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(c) Paul Fodor (CS Stony Brook) and Elsevier

Refutation in Predicate Logic
parent(pam, bob). parent(tom, bob). 

parent(tom, liz). ...

anc(X,Y) :- parent(X,Y).

anc(X,Y) :- parent(X,Z), anc(Z,Y).

 Goal G: For what values of Q is :- anc(tom,Q) a logical 

consequence of the above program? 

 Negate the goal G: i.e. ¬G  ≡ ∀Q ¬anc(tom, Q).

 Consider the clauses in the program P ∪ ¬G and apply refutation

 Note that a program clause written as p(A,B) :- q(A,C), r(B,C)

can be rewritten as: ∀A,B,C (p(A, B) ∨ ¬q(A, C) ∨ ¬r(B, C))

i.e., l.h.s. literal is positive, while all r.h.s. literals are negative

 Note also that all variables are universally quantified in a clause!

 Note on syntax: we use :- ,  ?- and  for IMPLICATION2
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Refutation: An Example 
parent(pam, bob). 

parent(tom, bob). 

parent(tom, liz). 

parent(bob, ann). 

parent(bob, pat). 

parent(pat, jim).

anc(X,Y) :-

parent(X,Y). 

anc(X,Y) :-

parent(X,Z), 

anc(Z,Y).
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Refutation: An Example 
parent(pam, bob). 

parent(tom, bob). 

parent(tom, liz). 

parent(bob, ann). 

parent(bob, pat). 

parent(pat, jim).

anc(X,Y) :-

parent(X,Y). 

anc(X,Y) :-

parent(X,Z), 

anc(Z,Y).
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Unification 
Operation done to “match” the goal atom with 

the head of a clause in the program. 

Forms the basis for the matching operation 

we used for Prolog evaluation: 

f(a,Y) and f(X,b) unify when X=a and Y=b

f(a,X) and f(X,b) do not unify 

That is, the query ?- f(a,X)=f(X,b).

fails in Prolog
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Substitutions
A substitution is a mapping between variables and 

values (terms)

Denoted by {X1/t1,X2/t2,..., Xn/tn} such that 

Xi ≠ ti , and 

Xi and Xj are distinct variables when i ≠ j. 

The empty substitution is denoted by {} (or ε). 

A substitution is said to be a renaming if it is of the 

form {X1/Y1, X2/Y2,..., Xn/Yn} and  

Y1,Y2,...,Yn is a permutation of X1,X2,...,Xn. 

Example: {X/Y, Y/X} is a renaming substitution.
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Substitutions and Terms
Application of a substitution:

Xθ = t if X/t ∈ θ. 

Xθ = X if X/t ∉ θ for any term t. 

Application of a substitution {X1/t1,..., Xn/tn} 

to a term/formula F: 
 is a term/formula obtained by simultaneously replacing 

every free occurrence of Xi in F by ti . 

Denoted by Fθ [and Fθ is said to be an instance of F] 

Example: 
p(f(X,Z),f(Y,a)){X/g(Y), Y/Z, Z/a} = 

p(f(g(Y),a),f(Z,a))
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Composition of Substitutions
Composition θσ of substitutions θ = {X1/s1,..., 

Xm/sm} and σ = {Y1/t1,..., Yn/tn}: 

1. First form the set {X1/s1σ, ..., Xm/smσ, Y1/t1,...,Yn/tn} 

2. Remove from the set Xi/siσ if   siσ = Xi
3. Remove from the set Yj/tj if   Yj is identical to some variable Xi

 Example: Let θ = σ = {X/g(Y), Y/Z, Z/a}.  Then 

θσ={X/g(Y), Y/Z, Z/a}{X/g(Y), Y/Z, Z/a}=

{X/g(Z), Y/a, Z/a}

 More examples: Let θ = {X/f(Y)} and σ = {Y/a}

 θσ = {X/f(a), Y/a} 

 σθ = {Y/a, X/f(Y)} 

 Composition is not commutative but is associative: θ(σγ) = (θσ)γ
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Idempotence
 A substitution θ is idempotent iff θθ = θ. 

