
CSE 505 – Computing with Logic

Stony Brook University

http://www.cs.stonybrook.edu/~cse505

Constraint Logic Programming

(CLP)

1

http://www.cs.stonybrook.edu/~cse505

(c) Paul Fodor (CS Stony Brook)

Constraints
 Constraint: conjunction of atomic constraints

E.g., 4X + 3Y = 10 ∧ 2X − Y = 0

Constraint Solution: A valuation for the variables in a

given constraint problem that satisfies all constraints of the

problem. E.g., X = 1 ∧ Y = 2

Why constraints?
Many examples of modelling can be partitioned into two

parts:
 a general description of the object or process, and

 specific information about the situation at hand (constraints)

 The programmer should be able to define their own problem

specific constraints

2

(c) Paul Fodor (CS Stony Brook)

Constraint Logic Programming
Constraint logic programming is a form

of constraint programming, in which logic

programming is extended to include concepts

from constraint satisfaction
A constraint logic program is a logic program that

contains constraints in the body of clauses
 For example:

 A(X,Y):- X+Y>0, B(X), C(Y).

 X+Y>0 is a constraint,

 A(X,Y), B(X) and C(Y) are literals as in regular logic

programming

 3

(c) Paul Fodor (CS Stony Brook)

Constraint Logic Programming
Why CLP?
 “Generate-and-test” approach is a common methodology

for logic programming.
 Generate possible solutions

 Test and eliminate non-solutions

Disadvantages of “generate-and-test” approach:
 Passive use of constraints to test potential values

 Inefficient for combinatorial search problems

CLP languages use the global search paradigm.
 Actively pruning the search space

 Recursively dividing a problem into sub-problems until its sub-

problems are simple enough to be solved

4

(c) Paul Fodor (CS Stony Brook)

Constraint Logic Programming
 Prolog is inefficient in dealing with numerical values, due to

“generate-and-test” paradigm

 Goal of CLP is to pick numerical values from pre-defined

domains for certain variables so that the given constraints on

the variables are all satisfied.

 Idea: use CLP to define and reason with numerical

constraints and assignments

 Defines a family of programming languages

 A language CLP(X) is defined by:
 a constraint domain X,

 a solver for the constraint domain X

 a simplifier for the constraint domain X

 For example: CLP(FD) (finite domains), CLP(R) (reals), …
5

(c) Paul Fodor (CS Stony Brook)

 CLP(FD)
 Constraint Logic Programming over Finite Domains

 SWI Prolog: library(clpfd)

 XSB Prolog: library bounds

 SWI:
:- use_module(library(clpfd)).

 Two major use cases of this library:
 Provide declarative integer arithmetic: they implement

pure relations between integer expressions and can be used in all

directions, also if parts of expressions are variables.

 ?- X #> 3, X #= 5+2.

 X=7.

 In contrast, when using low-level integer arithmetic, we get:

 ?- X > 3, X is 5+2.

 Error: >/2: Arguments are not sufficiently instantiated.

6

(c) Paul Fodor (CS Stony Brook)

 CLP(FD)
 In connection with enumeration predicates and more complex

constraints, CLP(FD) is often used to model and solve combinatorial

problems such as planning, scheduling and allocation tasks.

 Arithmetic constraints are relations between arithmetic

expressions

7

(c) Paul Fodor (CS Stony Brook)

 CLP(FD)
 We can write factorial with CLP(FD):

n_ factorial(0, 1).

n_factorial (N,F):-

 N #> 0,

 N1 #= N-1,

 F #= N*F1,

 n_factorial(N1, F1).

 ?- factorial(12, Fact).

 Fact = 479001600.

 We can also use it in reverse:
 ?- factorial(N, 479001600).

 N = 12.

 We can find out all the possible outputs:
 ?- factorial(N, F).

 N = 0,

 F = 1 ;

 N = 1,

 F = 1 ; …

8

(c) Paul Fodor (CS Stony Brook)

 CLP(FD)
 Domains:

 Each CLP(FD) variable has an associated set of admissible

integers which we call the variable's domain.

 Initially, the domain of each CLP(FD) variable is the set of all

integers.

 The constraints in/2 and ins/2 are the primary means to

specify tighter domains of variables.

?- X #>3.

 X in 4..sup

?- [X,Y ,Z] ins 0..3.

