Constraint Logic Programming

(CLP)

CSE 505 — Computing with Logic

Stony Brook University

http: / / WWW. cs.stonybrook.edu/ ~cse505

http://www.cs.stonybrook.edu/~cse505

Constraints

® Constraint: conjunction of atomic constraints
0E.g.,4X-I— 3Y=10A2X—-Y =0
® Constraint Solution: A valuation for the variables in a

given constraint problem that satisfies all constraints of the
problem. E.g., X =1 AY =2

. Why constraints?

® Many examples of modelling can be partitioned into two

parts:
a general description of the object or process, and
specific information about the situation at hand (constraints)
The programmer should be able to define their own problem

specific constraints

(c) Paul Fodor (CS Stony Brook) /

Constraint Logic Programming

® Constraint logic programmin gisa form

of constraint programming, in which logic

programming is extended to include concepts

from constraint satisfaction
® A constraint logic program is a logic program that

contains constraints in the body of clauses
For example:
A(X,Y):- X+Y>0, B(X), C(Y).
® X+Y>0 is a constraint,
* A(X,Y), B(X) and C(Y) are literals as in regular logic

programming

@ (c) Paul Fodor (CS Stony Brook)

™~

Constraint Logic Programming
* Why CLP?

® “Generate-and-test” approach is a common methodology
for logic programming.
Generate possible solutions
Test and eliminate non-solutions
® Disadvantages of “generate-and-test” approach:

Passive use of constraints to test potential values

Inefficient for combinatorial search problems

e CLP languages use the global search paradigm.

Actively pruning the search space
Recursively dividing a problem into sub-problems until its sub-

problems are simple enough to be solved

@ (c) Paul Fodor (CS Stony Brook)

™~

Constraint Logic Programming

® Prolog is inefficient in dealing with numerical values, due to
“generate-and-test” paradigm
® Goal of CLP is to pick numerical values from pre-detfined
domains for certain variables so that the given constraints on
the variables are all satisfied.
® Idea: use CLP to define and reason with numerical

constraints and assignments

® Detines a family of programming languages
* A language CLP(X) is defined by:

a constraint domain X,

a solver for the constraint domain X

a simplifier for the constraint domain X

® For example: CLP(FD) (finite domains), CLP(R) (reals), ...

@ (c) Paul Fodor (CS Stony Brook)

™~

" CLP(FD)

® Constraint Logic Programming over Finite Domains
o SWI Prolog: library(clpfd)
e XSB Prolog: library bounds

* SWI:
:- use_module(library(clptd)).

® Two major use cases of this library:

Provide declarative integer arithmetic: they implement
pure relations between integer expressions and can be used in all
directions, also if parts of expressions are variables.

- X #> 3. X #= 542,

X=17.
In contrast, when using low-level integer arithmetic, we get:
- X >3, Xis5+2.

° Error: >/2: Arguments are not sufficiently instantiated.

(c) Paul Fodor (CS Stony Brook)

" CLP(FD)

In connection with enumeration predicates and more Complex

expressions

mteger
variable
Nvariable)
-Expr

Expr + Expr
Expr * Expr
Expr - Expr
Expr ~ Expr
min(Expr,Expr)
max(Expr,Expr)
Expr mod Expr
Expr rem Expr
abs (Expr)
Expr // Expr

Given value

Unknown integer

Unknown integer

Unary minus

Addition

Multiplication

Subtraction

Exponentiation

Mimmum of two expressions
Maximum of two expressions
Modulo mduced by floored division
Modulo mduced by truncated division
Absolute value

Truncated iteger division

constraints, CLP(FD) is often used to model and solve combinatorial

problems such as planning, scheduling and allocation tasks.

e Arithmetic constraints are relations between arithmetic

Exprl #»= Expr2
Exprl #=¢< Expr2
Exprl #= Expr?
Exprl #\= Expr2
Exprl #» Expr?
Exprl #< Expr?

Exprl 1s greater than or equal to Expr2

Exprl 1s less than or equal to Expr?
Exprl equals Expr2

Exprl 1s not equal to Expr2

Exprl 1s greater than Expr?

Exprl 1s less than Expr?

(c) Paul Fodor (CS Stony Brook)

" CLP(FD)

® We can write tactorial with CLP(FD):
n_ factorial(0, 1).
n_factorial (N,F):-
N #> 0,
N1 #= N-1,
F #= N*F1,
n_factorial(N1, F1).
?- factorial(12, Fact).
Fact = 479001600.

e We can also use it in reverse:

?- factorial(N, 479001600).
N =12.

® We can find out all the possible outputs:
?- factorial(N, F).
N =0,
F=1;
N=1,
F=1;...