 Examples: 

{X/g(Y), Y/Z, Z/a} is not idempotent since 

{X/g(Y), Y/Z, Z/a}{X/g(Y), Y/Z, Z/a} = {X/g(Z), Y/a, Z/a} 

{X/g(Z), Y/a, Z/a} is not idempotent either since 

{X/g(Z), Y/a, Z/a}{X/g(Z), Y/a, Z/a} = {X/g(a), Y/a, Z/a} 

{X/g(a), Y/a, Z/a} is idempotent 

 For a substitution θ = {X1/t1,X2/t2,..., Xn/tn}, 

 Dom(θ) = {X1,X2,..., Xn} 

 Range(θ) = set of all variables in t1,t2,...,tn

 A substitution θ is idempotent iff Dom(θ) ∩ Range(θ) = ∅
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Unification 
 Unification is a procedure that takes two atomic formulas as 

input, and either shows how they can be instantiated to identical 

atoms or, reports a failure.

 For example: 

?- f(X,g(Y)) = f(a,g(X)).

 Any solution of the equations: {X=a, g(Y)=g(X)}

must clearly be a solution of equation above

 Similarly, any solution of: {X = a, Y = X} must be a 

solution of equations {X = a, g(Y) = g(X)}

 Finally any solution of: {X = a, Y = a} is a solution 

of {X = a, Y = X}
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Unifiers 
 A substitution θ is a unifier of two terms s and t if sθ is identical to tθ

 θ is a unifier of a set of equations {s1=t1,...,sn=tn}, if 

for all i, siθ = tiθ

 A substitution θ is more general than σ (written as θ ≥ σ) if there is a 

substitution ω such that σ = θω
 A substitution θ is a most general unifier (mgu) of two terms (or a set 

of equations) if for every unifier σ of the two terms (or equations) 

θ≥σ
 Example: Consider two terms f(g(X),Y,a) and f(Z,W,X). 

θ1 = {X/a, Y/b, Z/g(a), W/b} is a unifier 

θ2 = {X/a, Y/W , Z/g(a)} is also a unifier 

θ2 is more general than θ1 because θ1= θ2ω where ω={W/b}

θ2 is also the most general unifier of the 2 terms
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Equations and Unifiers
 A set of equations E is in solved form if it is of the form 

{X1=t1,..., Xn=tn} iff no Xi appears in any tj. 

Given a set of equations E = {X1=t1,..., Xn=tn}, the 

substitution {X1/t1,..., Xn/tn} is an idempotent 

mgu of E

 Two sets of equations E1 and E2 are said to be equivalent iff

they have the same set of unifiers

 To find the mgu of two terms s and t, try to find a set of 

equations in solved form that is equivalent to {s = t}. 

If there is no equivalent solved form, there is no mgu. 

12



(c) Paul Fodor (CS Stony Brook) and Elsevier

A Simple Unification Algorithm
Given a set of equations E: 
repeat

select s = t ∈ E; 

case s = t of 

1. f(s1, ...,sn) = f(t1, ...,tn): 

replace the equation by si = ti for all i

2. f(s1, ...,sn) = g(t1, ...,tm), f ≠ g or n ≠ m: 

halt with failure

3. X = X : remove the equation 

4. t = X : where t is not a variable, X is a variable 

replace equation by X = t 

5. X = t : where X ≠ t and X occurs more than once in E: 

if X is a proper subterm of t 

then halt with failure (5a) 

else replace all other X in E by t (5b) 

until no action is possible for any equation in E 

return E
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Example: Find the mgu of f(X,g(Y)) and f(g(Z),Z)

{f(X, g(Y)) = f(g(Z), Z)} ⇒
⇒ {X = g(Z), g(Y) = Z} case 1 

⇒ {X = g(Z), Z = g(Y)} case 4 

⇒ {X = g(g(Y)), Z = g(Y)} case 5b
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Example: Find the mgu of f(X, g(X)) and f(Z, Z)

{f(X, g(X)) = f(Z, Z)} ⇒
⇒ {X = Z, g(X) = Z} case 1 

⇒ {X = Z, g(Z) = Z} case 5b 

⇒ {X = Z, Z = g(Z)} case 4 

⇒ fail case 5a
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Example: Find the mgu of f(X,g(X),b) and f(a,g(Z),Z)

{f(X,g(X),b)=f(a,g(Z),Z)} ⇒

⇒ {X = a, g(X) = g(Z), b = Z} case 1

⇒ {X = a, g(a) = g(Z), b = Z} case 5b

⇒ {X = a, a = Z, b = Z} case 1

⇒ {X = a, Z = a, b = Z} case 4

⇒ {X = a, Z = a, b = a} case 2

⇒ fail
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Complexity of the unification algorithm 
 Consider the set of equations: 

