Logic Programming Negation

CSE 505 — Computing with Logic
Stony Brook University

http: / / WWW. cs.stonybrook.edu/ ~cse505

http://www.cs.stonybrook.edu/~cse505

T\Iegation In Logic Programs :

® |n real life the negative information is seldom stated explicitly

© Example: the train table states there is a daily train from Stony

Brook to New York at 9:10am, but it does not explicitly state

that there is no train departing at 9:11am or 9:12am or ...

® Thus, in many real-life situations the lack of information is taken

as evidence to the contrary

° Example: since the timetable does not indicate a departure from Stony
Brook to New York at 9:14am, one does not plan to take such a train

This is because we assume that timetable lists all trains from Stony Brook to New York

® This idea is the intuition behind the so-called closed world assumption

® The closed world dassumption is a mechanism that allows us to

draw negative conclusions based on the lack of

a positive information

(c) Paul Fodor (CS Stony Brook) and Elsevier /

T\Iegation In Logic Programs

above (X, ¥Y) :- on(X, Y).
above (X, Y¥) :- on(X, Z), above(Z, Y).
on(c, b).
on(b, a).
?- above(c,a).

™~

® Yes, since above (¢, a) is in the least Herbrand model of the program.

?- above(b,c).
® There are models which contain above (b, ¢), butitis notin the
least Herbrand model of the program

e Not a logical consequence of the program
?- not above(b,c).

® Yes, since above (b, ¢) is not a logical consequence of the program

@ (c) Paul Fodor (CS Stony Brook) and Elsevier

/

Closed World Assumption

“... the truth, the whole truth, and nothing but the truth ..

™~

b))

® the truth: anything that is the logical consequence of the program

1S true

® “the whole truth, and nothing but the truth”: anything that is
not a logical consequence of the program 1s false

® Semantics: Closed World Assumption (CWA):
PEA PHA

Negation as (finite) failure:

«— A has a finitely failed SLD tree
-A

(c) Paul Fodor (CS Stony Brook) and Elsevier

Finite Failure

® Every SLD derivation that fails in a finite number of resolution

steps:
= above (b, c)

/\

= on{b,Z20), above (Z0,c)

Zil=a

= above (a, c)

/\

= onfa, c) = onfa,Zl), above (Zl,

Fail Fail

(c) Paul Fodor (CS Stony Brook) and Elsevier

™~

c)

/

A problem with CWA

above (X, ¥Y) :- on(X, Y).
above (X, Y¥) :- on(X, Z), above(Z, Y).
on(c, b).
on(b, a).
?- not above(b,c).
above (b, c) is not a logical consequence of the program so

—-above (b, c) must be true

* But ~above (b, c) is not a logical consequence of the program
® Because there are models with abowve (b, ¢)

¢ So we must strengthen what we mean by a program

@ (c) Paul Fodor (CS Stony Brook) and Elsevier

Completion

above (X, ¥Y) :- on(X, Y).
above (X, Y¥) :- on(X, Z), above(Z, Y).
* Logical meaning of the program:
above (X, Y) €
on(X, ¥) V (on(X,2) A above(z, Y)).
But we want that above (X, Y) cannot be true in any

other way (by CWA)!

® Hence the above program is equivalent to:

above (X, Y) €

on(X, Y) V (on(X,Z) A above(Z, Y))
Called the “completion”(also "Clark’s completion") of the program

@ (c) Paul Fodor (CS Stony Brook) and Elsevier /

How to complete a program

1. Rewrite each rule of the form
p(t,, ..., t) € L, ...,L

n.

to

p(X,, ...,X) € X;=t,,.,X=t_, L., L.

2. For each predicate symbol p which is detined by rules:
p(X,, ...,X) € B;.

p(Xl, ,Xm) & B, .
replace the rules by:

olfn > 0:

vX,, ...,X p(X,,..,X)<> B,V B,V B, V.V B_.

elfn = 0:
@ VX, ..., X, p(X;, ...,X)

(c) Paul Fodor (CS Stony Brook) and Elsevier

/

T\Iegation In Logic Programs :

® The negation-as-failure 'not' predicate could be defined
in Prolog as follows:
not(P) :- call(P), !, fail.
not (P) .
® Quintus, SWI, and many other prologs use '"\+' or 'naf’' (for
negation as failure) in the syntax rather than 'not'.

® Another way one can write the 'not' definition is using the
Prolog implication operator '=>' (if-then-else):
not(P) :- (call(P) -> fail ; true).

@ (c) Paul Fodor (CS Stony Brook) and Elsevier

T\Iegation In Logic Programs

bachelor (P) :- male(P), not(married(P)).
male (henry) .

male (tom) .

married (tom) .

?- bachelor (henry) .

yes

?- bachelor (tom) .

no

?- bachelor (Who) . ?- not (married (Who)).
Who= henry ; fails because for the variable
no binding Who=tom,

?- not(married(Who)) . |married (Who) succeeds,
no. and so the negative goal fails.

This might not be intuitive!

@ (c) Paul Fodor (CS Stony Brook) and Elsevier

T\Iegation In Logic Programs

u(X) :- not(s(X)).
s(X) :- s(£(X)).

?-u(l).

oo

™~

P (X)
r (X)

s (a)

(-

q(a) .
q(b) .
q(c) .

s (c).
w(a) .

T\Iegation In Logic Programs

:= gq(X), not(r(X)).
- w(X), not(s(X)).

(c) Paul Fodor (CS Stony Brook) and Elsevier

™~

