Stable Models Semantics and Answer Set Programming

CSE 505 – Computing with Logic

Stony Brook University

http://www.cs.stonybrook.edu/~cse505

General Logic Programs

• A general program is a collection of rules of the form:

 $a \leftarrow a_1, \ldots, a_n, \text{ not } a_{n+1}, \ldots, \text{ not } a_{n+k}.$

Grounding

- Variables are placeholders for constants.
- *Grounding* is the process to "replace variables by constants in all possible ways"
- Example:
- isInterestedinASP(X):- attendsASP(X).
 attendsASP(john). attendsASP(mary).
- After grounding:
- isInterestedinASP(john): attendsASP(john).
- isInterestedinASP(mary): attendsASP(mary).
- attendsASP(john). attendsASP(mary).

Gelfond-Lifschitz transformation

• A general program is a collection of rules of the form:

```
a \leftarrow a_1, \ldots, a_n, \text{ not } a_{n+1}, \ldots, \text{ not } a_{n+k}.
```

- Let Π be a program and I be a set of atoms, by Π^{I} (*Gelfond-Lifschitz transformation*) we denote the positive program obtained from ground(Π) by:
 - Deleting from ground(Π) any rule for that $\{a_{n+1}, ..., a_{n+k}\}$ Π $I \neq \emptyset$, i.e., the body of the rule contains a naf-atom **not** a_1 and a_1 belongs to I; and
 - Removing all of the naf-atoms from the remaining rules

General Logic Programs

- A set of atoms I is called an <u>answer set</u> of a program Π if I is the <u>minimal</u> model of the program Π^I
- Example: Consider $\Pi_2 = \{ \mathbf{a} \leftarrow \mathbf{not} \ \mathbf{b}. \ \mathbf{b} \leftarrow \mathbf{not} \ \mathbf{a}. \}$. We will show that it has two answer sets $\{ \mathbf{a} \}$ and $\{ \mathbf{b} \}$

$S_1 = \emptyset$	$S_2 = \{a\}$	$S_3 = \{b\}$	$S_4 = \{a, b\}$
$\Pi_2^{S_1}$:	$\Pi_2^{S_2}$:	$\Pi_2^{S_3}$:	$\Pi_2^{S_4}$:
$a \leftarrow$	$a \leftarrow$		
$b \leftarrow$		$b \leftarrow$	
$M_{\Pi_2^{S_1}} = \{a, b\}$	$M_{\Pi_2^{S_2}} = \{a\}$	$M_{\Pi_2^{S_3}} = \{b\}$	$M_{PS_4} = \emptyset$
$M_{\Pi_2^{S_1}} \neq S_1$	$M_{\Pi_2^{S_2}} = S_2$	$M_{\Pi_2^{S_3}} = S_3$	$M_{\Pi_2^{S_4}} \neq S_4$
NO	YES	YES	NO

• Theorem: For every positive program Π , the minimal model of

 Π , M_{Π} , is also the unique answer set of Π .

General Logic Programs

- $\Pi_5 = \{ \mathbf{p} \leftarrow \mathbf{not} \ \mathbf{p}. \}$ does not have an answer set.
 - $S_1 = \emptyset$, then $\Pi^{S1} = \{\mathbf{p} \leftarrow\}$ whose minimal model is $\{\mathbf{p}\}$. $\{\mathbf{p}\} \neq \emptyset$ implies that S_1 is not an answer set of Π_5 .
 - $S_2 = \{\mathbf{p}\}$, then $\Pi^{S2} = \emptyset$ whose minimal model is \emptyset . $\{\mathbf{p}\} \neq \emptyset$ implies that S_2 is not an answer set of Π_5 .
 - This shows that this program does not have an answer set.
- A program may have zero, one, or more than one answer sets:
 - $\Pi_1 = \{a \leftarrow \text{not b.}\}\$ has a unique answer set $\{a\}$.
 - $\Pi_2 = \{a \leftarrow \text{not b. b} \leftarrow \text{not a.}\}\$ has two answer sets: $\{a\}$ and $\{b\}$.
 - $\Pi_3 = \{p \leftarrow a. a \leftarrow \text{not b. b} \leftarrow \text{not a.}\}\ \text{has two answer sets: } \{a, p\} \text{ and } \{b\}$
 - $\Pi_4 = \{a \leftarrow \text{not b. b} \leftarrow \text{not c. d} \leftarrow .\}$ has one answer set $\{d, b\}$.
 - $\Pi_5 = \{ p \leftarrow \text{not p.} \}$ No answer set.
 - $\Pi_6 = \{ p \leftarrow d, \text{ not } p. r \leftarrow \text{ not } d. d \leftarrow \text{ not } r. \}$ has one answer set $\{r\}$.

Entailment w.r.t. Answer Set Semantics

- For a program Π and an atom a, Π entails a, denoted by $\Pi \vDash a$, if $a \in S$ for every answer set S of Π .
- For a program Π and an atom a, Π entails $\neg a$, denoted by $\Pi \vDash \neg a$, if $a \notin S$ for every answer set S of Π .
- If neither $\Pi \vDash a$ nor $\Pi \vDash \neg a$, then we say that a is *unknown* with respect to Π .
- Examples:
 - $\Pi_1 = \{a \leftarrow \text{not b.}\}\$ has a unique answer set $\{a\}$. $\Pi_1 \models a$, $\Pi_1 \models \neg b$.
 - $\Pi_2 = \{a \leftarrow \text{not b. b} \leftarrow \text{not a}\}\ \text{has two answer sets: } \{a\} \text{ and } \{b\}$. Both a and b are unknown w.r.t. Π_2 .
 - $\Pi_3 = \{p \leftarrow a. a \leftarrow not b. b \leftarrow not a.\}$ has two answer sets: $\{a, p\}$ and $\{b\}$. Everything is unknown.
 - $\Pi_4 = \{ p \leftarrow \text{not p.} \}$ No answer set. p is unknown.

