Propositional Logic Semantics and Resolution

CSE 505 – Computing with Logic

Stony Brook University

http://www.cs.stonybrook.edu/~cse505

Propositional logic

- Alphabet A:
 - Propositional symbols (identifiers)
 - •Connectives:
 - Λ (conjunction)
 - •V (disjunction)
 - ¬ (negation)
 - (logical equivalence)
 - \rightarrow (implication)

Propositional logic

- *Well-formed formulas* (*wffs*, denoted by *F*) over alphabet A is the smallest set such that:
 - If p is a predicate symbol in A then $p \in F$.
 - If the wffs F, $G \in F$ then so are $(\neg F)$, $(F \land G)$, $(F \lor G)$, $(F \lor G)$ and $(F \oiint G)$.

Interpretation

- An *interpretation* I is a subset of propositions in an alphabet A
- Alternatively, you can view I as a mapping from the set of all propositions in A to a 2-values
 Boolean domain {true, false}
- This name, *"interpretation*", is more commonly used for predicate logic
 - in the propositional case, this is sometimes called a *"substitution"* or *"truth assignment"*

Semantics of Well-Formed Formulae

- A formula's meaning is given w.r.t. an interpretation I:
 - $I \vDash p \text{ iff } p \in I$
 - $I \models \neg F$ iff $I \notin F$ (i.e., I does not entail F)
 - $I \vDash F \land G \text{ iff } I \vDash F \text{ and } I \vDash G$
 - $I \vDash F \lor G \text{ iff } I \vDash F \text{ or } I \vDash G \text{ (or both)}$
 - $I \models F \rightarrow G \text{ iff } I \models G \text{ whenever } I \models F$ $I \models F \rightarrow G \text{ iff } I \models F \rightarrow G \text{ and } I \models G \rightarrow F$

Notes: we read "⊨" as *entails*, *models*, "*is a semantic* consequence of"

(c) Paul Fodor (CS Stony Brook) and Elsevier

Models

- An interpretation I such that I ⊨ F is called "*a model*" of F
- "G is a *logical consequence* of F" (denoted by
 F ⊨ G) iff every model of F is also a model of G
 in other words, G holds in every model of F;
 or G is true in every interpretation that makes F true

Models

• A formula that has at least one model is said to be "*satisfiable*"

- A formula for which every interpretation is a model is called a *"tautology"*
- A formula is "*inconsistent*" if it has no models

Models

- Checking whether or not a formula is satisfiable is NP-Complete (the SAT problem) because there are exponentially many interpretations
- Many interesting combinatorial problems can be reduced to checking satisfiability: hence, there is a significant interest in efficient algorithms/heuristics/systems for solving the SAT problem

Logical Consequence

- Let P be a set of clauses $\{C_1, C_2, \dots, C_n\}$, where
 - each clause C_i is of the form $(L_1 \vee L_2 \vee ... \vee L_k)$, and where
 - each L_j is a *literal*: a proposition or a negated proposition
- A **model** for P makes every one of C_is in P true
- Let G be a literal (called "Goal")
 - Consider the question: does $P \vDash G$?
 - We can use a proof procedure, based on *resolution* to answer this question

Proof System for Resolution
$$\overline{\{C\} \cup P \vdash C}$$
 $(\in P)$ $P \vdash (A \lor C_1)$ $P \vdash (\neg A \lor C_2)$ Resolution $P \vdash (C_1 \lor C_2)$ Resolution• The above notation is of "inference rules" where each rule is of the form:

Antecedent(s) Conclusion

• P ⊢ C is called as a "*sequent*"

● P⊢C means C **can be** *proved* if P is assumed true

(c) Paul Fodor (CS Stony Brook) and Elsevier

Proof System for Resolution

- The turnstile, ⊢, represents <u>syntactic</u> <u>consequence</u> (or "*derivability*")
 - P ⊢ C means that C is *derivable* from P using the proof procedure
- It is often read as "*proves*" or "*yields*"

