
CSE 505 – Computing with Logic

Stony Brook University

http://www.cs.stonybrook.edu/~cse505

Propositional Logic

Semantics and Resolution

1

http://www.cs.stonybrook.edu/~cse505

(c) Paul Fodor (CS Stony Brook) and Elsevier

Propositional logic
Alphabet A:

Propositional symbols (identifiers)

Connectives:

∧ (conjunction)

∨ (disjunction)

¬ (negation)

↔ (logical equivalence)

→ (implication)

2

(c) Paul Fodor (CS Stony Brook) and Elsevier

Propositional logic
Well-formed formulas (wffs, denoted by F)

over alphabet A is the smallest set such that:

If p is a predicate symbol in A then p ∈ F.

If the wffs F, G ∈ F then so are (¬F), (F ∧
G), (F ∨ G), (F → G) and (F ↔ G).

3

(c) Paul Fodor (CS Stony Brook) and Elsevier

Interpretation
An interpretation I is a subset of propositions in

an alphabet A

Alternatively, you can view I as a mapping from

the set of all propositions in A to a 2-values

Boolean domain {true, false}

This name, “interpretation”, is more commonly

used for predicate logic

in the propositional case, this is sometimes called a

“substitution” or “truth assignment”

4

(c) Paul Fodor (CS Stony Brook) and Elsevier

Semantics of Well-Formed Formulae
 A formula’s meaning is given w.r.t. an interpretation I:

I ⊨ p iff p ∈ I

I ⊨ ¬F iff I ⊨ F (i.e., I does not entail F)

I ⊨ F ∧ G iff I ⊨ F and I ⊨ G

I ⊨ F ∨ G iff I ⊨ F or I ⊨ G (or both)

I ⊨ F →G iff I ⊨ G whenever I ⊨ F

I ⊨ F ↔ G iff I ⊨ F→G and I ⊨ G→F

Notes: we read "⊨" as entails, models, "is a semantic

consequence of"

We read I ⊨ p as "I entails p".
5

(c) Paul Fodor (CS Stony Brook) and Elsevier

Models
An interpretation I such that I ⊨ F is called “a

model” of F

 “G is a logical consequence of F" (denoted by

F ⊨ G) iff every model of F is also a model of G

 in other words, G holds in every model of F;

or G is true in every interpretation that makes F true

6

(c) Paul Fodor (CS Stony Brook) and Elsevier

Models
A formula that has at least one model is

said to be “satisfiable”

A formula for which every

interpretation is a model is called a

“tautology”

A formula is “inconsistent” if it has no

models

7

(c) Paul Fodor (CS Stony Brook) and Elsevier

Models
Checking whether or not a formula is

satisfiable is NP-Complete (the SAT

problem) because there are exponentially

many interpretations

Many interesting combinatorial problems

can be reduced to checking satisfiability:

hence, there is a significant interest in

efficient algorithms/heuristics/systems for

solving the SAT problem
8

(c) Paul Fodor (CS Stony Brook) and Elsevier

Logical Consequence
Let P be a set of clauses {C1, C2,…, Cn}, where

each clause Ci is of the form (L1 ∨ L2 ∨…∨ Lk),

and where

each Lj is a literal: a proposition or a negated

proposition

A model for P makes every one of Cis in P true

Let G be a literal (called “Goal”)

Consider the question: does P ⊨ G?
 We can use a proof procedure, based on resolution to answer

this question
9

(c) Paul Fodor (CS Stony Brook) and Elsevier

Proof System for Resolution

 The above notation is of “inference rules” where each

rule is of the form:

 P ⊢ C is called as a “sequent”

P⊢C means C can be proved if P is assumed true
10

(c) Paul Fodor (CS Stony Brook) and Elsevier

Proof System for Resolution

The turnstile, ⊢, represents syntactic

consequence (or "derivability")

P ⊢ C means that C is derivable from P using

the proof procedure

It is often read as "proves" or "yields"

11

(c) Paul Fodor (CS Stony Brook) and Elsevier

Proof System for Resolution

 Modus ponens can be seen as a special case of resolution

(of a one-literal clause and a two-literal clause) because

is equivalent to

12

(c) Paul Fodor (CS Stony Brook) and Elsevier

Proof System for Resolution
 Given a sequent, a derivation of a sequent (sometimes

called its “proof”) is a tree with:

 that sequent as the root,

 empty leaves, and

 each internal node is an instance of an inference rule.

 A proof system based on Resolution is

Sound: i.e. if F ⊢ G then F ⊨ G.

not Complete: i.e. there are F,G s.t. F ⊨ G but F ⊢ G.

