM EmployeeEmployee E
WHERE E S l > E M S l))WHERE E.Salary > E.MngrSalary))

(c) Pearson and P.Fodor (CS Stony Brook)

Assertions and Inclusion
D dDependency

CREATE ASSERTION NoEmptyCoursesNoEmptyCoursesCREATE ASSERTION NoEmptyCoursesNoEmptyCourses
CHECK (NOT EXISTS (

SELECT * FROM TeachingTeaching T
WHERE -- for each row T check

-- the following condition
NOT EXISTS (NOT EXISTS (
SELECT * FROM TranscriptTranscript R
WHERE T.CrsCode = R.CrsCode

AND T Semester = R Semester)
Courses with no
students AND T.Semester = R.Semester)

))

St d t i

(c) Pearson and P.Fodor (CS Stony Brook)

Students in a
particular course

Domains

 Possible attribute values can be specified
 Using a CHECK constraint or Using a CHECK constraint or
 Creating a new domain

 Domain can be used in several declarations
 Domain is a schema element

CREATE DOMAIN GradesGrades CHAR (1)
CHECK (VALUE IN (‘A’, ‘B’, ‘C’, ‘D’, ‘F’))

CREATE TABLE TranscriptTranscript (
….,
Grade: GradesGrades

(c) Pearson and P.Fodor (CS Stony Brook)

Grade: GradesGrades,
…)

Foreign Key Constraint

CREATE TABLE TeachingTeaching (
ProfId INTEGER,
C C d CHAR (6)CrsCode CHAR (6),
Semester CHAR (6),
PRIMARY KEY (CrsCode, Semester),()
FOREIGN KEY (CrsCode) REFERENCES CourseCourse,
FOREIGN KEY (ProfId) REFERENCES ProfessorProfessor (Id))

(c) Pearson and P.Fodor (CS Stony Brook)

Foreign Key Constraint

CrsCode

x

CrsCode

CrsCode ProfId

x y CourseCourse
Id

TeachingTeaching

CourseCourse

y

(c) Pearson and P.Fodor (CS Stony Brook)

ProfessorProfessor

Circularity in Foreign Key ConstraintCircularity in Foreign Key Constraint

A1 A2 A3 B1 B2 B3

y x

A1 A2 A3 B1 B2 B3

x yAA BB

candidate key: A1
foreign key: A references B(B)

candidate key: B1
foreign key: B references A(A)foreign key: A3 references B(B1) foreign key: B3 references A(A1)

Problem 1: Creation of AA requires existence of BB and vice versa
S l ti CREATE TABLE AA () f i kSolution: CREATE TABLE AA (……) -- no foreign key

CREATE TABLE BB (……) -- include foreign key
ALTER TABLE AA

ADD CONSTRAINT cons

(c) Pearson and P.Fodor (CS Stony Brook)

ADD CONSTRAINT cons
FOREIGN KEY (A3) REFERENCES B (B1)

Circularity in Foreign Key Constraint (cont’d)

 Problem 2: Insertion of row in A requires prior existence of
row in B and vice versa

 Solution: use appropriate constraint checking mode:
 IMMEDIATEIMMEDIATE checkingg
 DEFERREDDEFERRED checking

(c) Pearson and P.Fodor (CS Stony Brook)

Reactive Constraints

 Constraints enable DBMS to recognize a bad state and
reject the statement or transaction that creates it

 More generally, it would be nice to have a mechanism that
allows a user to specify how to reactreact to a violation of a
constraint

 SQL-92 provides a limited form of such a reactive
h i f f i k i l timechanism for foreign key violations

(c) Pearson and P.Fodor (CS Stony Brook)

Handling Foreign Key Violations Handling Foreign Key Violations

 Insertion into AA: Reject if no row exists in B containing j g
foreign key of inserted row

 Deletion from BB:
 NO ACTION: Reject if row(s) in AA references row to be

deleted (default response)

x
x

AA BB
?

(c) Pearson and P.Fodor (CS Stony Brook)

Request to delete
row rejected

Handling Foreign Key Violations Handling Foreign Key Violations
(cont’d)

 Deletion from BB (cont’d):
 SET NULL: Set value of foreign key in referencing row(s) in A g y g ()

to nullnull

nullA B

x

Row

(c) Pearson and P.Fodor (CS Stony Brook)

Row
deleted

Handling Foreign Key Violations (cont’d)Handling Foreign Key Violations (cont d)
 Deletion from BB (cont’d):
 SET DEFAULT: Set value of foreign key in referencing row(s)  SET DEFAULT: Set value of foreign key in referencing row(s)

in AA to default value (y) which must exist in BB

yA By

x

R

(c) Pearson and P.Fodor (CS Stony Brook)

Row
deleted

Handling Foreign Key Violations
(t’d)(cont’d)

 Deletion from BB (cont’d):
 CASCADE: Delete referencing row(s) in AA as well

A BA B

x x

(c) Pearson and P.Fodor (CS Stony Brook)

Handling Foreign Key Violations (cont’d)

 Update (change) foreign key in AA: Reject if no row exists in BB
containing new foreign keycontaining new foreign key

 Update candidate key in BB (to z) – same actions as with
deletion:
 NO ACTION: Reject if row(s) in AA references row to be updated

(default response)

 SET NULL: Set value of foreign key to null

 SET DEFAULT: Set value of foreign key to default
 CASCADE: Propagate z to foreign key Cascading when CASCADE: Propagate z to foreign key Cascading when

key in BB changed
from x to z

(c) Pearson and P.Fodor (CS Stony Brook)

z
z

AA BB

Handling Foreign Key Violations
(cont’d)(cont d)
 The action taken to repair the violation of a foreign key

constraint in AA may cause a violation of a foreign key
constraint in CC

 The action specified in C controls how that violation is handled; p
 If the entire chain of violations cannot be resolved, the initial deletion

from B is rejected.

