
CSE 505 – Computing with Logic

Stony Brook University

http://www.cs.stonybrook.edu/~cse505

Definite Logic Programs:

Derivation and Proof Trees

1

http://www.cs.stonybrook.edu/~cse505

(c) Paul Fodor (CS Stony Brook) and Elsevier

Refutation in Predicate Logic
parent(pam, bob). parent(tom, bob).

parent(tom, liz). ...

anc(X,Y) :- parent(X,Y).

anc(X,Y) :- parent(X,Z), anc(Z,Y).

 Goal G: For what values of Q is :- anc(tom,Q) a logical

consequence of the above program?

 Negate the goal G: i.e. ¬G ≡ ∀Q ¬anc(tom, Q).

 Consider the clauses in the program P ∪ ¬G and apply refutation

 Note that a program clause written as p(A,B) :- q(A,C), r(B,C)

can be rewritten as: ∀A,B,C (p(A, B) ∨ ¬q(A, C) ∨ ¬r(B, C))

i.e., l.h.s. literal is positive, while all r.h.s. literals are negative

 Note also that all variables are universally quantified in a clause!

 Note on syntax: we use :- , ?- and for IMPLICATION2

(c) Paul Fodor (CS Stony Brook) and Elsevier

Refutation: An Example
parent(pam, bob).

parent(tom, bob).

parent(tom, liz).

parent(bob, ann).

parent(bob, pat).

parent(pat, jim).

anc(X,Y) :-

parent(X,Y).

anc(X,Y) :-

parent(X,Z),

anc(Z,Y).

3

(c) Paul Fodor (CS Stony Brook) and Elsevier

Refutation: An Example
parent(pam, bob).

parent(tom, bob).

parent(tom, liz).

parent(bob, ann).

parent(bob, pat).

parent(pat, jim).

anc(X,Y) :-

parent(X,Y).

anc(X,Y) :-

parent(X,Z),

anc(Z,Y).

4

(c) Paul Fodor (CS Stony Brook) and Elsevier

Unification
Operation done to “match” the goal atom with

the head of a clause in the program.

Forms the basis for the matching operation

we used for Prolog evaluation:

f(a,Y) and f(X,b) unify when X=a and Y=b

f(a,X) and f(X,b) do not unify

That is, the query ?- f(a,X)=f(X,b).

fails in Prolog

5

(c) Paul Fodor (CS Stony Brook) and Elsevier

Substitutions
A substitution is a mapping between variables and

values (terms)

Denoted by {X1/t1,X2/t2,..., Xn/tn} such that

Xi ≠ ti , and

Xi and Xj are distinct variables when i ≠ j.

The empty substitution is denoted by {} (or ε).

A substitution is said to be a renaming if it is of the

form {X1/Y1, X2/Y2,..., Xn/Yn} and

Y1,Y2,...,Yn is a permutation of X1,X2,...,Xn.

Example: {X/Y, Y/X} is a renaming substitution.
6

(c) Paul Fodor (CS Stony Brook) and Elsevier

Substitutions and Terms
Application of a substitution:

Xθ = t if X/t ∈ θ.

Xθ = X if X/t ∉ θ for any term t.

Application of a substitution {X1/t1,..., Xn/tn}

to a term/formula F:
 is a term/formula obtained by simultaneously replacing

every free occurrence of Xi in F by ti .

Denoted by Fθ [and Fθ is said to be an instance of F]

Example:
p(f(X,Z),f(Y,a)){X/g(Y), Y/Z, Z/a} =

p(f(g(Y),a),f(Z,a))

7

(c) Paul Fodor (CS Stony Brook) and Elsevier

Composition of Substitutions
Composition θσ of substitutions θ = {X1/s1,...,

Xm/sm} and σ = {Y1/t1,..., Yn/tn}:

1. First form the set {X1/s1σ, ..., Xm/smσ, Y1/t1,...,Yn/tn}

2. Remove from the set Xi/siσ if siσ = Xi
3. Remove from the set Yj/tj if Yj is identical to some variable Xi

 Example: Let θ = σ = {X/g(Y), Y/Z, Z/a}. Then

θσ={X/g(Y), Y/Z, Z/a}{X/g(Y), Y/Z, Z/a}=

{X/g(Z), Y/a, Z/a}

 More examples: Let θ = {X/f(Y)} and σ = {Y/a}

 θσ = {X/f(a), Y/a}

 σθ = {Y/a, X/f(Y)}

 Composition is not commutative but is associative: θ(σγ) = (θσ)γ

8

(c) Paul Fodor (CS Stony Brook) and Elsevier

Idempotence
 A substitution θ is idempotent iff θθ = θ.

