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(c) Paul Fodor (CS Stony Brook)  

Constraints 
 Constraint: conjunction of atomic constraints 

E.g., 4X + 3Y = 10 ∧ 2X − Y = 0 

Constraint Solution: A valuation for the variables in a 

given constraint problem that satisfies all constraints of the 

problem. E.g., X = 1 ∧ Y = 2 

Why constraints?  
Many examples of modelling can be partitioned into two 

parts: 
 a general description of the object or process, and 

 specific information about the situation at hand (constraints) 

 The programmer should be able to define their own problem 

specific constraints 
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Constraint Logic Programming  
Constraint logic programming is a form 

of constraint programming, in which logic 

programming is extended to include concepts 

from constraint satisfaction 
A constraint logic program is a logic program that 

contains constraints in the body of clauses 
 For example:    

  A(X,Y):- X+Y>0, B(X), C(Y). 

 X+Y>0  is a constraint,  

 A(X,Y), B(X) and C(Y) are literals as in regular  logic   

programming 
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Constraint Logic Programming  
Why CLP? 
 “Generate-and-test” approach is a common methodology 

for logic programming. 
 Generate possible solutions 

 Test and eliminate non-solutions 

Disadvantages of “generate-and-test” approach: 
 Passive use of constraints to test potential values 

 Inefficient for combinatorial search problems 

CLP languages use the global search paradigm. 
 Actively pruning the search space 

 Recursively dividing a problem into sub-problems until its sub-

problems are simple enough to be solved 
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Constraint Logic Programming  
 Prolog is inefficient in dealing with numerical values, due to 

“generate-and-test” paradigm 

 Goal of CLP is to pick numerical values from pre-defined 

domains for certain variables so that the given constraints on 

the variables are all satisfied. 

 Idea: use CLP to define and reason with numerical 

constraints and assignments 

 Defines a family of programming languages 

 A language CLP(X) is defined by: 
 a constraint domain X, 

 a solver for the constraint domain X 

 a simplifier for the constraint domain X 

 For example: CLP(FD) (finite domains), CLP(R) (reals), …  
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   CLP(FD) 
 Constraint Logic Programming over Finite Domains 

 SWI Prolog: library(clpfd) 

 XSB Prolog: library bounds 

 SWI: 
:- use_module(library(clpfd)). 

 Two major use cases of this library: 
 Provide declarative integer arithmetic: they implement 

pure relations between integer expressions and can be used in all 

directions, also if parts of expressions are variables. 

 ?- X #> 3, X #= 5+2. 

          X=7. 

     In contrast, when using low-level integer arithmetic, we get: 

      ?- X > 3, X is 5+2. 

          Error: >/2: Arguments are not sufficiently  instantiated. 
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   CLP(FD) 
 In connection with enumeration predicates and more complex 

constraints, CLP(FD) is often used to model and solve combinatorial 

problems such as planning, scheduling and allocation tasks. 

 Arithmetic constraints are relations between arithmetic 

expressions 
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   CLP(FD) 
 We can write factorial with CLP(FD): 

n_ factorial(0, 1). 

n_factorial (N,F):-  

 N #> 0,  

 N1 #= N-1, 

 F #= N*F1,  

 n_factorial(N1, F1). 

 ?- factorial(12, Fact). 

  Fact = 479001600. 

 We can also use it in reverse: 
 ?- factorial(N, 479001600). 

  N = 12. 

 We can find out all the possible outputs: 
 ?- factorial(N, F). 

  N = 0, 

  F = 1 ; 

  N = 1,  

  F = 1 ; … 
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(c) Paul Fodor (CS Stony Brook)  

   CLP(FD) 
 Domains: 

 Each CLP(FD) variable has an associated set of admissible 

integers which we call the variable's domain.  

 Initially, the domain of each CLP(FD) variable is the set of all 

integers.  

