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Propositional logic
Alphabet A:

Propositional symbols (identifiers) 

Connectives: 

∧ (conjunction)

∨ (disjunction) 

¬ (negation)

↔ (logical equivalence)

→ (implication)
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Propositional logic
Well-formed formulas (wffs, denoted by F) 

over alphabet A is the smallest set such that: 

If p is a predicate symbol in A then p ∈ F.

If the wffs F, G ∈ F then so are (¬F), (F ∧
G), (F ∨ G), (F → G) and (F ↔ G). 
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Interpretation
An interpretation I is a subset of propositions in 

an alphabet A

Alternatively, you can view I as a mapping from 

the set of all propositions in A to a 2-values 

Boolean domain {true, false}

This name, “interpretation”, is more commonly 

used for predicate logic

in the propositional case, this is sometimes called a 

“substitution” or “truth assignment”
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Semantics of Well-Formed Formulae
 A formula’s meaning is given w.r.t. an interpretation I:

I ⊨ p iff p ∈ I

I ⊨ ¬F iff I ⊨ F (i.e., I does not entail F)

I ⊨ F ∧ G iff I ⊨ F and I ⊨ G

I ⊨ F ∨ G iff I ⊨ F or I ⊨ G (or both)

I ⊨ F →G iff I ⊨ G whenever I ⊨ F

I ⊨ F ↔ G iff I ⊨ F→G and I ⊨ G→F

Notes: we read "⊨" as entails, models, "is a semantic 

consequence of" 

We read I ⊨ p as "I entails p". 
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Models
An interpretation I such that I ⊨ F is called “a 

model” of F

 “G is a logical consequence of F" (denoted by 

F ⊨ G) iff every model of F is also a model of G

 in other words, G holds in every model of F;

or G is true in every interpretation that makes F true
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Models
A formula that has at least one model is 

said to be “satisfiable”

A formula for which every 

interpretation is a model is called a 

“tautology”

A formula is “inconsistent” if it has no 

models
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Models
Checking whether or not a formula is 

satisfiable is NP-Complete (the SAT 

problem) because there are exponentially 

many interpretations

Many interesting combinatorial problems 

can be reduced to checking satisfiability: 

hence, there is a significant interest in 

efficient algorithms/heuristics/systems for 

solving the SAT problem
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Logical Consequence
Let P be a set of clauses {C1, C2,…, Cn}, where 

each clause Ci is of the form (L1 ∨ L2 ∨…∨ Lk ), 

and where

each Lj is a literal: a proposition or a negated 

proposition

A model for P makes every one of Cis in P true

Let G be a literal (called “Goal”)

Consider the question: does P ⊨ G?
 We can use a proof procedure, based on resolution to answer 

this question
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Proof System for Resolution

 The above notation is of “inference rules” where each 

rule is of the form:

 P ⊢ C is called as a “sequent” 

P⊢C means C can be proved if P is assumed true
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Proof System for Resolution

The turnstile, ⊢, represents syntactic 

consequence (or "derivability")

P ⊢ C means that C is derivable from P using 

the proof procedure

It is often read as "proves" or "yields"
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Proof System for Resolution

 Modus ponens can be seen as a special case of resolution 

(of a one-literal clause and a two-literal clause) because

is equivalent to 
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Proof System for Resolution
 Given a sequent, a derivation of a sequent (sometimes 

called its “proof”) is a tree with:

 that sequent as the root,

 empty leaves, and

 each internal node is an instance of an inference rule.

 A proof system based on Resolution is

Sound: i.e. if F ⊢ G then F ⊨ G.

not Complete: i.e. there are F,G s.t. F ⊨ G but F ⊢ G.