 (c) Paul Fodor (CS Stony Brook) and Elsevier

Answer Sets of Programs with Constraints

• For a set of ground atoms S and a *constraint* c

$$\leftarrow a_1, ..., a_n, \text{ not } a_{n+1}, \text{ not } a_{n+k}$$
.

we say that c is *satisfied* by S if $\{a_1, ..., a_n\} \setminus S \neq \emptyset$ or $\{a_{n+1}, ..., a_{n+k}\} \cap S \neq \emptyset$.

- Let Π be a program with constraints.
- Let $\Pi_O = \{r \mid r \in \Pi, r \text{ has non-empty head}\}$ (Π_O is the set of normal logic program rules in Π)
- Let $\Pi_C = \Pi \setminus \Pi_O (\Pi_C \text{ is the set of constraints in } \Pi)$
- A set of atoms S is an answer sets of a program Π if it is an answer set of Π_O and satisfies all the constraints in ground (Π_C)

Answer Sets of Programs with Constraints

- Example:
 - $\Pi_1 = \{a \leftarrow \text{not b. b} \leftarrow \text{not a.}\}\$ has two answer sets $\{a\}$ and $\{b\}$
 - But, $\Pi_2 = \{$ a \leftarrow not b.

 $b \leftarrow not a$.

← not a.

has only one answer set {a}.

• But, $\Pi_3 = \{$ a \leftarrow not b.

 $b \leftarrow not a$.

← a.

has only one answer set {b}.

Computing Answer Sets

- Complexity: The problem of determining the existence of an answer set for finite propositional programs (programs without function symbols) is NP-complete.
- For programs with disjunctions, function symbols, etc. it is much higher.
- A consequence of this property is that there exists no polynomial-time algorithm for computing answer sets.

Answer set solvers

- Programs that compute answer sets of (finite and grounded) logic programs.
- Two main approaches:
 - Direct implementation: Due to the complexity of the problem, most solvers implement a variation of the generate-and-test algorithm
 - Smodels http://www.tcs.hut.fi/Software/smodels/
 - DLV http://www.dbai.tuwien.ac.at/proj/dlv/
 - deres http://www.cs.engr.uky.edu/ai/deres.html
 - Using SAT solvers: A program Π is translated into a satisfiabilty problem $F\Pi$ and a call to a SAT solver is made to compute solution of $F\Pi$.

The main task of this approach is to write the program for the conversion from Π to $F\Pi$

- Potassco: http://potassco.sourceforge.net/ (clasp, gringo, ...)
- Cmodels http://www.cs.utexas.edu/users/tag/cmodels.html
- ASSAT http://assat.cs.ust.hk/

Example: Graph Coloring

- Given a (bi-directed) graph and three colors red, green, and yellow. Find a color assignment for the nodes of the graph such that no edge of the graph connects two nodes of the same color.
 - Graph representation:
 - The nodes: node (1) node (n) .
 - The edges: **edge(i, j)**.
 - Each node is assigned one color:
 - the three rules:

```
color(X, red) \leftarrow node(X), not color(X, green), not color(X, yellow).

color(X, green) \leftarrow node(X), not color(X, red), not color(X, yellow).

color(X, yellow) \leftarrow node(X), not color(X, green), not color(X, red).
```

• No edge connects two nodes of the same color:

```
← edge(X, Y), color(X, C), color(Y, C).
```

Example: Graph Coloring

```
node(1). node(2). node(3).
edge(1,2). edge(2,3). edge(3,1).
color(X,red):- node(X), not color(X,green), not color(X, yellow).
color(X,green):- node(X), not color(X,red), not color(X, yellow).
color(X,yellow):- node(X), not color(X,green), not color(X, red).
:- edge(X,Y), color(X,C), color(Y,C).
```

Try with

clingo -n 0 color.lp

```
Answer: 1
node(1) node(2) node(3) edge(1,2) edge(2,3) edge(3,1) color(1,red) color(2,green) color(3,yellow)
Answer: 2
node(1) node(2) node(3) edge(1,2) edge(2,3) edge(3,1) color(1,red) color(2,yellow) color(3,green)
Answer: 3
node(1) node(2) node(3) edge(1,2) edge(2,3) edge(3,1) color(1,green) color(2,red) color(3,yellow)
Answer: 4
node(1) node(2) node(3) edge(1,2) edge(2,3) edge(3,1) color(1,yellow) color(2,red) color(3,green)
Answer: 5
node(1) node(2) node(3) edge(1,2) edge(2,3) edge(3,1) color(1,green) color(2,yellow) color(3,red)
Answer: 6
node(1) node(2) node(3) edge(1,2) edge(2,3) edge(3,1) color(1,yellow) color(2,green) color(3,red)
Models : 6
```