 Examples:

{X/g(Y), Y/Z, Z/a} is not idempotent since

{X/g(Y), Y/Z, Z/a}{X/g(Y), Y/Z, Z/a} = {X/g(Z), Y/a, Z/a}

{X/g(Z), Y/a, Z/a} is not idempotent either since

{X/g(Z), Y/a, Z/a}{X/g(Z), Y/a, Z/a} = {X/g(a), Y/a, Z/a}

{X/g(a), Y/a, Z/a} is idempotent

 For a substitution θ = {X1/t1,X2/t2,..., Xn/tn},

 Dom(θ) = {X1,X2,..., Xn}

 Range(θ) = set of all variables in t1,t2,...,tn

 A substitution θ is idempotent iff Dom(θ) ∩ Range(θ) = ∅
9

(c) Paul Fodor (CS Stony Brook) and Elsevier

Unification
 Unification is a procedure that takes two atomic formulas as

input, and either shows how they can be instantiated to identical

atoms or, reports a failure.

 For example:

?- f(X,g(Y)) = f(a,g(X)).

 Any solution of the equations: {X=a, g(Y)=g(X)}

must clearly be a solution of equation above

 Similarly, any solution of: {X = a, Y = X} must be a

solution of equations {X = a, g(Y) = g(X)}

 Finally any solution of: {X = a, Y = a} is a solution

of {X = a, Y = X}

10

(c) Paul Fodor (CS Stony Brook) and Elsevier

Unifiers
 A substitution θ is a unifier of two terms s and t if sθ is identical to tθ

 θ is a unifier of a set of equations {s1=t1,...,sn=tn}, if

for all i, siθ = tiθ

 A substitution θ is more general than σ (written as θ ≥ σ) if there is a

substitution ω such that σ = θω
 A substitution θ is a most general unifier (mgu) of two terms (or a set

of equations) if for every unifier σ of the two terms (or equations)

θ≥σ
 Example: Consider two terms f(g(X),Y,a) and f(Z,W,X).

θ1 = {X/a, Y/b, Z/g(a), W/b} is a unifier

θ2 = {X/a, Y/W , Z/g(a)} is also a unifier

θ2 is more general than θ1 because θ1= θ2ω where ω={W/b}

θ2 is also the most general unifier of the 2 terms
11

(c) Paul Fodor (CS Stony Brook) and Elsevier

Equations and Unifiers
 A set of equations E is in solved form if it is of the form

{X1=t1,..., Xn=tn} iff no Xi appears in any tj.

Given a set of equations E = {X1=t1,..., Xn=tn}, the

substitution {X1/t1,..., Xn/tn} is an idempotent

mgu of E

 Two sets of equations E1 and E2 are said to be equivalent iff

they have the same set of unifiers

 To find the mgu of two terms s and t, try to find a set of

equations in solved form that is equivalent to {s = t}.

If there is no equivalent solved form, there is no mgu.

12

(c) Paul Fodor (CS Stony Brook) and Elsevier

A Simple Unification Algorithm
Given a set of equations E:
repeat

select s = t ∈ E;

case s = t of

1. f(s1, ...,sn) = f(t1, ...,tn):

replace the equation by si = ti for all i

2. f(s1, ...,sn) = g(t1, ...,tm), f ≠ g or n ≠ m:

halt with failure

3. X = X : remove the equation

4. t = X : where t is not a variable, X is a variable

replace equation by X = t

5. X = t : where X ≠ t and X occurs more than once in E:

if X is a proper subterm of t

then halt with failure (5a)

else replace all other X in E by t (5b)

until no action is possible for any equation in E

return E

13

(c) Paul Fodor (CS Stony Brook) and Elsevier

Example: Find the mgu of f(X,g(Y)) and f(g(Z),Z)

{f(X, g(Y)) = f(g(Z), Z)} ⇒
⇒ {X = g(Z), g(Y) = Z} case 1

⇒ {X = g(Z), Z = g(Y)} case 4

⇒ {X = g(g(Y)), Z = g(Y)} case 5b

14

A Simple Unification Algorithm

(c) Paul Fodor (CS Stony Brook) and Elsevier

Example: Find the mgu of f(X, g(X)) and f(Z, Z)

{f(X, g(X)) = f(Z, Z)} ⇒
⇒ {X = Z, g(X) = Z} case 1

⇒ {X = Z, g(Z) = Z} case 5b

⇒ {X = Z, Z = g(Z)} case 4

⇒ fail case 5a

15

A Simple Unification Algorithm

(c) Paul Fodor (CS Stony Brook) and Elsevier

Example: Find the mgu of f(X,g(X),b) and f(a,g(Z),Z)

{f(X,g(X),b)=f(a,g(Z),Z)} ⇒

⇒ {X = a, g(X) = g(Z), b = Z} case 1

⇒ {X = a, g(a) = g(Z), b = Z} case 5b

⇒ {X = a, a = Z, b = Z} case 1

⇒ {X = a, Z = a, b = Z} case 4

⇒ {X = a, Z = a, b = a} case 2

⇒ fail

16

A Simple Unification Algorithm

(c) Paul Fodor (CS Stony Brook) and Elsevier

Complexity of the unification algorithm
 Consider the set of equations:

