
CSE 505 – Computing with Logic

Stony Brook University

http://www.cs.stonybrook.edu/~cse505

Constraint Logic Programming

(CLP)

1

http://www.cs.stonybrook.edu/~cse505

(c) Paul Fodor (CS Stony Brook)

Constraints
 Constraint: conjunction of atomic constraints

E.g., 4X + 3Y = 10 ∧ 2X − Y = 0

Constraint Solution: A valuation for the variables in a

given constraint problem that satisfies all constraints of the

problem. E.g., X = 1 ∧ Y = 2

Why constraints?
Many examples of modelling can be partitioned into two

parts:
 a general description of the object or process, and

 specific information about the situation at hand (constraints)

 The programmer should be able to define their own problem

specific constraints

2

(c) Paul Fodor (CS Stony Brook)

Constraint Logic Programming
Constraint logic programming is a form

of constraint programming, in which logic

programming is extended to include concepts

from constraint satisfaction
A constraint logic program is a logic program that

contains constraints in the body of clauses
 For example:

 A(X,Y):- X+Y>0, B(X), C(Y).

 X+Y>0 is a constraint,

 A(X,Y), B(X) and C(Y) are literals as in regular logic

programming

 3

(c) Paul Fodor (CS Stony Brook)

Constraint Logic Programming
Why CLP?
 “Generate-and-test” approach is a common methodology

for logic programming.
 Generate possible solutions

 Test and eliminate non-solutions

Disadvantages of “generate-and-test” approach:
 Passive use of constraints to test potential values

 Inefficient for combinatorial search problems

CLP languages use the global search paradigm.
 Actively pruning the search space

 Recursively dividing a problem into sub-problems until its sub-

problems are simple enough to be solved

4

(c) Paul Fodor (CS Stony Brook)

Constraint Logic Programming
 Prolog is inefficient in dealing with numerical values, due to

“generate-and-test” paradigm

 Goal of CLP is to pick numerical values from pre-defined

domains for certain variables so that the given constraints on

the variables are all satisfied.

 Idea: use CLP to define and reason with numerical

constraints and assignments

 Defines a family of programming languages

 A language CLP(X) is defined by:
 a constraint domain X,

 a solver for the constraint domain X

 a simplifier for the constraint domain X

 For example: CLP(FD) (finite domains), CLP(R) (reals), …
5

(c) Paul Fodor (CS Stony Brook)

 CLP(FD)
 Constraint Logic Programming over Finite Domains

 SWI Prolog: library(clpfd)

 XSB Prolog: library bounds

 SWI:
:- use_module(library(clpfd)).

 Two major use cases of this library:
 Provide declarative integer arithmetic: they implement

pure relations between integer expressions and can be used in all

directions, also if parts of expressions are variables.

 ?- X #> 3, X #= 5+2.

 X=7.

 In contrast, when using low-level integer arithmetic, we get:

 ?- X > 3, X is 5+2.

 Error: >/2: Arguments are not sufficiently instantiated.

6

(c) Paul Fodor (CS Stony Brook)

 CLP(FD)
 In connection with enumeration predicates and more complex

constraints, CLP(FD) is often used to model and solve combinatorial

problems such as planning, scheduling and allocation tasks.

 Arithmetic constraints are relations between arithmetic

expressions

7

(c) Paul Fodor (CS Stony Brook)

 CLP(FD)
 We can write factorial with CLP(FD):

n_ factorial(0, 1).

n_factorial (N,F):-

 N #> 0,

 N1 #= N-1,

 F #= N*F1,

 n_factorial(N1, F1).

 ?- factorial(12, Fact).

 Fact = 479001600.

 We can also use it in reverse:
 ?- factorial(N, 479001600).

 N = 12.

 We can find out all the possible outputs:
 ?- factorial(N, F).

 N = 0,

 F = 1 ;

 N = 1,

 F = 1 ; …

8

(c) Paul Fodor (CS Stony Brook)

 CLP(FD)
 Domains:

 Each CLP(FD) variable has an associated set of admissible

integers which we call the variable's domain.

 Initially, the domain of each CLP(FD) variable is the set of all

integers.

 The constraints in/2 and ins/2 are the primary means to

specify tighter domains of variables.

?- X #>3.

 X in 4..sup

?- [X,Y ,Z] ins 0..3.