 E.g., p ⊨ (p ∨ q) but there is no way to derive p ⊢ (p ∨ q) using

only resolution

13

(c) Paul Fodor (CS Stony Brook) and Elsevier

Resolution Proof (in pictures)

14

(c) Paul Fodor (CS Stony Brook) and Elsevier

Resolution Proof (An Alternative View)

The clauses of P are all in a “pool”/table

Resolution rule picks two clauses from the

“pool”, of the form A ∨ C1 and ¬A ∨ C2

and adds C1 ∨ C2 to the “pool”

The newly added clause can now interact with

other clauses and produce yet more clauses

Ultimately, the “pool” consists of all clauses C

such that P ⊢ C
15

(c) Paul Fodor (CS Stony Brook) and Elsevier

Resolution Proof (An Example)

P = {(p ∨ q), (¬p ∨ r), (¬q ∨ r)}

Here is a proof for P ⊨ r :

16

(c) Paul Fodor (CS Stony Brook) and Elsevier

Refutation Proofs
 While resolution alone is incomplete for determining logical

consequences, resolution is sufficient to show inconsistency

(i.e. show when P has no model):

 Refutation proofs (Reductio ad absurdum = reduction to

absurdity) for showing logical consequence:

 Say we want to determine P ⊨ r? , where r is a proposition

 This is equivalent to checking if P ∪ {¬r} has an empty model

 This we can check by constructing a resolution proof for

P ∪ {¬r} ⊢ □, where □ denotes the unsatisfiable empty clause

17

(c) Paul Fodor (CS Stony Brook) and Elsevier

Refutation Proofs (An Example)
 Let P = {(p ∨ q), (¬p ∨ r), (¬q ∨ r), (p ∨ s)}, and

 G = (r ∨ s)

18

(c) Paul Fodor (CS Stony Brook) and Elsevier

Clausal form
 Propositional Resolution works only on expressions in

clausal form

 There is a simple procedure for converting an arbitrary set of

Propositional Logic sentences to an equivalent set of clauses

 Implications (I):

 φ → ψ → ¬φ ∨ ψ

 φ ψ → φ ∨ ¬ψ

 φ ↔ ψ → (¬φ ∨ ψ) ∧ (φ ∨ ¬ψ)

Negations (N):
 ¬¬φ → φ

 ¬(φ ∧ ψ) → ¬φ ∨ ¬ψ

 ¬(φ ∨ ψ) → ¬φ ∧ ¬ψ
19

(c) Paul Fodor (CS Stony Brook) and Elsevier

Clausal form
Distribution (D):

 φ ∨ (ψ ∧ χ) → (φ ∨ ψ) ∧ (φ ∨ χ)

 (φ ∧ ψ) ∨ χ → (φ ∨ χ) ∧ (ψ ∨ χ)

 φ ∨ (φ1 ∨ ... ∨ φn) → φ ∨ φ1 ∨ ... ∨ φn

 (φ1 ∨ ... ∨ φn) ∨ φ → φ1 ∨ ... ∨ φn ∨ φ

 φ ∧ (φ1 ∧ ... ∧ φn) → φ ∧ φ1 ∧ ... ∧ φn

 (φ1 ∧ ... ∧ φn) ∧ φ → φ1 ∧ ... ∧ φn ∧ φ

Operators (O):

 φ1 ∨ ... ∨ φ → {φ1, ... , φn}

 φ1 ∧ ... ∧ φn → {φ1}, ... , {φn}

20

(c) Paul Fodor (CS Stony Brook) and Elsevier

Clausal form: Example
Convert the sentence (g ∧ (r → f)) to clausal form:

g ∧ (r → f)

I g ∧ (¬r ∨ f)

N g ∧ (¬r ∨ f)

D g ∧ (¬r ∨ f)

O {g}

{¬r, f}

21

(c) Paul Fodor (CS Stony Brook) and Elsevier

Clausal form: Example
 Convert the sentence ¬(g ∧ (r → f)) to clausal form:

¬(g ∧ (r → f))

I ¬(g ∧ (¬r ∨ f))

N ¬g ∨ ¬(¬r ∨ f)

¬g ∨ (¬¬r ∧ ¬f)

¬g ∨ (r ∧ ¬f)

D (¬g ∨ r) ∧ (¬g ∨ ¬f)

O {¬g,r}

{¬g, ¬f}

22

(c) Paul Fodor (CS Stony Brook) and Elsevier

Soundness of Resolution
 If F ⊢ G then F ⊨ G:

For F ⊢ G, we will have a derivation (aka “proof ”) of

finite length

We can show that F ⊨ G by induction on the length of

that derivation

23

(c) Paul Fodor (CS Stony Brook) and Elsevier

Refutation-Completeness of Resolution
 If F is inconsistent, then F ⊢ □:
Note that F is a set of clauses

 A clause is called an unit clause if it consists of a single literal.