 The constraints in/2 and ins/2 are the primary means to 

specify tighter domains of variables. 

?- X #>3.                   

      X in 4..sup 

?- [X,Y ,Z] ins 0..3. 

      X in 0..3, 

       Y in 0..3, 

      Z in 0..3 
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Example: Send More Money 
 Crypto-arithmetic Puzzle 

Replace distinct letters by distinct digits, numbers have no 

leading zeros. 

The variables are the letters S, E, N, D, M, O, R and Y. 

Each letter represents a digit between 0 and 9. 

Assign a value to each digit, such that SEND + MORE 

equals MONEY. 
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Example: Send More Money 
 Crypto-arithmetic Puzzle 
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Example: Send More Money 
:- use_module(library(clpfd)). 

 

send([S,E,N,D,M,O,R,Y]) :- 

 gen_domains([S,E,N,D,M,O,R,Y],0..9), 

 S #\= 0,  

 M #\= 0, 

 all_distinct([S,E,N,D,M,O,R,Y]), 

 1000*S + 100*E + 10*N + D+ 1000*M  

  + 100*O + 10*R + E #= 10000*M  

  + 1000*O + 100*N + 10*E + Y, 

 labeling([],[S,E,N,D,M,O,R,Y]). 

gen_domains([],_). 

gen_domains([H|T],D) :-  

 H in D,  

 gen_domains(T,D). 
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Labeling 
 Labeling procedure or enumeration procedure: try possible values 

for a variable X=v_1 ∨ . . . ∨ X=v_n 

 labeling(+Options, +Vars): assign a value to each variable in Vars.   

 labeling procedure will use heuristics to choose the next 

variable and value for labeling 

 variable ordering: chosen sequence of variables 

 first-fail principle: choose the most constrained variable first; 

will often lead to failure quickly, thus pruning the search tree 

early 

 value ordering: next value for labeling a variable must be 

chosen 
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Labeling 
 labeling(+Options, +Vars): Options is a list of options that let you 

exhibit some control over the search process.  
 leftmost = Label the variables in the order they occur in Vars. This is the 

default. 

 ff = First fail. Label the leftmost variable with smallest domain next, in 

order to detect infeasibility early. This is often a good strategy. 

 ffc = Of the variables with smallest domains, the leftmost one 

participating in most constraints is labeled next. 

 min = Label the leftmost variable whose lower bound is the lowest next. 

 max = Label the leftmost variable whose upper bound is the highest next. 
?- [X,Y] ins 10..20, labeling([max(X),min(Y)],[X,Y]). 

 generates solutions in descending order of X, and for each binding of X, solutions are 

generated in ascending order of Y.  

 To obtain the incomplete behaviour that other systems exhibit with "maximize(Expr)" 

and "minimize(Expr)", use once/1, e.g.: once(labeling([max(Expr)], Vars)) 
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Example: n-Queens 
 Place n queens q1, . . . , qn on an n x n chess board, such 

that they do not attack each other. 

 

 

 

 

 No two queens are in the same row, column and diagonal 
 each row and each column has exactly one queen 

 each diagonal has at most one queen 

 qi: row position of the queen i in the i-th column 
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Example: n-Queens 
:- use_module(library(clpfd)). 

 

n_queens(N, Qs) :- 

        length(Qs, N), 

        Qs ins 1..N, 

        safe_queens(Qs). 

safe_queens([]). 

safe_queens([Q|Qs]) :-  

 safe_queens(Qs, Q, 1),  

 safe_queens(Qs). 

safe_queens([], _, _). 

safe_queens([Q|Qs], Q0, D0) :- 

        Q0 #\= Q, 

        abs(Q0 - Q) #\= D0, 

        D1 #= D0 + 1, 

        safe_queens(Qs, Q0, D1). 

 

?- N = 8, n_queens(N, Qs), labeling([ff], Qs). 

      Qs = [1, 5, 8, 6, 3, 7, 2, 4] . 