 X in 0..3,

 Y in 0..3,

 Z in 0..3

9

(c) Paul Fodor (CS Stony Brook)

Example: Send More Money
 Crypto-arithmetic Puzzle

Replace distinct letters by distinct digits, numbers have no

leading zeros.

The variables are the letters S, E, N, D, M, O, R and Y.

Each letter represents a digit between 0 and 9.

Assign a value to each digit, such that SEND + MORE

equals MONEY.

10

(c) Paul Fodor (CS Stony Brook)

Example: Send More Money
 Crypto-arithmetic Puzzle

11

(c) Paul Fodor (CS Stony Brook)

Example: Send More Money
:- use_module(library(clpfd)).

send([S,E,N,D,M,O,R,Y]) :-

 gen_domains([S,E,N,D,M,O,R,Y],0..9),

 S #\= 0,

 M #\= 0,

 all_distinct([S,E,N,D,M,O,R,Y]),

 1000*S + 100*E + 10*N + D+ 1000*M

 + 100*O + 10*R + E #= 10000*M

 + 1000*O + 100*N + 10*E + Y,

 labeling([],[S,E,N,D,M,O,R,Y]).

gen_domains([],_).

gen_domains([H|T],D) :-

 H in D,

 gen_domains(T,D).

12

(c) Paul Fodor (CS Stony Brook)

Labeling
 Labeling procedure or enumeration procedure: try possible values

for a variable X=v_1 ∨ . . . ∨ X=v_n

 labeling(+Options, +Vars): assign a value to each variable in Vars.

 labeling procedure will use heuristics to choose the next

variable and value for labeling

 variable ordering: chosen sequence of variables

 first-fail principle: choose the most constrained variable first;

will often lead to failure quickly, thus pruning the search tree

early

 value ordering: next value for labeling a variable must be

chosen

13

(c) Paul Fodor (CS Stony Brook)

Labeling
 labeling(+Options, +Vars): Options is a list of options that let you

exhibit some control over the search process.
 leftmost = Label the variables in the order they occur in Vars. This is the

default.

 ff = First fail. Label the leftmost variable with smallest domain next, in

order to detect infeasibility early. This is often a good strategy.

 ffc = Of the variables with smallest domains, the leftmost one

participating in most constraints is labeled next.

 min = Label the leftmost variable whose lower bound is the lowest next.

 max = Label the leftmost variable whose upper bound is the highest next.
?- [X,Y] ins 10..20, labeling([max(X),min(Y)],[X,Y]).

 generates solutions in descending order of X, and for each binding of X, solutions are

generated in ascending order of Y.

 To obtain the incomplete behaviour that other systems exhibit with "maximize(Expr)"

and "minimize(Expr)", use once/1, e.g.: once(labeling([max(Expr)], Vars))

14

(c) Paul Fodor (CS Stony Brook)

Example: n-Queens
 Place n queens q1, . . . , qn on an n x n chess board, such

that they do not attack each other.

 No two queens are in the same row, column and diagonal
 each row and each column has exactly one queen

 each diagonal has at most one queen

 qi: row position of the queen i in the i-th column

15

(c) Paul Fodor (CS Stony Brook)

Example: n-Queens
:- use_module(library(clpfd)).

n_queens(N, Qs) :-

 length(Qs, N),

 Qs ins 1..N,

 safe_queens(Qs).

safe_queens([]).

safe_queens([Q|Qs]) :-

 safe_queens(Qs, Q, 1),

 safe_queens(Qs).

safe_queens([], _, _).

safe_queens([Q|Qs], Q0, D0) :-

 Q0 #\= Q,

 abs(Q0 - Q) #\= D0,

 D1 #= D0 + 1,

 safe_queens(Qs, Q0, D1).

?- N = 8, n_queens(N, Qs), labeling([ff], Qs).

 Qs = [1, 5, 8, 6, 3, 7, 2, 4] .

16

(c) Paul Fodor (CS Stony Brook)

 CLP(R)
 This library provides Constraint Logic Programming over

real numbers.

Elements are trees containing real constants with operator in

{=, ≠, <, ≤, >, ≥}.

 SWI Prolog:
 :- use_module(library(clpr))

 Example:
 :- use_module(library(clpr)).

 p(X,Y) :-

 {X = Y * 3},

 q(X,Y).

 q(X,Y) :-

 {X - 2 = Y}.

 constraints are marked with {...}.