 E.g., p ⊨ (p ∨ q) but there is no way to derive p ⊢ (p ∨ q) using 

only resolution 
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Resolution Proof (in pictures)
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Resolution Proof (An Alternative View)

The clauses of P are all in a “pool”/table

Resolution rule picks two clauses from the 

“pool”, of the form A ∨ C1 and ¬A ∨ C2

and adds C1 ∨ C2 to the “pool”

The newly added clause can now interact with 

other clauses and produce yet more clauses

Ultimately, the “pool” consists of all clauses C 

such that P ⊢ C
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Resolution Proof (An Example)

P = {(p ∨ q), (¬p ∨ r ), (¬q ∨ r )}

Here is a proof for P ⊨ r :
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Refutation Proofs
 While resolution alone is incomplete for determining logical 

consequences, resolution is sufficient to show inconsistency

(i.e. show when P has no model):

 Refutation proofs (Reductio ad absurdum = reduction to 

absurdity) for showing logical consequence:

 Say we want to determine P ⊨ r? , where r is a proposition

 This is equivalent to checking if P ∪ {¬r} has an empty model

 This we can check by constructing a resolution proof for 

P ∪ {¬r} ⊢ □, where □ denotes the unsatisfiable empty clause
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Refutation Proofs (An Example)
 Let P = {(p ∨ q), (¬p ∨ r ), (¬q ∨ r ), (p ∨ s)}, and 

 G = (r ∨ s)
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Clausal form
 Propositional Resolution works only on expressions in

clausal form

 There is a simple procedure for converting an arbitrary set of 

Propositional Logic sentences to an equivalent set of clauses

 Implications (I):

 φ → ψ → ¬φ ∨ ψ

 φ  ψ → φ ∨ ¬ψ

 φ ↔ ψ → (¬φ ∨ ψ) ∧ (φ ∨ ¬ψ)

Negations (N):
 ¬¬φ → φ

 ¬(φ ∧ ψ) → ¬φ ∨ ¬ψ

 ¬(φ ∨ ψ) → ¬φ ∧ ¬ψ
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Clausal form
Distribution (D):

 φ ∨ (ψ ∧ χ) → (φ ∨ ψ) ∧ (φ ∨ χ)

 (φ ∧ ψ) ∨ χ → (φ ∨ χ) ∧ (ψ ∨ χ)

 φ ∨ (φ1 ∨ ... ∨ φn) → φ ∨ φ1 ∨ ... ∨ φn

 (φ1 ∨ ... ∨ φn) ∨ φ → φ1 ∨ ... ∨ φn ∨ φ

 φ ∧ (φ1 ∧ ... ∧ φn) → φ ∧ φ1 ∧ ... ∧ φn

 (φ1 ∧ ... ∧ φn) ∧ φ → φ1 ∧ ... ∧ φn ∧ φ

Operators (O):

 φ1 ∨ ... ∨ φ → {φ1, ... , φn}

 φ1 ∧ ... ∧ φn → {φ1}, ... , {φn}
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Clausal form: Example
Convert the sentence (g ∧ (r → f)) to clausal form:

g ∧ (r → f)

I g ∧ (¬r ∨ f)

N g ∧ (¬r ∨ f)

D g ∧ (¬r ∨ f)

O {g}

{¬r, f}
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Clausal form: Example
 Convert the sentence ¬(g ∧ (r → f)) to clausal form:

¬(g ∧ (r → f))

I ¬(g ∧ (¬r ∨ f))

N ¬g ∨ ¬(¬r ∨ f)

¬g ∨ (¬¬r ∧ ¬f)

¬g ∨ (r ∧ ¬f)

D (¬g ∨ r) ∧ (¬g ∨ ¬f)

O {¬g,r}

{¬g, ¬f}
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Soundness of Resolution
 If F ⊢ G then F ⊨ G:

For F ⊢ G, we will have a derivation (aka “proof ”) of 

finite length

We can show that F ⊨ G by induction on the length of 

that derivation
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Refutation-Completeness of Resolution
 If F is inconsistent, then F ⊢ □:
Note that F is a set of clauses 

 A clause is called an unit clause if it consists of a single literal.

 If all clauses in F are unit clauses, then for F to be 

inconsistent, clearly a literal and its negation will be two 

of the clauses in F

 Then resolving those two will generate the empty clause

A clause with n + 1 literals has “n excess literals”

 The proof of refutation-completeness is by induction on the 

number of excess literals in F (each one of them has to be 

eliminated to bring to inconsistency)
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Refutation-Completeness of Resolution
 Induction: Assume refutation completeness holds for all clauses with n

excess literals; show that it holds for clauses with n + 1 excess 

literals:

 From F, pick some clause C with excess literals 

 Pick some literal, say A from C

 Consider C’ =  C-{A}

 Both F1=(F–{C})∪{C’} and F2=(F–{C}) ∪ {A} are inconsistent 

and have at most n excess literals

 By induction hypothesis, both have refutations 

 If there is a refutation of F1 not using C’, then that is a refutation for 

F as well

 If the refutation of F1 uses C’, then construct a resolution of F by 

adding A to the first occurrence of C’ (and its descendants); that will 

end with {A}

 From here on, follow the refutation of F2. This constructs a refutation 

of F
25
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A simple theorem prover in Prolog
 Operators for formulas:
:- op(100, fy, ~).  %Negation

:- op(110, xfy, &).  %Conjunction

:- op(120, xfy, v).  %Disjunction

:- op(130, xfy, =>).  %Implication

:- op(800, xfx, --->).

 Clausal form:
transform(~ (~X), X) :- %Double negation

!.

transform(X => Y, ~X v Y) :- %Eliminate implication

!.

transform(~(X & Y), ~X v ~Y) :- %De Morgan's law

!.

transform(~(X v Y), ~X & ~Y) :- %De Morgan's law

!.

transform(X & Y v Z, (X v Z) & (Y v Z) ) :- !.%Distribution

transform(X v Y & Z, (X v Y) & (X v Z) ):- !.%Distribution

transform(X v Y, X1 v Y) :- %Transform subexpression

transform(X, X1),  !.

transform(X v Y, X v Y1):- %Transform subexpression

transform(Y, Y1),  !.

transform(~X, ~X1) :- %Transform subexpression

transform(X, X1).26
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 Resolution:
:- dynamic(done/3).

% Contradicting clauses

[clause(X), clause(~X)] --->

[write('Contradiction found'), stop].

% Remove a true clause

[clause(C), in(P, C), in(~P, C)] --->

[retract(C)].

% Simplify a clause

[clause(C), delete(P, C, C1), in(P, C1)] --->

[replace(clause(C), clause(C1) )].

% Resolution step, a special case

[clause(P), clause(C), delete(~P, C, C1), not done(P, C, P)] --->

[assert(clause(C1) ), assert(done(P, C, P) )].

% Resolution step, a special case

[clause(~P), clause(C), delete(P, C, C1), not done(~P, C, P)] --->

[assert(clause(C1) ), assert(done(~P, C, P) )].

% Resolution step, general case

[clause(C1), delete(P, C1, CA), clause(C2),delete(~P,C2,CB), not 

done(C1,C2,P)] --->

[assert(clause(CA v CB) ), assert(done(C1, C2, P) )].

% Last rule: resolution process stuck

[] ---> [write('Not contradiction'), stop].
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% delete(P, E, E1) means: delete a disjunctive subexpression P from E 

%  giving E1

delete(X, X v Y, Y).

delete(X, Y v X, Y).

delete(X, Y v Z, Y v Z1):-

delete(X, Z, Z1).

delete(X, Y v Z, Y1 v Z) :-

delete(X, Y, Y1).

% in(P, E) means: P is a disjunctive subexpression in E

in(X, X).

in(X, Y):-

delete(X, Y, _).

%Translate conjunctive formula

translate(F & G) :-

!,

translate(F),

translate(G).

%Transformation step on Formula

translate(Formula) :-

transform(Formula, NewFormula), 

!,

translate(NewFormula).

% No more transformation possible

translate(Formula) :-

assert(clause(Formula) ).

28



(c) Paul Fodor (CS Stony Brook) and Elsevier

run :-

Condition ---> Action,  % A production rule

test(Condition),  % Precondition satisfied?

execute(Action).

run(State) :-

Condition ---> Action,

test(Condition, State),

execute(Action, State).

test([]).  % Empty condition

test([First|Rest]) :- % Test conjunctive condition

call(First),

test(Rest).

% execute([Action1, Action2, ...]): execute list of actions

execute([stop]) :- !.  % Stop execution

execute([]) :- % Empty action (execution cycle completed)

run.  % Continue with next execution cycle

execute([First | Rest]) :-

call(First),

execute(Rest).

replace(A, B) :- % Replace A with B in database

retract(A), !,  % Retract once only

assert(B).

?- translate( ~((a => b) & (b => c) => (a => c) ) ), run.

Contradiction found

yes
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