(c) Paul Fodor (CS Stony Brook)

" CLP(FD)

® Domains:
® Each CLP(FD) variable has an associated set of admissible
integers which we call the variable's domain.
® Initially, the domain of each CLP(FD) variable is the set of all
integers.

® The constraints in/2 and ins/2 are the primary means to

specity tighter domains of variables.
- X #>3.
X in 4..sup
- [X,Y ,Z]ins 0..3.
X in 0..3,
Y in0..3,
/in0..3

(c) Paul Fodor (CS Stony Brook)

Example: Send More Money

o Crypto-arithmetic Puzzle

® Replace distinct letters by distinct digits, numbers have no

leading zeros.
® The variables are the letters S, E, N, D, M, O, R andY.

® Each letter represents a digit between O and 9.

® Assign a value to each digit, such that SEND + MORE
equals MONEY.

|

(c) Paul Fodor (CS Stony Brook)

Example: Send More Money

o Crypto—arithmetic Puzzle

(c) Paul Fodor (CS Stony Brook)

Example: Send More Money

:— use module(library(clpfd)).

send([S,E,N,D,M,0,R,Y]) :-
gen domains([S,E,N,D,M,O,R,Y],0..9),
S #\= 0,
M #\= 0,
all distinct([S,E,N,D,M,0O,R,Y]),
1000*s + 100*E + 10*N + D+ 1000*M
+ 100*0O + 10*R + E #= 10000*M
+ 1000*O0 + 100*N + 10*E + Y,
labeling([],[S,E,N,D,M,O,R,Y]).
gen domains ([],).
gen domains ([H|T],D) :-
H in D,
gen_domains (T,D) .
(-

(c) Paul Fodor (CS Stony Brook)

Labeling A

* Labeling procedure or enumeration procedure: try possible values
for a variable X=v_ 1V ... VX=v n
® labeling(+Options, +Vars): assign a value to each variable in Vars.
® labeling procedure will use heuristics to choose the next
variable and value for labeling
® variable ordering: chosen sequence of variables
® first-fail principle: choose the most constrained variable first;
will often lead to failure quickly, thus pruning the search tree

early

® value ordering: next value for labeling a variable must be

chosen

@ (c) Paul Fodor (CS Stony Brook)

(-

Labeling A

® labeling(+Options, +Vars): Options is a list of options that let you

exhibit some control over the search process.

® leftmost = Label the variables in the order they occur in Vars. This is the
default.

e {f = First fail. Label the leftmost variable with smallest domain next, in
order to detect infeasibility early. This is often a good strategy.

e ffc = Of the variables with smallest domains, the leftmost one
participating in most constraints is labeled next.

® min = Label the leftmost variable whose lower bound is the lowest next.

® max = Label the leftmost variable whose upper bound is the highest next.
?- [X,Y]ins 10..20, labeling([max(X),min(Y)[,[X,Y]).
generates solutions in descending order of X, and for each binding of X, solutions are
generated in ascending order of Y.
To obtain the incomplete behaviour that other systems exhibit with "maximize(Expr)"

and "minimize(Expr)", use once/1, e.g.: once(labeling([max(Expr)], Vars))

(c) Paul Fodor (CS Stony Brook) /

Example: n-Queens A

® Place n queens ql, . . ., gqn on an n x n chess board, such
that they do not attack each other.

q1 42 43 44

1
2
3
4

® No two queens are in the same row, column and diagonal
® cach row and each column has exactly one queen

® cach diagonal has at most one queen

® gi: row position of the queen i in the i-th column

@ (c) Paul Fodor (CS Stony Brook)

Example: n-Queens

:- use _module (library(clpfd)) .

n_queens (N, Qs) :-
length(Qs, N),
Qs ins 1..N,
safe queens (Qs) .
safe queens([]) .
safe queens([Q|Qs]) :-
safe queens(Qs, Q, 1),
safe queens (Qs) .
safe queens([], ,).
safe queens([Q|Qs], QO0, DO) :-
Q0 #\= Q,
abs (Q0 - Q) #\= DO,
D1 #= DO + 1,
safe queens(Qs, QO0, D1).

?- N = 8, n queens (N, Qs), labeling([ff], QOs).
QS = [1I 5’ 8/ 6/ 3’ 7/ 2/ 4]

@ (c) Paul Fodor (CS Stony Brook)

" CLP(R)

® This library provides Constraint Logic Programming over
real numbers.