E={ g(X1,...,Xn)=g(f(X0,X0),f(X1, X1),…,f(Xn-1,Xn-1) }

 By applying case 1 of the algorithm, we get

{X1=f(X0, X0),X2=f(X1,X1),X3=f(X2,X2),…,Xn=f(Xn-1,Xn-1)}

 If terms are kept as trees, the final value for Xn is a tree of size O(2n)

 Recall that for case 5 we need to first check if a variable appears in a term,

and this could now take O(2n) time

 X = t is the most common case for unification in Prolog

 There are linear-time unification algorithms that share structures (terms as DAGs)

 Therefore, the fastest algorithms are linear in t

 Prolog cuts corners by omitting case 5a (called occur check), thereby doing

X = t in constant time

17

(c) Paul Fodor (CS Stony Brook) and Elsevier

Most General Unifiers
Note that mgu stands for a/one most general unifier

There may be more than one mgu

E.g. f(X) = f(Y) has two mgus:

{X / Y} (by our simple algorithm)

{Y / X} (by definition of mgu)

 If θ is an mgu of s and t, and ω is a renaming,

then θω is a mgu of s and t

 If θ and σ are mgus of s and t, then there is a

renaming ω such that θ = σω
MGU is unique up to renaming!

18

(c) Paul Fodor (CS Stony Brook) and Elsevier

SLD Resolution
Selective Linear Definite clause (SLD) Resolution:

where:

1. Aj are atomic formulas

2. B0 ← B1,...,Bn is a (renamed variables)

definite clause in the program

3. θ = mgu(Ai, B0)
Ai is called the selected atom

 Given a goal ← A1, ..., An a function called the selection

function or computation rule selects Ai
19

(c) Paul Fodor (CS Stony Brook) and Elsevier

SLD Resolution (cont.)
When the resolution rule is applied, from a

goal G and a clause C, we get a new goal G’

We then say that G’ is derived directly from

G and C:

An SLD Derivation is a sequence:

20

(c) Paul Fodor (CS Stony Brook) and Elsevier

SLD Derivation

21

(c) Paul Fodor (CS Stony Brook) and Elsevier

SLD Derivation

22

(c) Paul Fodor (CS Stony Brook) and Elsevier

Computed Answer Substitution
 Let θ0, θ1, . . . , θn-1 be the sequence of mgus used in derivation

Then θ=θ0θ1 · · · θn-1 is the computed substitution of the derivation

 Example derivation in tabled form:

 Computed substitution for the above derivation is

θ0θ1θ2θ3 = {X'/tom, Y'/ann, Z'/bob, X''/bob, Y''/ann, Q/ann}
23

(c) Paul Fodor (CS Stony Brook) and Elsevier

Computed Answer Substitution
 A finite derivation of the form

where Gn=□ (i.e., an empty goal) is an SLD refutation of G0

 The computed substitution of an SLD refutation of G,

restricted to variables of G, is a computed answer

substitution for G

 Example: the previous SLD-derivation is an SLD refutation

The computed answer substitution is:

{X'/tom, Y'/ann, Z'/bob, X''/bob, Y''/ann, Q/ann}

restricted to Q is: {Q/ann}

24

(c) Paul Fodor (CS Stony Brook) and Elsevier

Failed SLD Derivation
 A derivation of a goal clause G0 whose last element is not empty,

and cannot be resolved with any clause of the program.

 Example: consider the following program:
grandfather(X,Z) :- father(X,Y), parent(Y,Z).

parent(X,Y) :- father(X,Y).

parent(X,Y) :- mother(X,Y).

father(a,b).

mother(b,c).

 A failed SLD derivation of grandfather(a,Q) is:

grandfather(a,Q)

25

(c) Paul Fodor (CS Stony Brook) and Elsevier

OLD Resolution
 Prolog follows OLD resolution = SLD with left-to-right

literal selection
 Prolog searches for OLD proofs by expanding the resolution tree

depth first
 This depth-first expansion is close to how procedural programs are

evaluated:

 Consider a goal G1, G2,…, Gn as a “procedure stack” with G1, the

selected literal on top

 Call G1

 If and when G1 returns, continue with the rest of the computation: call

G2, and upon its return call G3, etc. until nothing is left

 Note: G2 is “opened up” only when G1 returns, not after executing only

some part of G1

26

(c) Paul Fodor (CS Stony Brook) and Elsevier

SLD Tree
A tree where every path is an SLD derivation

(special case is the tree corresponding to all paths

for a Prolog query)

27

(c) Paul Fodor (CS Stony Brook) and Elsevier

Soundness of SLD resolution
Let P be a definite program, R be a computation

rule, and θ be a computed answer substitution for a

goal G

Then ∀Gθ is a logical consequence of P
Proof is by induction on the number of resolution

steps used in the refutation of G
Base case uses the following lemma:

 Let F be a formula and F’ be an instance of F, i.e., F’ = Fθ
for some substitution θ.

Then (∀F) ⊨ (∀F’).

28

