Propositional Logic

Semantics and Resolution

CSE 505 — Computing with Logic

Stony Brook University

http: / / WWW. cs.stonybrook.edu/ ~cse505

http://www.cs.stonybrook.edu/~cse505

" Propositional logic
®* Alphabet A:

*Propositional symbols (identifiers)

® Connectives:
A (conjunction)
V (disjunction)

1 (negation)

| (logical equivalence)

—> (implication)

(c) Paul Fodor (CS Stony Brook) and Elsevier

™~

" Propositional logic
® Well-formed formulas (wffs, denoted by F)

over alphabet A is the smallest set such that:

f p is a predicate symboj_ inA thenp € E
f the wtts F, G € F then so are (TF), (F A

G), (FV G), (F=2 G)and (F [<] G).

" Interpretation

™

°* An interpretation | is a subset of propositions in

an alphabet A

® Alternatively, you can view I as a mapping from
the set of all propositions in A to a 2-values
Boolean domain {true, false!

® This name, “interpretation”, is more commonly

used for predicate logic

*in the propositional case, this is sometimes called a

“substitution’ or “truth assignment”

@ (c) Paul Fodor (CS Stony Brook) and Elsevier

/

: ™
Semantics of Well-Formed Formulae

* A formula’s meaning is given w.r.t. an interpretation I:
[Epiffp €1

[E “FiffI ¥ F (i.e., I does not entail F)
I[IEFAGiUfIEFandI EG

FV Giffl EForlE G (or both)

F 2Giff | E G whenever | E F

F|~| Giff IEF2Gand 1 E G2F

Notes: we read "E" as entails, models, "is a semantic

consequence oj' '

Weread I E p as "l entails p".
(-,

(c) Paul Fodor (CS Stony Brook) and Elsevier

"Models

® An interpretation I such that I E F is called “a
model” of F

*“Gisa]ogical consequence of F" (denoted by

F E G)itt every model of F is also a model of G

®in other words, G holds in every model of F;

or G is true in every interpretation that makes F true

(c) Paul Fodor (CS Stony Brook) and Elsevier

"Models

e A formula that has at least one model is
said to be “Satisﬁab]e”

e A formula for which every
interpretation is a model is called a

“tautol o)/”

e A formula is “inconsistent” it it has no

models

@ (c) Paul Fodor (CS Stony Brook) and Elsevier

™~

"Models

® Checking whether or not a formula is
satistiable is NP-Complete (the SAT
problem) because there are exponentially

many interpretations

® Many interesting combinatorial problems
can be reduced to checking satisfiability:
hence, there is a significant interest in

efficient algorithms /heuristics/ systems for

@ solving the SAT problem

(c) Paul Fodor (CS Stony Brook) and Elsevier

"Logical Consequence

® Let P be a set of clauses {C,, C,,..., C_}, where
® cach clause C, is of the form (L, VL,V ...V L)),

and where

® cach Lj is a literal: a proposition or a negated

proposition
e A model for P makes every one of Csin P true

® et G be a literal (called “Goal”)

® Consider the question: does P E G?

We can use a proof procedure, based on resolution to answer

this question

@ (c) Paul Fodor (CS Stony Brook) and Elsevier

/

"Proof System for Resolution
(€ P)

e P

PF(AV (1) PE(-AV ()
PFH(CV (G)

® The above notation is of “inference rules” where each

Resolution

rule is of the torm:
Antecedent(s)

Conclusion

* P I Cis called as a “sequent”

® PC means C can be pI’OVed if P is assumed true
o

(c) Paul Fodor (CS Stony Brook) and Elsevier

™~

"Proof System for Resolution

® The turnstile, -, represents syntactic

consequence (or "derivability")

®P |- C means that C is derivable from P using

the proot procedure

® |t is often read as "proves" or ")/ields"

@ (c) Paul Fodor (CS Stony Brook) and Elsevier

"Proof System for Resolution

™~

® Modus ponens can be seen as a special case of resolution

(of a one-literal clause and a two-literal clause) because

P —+q,p isequivalent to 7P Vg,p
q q

(c) Paul Fodor (CS Stony Brook) and Elsevier

"Proof System for Resolution

™~

* Given a sequent, a derivation of a sequent (sometimes

called its “proof”) is a tree with:
® that sequent as the root,
® empty leaves, and

® cach internal node is an instance of an inference rule.

e A proof system based on Resolution is
e Sound:i.e.if F+ G then F E G.

