
CSE 505 – Computing with Logic

Stony Brook University

http://www.cs.stonybrook.edu/~cse505

Logic Programming Negation

1

http://www.cs.stonybrook.edu/~cse505

(c) Paul Fodor (CS Stony Brook) and Elsevier

Negation in Logic Programs
 In real life the negative information is seldom stated explicitly

 Example: the train table states there is a daily train from Stony

Brook to New York at 9:10am, but it does not explicitly state

that there is no train departing at 9:11am or 9:12am or …

 Thus, in many real-life situations the lack of information is taken

as evidence to the contrary

 Example: since the timetable does not indicate a departure from Stony

Brook to New York at 9:14am, one does not plan to take such a train

 This is because we assume that timetable lists all trains from Stony Brook to New York

 This idea is the intuition behind the so-called closed world assumption

 The closed world assumption is a mechanism that allows us to

draw negative conclusions based on the lack of

positive information
2

(c) Paul Fodor (CS Stony Brook) and Elsevier

Negation in Logic Programs
above(X, Y) :- on(X, Y).

above(X, Y) :- on(X, Z), above(Z, Y).

on(c, b).

on(b, a).

?- above(c,a).

 Yes, since above(c,a) is in the least Herbrand model of the program.

?- above(b,c).

 There are models which contain above(b, c), but it is not in the

least Herbrand model of the program

 Not a logical consequence of the program

?- not above(b,c).

 Yes, since above(b,c) is not a logical consequence of the program

3

(c) Paul Fodor (CS Stony Brook) and Elsevier

Closed World Assumption
“... the truth, the whole truth, and nothing but the truth ...”

 the truth: anything that is the logical consequence of the program

is true

 “the whole truth, and nothing but the truth”: anything that is

not a logical consequence of the program is false

 Semantics: Closed World Assumption (CWA):

Negation as (finite) failure:

4

(c) Paul Fodor (CS Stony Brook) and Elsevier

Finite Failure
 Every SLD derivation that fails in a finite number of resolution

steps:

5

(c) Paul Fodor (CS Stony Brook) and Elsevier

A problem with CWA
above(X, Y) :- on(X, Y).

above(X, Y) :- on(X, Z), above(Z, Y).

on(c, b).

on(b, a).

?- not above(b,c).

above(b,c) is not a logical consequence of the program so

¬above(b,c) must be true

 But ¬above(b,c) is not a logical consequence of the program

Because there are models with above(b,c)

 So we must strengthen what we mean by a program

6

(c) Paul Fodor (CS Stony Brook) and Elsevier

Completion
above(X, Y) :- on(X, Y).

above(X, Y) :- on(X, Z), above(Z, Y).

 Logical meaning of the program:

above(X, Y)

on(X, Y) ∨ (on(X,Z) ∧ above(Z, Y)).

But we want that above(X,Y) cannot be true in any

other way (by CWA)!
 Hence the above program is equivalent to:

above(X, Y) ↔
on(X, Y) ∨ (on(X,Z) ∧ above(Z, Y))

Called the “completion”(also "Clark’s completion") of the program

7

(c) Paul Fodor (CS Stony Brook) and Elsevier

How to complete a program
1. Rewrite each rule of the form

p(t1, ..., tm) L1, ...,Ln.

to

p(X1, ...,Xm) X1=t1,…,Xm=tm, L1,…,Ln.

2. For each predicate symbol p which is defined by rules:

p(X1, ...,Xm) B1.
...

p(X1, ...,Xm) Bn.

replace the rules by:

 If n > 0:

∀X1, ...,Xm p(X1,…,Xm)↔ B1∨ B2 ∨ B3 ∨…∨ Bn.

 If n = 0:
∀X1, ...,Xm ¬p(X1, ...,Xm)8

(c) Paul Fodor (CS Stony Brook) and Elsevier

Negation in Logic Programs
 The negation-as-failure 'not' predicate could be defined

in Prolog as follows:

not(P) :- call(P), !, fail.

not(P).

 Quintus, SWI, and many other prologs use '\+' or 'naf' (for

negation as failure) in the syntax rather than 'not'.

 Another way one can write the 'not' definition is using the

Prolog implication operator '->' (if-then-else):

not(P) :- (call(P) -> fail ; true).

9

(c) Paul Fodor (CS Stony Brook) and Elsevier

Negation in Logic Programs
bachelor(P) :- male(P), not(married(P)).

male(henry).

male(tom).

married(tom).

?- bachelor(henry).

yes

?- bachelor(tom).

no

?- bachelor(Who).

Who= henry ;

no

?- not(married(Who)).

no.

This might not be intuitive!

10

?- not(married(Who)).

fails because for the variable

binding Who=tom,

married(Who) succeeds,

and so the negative goal fails.

(c) Paul Fodor (CS Stony Brook) and Elsevier

Negation in Logic Programs
u(X) :- not(s(X)).

s(X) :- s(f(X)).

?-u(1).

∞

11

(c) Paul Fodor (CS Stony Brook) and Elsevier

Negation in Logic Programs
p(X) :- q(X), not(r(X)).

r(X) :- w(X), not(s(X)).

q(a).

q(b).

q(c).

s(a) :- p(a).

s(c).

w(a).

w(b).

?- p(a).

∞
12