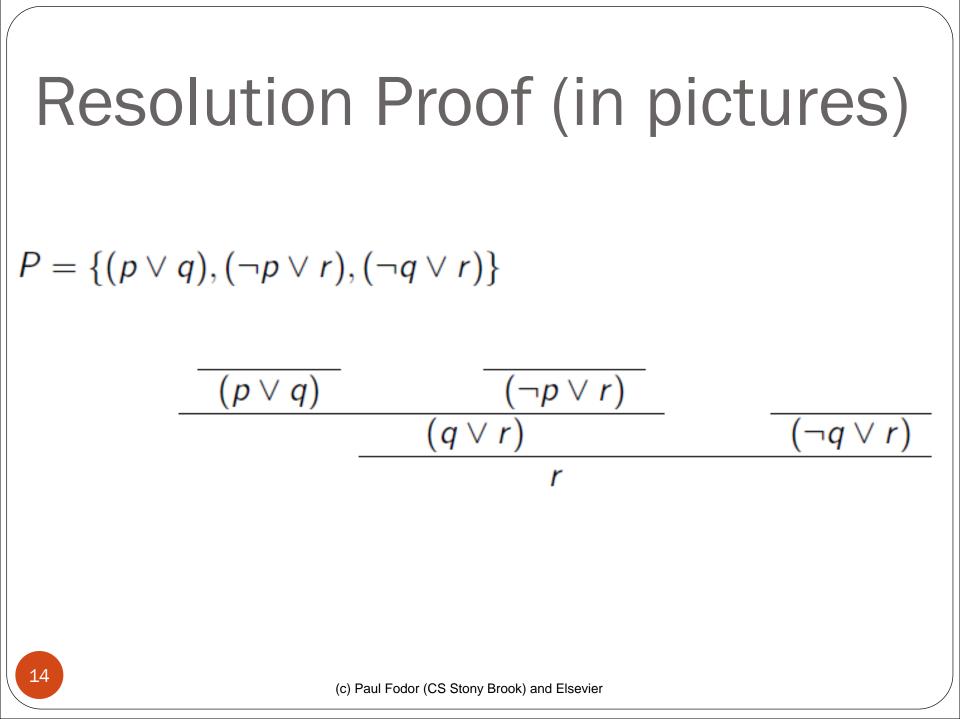
Proof System for Resolution

 Modus ponens can be seen as a special case of resolution (of a one-literal clause and a two-literal clause) because

 $\frac{p \to q, p}{q} \quad \text{is equivalent to } \frac{\neg p \lor q, p}{q}$

Proof System for Resolution

- Given a sequent, a *derivation* of a sequent (sometimes called its "*proof*") is a tree with:
 - that sequent as the root,
 - empty leaves, and
 - each internal node is an instance of an inference rule.
- A proof system based on Resolution is
 - *Sound*: i.e. if $F \vdash G$ then $F \models G$.
 - <u>not Complete</u>: i.e. there are F,G s.t. $F \vDash G$ but $\not \models G$.
 - E.g., $p \models (p \lor q)$ but there is no way to derive $p \vdash (p \lor q)$ using only resolution



Resolution Proof (An Alternative View)

- The clauses of P are all in a "pool"/table
- Resolution rule picks two clauses from the "pool", of the form A V C_1 and $\neg A V C_2$
- \bullet and adds $\mathrm{C}_1 \ \mathrm{V} \ \mathrm{C}_2$ to the "pool"
- The newly added clause can now interact with other clauses and produce yet more clauses
- Ultimately, the "pool" consists of all clauses C such that P ⊢ C

Resolution Proof (An Example)			
• P = {(p V q), (\neg p V r), (\neg q V r)}			
• Here is a proof for $P \vDash r$:			
Clause Number	Clause	How Derived	
1	$p \lor q$	$\in P$	
2	$\neg p \lor r$	$\in P$	
3	$\neg q \lor r$	$\in P$	
4	$q \lor r$	Res. 1 & 2	
5	r	Res. 3 & 4	

Refutation Proofs

- While resolution alone is incomplete for determining logical consequences, resolution is <u>sufficient to show *inconsistency*</u> (i.e. show when <u>P has no model</u>):
 - Refutation proofs (Reductio ad absurdum = reduction to absurdity) for showing logical consequence:
 - Say we want to determine $P \vDash r?$, where r is a proposition
 - \bullet This is equivalent to checking if P ${\bm U}$ $\{ \neg r \}$ has an empty model
 - This we can check by constructing a resolution proof for
 - P U $\{\neg r\} \vdash \Box$, where \Box denotes the unsatisfiable empty clause

Refutation Proofs (An Example)

- Let $P = \{(p V q), (\neg p V r), (\neg q V r), (p V s)\}, and$
- $G \equiv (r V s)$