E={ g(X1,...,Xn)=g(f(X0,X0),f(X1, X1),…,f(Xn-1,Xn-1) }

 By applying case 1 of the algorithm, we get 

{X1=f(X0, X0),X2=f(X1,X1),X3=f(X2,X2),…,Xn=f(Xn-1,Xn-1)}

 If terms are kept as trees, the final value for Xn is a tree of size O(2n)

 Recall that for case 5 we need to first check if a variable appears in a term, 

and this could now take O(2n) time  

 X = t is the most common case for unification in Prolog 

 There are linear-time unification algorithms that share structures (terms as DAGs)

 Therefore, the fastest algorithms are linear in t

 Prolog cuts corners by omitting case 5a (called occur check), thereby doing 

X = t in constant time
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Most General Unifiers
Note that mgu stands for a/one most general unifier

There may be more than one mgu

E.g. f(X) = f(Y) has two mgus:

{X / Y} (by our simple algorithm)

{Y / X} (by definition of mgu)

 If θ is an mgu of s and t, and ω is a renaming, 

then θω is a mgu of s and t

 If θ and σ are mgus of s and t, then there is a 

renaming ω such that θ = σω
MGU is unique up to renaming!
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SLD Resolution
Selective Linear Definite clause (SLD) Resolution:

where:

1. Aj are atomic formulas 

2. B0 ← B1,...,Bn is a (renamed variables) 

definite clause in the program 

3. θ = mgu(Ai, B0) 
Ai is called the selected atom

 Given a goal   ← A1, ..., An a function called the selection 

function or computation rule selects Ai
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SLD Resolution (cont.)
When the resolution rule is applied, from a 

goal G and a clause C, we get a new goal G’

We then say that G’ is derived directly from 

G and C: 

An SLD Derivation is a sequence: 

20



(c) Paul Fodor (CS Stony Brook) and Elsevier

SLD Derivation
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SLD Derivation
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Computed Answer Substitution
 Let θ0, θ1, . . . , θn-1 be the sequence of mgus used in derivation

Then θ=θ0θ1 · · · θn-1 is the computed substitution of the derivation

 Example derivation in tabled form:

 Computed substitution for the above derivation is 

θ0θ1θ2θ3 = {X'/tom, Y'/ann, Z'/bob, X''/bob, Y''/ann, Q/ann} 
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Computed Answer Substitution
 A finite derivation of the form 

where Gn=□ (i.e., an empty goal) is an SLD refutation of G0

 The computed substitution of an SLD refutation of G, 

restricted to variables of G, is a computed answer 

substitution for G

 Example: the previous SLD-derivation is an SLD refutation

The computed answer substitution is: 

{X'/tom, Y'/ann, Z'/bob, X''/bob, Y''/ann, Q/ann} 

restricted to Q is: {Q/ann} 
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Failed SLD Derivation
 A derivation of a goal clause G0 whose last element is not empty, 

and cannot be resolved with any clause of the program. 

 Example: consider the following program: 
grandfather(X,Z) :- father(X,Y), parent(Y,Z). 

parent(X,Y) :- father(X,Y). 

parent(X,Y) :- mother(X,Y). 

father(a,b). 

mother(b,c).

 A failed SLD derivation of grandfather(a,Q) is: 

grandfather(a,Q)
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OLD Resolution
 Prolog follows OLD resolution = SLD with left-to-right 

literal selection
 Prolog searches for OLD proofs by expanding the resolution tree 

depth first
 This depth-first expansion is close to how procedural programs are 

evaluated: 

 Consider a goal G1, G2,…, Gn as a “procedure stack” with G1, the 

selected literal on top

 Call G1

 If and when G1 returns, continue with the rest of the computation: call 

G2, and upon its return call G3, etc. until nothing is left 

 Note: G2 is “opened up” only when G1 returns, not after executing only 

some part of G1
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SLD Tree
A tree where every path is an SLD derivation 

(special case is the tree corresponding to all paths 

for a Prolog query)
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Soundness of SLD resolution 
Let P be a definite program, R be a computation 

rule, and θ be a computed answer substitution for a 

goal G

Then ∀Gθ is a logical consequence of P
Proof is by induction on the number of resolution 

steps used in the refutation of G
Base case uses the following lemma: 

 Let F be a formula and F’ be an instance of F, i.e., F’ = Fθ
for some substitution θ. 

Then (∀F) ⊨ (∀F’). 
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