16 



(c) Paul Fodor (CS Stony Brook)  

   CLP(R) 
 This library provides Constraint Logic Programming over 

real numbers. 

Elements are trees containing real constants with operator in 

{=, ≠, <, ≤, >, ≥}. 

 SWI Prolog: 
 :- use_module(library(clpr)) 

 Example: 
 :- use_module(library(clpr)).  

 p(X,Y) :-  

  {X = Y * 3},  

  q(X,Y).  

 q(X,Y) :-  

  {X - 2 = Y}. 

 constraints are marked with {...}. 
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 Example: 
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 Example: 

:- use_module(library(clpr)) 

river(W, S, R, P):-  

 {T = W/R}, 

 {P= S*T}. 
 Suppose she rows at 1.5m/s, river speed is 1m/s and width 

is 24m. 

    ?- river(24, 1, 1.5, P). 
 Has unique answer P = 16. 
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More Constraint Handling 
 Constraint Simplification 

 Optimization 

 Implication and Equivalence 
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More Constraint Handling 
 Constraint Simplification 
Two equivalent constraints represent the same information, 

but one may be simpler than the other 
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Removing redundant 

constraints, rewriting a 

primitive constraint, 

changing order, 

substituting using an 

equation all preserve 

equivalence 

 



(c) Paul Fodor (CS Stony Brook)  

Redundant Constraints 

One constraint C1 implies another C2 if the 

solutions of C1 are a subset of  those of C2 
C2 is said to be redundant wrt C1 
 It is written C1  C2 

For example: 
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Solved Form Solvers 

Since a solved form solver creates equivalent 

constraints it can be a simplifier 

 

 

 

Gaussian elimination: 
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Optimization 
 Often given some problem which is modelled by 

constraints we don’t want just any solution, but a “best” 

solution 
This is an optimization problem 

We need an objective function so that we can rank 

solutions, that is a mapping from solutions to a real value 
 An optimization problem (C,f) consists of a constraint C and 

objective function f 

 A valuation v1 is preferred to valuation v2 if f(v1) < f(v2) 

 An optimal solution is a solution of C such that no other solution 

of C is preferred to it. 
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Optimization Example 
 

 Find the closest point to the origin satisfying the C.  

 Some solutions and f value 

 

 

 

 

 Optimal solution: 
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Implication and Equivalence 
 Other important operations involving constraints are: 
 implication: test if C1 implies C2 
 impl(C1, C2) answers true, false or unknown 

equivalence: test if C1 and C2 are equivalent 
 equiv(C1, C2) answers true, false or unknown 
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Implication Example 
 For the house constraints CH, 

will stage B have to be reached 

after stage C? 

 

 For this question the answer if 

false, but if we require the 

house to be finished in 15 days 

the answer is true 
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Building a House

Doors

2 days

Stage B

Interior Walls

4 days

Chimney

3 days

Stage D

Stage E

Tiles

3 days

Roof

2 days

Windows

3 days

Stage C

Exterior Walls

3 days

Stage A

Foundations

7 days

Stage S

CH T TB C 

CH T T TE B C   15
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Application Domains 
 Modeling 

 Executable Specifications 

 Solving combinatorial problems 
 Scheduling, Planning, Timetabling 

Configuration, Layout, Placement, Design 

Analysis: Simulation, Verification, Diagnosis of software, 

hardware and industrial processes. 

 Artificial Intelligence 
Machine Vision 

Natural Language Understanding 

Qualitative Reasoning,  etc. 
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Applications in Research 
 Computer Science: Program Analysis, Robotics, Agents 

 Molecular Biology, Biochemistry, Bio-informatics: 

Protein Folding, Genomic Sequencing 

 Economics: Scheduling 

 Linguistics: Parsing 

 Medicine: Diagnosis Support 

 Physics: System Modeling 

 Geography: Geo-Information-Systems 
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