Clause Number	Clause	How Derived
1	$p \lor q$	$\in P \cup \neg G$
2	$\neg p \lor r$	$\in P \cup \neg G$
3	$\neg q \lor r$	$\in P \cup \neg G$
4	¬ <i>r</i>	$\in P \cup \neg G$
5	$\neg S$	$\in P \cup \neg G$
6	$q \lor r$	Res. 1 & 2
7	r	Res. 3 & 6
8		Res. 4 & 7

(c) Paul Fodor (CS Stony Brook) and Elsevier

Clausal form

- Propositional Resolution works only on expressions in <u>clausal form</u>
 - There is a simple procedure for <u>converting</u> an arbitrary set of Propositional Logic sentences to an equivalent set of clauses
 - Implications (I):
 - $\varphi \rightarrow \psi \rightarrow \neg \varphi \lor \psi$ • $\varphi \leftarrow \psi \rightarrow \varphi \lor \neg \psi$ • $\varphi \leftrightarrow \psi \rightarrow (\neg \varphi \lor \psi) \land (\varphi \lor \neg \psi)$
 - Negations (N):
 - $\neg \neg \phi \rightarrow \phi$
 - $\neg(\phi \land \psi) \rightarrow \neg \phi \lor \neg \psi$
 - $\neg(\phi \lor \psi) \rightarrow$

(c) Paul Fodor (CS Stony Brook) and Elsevier

 $\neg \phi \land \neg \psi$

Clausal form

- Distribution (D):
 - $\phi \lor (\psi \land \chi) \rightarrow$
 - $(\phi \land \psi) \lor \chi \rightarrow$
 - φ V (φ1 V ... V φn)
 - (φ1 V ... V φn) V φ
 - φ Λ (φ1 Λ ... Λ φn)
 - $(\phi 1 \land ... \land \phi n) \land \phi$
- Operators (O):
 - $\phi 1 \vee ... \vee \phi \rightarrow$
 - φ1 Λ ... Λ φn

- (φ∨ψ)∧(φ∨χ) (φ∨χ)∧(ψ∨χ)
 - $\rightarrow \phi \lor \phi 1 \lor ... \lor \phi n$
 - $\rightarrow \phi 1 \vee ... \vee \phi n \vee \phi$
 - $\rightarrow \phi \wedge \phi 1 \wedge \dots \wedge \phi n$
 - $\rightarrow \qquad \phi 1 \wedge ... \wedge \phi n \wedge \phi$
- $\{ \phi 1, ..., \phi n \}$ $\{ \phi 1 \}, ..., \{ \phi n \}$

 \rightarrow

Clausal form: Example • Convert the sentence $(g \land (r \rightarrow f))$ to clausal form: $g \wedge (r \rightarrow f)$ I $g \land (\neg r \lor f)$ N $g \land (\neg r \lor f)$ D $g \land (\neg r \lor f)$ $O \{g\}$ $\{\neg r, f\}$

Clausal form: Example

- Convert the sentence $\neg(g \land (r \rightarrow f))$ to clausal form:
 - \neg (g \land (r \rightarrow f)) \neg (g \land (\neg r V f)) Ι N $\neg g V \neg (\neg r V f)$ $\neg g V (\neg \neg r \land \neg f)$ $\neg g V (r \land \neg f)$ $(\neg g \vee r) \wedge (\neg g \vee \neg f)$ D $\{\neg g, r\}$ \mathbf{O} $\{\neg g, \neg f\}$

Soundness of Resolution

- If $F \vdash G$ then $F \models G$:
 - For F ⊢ G, we will have a derivation (aka "proof") of finite length
 - We can show that F ⊨ G by induction on the length of that derivation

Refutation-Completeness of Resolution

- If F is inconsistent, then $F \vdash \Box$:
 - Note that F is a set of clauses
 - A clause is called an *unit clause* if it consists of a single literal.
 - If all clauses in F are unit clauses, then for F to be inconsistent, clearly a literal and its negation will be two of the clauses in F
 - Then resolving those two will generate the empty clause
 - A clause with **n** + **1** literals has "**n** excess literals"
 - The proof of refutation-completeness is by induction on the number of excess literals in F (each one of them has to be eliminated to bring to inconsistency)

