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(c) Paul Fodor (CS Stony Brook)  

Constraints 
 Constraint: conjunction of atomic constraints 

E.g., 4X + 3Y = 10 ∧ 2X − Y = 0 

Constraint Solution: A valuation for the variables in a 

given constraint problem that satisfies all constraints of the 

problem. E.g., X = 1 ∧ Y = 2 

Why constraints?  
Many examples of modelling can be partitioned into two 

parts: 
 a general description of the object or process, and 

 specific information about the situation at hand (constraints) 

 The programmer should be able to define their own problem 

specific constraints 
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Constraint Logic Programming  
Constraint logic programming is a form 

of constraint programming, in which logic 

programming is extended to include concepts 

from constraint satisfaction 
A constraint logic program is a logic program that 

contains constraints in the body of clauses 
 For example:    

  A(X,Y):- X+Y>0, B(X), C(Y). 

 X+Y>0  is a constraint,  

 A(X,Y), B(X) and C(Y) are literals as in regular  logic   

programming 
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Constraint Logic Programming  
Why CLP? 
 “Generate-and-test” approach is a common methodology 

for logic programming. 
 Generate possible solutions 

 Test and eliminate non-solutions 

Disadvantages of “generate-and-test” approach: 
 Passive use of constraints to test potential values 

 Inefficient for combinatorial search problems 

CLP languages use the global search paradigm. 
 Actively pruning the search space 

 Recursively dividing a problem into sub-problems until its sub-

problems are simple enough to be solved 
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Constraint Logic Programming  
 Prolog is inefficient in dealing with numerical values, due to 

“generate-and-test” paradigm 

 Goal of CLP is to pick numerical values from pre-defined 

domains for certain variables so that the given constraints on 

the variables are all satisfied. 

 Idea: use CLP to define and reason with numerical 

constraints and assignments 

 Defines a family of programming languages 

 A language CLP(X) is defined by: 
 a constraint domain X, 

 a solver for the constraint domain X 

 a simplifier for the constraint domain X 

 For example: CLP(FD) (finite domains), CLP(R) (reals), …  
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   CLP(FD) 
 Constraint Logic Programming over Finite Domains 

 SWI Prolog: library(clpfd) 

 XSB Prolog: library bounds 

 SWI: 
:- use_module(library(clpfd)). 

 Two major use cases of this library: 
 Provide declarative integer arithmetic: they implement 

pure relations between integer expressions and can be used in all 

directions, also if parts of expressions are variables. 

 ?- X #> 3, X #= 5+2. 

          X=7. 

     In contrast, when using low-level integer arithmetic, we get: 

      ?- X > 3, X is 5+2. 

          Error: >/2: Arguments are not sufficiently  instantiated. 
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   CLP(FD) 
 In connection with enumeration predicates and more complex 

constraints, CLP(FD) is often used to model and solve combinatorial 

problems such as planning, scheduling and allocation tasks. 

 Arithmetic constraints are relations between arithmetic 

expressions 
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   CLP(FD) 
 We can write factorial with CLP(FD): 

n_ factorial(0, 1). 

n_factorial (N,F):-  

 N #> 0,  

 N1 #= N-1, 

 F #= N*F1,  

 n_factorial(N1, F1). 

 ?- factorial(12, Fact). 

  Fact = 479001600. 

 We can also use it in reverse: 
 ?- factorial(N, 479001600). 

  N = 12. 

 We can find out all the possible outputs: 
 ?- factorial(N, F). 

  N = 0, 

  F = 1 ; 

  N = 1,  

  F = 1 ; … 
 

 

 

8 



(c) Paul Fodor (CS Stony Brook)  

   CLP(FD) 
 Domains: 

 Each CLP(FD) variable has an associated set of admissible 

integers which we call the variable's domain.  

 Initially, the domain of each CLP(FD) variable is the set of all 

integers.  

 The constraints in/2 and ins/2 are the primary means to 

specify tighter domains of variables. 

?- X #>3.                   

      X in 4..sup 

?- [X,Y ,Z] ins 0..3. 

      X in 0..3, 

       Y in 0..3, 

      Z in 0..3 
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Example: Send More Money 
 Crypto-arithmetic Puzzle 

Replace distinct letters by distinct digits, numbers have no 

leading zeros. 

The variables are the letters S, E, N, D, M, O, R and Y. 

Each letter represents a digit between 0 and 9. 

Assign a value to each digit, such that SEND + MORE 

equals MONEY. 
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Example: Send More Money 
 Crypto-arithmetic Puzzle 
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Example: Send More Money 
:- use_module(library(clpfd)). 

 

send([S,E,N,D,M,O,R,Y]) :- 

 gen_domains([S,E,N,D,M,O,R,Y],0..9), 

 S #\= 0,  

 M #\= 0, 

 all_distinct([S,E,N,D,M,O,R,Y]), 

 1000*S + 100*E + 10*N + D+ 1000*M  

  + 100*O + 10*R + E #= 10000*M  

  + 1000*O + 100*N + 10*E + Y, 

 labeling([],[S,E,N,D,M,O,R,Y]). 

gen_domains([],_). 

gen_domains([H|T],D) :-  

 H in D,  

 gen_domains(T,D). 
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Labeling 
 Labeling procedure or enumeration procedure: try possible values 

for a variable X=v_1 ∨ . . . ∨ X=v_n 

 labeling(+Options, +Vars): assign a value to each variable in Vars.   

 labeling procedure will use heuristics to choose the next 

variable and value for labeling 

 variable ordering: chosen sequence of variables 

 first-fail principle: choose the most constrained variable first; 

will often lead to failure quickly, thus pruning the search tree 

early 

 value ordering: next value for labeling a variable must be 

chosen 
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Labeling 
 labeling(+Options, +Vars): Options is a list of options that let you 

exhibit some control over the search process.  
 leftmost = Label the variables in the order they occur in Vars. This is the 

default. 

 ff = First fail. Label the leftmost variable with smallest domain next, in 

order to detect infeasibility early. This is often a good strategy. 

 ffc = Of the variables with smallest domains, the leftmost one 

participating in most constraints is labeled next. 

 min = Label the leftmost variable whose lower bound is the lowest next. 

 max = Label the leftmost variable whose upper bound is the highest next. 
?- [X,Y] ins 10..20, labeling([max(X),min(Y)],[X,Y]). 

 generates solutions in descending order of X, and for each binding of X, solutions are 

generated in ascending order of Y.  