® Flements are trees containing real constants with operator in
{=,# <,5,>, 2},
® SWI Prolog:
:- use_module(library(clpr))
® Example:
:- use_module(library(clpr)).
p(X,Y) :-
[X =Y * 3},
q(X,Y).
q(X,Y) :-
{X -2 :Y}.

a ® constraints are marked with {...}.
\

(c) Paul Fodor (CS Stony Brook)

" CLP(R)

® Example:

A traveller wishes to cross
a shark infested river as
quickly as possible.
Reasoning the fastest route
1s to row straight across
and drift downstream,
where should she set off

width of river: W
speed of nver: §
set of position: P
rowing speed: R

(c) Paul Fodor (CS Stony Brook)

" CLP(R)

® Example:
:- use_module(library(clpr))
river(W, S, R, P):-
{T=W/R},
{P= S*T}.
® Suppose she rows at 1.5m/s, river speed is Im/s and width

is 24m.
- river(24,1, 1.5, P).

Has unique answer P = 16.

@ (c) Paul Fodor (CS Stony Brook)

More Constraint Handling

® Constraint Simplification

L Optimization

® Implication and Equivalence

(c) Paul Fodor (CS Stony Brook)

More Constraint Handling -

® Constraint Simplification
® Two equivalent constraints represent the same information,

but one may be simpler than the other

XZ2IAX23A2=Y+X Removing redundant

S X>3A2=Y+ X constraints, rewriting a

B primitive constraint,
>3 XAX=2-Y changing order,

> X=2-YA3<X substituting using an
S X =2-YA3<2-Y equation all preserve

S X=2-YAY<-1 equivalence

@ (c) Paul Fodor (CS Stony Brook)

Redundant Constraints

® One constraint C1 impi_ies another C2 if the

solutions of C1 are a subset of those of C2

®(C2 is said to be redundant wrt Cl1
It is written C1 =2 C2

For example:

X>3-> X2>1
Y<SX+2AY 245 X 21
cons(X, X)=cons(Z,nil) > Z =nil

Solved Form Solvers

¢ Since a solved form solver creates equivalent

constraints it can be a simplifier

cons(X, X) =cons(Z,nil) AY =succ(X)Aasucc(Z)=Y AZ =nil
> X =nilAZ =nil AY =succ(nil)

® (aussian elimination:

X=24YA+X-T=ZAX+Y=4AZ+T=5
S X =3AY=1IAZ=5-T

@ (c) Paul Fodor (CS Stony Brook)

Optimization h

e Often given some problem which is modelled by

constraints we don’t want just any solution, but a “best”

solution

® This is an optimization problem

® We need an objective function so that we can rank

solutions, that is a mapping from solutions to a real value

An optimization problem (C,f) consists of a constraint C and
objective function f
A valuation v1 is preferred to valuation v2 if f(v1) < f(v2)

An optimal solution is a solution of C such that no other solution

of Cis preferred to it.

(c) Paul Fodor (CS Stony Brook)

Optimization Example
(C=X+Y=24, f=X>+Y?)
® Find the closest point to the origin satistying the C.

® Some solutions and f value
{X—0,Y—4} 16
{X+—3Y >3}
{X—2Y 2}

Y

® Optimal solution:

{X—2,Y—>2}

@ (c) Paul Fodor (CS Stony Broo

Implication and Equivalence

® Other important operations involving constraints are:

* implication: test if C1 implies C2
impl(C1, C2) answers true, false or unknown

° equivalence: test if C1 and C2 are equivalent

equiv(C1, C2) answers true, false or unknown

(c) Paul Fodor (CS Stony Brook)

Implication Example h

® For the house constraints CH,

Stage S

| will stage B have to be reached

Foundations
7 d|avs after stage C7

CH—->T, >T.

Interior Walls Chimney Exterior Walls
4 days 3 days 3 days

Stales Stalec ¢ For this question the answer if

| V—k—\ . .
Doors SN false, but if we require the

2 days 2 days 3 days

| house to be finished in 15 days

Stage D

Tiles
3 days

i CHAT. =15-> 1T, 21,

the answer is true

(c) Paul Fodor (CS Stony Brook)

Application Domains
® Modeling

* Executable Specifications
® Solving combinatorial problems
® Scheduling, Planning, Timetabling
® Configuration, Layout, Placement, Design
® Analysis: Simulation, Verification, Diagnosis of software,

hardware and industrial processes.

e Artificial Intelligence

® Machine Vision
e Natural Language Understanding

® Qualitative Reasoning, etc.

@ (c) Paul Fodor (CS Stony Brook)

Applications in Research

® Computer Science: Program Analysis, Robotics, Agents

® Molecular Biology, Biochemistry, Bio-informatics:
Protein Folding, Genomic Sequencing

® Economics: Scheduling

® Linguistics: Parsing

® Medicine: Diagnosis Support

® Physics: System Modeling

® Geography: Geo-Information-Systems

@ (c) Paul Fodor (CS Stony Brook)

™~