xy
y

(c) Pearson and P.Fodor (CS Stony Brook)

x
CC AA BB

Specifying Actions

CREATE TABLE TeachingTeaching (
ProfId INTEGER,
CrsCode CHAR (6),
Semester CHAR (6),
PRIMARY KEY (CrsCode, Semester),PRIMARY KEY (CrsCode, Semester),

FOREIGN KEY (ProfId) REFERENCES ProfessorProfessor (Id)
ON DELETE NO ACTION
ON UPDATE CASCADE,

FOREIGN KEY (CrsCode) REFERENCES CourseCourse (CrsCode)
ON DELETE SET NULL
ON UPDATE CASCADE)

(c) Pearson and P.Fodor (CS Stony Brook)

Triggers

 A more general mechanism for handling events
 Not in SQL 92 but is in SQL:1999 Not in SQL-92, but is in SQL:1999

 Trigger is a schema element (like table, assertion, …)

CREATE TRIGGER CrsChangeCrsChange
AFTER UPDATE OF CrsCode, Semester ON TranscriptTranscript
WHEN (Grade IS NOT NULL)

ROLLBACK

(c) Pearson and P.Fodor (CS Stony Brook)

Views

 Schema element

 Part of external schema

 A virtual table constructed from actual tables on the fly
 Can be accessed in queries like any other table
 Not materialized, constructed when accessed
 Si il t b ti i di i Similar to a subroutine in ordinary programming

(c) Pearson and P.Fodor (CS Stony Brook)

Views - Examples

CREATE VIEW CoursesTakenCoursesTaken (StudId CrsCode Semester) AS

Part of external schema suitable for use in Bursar’s office:

CREATE VIEW CoursesTakenCoursesTaken (StudId, CrsCode, Semester) AS
SELECT T.StudId, T.CrsCode, T.Semester
FROM TranscriptTranscript T

Part of external schema suitable for student with Id 123456789:

CREATE VIEW CoursesITookCoursesITook (CrsCode, Semester, Grade) AS
SELECT T CrsCode T Semester T GradeSELECT T.CrsCode, T.Semester, T.Grade
FROM TranscriptTranscript T
WHERE T.StudId = ‘123456789’

(c) Pearson and P.Fodor (CS Stony Brook)

Modifying the Schemay g

ALTER TABLE StudentStudent
ADD COLUMN Gpa INTEGER DEFAULT 0

ALTER TABLE StudentStudentALTER TABLE StudentStudent
ADD CONSTRAINT GpaRangeGpaRange

CHECK (Gpa >= 0 AND Gpa <= 4)

ALTER TABLE TranscriptTranscript
DROP CONSTRAINT ConsCons -- constraint names are usefulf

DROP TABLE EmployeeEmployee

(c) Pearson and P.Fodor (CS Stony Brook)

DROP ASSERTION DontFireEveryoneDontFireEveryone

Access ControlAccess Control
 Databases might contain sensitive information

 A h t b li it d Access has to be limited:
 Users have to be identified – authentication
 Generally done with passwordsy p

 Each user must be limited to modes of access appropriate to
that user - authorization

 SQL:92 provides tools for specifying an authorization
policy but does not support authentication (vendor
specific)specific)

(c) Pearson and P.Fodor (CS Stony Brook)

Controlling Authorization in SQLControlling Authorization in SQL
GRANT access_list

ON tableON table
TO user_list

access modes: SELECT, INSERT, DELETE, UPDATE, REFERENCES

GRANT UPDATE (Grade) ON TranscriptTranscript TO prof_smith

User User
namename

– Only the Grade column can be updated by prof_smith

GRANT SELECT ON TranscriptTranscript TO joe
I di id l l t b ifi d f SELECT (i th– Individual columns cannot be specified for SELECT access (in the
SQL standard) – all columns of TranscriptTranscript can be read

– But SELECT access control to individual columns can be simulated
through views (next)

(c) Pearson and P.Fodor (CS Stony Brook)

through views (next)

Controlling Authorization in SQL
Using ViewsUsing Views

GRANT access
ON view

TO li

GRANT SELECT ON CoursesTakenCoursesTaken TO joe

TO user_list

GRANT SELECT ON CoursesTakenCoursesTaken TO joe

–Thus views can be used to simulate access control to individual columns of a table

(c) Pearson and P.Fodor (CS Stony Brook)

Authorization Mode REFERENCES
 Foreign key constraint enforces relationship between

bl h b l i d tables that can be exploited to
 Control access: can enable perpetrator prevent deletion of rows

CREATE TABLE DontDismissMeDontDismissMe (CREATE TABLE DontDismissMeDontDismissMe (
Id INTEGER,
FOREIGN KEY (Id) REFERENCES StudentStudent

ON DELETE NO ACTION)
 Reveal information: successful insertion into DontDissmissMeDontDissmissMe

means a row with foreign key value exists in StudentStudent

ON DELETE NO ACTION)

g y

INSERT INTO DontDismissMeDontDismissMe (‘111111111’)

(c) Pearson and P.Fodor (CS Stony Brook)

REFERENCE Access mode (cont’d)

GRANTGRANT REFERENCESREFERENCES
ONON StudentStudentONON StudentStudent

TOTO joe

(c) Pearson and P.Fodor (CS Stony Brook)