 To obtain the incomplete behaviour that other systems exhibit with "maximize(Expr)" 

and "minimize(Expr)", use once/1, e.g.: once(labeling([max(Expr)], Vars)) 
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Example: n-Queens 
 Place n queens q1, . . . , qn on an n x n chess board, such 

that they do not attack each other. 

 

 

 

 

 No two queens are in the same row, column and diagonal 
 each row and each column has exactly one queen 

 each diagonal has at most one queen 

 qi: row position of the queen i in the i-th column 
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Example: n-Queens 
:- use_module(library(clpfd)). 

 

n_queens(N, Qs) :- 

        length(Qs, N), 

        Qs ins 1..N, 

        safe_queens(Qs). 

safe_queens([]). 

safe_queens([Q|Qs]) :-  

 safe_queens(Qs, Q, 1),  

 safe_queens(Qs). 

safe_queens([], _, _). 

safe_queens([Q|Qs], Q0, D0) :- 

        Q0 #\= Q, 

        abs(Q0 - Q) #\= D0, 

        D1 #= D0 + 1, 

        safe_queens(Qs, Q0, D1). 

 

?- N = 8, n_queens(N, Qs), labeling([ff], Qs). 

      Qs = [1, 5, 8, 6, 3, 7, 2, 4] . 
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   CLP(R) 
 This library provides Constraint Logic Programming over 

real numbers. 

Elements are trees containing real constants with operator in 

{=, ≠, <, ≤, >, ≥}. 

 SWI Prolog: 
 :- use_module(library(clpr)) 

 Example: 
 :- use_module(library(clpr)).  

 p(X,Y) :-  

  {X = Y * 3},  

  q(X,Y).  

 q(X,Y) :-  

  {X - 2 = Y}. 

 constraints are marked with {...}. 
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 Example: 
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 Example: 

:- use_module(library(clpr)) 

river(W, S, R, P):-  

 {T = W/R}, 

 {P= S*T}. 
 Suppose she rows at 1.5m/s, river speed is 1m/s and width 

is 24m. 

    ?- river(24, 1, 1.5, P). 
 Has unique answer P = 16. 
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More Constraint Handling 
 Constraint Simplification 

 Optimization 

 Implication and Equivalence 
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More Constraint Handling 
 Constraint Simplification 
Two equivalent constraints represent the same information, 

but one may be simpler than the other 
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Redundant Constraints 

One constraint C1 implies another C2 if the 

solutions of C1 are a subset of  those of C2 
C2 is said to be redundant wrt C1 
 It is written C1  C2 

For example: 
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Solved Form Solvers 

Since a solved form solver creates equivalent 

constraints it can be a simplifier 

 

 

 

Gaussian elimination: 
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Optimization 
 Often given some problem which is modelled by 

constraints we don’t want just any solution, but a “best” 

solution 
This is an optimization problem 

We need an objective function so that we can rank 

solutions, that is a mapping from solutions to a real value 
 An optimization problem (C,f) consists of a constraint C and 

objective function f 

 A valuation v1 is preferred to valuation v2 if f(v1) < f(v2) 

 An optimal solution is a solution of C such that no other solution 

of C is preferred to it. 
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Optimization Example 
 

 Find the closest point to the origin satisfying the C.  

 Some solutions and f value 

 

 

 

 

 Optimal solution: 
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Implication and Equivalence 
 Other important operations involving constraints are: 
 implication: test if C1 implies C2 
 impl(C1, C2) answers true, false or unknown 

equivalence: test if C1 and C2 are equivalent 
 equiv(C1, C2) answers true, false or unknown 
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Implication Example 
 For the house constraints CH, 

will stage B have to be reached 

after stage C? 

 

 For this question the answer if 

false, but if we require the 

house to be finished in 15 days 

the answer is true 
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Building a House

Doors

2 days

Stage B

Interior Walls

4 days

Chimney

3 days

Stage D

Stage E

Tiles

3 days

Roof

2 days

Windows

3 days

Stage C

Exterior Walls

3 days

Stage A

Foundations

7 days

Stage S
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Application Domains 
 Modeling 

 Executable Specifications 

 Solving combinatorial problems 
 Scheduling, Planning, Timetabling 

Configuration, Layout, Placement, Design 

Analysis: Simulation, Verification, Diagnosis of software, 

hardware and industrial processes. 

 Artificial Intelligence 
Machine Vision 

Natural Language Understanding 

Qualitative Reasoning,  etc. 
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Applications in Research 
 Computer Science: Program Analysis, Robotics, Agents 

 Molecular Biology, Biochemistry, Bio-informatics: 

Protein Folding, Genomic Sequencing 

 Economics: Scheduling 

 Linguistics: Parsing 

 Medicine: Diagnosis Support 

 Physics: System Modeling 

 Geography: Geo-Information-Systems 
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