 If all clauses in F are unit clauses, then for F to be

inconsistent, clearly a literal and its negation will be two

of the clauses in F

 Then resolving those two will generate the empty clause

A clause with n + 1 literals has “n excess literals”

 The proof of refutation-completeness is by induction on the

number of excess literals in F (each one of them has to be

eliminated to bring to inconsistency)

24

(c) Paul Fodor (CS Stony Brook) and Elsevier

Refutation-Completeness of Resolution
 Induction: Assume refutation completeness holds for all clauses with n

excess literals; show that it holds for clauses with n + 1 excess

literals:

 From F, pick some clause C with excess literals

 Pick some literal, say A from C

 Consider C’ = C-{A}

 Both F1=(F–{C})∪{C’} and F2=(F–{C}) ∪ {A} are inconsistent

and have at most n excess literals

 By induction hypothesis, both have refutations

 If there is a refutation of F1 not using C’, then that is a refutation for

F as well

 If the refutation of F1 uses C’, then construct a resolution of F by

adding A to the first occurrence of C’ (and its descendants); that will

end with {A}

 From here on, follow the refutation of F2. This constructs a refutation

of F
25

(c) Paul Fodor (CS Stony Brook) and Elsevier

A simple theorem prover in Prolog
 Operators for formulas:
:- op(100, fy, ~). %Negation

:- op(110, xfy, &). %Conjunction

:- op(120, xfy, v). %Disjunction

:- op(130, xfy, =>). %Implication

:- op(800, xfx, --->).

 Clausal form:
transform(~ (~X), X) :- %Double negation

!.

transform(X => Y, ~X v Y) :- %Eliminate implication

!.

transform(~(X & Y), ~X v ~Y) :- %De Morgan's law

!.

transform(~(X v Y), ~X & ~Y) :- %De Morgan's law

!.

transform(X & Y v Z, (X v Z) & (Y v Z)) :- !.%Distribution

transform(X v Y & Z, (X v Y) & (X v Z)):- !.%Distribution

transform(X v Y, X1 v Y) :- %Transform subexpression

transform(X, X1), !.

transform(X v Y, X v Y1):- %Transform subexpression

transform(Y, Y1), !.

transform(~X, ~X1) :- %Transform subexpression

transform(X, X1).26

(c) Paul Fodor (CS Stony Brook) and Elsevier

 Resolution:
:- dynamic(done/3).

% Contradicting clauses

[clause(X), clause(~X)] --->

[write('Contradiction found'), stop].

% Remove a true clause

[clause(C), in(P, C), in(~P, C)] --->

[retract(C)].

% Simplify a clause

[clause(C), delete(P, C, C1), in(P, C1)] --->

[replace(clause(C), clause(C1))].

% Resolution step, a special case

[clause(P), clause(C), delete(~P, C, C1), not done(P, C, P)] --->

[assert(clause(C1)), assert(done(P, C, P))].

% Resolution step, a special case

[clause(~P), clause(C), delete(P, C, C1), not done(~P, C, P)] --->

[assert(clause(C1)), assert(done(~P, C, P))].

% Resolution step, general case

[clause(C1), delete(P, C1, CA), clause(C2),delete(~P,C2,CB), not

done(C1,C2,P)] --->

[assert(clause(CA v CB)), assert(done(C1, C2, P))].

% Last rule: resolution process stuck

[] ---> [write('Not contradiction'), stop].

27

(c) Paul Fodor (CS Stony Brook) and Elsevier

% delete(P, E, E1) means: delete a disjunctive subexpression P from E

% giving E1

delete(X, X v Y, Y).

delete(X, Y v X, Y).

delete(X, Y v Z, Y v Z1):-

delete(X, Z, Z1).

delete(X, Y v Z, Y1 v Z) :-

delete(X, Y, Y1).

% in(P, E) means: P is a disjunctive subexpression in E

in(X, X).

in(X, Y):-

delete(X, Y, _).

%Translate conjunctive formula

translate(F & G) :-

!,

translate(F),

translate(G).

%Transformation step on Formula

translate(Formula) :-

transform(Formula, NewFormula),

!,

translate(NewFormula).

% No more transformation possible

translate(Formula) :-

assert(clause(Formula)).

28

(c) Paul Fodor (CS Stony Brook) and Elsevier

run :-

Condition ---> Action, % A production rule

test(Condition), % Precondition satisfied?

execute(Action).

run(State) :-

Condition ---> Action,

test(Condition, State),

execute(Action, State).

test([]). % Empty condition

test([First|Rest]) :- % Test conjunctive condition

call(First),

test(Rest).

% execute([Action1, Action2, ...]): execute list of actions

execute([stop]) :- !. % Stop execution

execute([]) :- % Empty action (execution cycle completed)

run. % Continue with next execution cycle

execute([First | Rest]) :-

call(First),

execute(Rest).

replace(A, B) :- % Replace A with B in database

retract(A), !, % Retract once only

assert(B).

?- translate(~((a => b) & (b => c) => (a => c))), run.

Contradiction found

yes

29