17

(c) Paul Fodor (CS Stony Brook)

 Example:

18

 CLP(R)

(c) Paul Fodor (CS Stony Brook)

 Example:

:- use_module(library(clpr))

river(W, S, R, P):-

 {T = W/R},

 {P= S*T}.
 Suppose she rows at 1.5m/s, river speed is 1m/s and width

is 24m.

 ?- river(24, 1, 1.5, P).
 Has unique answer P = 16.

19

 CLP(R)

(c) Paul Fodor (CS Stony Brook)

More Constraint Handling
 Constraint Simplification

 Optimization

 Implication and Equivalence

20

(c) Paul Fodor (CS Stony Brook)

More Constraint Handling
 Constraint Simplification
Two equivalent constraints represent the same information,

but one may be simpler than the other

21

X X Y X

X Y X

X X Y

X Y X

X Y Y

X Y Y

1 3 2

3 2

3 2

2 3

2 3 2

2 1

Removing redundant

constraints, rewriting a

primitive constraint,

changing order,

substituting using an

equation all preserve

equivalence

(c) Paul Fodor (CS Stony Brook)

Redundant Constraints

One constraint C1 implies another C2 if the

solutions of C1 are a subset of those of C2
C2 is said to be redundant wrt C1
 It is written C1 C2

For example:

22

X X

Y X Y X

cons X X cons Z nil Z nil

3 1

2 4 1

(,) (,)

(c) Paul Fodor (CS Stony Brook)

Solved Form Solvers

Since a solved form solver creates equivalent

constraints it can be a simplifier

Gaussian elimination:

23

)(

)()(),(),(

nilsuccYnilZnilX

nilZYZsuccXsuccYnilZconsXXcons

X Y Y X T Z X Y Z T

X Y Z T

2 2 4 5

3 1 5

(c) Paul Fodor (CS Stony Brook)

Optimization
 Often given some problem which is modelled by

constraints we don’t want just any solution, but a “best”

solution
This is an optimization problem

We need an objective function so that we can rank

solutions, that is a mapping from solutions to a real value
 An optimization problem (C,f) consists of a constraint C and

objective function f

 A valuation v1 is preferred to valuation v2 if f(v1) < f(v2)

 An optimal solution is a solution of C such that no other solution

of C is preferred to it.

24

(c) Paul Fodor (CS Stony Brook)

Optimization Example

 Find the closest point to the origin satisfying the C.

 Some solutions and f value

 Optimal solution:

25

(,)C X Y f X Y 4 2 2

{ , }

{ , }

{ , }

X Y

X Y

X Y

0 4 16

3 3 18

2 2 8

0 1 2 3 4

1

2

3

4

Y

X

X+Y=4

{ , }X Y 2 2

(c) Paul Fodor (CS Stony Brook)

Implication and Equivalence
 Other important operations involving constraints are:
 implication: test if C1 implies C2
 impl(C1, C2) answers true, false or unknown

equivalence: test if C1 and C2 are equivalent
 equiv(C1, C2) answers true, false or unknown

26

(c) Paul Fodor (CS Stony Brook)

Implication Example
 For the house constraints CH,

will stage B have to be reached

after stage C?

 For this question the answer if

false, but if we require the

house to be finished in 15 days

the answer is true

 27

Building a House

Doors

2 days

Stage B

Interior Walls

4 days

Chimney

3 days

Stage D

Stage E

Tiles

3 days

Roof

2 days

Windows

3 days

Stage C

Exterior Walls

3 days

Stage A

Foundations

7 days

Stage S

CH T TB C

CH T T TE B C 15

(c) Paul Fodor (CS Stony Brook)

Application Domains
 Modeling

 Executable Specifications

 Solving combinatorial problems
 Scheduling, Planning, Timetabling

Configuration, Layout, Placement, Design

Analysis: Simulation, Verification, Diagnosis of software,

hardware and industrial processes.

 Artificial Intelligence
Machine Vision

Natural Language Understanding

Qualitative Reasoning, etc.

28

(c) Paul Fodor (CS Stony Brook)

Applications in Research
 Computer Science: Program Analysis, Robotics, Agents

 Molecular Biology, Biochemistry, Bio-informatics:

Protein Folding, Genomic Sequencing

 Economics: Scheduling

 Linguistics: Parsing

 Medicine: Diagnosis Support

 Physics: System Modeling

 Geography: Geo-Information-Systems

29

