Definite Logic Programs:

Derivation and Proof Trees

CSE 505 — Computing with Logic

Stony Brook University

http: / / WWW. cs.stonybrook.edu/ ~cse505

http://www.cs.stonybrook.edu/~cse505

Refutation in Predicate Logic :

parent (pam, bob). parent(tom, bob).
parent (tom, 1liz).

anc(X,Y) :- parent(X,Y).

anc(X,Y) :- parent(X,2), anc(Z,Y).

* Goal G: For what values of Qis : - anc (tom,Q) alogical

consequence of the above program?
* Negate the goal G:i.e. G = VQ Tanc(tom, Q).
® Consider the clauses in the program P U 7G and apply refutation

® Note that a program clause writtenasp (A,B) :- q(A,C), r(B,C)
can be rewritten as: VA,B,C (p(A, B) V ~g(A, C) V =r(B, C))

i.e., L.h.s. literal is positive, while all r.h.s. literals are negative

® Note also that all variables are universally quantified in a clause!
@ Note on syntax: we use :- ?- and € for IMPLICATION

(©) PauI Fodor (CS stony Brook) and Elsevier

Refutation: An Example

parent (pam, bob) . |« anc(tom, Q)
parent (tom, bob) . anc(X,Y) < parent(X,Y)

parent (tom, 1liz).

< parent(tom, Q)
parent (bob, ann). parent (tom, bob) ¢

parent (bob, pat). ///

- = EI
parent (pat, jim). Q=bob

anc(X,Y) :-
parent (X,Y) .

anc(X,Y) :-
parent (X, Z2) ,
anc(Z,Y) .

@ (c) Paul Fodor (CS Stony Brook) and Elsevier

Refutation: An Example :

parent (pam, bob) . | anc(tom, Q)
anc(X,Y) < parent(X,Z), anc(Z,Y)

parent (tom, bob).
parent (tom, liz) . |¢ parent(tom,Z2’), anc(Z’, Q)
parent (tom, bob) <
parent (bob, ann).
parent (bob, pat) . |¢ anc(bob, U
anc(X,Y) <« parent(X,Y)

parent (pat, jim). //
< parent (bob, Q)
anc(X,Y) :- / parent (bob, ann) <

’ °

parent (X,Y) .
anc(X,Y) :- Q=ann

parent (X,Z2) ,

anc(Z,Y) .

@ (c) Paul Fodor (CS Stony Brook) and Elsevier

"Unification

™~

® Operation done to “match” the goal atom with

the head of a clause in the program.

® Forms the basis for the matchin g operation

we used for Prolog evaluation:

°f(a,Y) and £(X,b) unity when X=a and ¥=b

*f(a,X) and £ (X,b) do not unity
That is, the query ?- £ (a,X)=£(X,b).
fails in Prolog

@ (c) Paul Fodor (CS Stony Brook) and Elsevier

"Substitutions h

e A substitution is a mapping between variables and

values (terms)
®Denoted by {X,/t,,X,/t,, ..., X,/t,} such that
X. #t;,and

X, and Xj are distinct variables when 1 # 7.

® The empty substitution is denoted by {} (or €).
* A substitution is said to be a renaming it it is of the
form {X,/Y,, X,/Y,,..., X,/Y¥,} and

Y,,Y,,...,Y, isapermutation of X, ,X,, ... ,X,.

Example: {X/Y, ¥/X}isa renaming substitution.
@ (c) Paul Fodor (CS Stony Brook) and Elsevier /

éu pbstitutions and Terms

* Application of a substitution:
°*X0 = titX/t € 6.
*X6 = Xif X/t & 6 forany term t.
° Application of a substitution {X,/t,, ..., X./t.}
to a term/formula F:

is a term/formula obtained by simultaneously replacing

every free occurrence of X; in F by €, .
Denoted by FO [and F9 is said to be an instance of F]

OExample:
p(£(X,2) ,£(Y,a)){X/g(Y), Y/Z2, Z/a} =
p(f(g(Y),a), £f(zZ,a))

K (c) Paul Fodor (CS Stony Brook) and Elsevier

@omposition of Substitutions

* Composition B0 of substitutions 0 = {X,/s,, . . .