 X in 0..3,

 Y in 0..3,

 Z in 0..3

9

(c) Paul Fodor (CS Stony Brook)

Example: Send More Money
 Crypto-arithmetic Puzzle

Replace distinct letters by distinct digits, numbers have no

leading zeros.

The variables are the letters S, E, N, D, M, O, R and Y.

Each letter represents a digit between 0 and 9.

Assign a value to each digit, such that SEND + MORE

equals MONEY.

10

(c) Paul Fodor (CS Stony Brook)

Example: Send More Money
 Crypto-arithmetic Puzzle

11

(c) Paul Fodor (CS Stony Brook)

Example: Send More Money
:- use_module(library(clpfd)).

send([S,E,N,D,M,O,R,Y]) :-

 gen_domains([S,E,N,D,M,O,R,Y],0..9),

 S #\= 0,

 M #\= 0,

 all_distinct([S,E,N,D,M,O,R,Y]),

 1000*S + 100*E + 10*N + D+ 1000*M

 + 100*O + 10*R + E #= 10000*M

 + 1000*O + 100*N + 10*E + Y,

 labeling([],[S,E,N,D,M,O,R,Y]).

gen_domains([],_).

gen_domains([H|T],D) :-

 H in D,

 gen_domains(T,D).

12

(c) Paul Fodor (CS Stony Brook)

Labeling
 Labeling procedure or enumeration procedure: try possible values

for a variable X=v_1 ∨ . . . ∨ X=v_n

 labeling(+Options, +Vars): assign a value to each variable in Vars.

 labeling procedure will use heuristics to choose the next

variable and value for labeling

 variable ordering: chosen sequence of variables

 first-fail principle: choose the most constrained variable first;

will often lead to failure quickly, thus pruning the search tree

early

 value ordering: next value for labeling a variable must be

chosen

13

(c) Paul Fodor (CS Stony Brook)

Labeling
 labeling(+Options, +Vars): Options is a list of options that let you

exhibit some control over the search process.
 leftmost = Label the variables in the order they occur in Vars. This is the

default.

 ff = First fail. Label the leftmost variable with smallest domain next, in

order to detect infeasibility early. This is often a good strategy.

 ffc = Of the variables with smallest domains, the leftmost one

participating in most constraints is labeled next.

 min = Label the leftmost variable whose lower bound is the lowest next.

 max = Label the leftmost variable whose upper bound is the highest next.
?- [X,Y] ins 10..20, labeling([max(X),min(Y)],[X,Y]).

 generates solutions in descending order of X, and for each binding of X, solutions are

generated in ascending order of Y.

 To obtain the incomplete behaviour that other systems exhibit with "maximize(Expr)"

and "minimize(Expr)", use once/1, e.g.: once(labeling([max(Expr)], Vars))

14

(c) Paul Fodor (CS Stony Brook)

Example: n-Queens
 Place n queens q1, . . . , qn on an n x n chess board, such

that they do not attack each other.

 No two queens are in the same row, column and diagonal
 each row and each column has exactly one queen

 each diagonal has at most one queen

 qi: row position of the queen i in the i-th column

15

(c) Paul Fodor (CS Stony Brook)

Example: n-Queens
:- use_module(library(clpfd)).

n_queens(N, Qs) :-

 length(Qs, N),

 Qs ins 1..N,

 safe_queens(Qs).

safe_queens([]).

safe_queens([Q|Qs]) :-

 safe_queens(Qs, Q, 1),

 safe_queens(Qs).

safe_queens([], _, _).

safe_queens([Q|Qs], Q0, D0) :-

 Q0 #\= Q,

 abs(Q0 - Q) #\= D0,

 D1 #= D0 + 1,

 safe_queens(Qs, Q0, D1).

?- N = 8, n_queens(N, Qs), labeling([ff], Qs).

 Qs = [1, 5, 8, 6, 3, 7, 2, 4] .

16

(c) Paul Fodor (CS Stony Brook)

 CLP(R)
 This library provides Constraint Logic Programming over

real numbers.

Elements are trees containing real constants with operator in

{=, ≠, <, ≤, >, ≥}.

 SWI Prolog:
 :- use_module(library(clpr))

 Example:
 :- use_module(library(clpr)).

 p(X,Y) :-

 {X = Y * 3},

 q(X,Y).

 q(X,Y) :-

 {X - 2 = Y}.

 constraints are marked with {...}.