Refutation-Completeness of Resolution

- Induction: Assume refutation completeness holds for all clauses with n excess literals; show that it holds for clauses with n + 1 excess literals:
 - From F, pick some clause C with excess literals
 - Pick some literal, say A from C
 - Consider $C' = C \{A\}$
 - Both F1=(F-{C})U{C'} and F2=(F-{C}) U {A} are inconsistent and have at most n excess literals
 - By induction hypothesis, both have refutations
 - If there is a refutation of F1 not using C', then that is a refutation for F as well
 - If the refutation of F1 uses C', then construct a resolution of F by adding A to the first occurrence of C' (and its descendants); that will end with {A}
 - From here on, follow the refutation of F2. This constructs a refutation of F (c) Paul Fodor (CS Stony Brook) and Elsevier

A simple theorem prover in Prolog

```
• Operators for formulas:
  :- op(100, fy, ~). %Negation
  :- op(110, xfy, &). %Conjunction
  :- op(120, xfy, v). %Disjunction
  :- op(130, xfy, =>). %Implication
  :- op(800, xfx, --->).
  • Clausal form:
  transform(~ (~X), X) :- %Double negation
    !
  transform(X => Y, ~X v Y) :- %Eliminate implication
    ! .
  transform(~(X & Y), ~X v ~Y) :- %De Morgan's law
    !.
  transform(~(X v Y), ~X & ~Y) :- %De Morgan's law
    !.
  transform(X & Y v Z, (X v Z) & (Y v Z)) :- !. *Distribution
  transform(X v Y & Z, (X v Y) & (X v Z) ):- !.%Distribution
  transform(X v Y, X1 v Y) :- %Transform subexpression
    transform(X, X1), !.
  transform(X v Y, X v Y1):- %Transform subexpression
    transform(Y, Y1), !.
  transform(~X, ~X1) :- %Transform subexpression
26
    transform (X, X1). (c) Paul Fodor (CS Stony Brook) and Elsevier
```

• Resolution:

```
:- dynamic(done/3).
% Contradicting clauses
[clause(X), clause(~X)] --->
  [write('Contradiction found'), stop].
% Remove a true clause
[clause(C), in(P, C), in(~P, C)] --->
  [retract(C)].
% Simplify a clause
[clause(C), delete(P, C, C1), in(P, C1)] --->
  [replace(clause(C), clause(C1))].
% Resolution step, a special case
[clause(P), clause(C), delete(~P, C, C1), not done(P, C, P)] --->
  [assert(clause(C1)), assert(done(P, C, P))].
% Resolution step, a special case
[clause(~P), clause(C), delete(P, C, C1), not done(~P, C, P)] --->
  [assert(clause(C1)), assert(done(~P, C, P))].
% Resolution step, general case
[clause(C1), delete(P, C1, CA), clause(C2), delete(~P,C2,CB), not
done(C1,C2,P)] --->
  [assert(clause(CA v CB) ), assert(done(C1, C2, P) )].
% Last rule: resolution process stuck
[] ---> [write('Not contradiction'), stop].
```

```
% delete(P, E, E1) means: delete a disjunctive subexpression P from E
 giving E1
응
delete(X, X v Y, Y).
delete(X, Y v X, Y).
delete(X, Y v Z, Y v Z1):-
  delete(X, Z, Z1).
delete(X, Y v Z, Y1 v Z) :-
  delete(X, Y, Y1).
% in(P, E) means: P is a disjunctive subexpression in E
in(X, X).
in(X, Y):-
  delete(X, Y, ).
%Translate conjunctive formula
translate(F & G) :-
  !,
  translate(F),
  translate(G).
%Transformation step on Formula
translate(Formula) :-
  transform(Formula, NewFormula),
  !,
  translate (NewFormula).
% No more transformation possible
translate(Formula) :-
  assert(clause(Formula) ).
```

```
run :-
 Condition ---> Action, % A production rule
  test(Condition), % Precondition satisfied?
 execute (Action).
run(State) :-
 Condition ---> Action,
 test(Condition, State),
 execute (Action, State).
test([]). % Empty condition
test([First|Rest]) :- % Test conjunctive condition
 call(First),
  test(Rest).
% execute([Action1, Action2, ...]): execute list of actions
execute([stop]) :- !. % Stop execution
execute([]) :- % Empty action (execution cycle completed)
  run. % Continue with next execution cycle
execute([First | Rest]) :-
  call(First),
 execute (Rest).
replace (A, B) :- % Replace A with B in database
  retract(A), !, % Retract once only
 assert(B).
?- translate( ~((a => b) & (b => c) => (a => c) ) ), run.
       Contradiction found
       yes
```