X /s tando={Y,/t,,..., Y /t_}:
1. First form the set {Xl/slo, ey Xm/smo, Yl/tl,...,Yn/tn}
2. Remove from the set X./s;0 it s;0=X;
3. Remove from the set Y /¢, if Y isidentical to some variable X;
Example: Let® = o = {X/g(Y), Y/Z, Z/a}. Then
Oc={X/g(Y), Y/Z, Z/a}{X/g(Y), Y/Z, Z/a}=
{X/g(2), Y/a, Z/a}
® More examples: Let ® = {X/£f(Y)}ando {Y/a}
6c = {X/f(a), Y/a}
o0 = {Y¥/a, X/£f(Y)}

(c) Paul Fodor (CS Stony Brook) and Elsevier

® Composition is not commutative but is associative: © (oy) = (060)y

™~

/

Tdempotenoe

e A substitution O is idempotent itt 00 = 0.

o Examples:

e {X/g(Y), Y/Z, Z/a} isnotidempotent since
X/9(Y),Y/Z,Z/a} {X/a(Y),Y/Z,Z/a} = {X/a(Z),Y/a,Z/a}
e {X/g(Z), Y/a, Z/a} isnotidempotent either since

{X/g(Z2),Y/a, Z/a} {X/g(L),Y/a, Z/a} = {X/g(a),Y/a,Z/a}
e {X/g(a), Y/a, Z/a} isidempotent
e For a substitution 0 = {X,/t,,X,/t,, ..., X, /t},
e Dom(0) ={X,;,X,, ..., X}
o Range(e) = set of all variablesint,,t,,...,t

n

* A substitution 0 is idempotent iff Dom(0) N Range(e) =Q
@ (c) Paul Fodor (CS Stony Brook) and Elsevier

@nifioation

® Unification is a procedure that takes two atomic formulas as

input, and either shows how they can be instantiated to identical

atoms or, reports a failure.
® For example:
>~ £(X,g(Y)) = £(a,g(X)).

Any solution of the equations: {X=a, g(¥)=g(X) }
must clearly be a solution of equation above
Similarly, any solution of: {X = a, ¥ = X} mustbea
solution of equations {X = a, g(¥) = g(X)}
Finally any solution of: {X = a, ¥ = a} isasolution
of {X = a, ¥ = X}

(c) Paul Fodor (CS Stony Brook) and Elsevier

T I
Unifiers

e A substitution O is a uniﬁer of two terms s and t if sO is identical to t0

® 0 is a unifier of a set of equations {s;=t;, ...,s =t _},if
forall1,5;,06 = t;0
* A substitution O is more general than 0 (written as 6 = 0) if there is a
substitution ® such that 0 = Ow

* A substitution O is a most general unifier (mgu) of two terms (or a set

of equations) if for every unifier 0 of the two terms (or equations)
0=>0
® Example: Consider two terms £ (g (X) ,¥,a) and £(Z2,W, X).
0, ={X/a, Y/b, Z/g(a), W/b} isa unifier
0,={X/a, Y/W , Z/g(a)} isalso a unifier
0, is more general than 0, because 0,= 0, where W= {W/b}

0 , is also the most general unifier of the 2 terms

@ (c) Paul Fodor (CS Stony Brook) and Elsevier

/Equations and Unifiers

® A setof equations E is in solvedform if it is of the form

X;=t,, ..., X =t} iff noX, appears in any t;.
® Given a set of equations E = {X;=t,, ..., X =t }, the
substitution {X; / ..., Xn/ t, } isan idempotent
mgu of E

e Two sets of equations E; and E, are said to be equivalent iff

they have the same set of unifiers

® To find the mgu of two terms s and t, try to find a set of

equations in solved form that is equivalent to {s t}.

If there is no equivalent solved form, there is no mgu.

@ (c) Paul Fodor (CS Stony Brook) and Elsevier

‘A Simple Unification Algorithm’

Given a set of equationse:

repeat
select s = t € E;
case s = t of

1. £(s;, ...,s8,) = £(t;, ...,t)):
replace the equation by s; = t; for all 1
2. f(s;, ...,8)) =g(t;, ...,t), £ # gor n # m:

halt with failure

3. X =X : remove the equation
4. £t = X : where t is not a variable, X is a variable
replace equation by X = t
5. X =t : where X # t and X occurs more than once in E:
if X is a proper subterm of t
then halt with failure (5a)
else replace all other X in E by t (5b)
until no action is possible for any equation in E
return E

@ (c) Paul Fodor (CS Stony Brook) and Elsevier /

‘A Simple Unification Algorithm’