17

(c) Paul Fodor (CS Stony Brook)

 Example:

18

 CLP(R)

(c) Paul Fodor (CS Stony Brook)

 Example:

:- use_module(library(clpr))

river(W, S, R, P):-

 {T = W/R},

 {P= S*T}.
 Suppose she rows at 1.5m/s, river speed is 1m/s and width

is 24m.

 ?- river(24, 1, 1.5, P).
 Has unique answer P = 16.

19

 CLP(R)

(c) Paul Fodor (CS Stony Brook)

More Constraint Handling
 Constraint Simplification

 Optimization

 Implication and Equivalence

20

(c) Paul Fodor (CS Stony Brook)

More Constraint Handling
 Constraint Simplification
Two equivalent constraints represent the same information,

but one may be simpler than the other

21

X X Y X

X Y X

X X Y

X Y X

X Y Y

X Y Y

     

    

    

    

     

     

1 3 2

3 2

3 2

2 3

2 3 2

2 1

Removing redundant

constraints, rewriting a

primitive constraint,

changing order,

substituting using an

equation all preserve

equivalence

(c) Paul Fodor (CS Stony Brook)

Redundant Constraints

One constraint C1 implies another C2 if the

solutions of C1 are a subset of those of C2
C2 is said to be redundant wrt C1
 It is written C1  C2

For example:

22

X X

Y X Y X

cons X X cons Z nil Z nil

  

     

  

3 1

2 4 1

(,) (,)

(c) Paul Fodor (CS Stony Brook)

Solved Form Solvers

Since a solved form solver creates equivalent

constraints it can be a simplifier

Gaussian elimination:

23

)(

)()(),(),(

nilsuccYnilZnilX

nilZYZsuccXsuccYnilZconsXXcons





X Y Y X T Z X Y Z T

X Y Z T

           

      

2 2 4 5

3 1 5

(c) Paul Fodor (CS Stony Brook)

Optimization
 Often given some problem which is modelled by

constraints we don’t want just any solution, but a “best”

solution
This is an optimization problem

We need an objective function so that we can rank

solutions, that is a mapping from solutions to a real value
 An optimization problem (C,f) consists of a constraint C and

objective function f

 A valuation v1 is preferred to valuation v2 if f(v1) < f(v2)

 An optimal solution is a solution of C such that no other solution

of C is preferred to it.

24

(c) Paul Fodor (CS Stony Brook)

Optimization Example

 Find the closest point to the origin satisfying the C.

 Some solutions and f value

 Optimal solution:

25

(,)C X Y f X Y    4 2 2

{ , }

{ , }

{ , }

X Y

X Y

X Y

 

 

 

0 4 16

3 3 18

2 2 8

0 1 2 3 4

1

2

3

4

Y

X

X+Y=4

{ , }X Y 2 2

(c) Paul Fodor (CS Stony Brook)

Implication and Equivalence
 Other important operations involving constraints are:
 implication: test if C1 implies C2
 impl(C1, C2) answers true, false or unknown

equivalence: test if C1 and C2 are equivalent
 equiv(C1, C2) answers true, false or unknown

26

(c) Paul Fodor (CS Stony Brook)

Implication Example
 For the house constraints CH,

will stage B have to be reached

after stage C?

 For this question the answer if

false, but if we require the

house to be finished in 15 days

the answer is true

 27

Building a House

Doors

2 days

Stage B

Interior Walls

4 days

Chimney

3 days

Stage D

Stage E

Tiles

3 days

Roof

2 days

Windows

3 days

Stage C

Exterior Walls

3 days

Stage A

Foundations

7 days

Stage S

CH T TB C 

CH T T TE B C   15

(c) Paul Fodor (CS Stony Brook)

Application Domains
 Modeling

 Executable Specifications

 Solving combinatorial problems
 Scheduling, Planning, Timetabling

Configuration, Layout, Placement, Design

Analysis: Simulation, Verification, Diagnosis of software,

hardware and industrial processes.

 Artificial Intelligence
Machine Vision

Natural Language Understanding

Qualitative Reasoning, etc.

28

(c) Paul Fodor (CS Stony Brook)

Applications in Research
 Computer Science: Program Analysis, Robotics, Agents

 Molecular Biology, Biochemistry, Bio-informatics:

Protein Folding, Genomic Sequencing

 Economics: Scheduling

 Linguistics: Parsing

 Medicine: Diagnosis Support

 Physics: System Modeling

 Geography: Geo-Information-Systems

29

