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General Logic Programs
 A general program is a collection of rules of the form: 

a ← a1, ..., an, not an+1,…, not an+k.
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Grounding
 Variables are placeholders for constants.

 Grounding is the process to “replace variables by constants in 

all possible ways”

 Example:

isInterestedinASP(X):- attendsASP(X).

attendsASP(john). attendsASP(mary).

 After grounding:

isInterestedinASP(john):-

attendsASP(john).

isInterestedinASP(mary):-

attendsASP(mary).

attendsASP(john). attendsASP(mary).
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Gelfond-Lifschitz transformation
 A general program is a collection of rules of the form: 

a ← a1, ..., an, not an+1,…, not an+k.

 Let Π be a program and I be a set of atoms, by ΠI

(Gelfond-Lifschitz transformation) we denote the 

positive program obtained from ground(Π) by:

Deleting from ground(Π) any rule for that 

{an+1,…,an+k} ∩ I ≠ ∅, i.e., the body of the 

rule contains a naf-atom not al and al belongs to I; 

and

Removing all of the naf-atoms from the remaining rules
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General Logic Programs
 A set of atoms I is called an answer set of a program Π if I is the 

minimal model of the program ΠI

 Example: Consider Π2 = {a ← not b. b ← not a.}. 

We will show that it has two answer sets {a} and {b}

 Theorem: For every positive program Π, the minimal model of 

Π, MΠ, is also the unique answer set of Π.
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General Logic Programs
 Π5 = {p ← not p.} does not have an answer set.

 S1 = ∅, then ΠS1 = {p←} whose minimal model is {p}. {p} ≠ ∅
implies that S1 is not an answer set of Π5. 

 S2 = {p}, then ΠS2 = ∅ whose minimal model is ∅. {p} ≠ ∅ implies that 

S2 is not an answer set of Π5. 

 This shows that this program does not have an answer set.

 A program may have zero, one, or more than one answer sets:

 Π1 = {a ← not b.} has a unique answer set {a}. 

 Π2 = {a ← not b. b ← not a.} has two answer sets: {a} and {b}. 

 Π3 = {p ← a. a← not b. b ← not a.} has two answer sets: {a, p} and {b}

 Π4 = {a ← not b. b ← not c. d ← .} has one answer set {d, b}. 

 Π5 = {p ← not p.} No answer set. 

 Π6 = {p ← d, not p. r ← not d. d ← not r.} has one answer set {r}.
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Entailment w.r.t. Answer Set Semantics
 For a program Π and an atom a, Π entails a, denoted by Π ⊨ a, if 

a ∈ S for every answer set S of Π. 

 For a program Π and an atom a, Π entails ¬a, denoted by Π⊨ ¬a, if 

a∉S for every answer set S of Π.

 If neither Π⊨ a nor Π⊨ ¬a, then we say that a is unknown with 

respect to Π.

 Examples:

 Π1 = {a ← not b.} has a unique answer set {a}. Π1⊨a, Π1⊨¬b.

 Π2 = {a ← not b. b ← not a} has two answer sets: {a} and {b}. Both a 

and b are unknown w.r.t. Π2.

 Π3 = {p ← a. a ← not b. b ← not a.} has two answer sets: {a, p} and 

{b}. Everything is unknown.

 Π4 = {p ← not p.} No answer set. p is unknown.
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Answer Sets of Programs with Constraints
 For a set of ground atoms S and a constraint c 

← a1, ..., an, not an+1, not an+k .

we say that c is satisfied by S if {a1, ..., an} \ S ≠ ∅ or 

{an+1,...,an+k} ∩ S ≠ ∅. 

 Let Π be a program with constraints. 

 Let ΠO = {r | r ∈ Π, r has non-empty head} (ΠO is the set of 

normal logic program rules in Π)

 Let ΠC = Π \ ΠO (ΠC is the set of constraints in Π)

 A set of atoms S is an answer sets of a program Π if it is an answer 

set of ΠO and satisfies all the constraints in ground (ΠC)
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Answer Sets of Programs with Constraints
 Example:

Π1 = {a ← not b. b ← not a.} has two answer sets {a} and {b}

 But, Π2 = { a ← not b. 

b ← not a. 

← not a. } 

has only one answer set {a}. 

 But, Π3 = { a ← not b. 

b ← not a. 

← a. } 

has only one answer set {b}. 
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Computing Answer Sets
Complexity: The problem of determining the 

existence of an answer set for finite propositional 

programs (programs without function symbols) is 

NP-complete. 

For programs with disjunctions, function symbols, 

etc. it is much higher. 

A consequence of this property is that there exists 

no polynomial-time algorithm for computing 

answer sets.
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Answer set solvers
 Programs that compute answer sets of (finite and grounded) logic programs.

 Two main approaches: 

 Direct implementation: Due to the complexity of the problem, most 

solvers implement a variation of the generate-and-test algorithm
 Smodels http://www.tcs.hut.fi/Software/smodels/

 DLV http://www.dbai.tuwien.ac.at/proj/dlv/

 deres http://www.cs.engr.uky.edu/ai/deres.html

 Using SAT solvers: A program Π is translated into a satisfiabilty problem 

FΠ and a call to a SAT solver is made to compute solution of FΠ. 

The main task of this approach is to write the program for the conversion 

from Π to FΠ
 Potassco: http://potassco.sourceforge.net/ (clasp, gringo, …)

 Cmodels http://www.cs.utexas.edu/users/tag/cmodels.html

 ASSAT http://assat.cs.ust.hk/
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Example: Graph Coloring
 Given a (bi-directed) graph and three colors red, green, and yellow. Find a 

color assignment for the nodes of the graph such that no edge of the graph 

connects two nodes of the same color.

 Graph representation: 

 The nodes: node(1). … node(n).

 The edges: edge(i, j).

 Each node is assigned one color:

 the three rules: 

color(X, red) ← node(X), not color(X, green), not color(X, yellow). 

color(X, green) ← node(X), not color(X, red), not color(X, yellow). 

color(X, yellow) ← node(X), not color(X, green), not color(X, red).

 No edge connects two nodes of the same color:

← edge(X, Y ), color(X, C), color(Y, C).
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node(1). node(2). node(3).

edge(1,2). edge(2,3). edge(3,1).

color(X,red):- node(X), not color(X,green), not color(X, yellow).

color(X,green):- node(X), not color(X,red), not color(X, yellow).

color(X,yellow):- node(X), not color(X,green), not color(X, red).

:- edge(X,Y), color(X,C), color(Y,C).

 Try with 

clingo –n 0 color.lp
Answer: 1

node(1) node(2) node(3) edge(1,2) edge(2,3) edge(3,1) color(1,red) color(2,green) color(3,yellow)

Answer: 2

node(1) node(2) node(3) edge(1,2) edge(2,3) edge(3,1) color(1,red) color(2,yellow) color(3,green)

Answer: 3

node(1) node(2) node(3) edge(1,2) edge(2,3) edge(3,1) color(1,green) color(2,red) color(3,yellow)

Answer: 4

node(1) node(2) node(3) edge(1,2) edge(2,3) edge(3,1) color(1,yellow) color(2,red) color(3,green)

Answer: 5

node(1) node(2) node(3) edge(1,2) edge(2,3) edge(3,1) color(1,green) color(2,yellow) color(3,red)

Answer: 6

node(1) node(2) node(3) edge(1,2) edge(2,3) edge(3,1) color(1,yellow) color(2,green) color(3,red)

Models       : 6
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