Example: Find the mgu of £(X,g(Y)) and £(g(2) , Z)

{£(X, g(¥)) = £(g(2), 2)} =

= {X =g(2), g(Y¥) = Z} case 1
= {(X=9g(2), 2 = g(¥)} case 4
= {X = g(g(¥)), 2 = g(Y)} case 5b

(c) Paul Fodor (CS Stony Brook) and Elsevier /

‘A Simple Unification Algorithm’

Example: Find the mgu of £(X, g (X)) and £(z, Zz)

(£(X, g(X)) = £(z, 2)} =
= {X =2, g(X) = Z} case 1
= {X =12, g(z2) = Z} case 5b
= {X =2, Z = g(2)} case 4
= fail case ba

(c) Paul Fodor (CS Stony Brook) and Elsevier /

‘A Simple Unification Algorithm’

Example: Find the mgu of £ (X, g (X) ,b) and £(a,g(2) ,2)
{£f(X,g(X) ,b)=f(a,g(2),2)} =

= {X =a, g(X) =g(Z), b = 2} case 1

= {X = a, g(a) = g(2), b = Z} case 5b
= {X=2a, a=2, b =2} case 1

= {X=2a, 2=a, b=2} case 4

= {X=a, 2 =a, b = a} case 2

=

fail

(c) Paul Fodor (CS Stony Brook) and Elsevier /

4 A
Complexity of the unification algorithm

® Consider the set of equations:

E={ g(X;,...,X)=g(£(X,,X,) ,£(X;, X;),...,E(X,1,X,1) }
® By applying case 1 of the algorithm, we get
(X,=F (X,, X,),%X,=Ff(X,,X,),%X,=Ff(X,,X,),., X=F£(X_,,X_,)}
® If terms are kept as trees, the final value for X is a tree of size O (27)
® Recall that for case 5 we need to first check if a variable appears in a term,
and this could now take O (2™) time

* X = tisthe most common case for unification in Prolog
There are linear-time unification algorithms that share structures (terms as DAGs)

Therefore, the fastest algorithms are linear in t

Prolog cuts corners by omitting case 5a (called occur check), thereby doing

X = tin constant time

(c) Paul Fodor (CS Stony Brook) and Elsevier /

Most General Unifiers

® Note that mgu stands for a/one most general unifier

® There may be more than one mgu
°E.g. £(X) = £(Y) has two mgus:
{X / Y} (byoursimple algorithm)
{Y / X} (by definition of mgu)

"0 is an mgu of s and t, and W is a renaming,

hen QW is a mgu of sand t

"0 and 0 are mgus of s and t, then there is a
renaming @ such that 0 = cw

o MGU is unique up to renaming!

(c) Paul Fodor (CS Stony Brook) and Elsevier

™~

SLD Resolution

® Selective Linear Definite clause (SLD) Resolution:
— Aq,..., A1, A :Af—i—la---:Am By < By1,...,B,
< (Alj...jA;_lj Bi,..., B, ,,A;Jrl,...,,Am)Q

where:

1. Aj are atomic formulas
2.By « By, ...,B isa(renamed variables)

definite clause in the program

3.0 = mgu(A;, By)
® A, is called the selected atom

® Given agoal «— A, ..., A atunction called the selection

function or computation rule selects Ai

@ (c) Paul Fodor (CS Stony Brook) and Elsevier

SLD Resolution (cont.)

® When the resolution rule is applied, from a
goal Gand a clause C, we get a new goal G”
*We then say that G’ is derived directly from

G and C:

G-S G

® An SLD Derivation is a sequence:

parent (pam,
parent (tom,
parent (tom,
parent (bob,
parent (bob,
parent (pat,

anc(X,Y) :-
parent (X,
anc(X,Y) :-
parent (X,
anc(Z,Y).

(-

bob) .
bob) .
liz).
ann) .
pat) .
jim).

Y).

Z),

SLD Derivation

<+ anc(tom, Q)

¢ parent(tom, Q)
parent(tom, bob) <+

/

[]

(c) Paul Fodor (CS Stony Brook) and Elsevier

anc(tom, Q)
s parent(tom, Q)

~s [

parent (pam,
parent (tom,
parent (tom,
parent (bob,
parent (bob,
parent (pat,

anc(X,Y) :-
parent (X,
anc(X,Y) :-
parent (X,
anc(Z,Y).

(-

bob) |,
bob) ||
liz)||
ann) ||
pat)|
jim) |

Y).

Z),

SLD Derivation

<+ anc(tom, Q)
anc(X,Y)

+— parent(X,Z), anc(Z

+ parent(tom,Z’), anc(Z’, Q)
parent(tom, bob) <«

+ anc(bob, Q)

anc(X,Y)

/ + parent(X,Y)

+ parent(bob, Q)

parent (bob, ann) ¢

(c) Paul Fodor (CS Stony Brook) and Elsevier

anc(tom, Q)

~+ parent(tom, Z’)
anc(Z’, Q)

~~ anc(bob, Q)

~+ parent (bob, Q)

~ [

Goal

@omputed Answer Substitution

° Let0,,0,,...,0_ , be the sequence of mgus used in derivation

C Cn—l
Go~> Gy Gp1 ~ Gp

Then 8=0,0, - - - O__, is the computed substitution of the derivation
* Example derivation in tabled form:

Clause Used

mgu

anc(tom, Q)

parent(tom, Z’),
anc(Z’, Q)
anc (bob, Q)

parent (bob, Q)
]

anc(X’,Y’) :-
parent(X’,Z’), anc(Z’,Y’)

parent (tom, bob).

anc(X’?, Y’?) :-
parent(X’’, Y’?).

parent (bob, ann).

o Computed substitution for the above derivation is

90916293 :{X'/tom, Y'/ann, Z'/bob, X''/bob, Y''/ann, Q/ann}

(-

(c) Paul Fodor (CS Stony Brook) and Elsevier

0o = {X'/tom, Y'/Q}
6, = {Z' /bob}

6, = {X" /bob, Y"/Q}
03 = {Q/ann}

/

@omputed Answer Substitution

e A finite derivation of the form
Ch
GD Gl Gn_l e Gn

where G =0 (i.e., an empty goal) is an SLD refutation of G,
® The computed substitution of an SLD retfutation of G,

restricted to variables of G, is a computed answer

substitution for G

® Example: the previous SLD-derivation is an SLD retfutation
® The computed answer substitution is:
{X'/tom, Y'/ann, Z'/bob, X''/bob, Y''/ann, Q/ann}
restricted to Q is: {g/ann}

@ (c) Paul Fodor (CS Stony Brook) and Elsevier

™~

Failed SLD Derivation

® A derivation ofa goal clause G, whose last element is not empty,

and cannot be resolved with any clause qf the program.

® Example: consider the following program:
grandfather (X,2) :- father(X,Y), parent(Y¥,Z2).
parent (X,Y) :- father(X,Y).
parent (X,Y) :- mother(X,Y).
father (a,b).
mother (b, c) .

® A failed SLD derivation of grandfather (a,Q) is:
grandfather (a, Q)
~+ father(a,Y’), parent(Y’,Q)
~+ parent(b,Q)
~+ father(b,Q)
(-

(c) Paul Fodor (CS Stony Brook) and Elsevier

™~

OLD Resolution

o Prolog tollows OLD resolution = SLD with left—to—right
literal selection

o Prolog searches for OLD proofs by expanding the resolution tree¢

depth first
® This depth-first expansion is close to how procedural programs are

evaluated:
Consider a goal G, G,,..., G, as a “procedure stack” with G,, the
selected literal on top
Call G,
If'and when G, returns, continue with the rest of the computation: call
G,, and upon its return call G;, etc. until nothing is left
Note: G, is “opened up” only when G, returns, not after executing only

some part of G,

(c) Paul Fodor (CS Stony Brook) and Elsevier /

SLD Tree

for a Prolog query)

grandfather(X,Z) :-

father(a,b).
mother(b,c).

father(X,Y), parent(Y,Z).

parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).

® A tree where every path is an SLD derivation

(special case is the tree corresponding to all paths

+ grandfather(a, Q)

<— father(a,Z’), parent(Z’, Q)

<— parent(b, Q)

/N

+— father(b, Q) <+ mother(b, Q)

éoundness of SLD resolution

® Let P be a definite program, R be a computation

™~

rule, and O be a computed answer substitution for a

goal G

Then VGO is a logical consequence of P

® Proof is by induction on the number of resolution

steps used in the refutation of G

Base case uses the following lemma:
* Let F be a formula and F’ be an instance of F, i.e., F* = FO

for some substitution O.

Then (VF) E (VF).

@ (c) Paul Fodor (CS Stony Brook) and Elsevier