* not Complete:i.c. there are F,G s.t. F = G but]f - G.
E.g.,p F (p V q) but there is no way to derive p - (p V q) using

only resolution

@ (c) Paul Fodor (CS Stony Brook) and Elsevier

/

e

Resolution Proof (in pictures)

P={(pVaq).(mpVr),(mqgVr)}

(pVq) (mpVr)

™~

(gVr)

e

™~

Resolution Proof (An Alternative View)

®The clauses of P are all in a “pool”/table

® Resolution rule picks two clauses from the

“pool”; of the form AV C, and 7A V
®and adds C, V C, to the “pool”

C,

® The newly added clause can now interact with

other clauses and produce yet more clauses

* Ultimately, the “pool” consists of all c

such that P = C

@ (c) Paul Fodor (CS Stony Brook) and Elsevier

auses C

/

e

Resolution Proof (An Example)
*P={(pVq),(TpVr),(TqVr)}

®Here is a proof forPET:

Clause Number | Clause

How Derived

pVg

“pVr

—q Vr

qVvr

Res. 1 & 2

Res. 3 & 4

"Refutation Proofs :

e While resolution alone is incomplete for determining logical

consequences, resolution is sufficient to show inconsistency

(i.e. show when P has no model):

® Refutation proofs (Reductio ad absurdum = reduction to

absurdity) for showing logical consequence:

Say we want to determine P = r? |, where r is a proposition
This is equivalent to checking if P U {7r} has an empty model

This we can check by constructing a resolution proof for

P U {7r} F O, where O denotes the unsatisfiable empty clause

(c) Paul Fodor (CS Stony Brook) and Elsevier

Refutation Proofs (AN Example?

*LetP={(pVq),(TpVr),(7qVr),(pVs)},and
°*G=(rVs)

Clause Number | Clause | How Derived

pVvg | € PUAG
-pVr | €ePUAG
~gVr | ePUAG
—r c PU-G
—S c PU-G
qVr Res. 1 & 2
r Res. 3 & 6
Res. 4 & 7

CO| | O O & W MR =

(c) Paul Fodor (CS Stony Brook) and Elsevier

/.
Clausal form

o Propositional Resolution works only on expressions in

cla usalform

® There is a simple procedure for converting an arbitrary set of

Propositional Logic sentences to an equivalent set of clauses

Implications (I):

cPVY - VY
A SO Al
KR iad Rl - (CeVY)A (e V1Y)
Negations (N):
* T - ¢
c(eny) - eV Y
c(evy) - PN
(-

(c) Paul Fodor (CS Stony Brook) and Elsevier

/.
Clausal form
Distribution (D):

@V (PUAYx) - (eVY)A(pVX)
(pAY) VY - (ev)A(dVvy)
eV (plV..V @n) — @V @lV..V@n
*(@lV..Vn)V @ — @elVv.VonV @
c@A(PL1A..A®n) — @AQPLA..A@n
* (@1 A..AN@n)A @ — PLIA..AQEnA @
Operators (O):

c@lV..V@ {p], .., Pn}

@l A..A\@n {pl}, .., {¢@n}

@ (c) Paul Fodor (CS Stony Brook) and Elsevier

/.
Clausal form: Example

™~

* Convert the sentence (g A (r =2 f)) to clausal form:

g\ (r 21
[gA(TrVH)
N gA(TrVi)

D g/\("er}

O {gf
{7 £}

/.
Clausal form: Example

* Convert the sentence 7(g A (r =2 {)) to clausal form:
(g A (2 D)

T(gA (Tr Vi)
_Ig \V _I(_Ir V f)

gV (TTr A —t)
gV (r AT
(TgVr)A(TgV i)
{7gr}

{7g, 1}

(c) Paul Fodor (CS Stony Brook) and Elsevier

"Soundness of Resolution

o [f FF GthenF E G:

* For F = G, we will have a derivation (aka “proot™) of

finite length

® We can show that F = G by induction on the length of

that derivation

(c) Paul Fodor (CS Stony Brook) and Elsevier

s ™
Refutation-Completeness of Resolution

e [t F is inconsistent, then F F O:

® Note that F is a set of clauses

A clause is called an unit clause if it consists of a single literal.

e [f all clauses in F are unit clauses, then for F to be
inconsistent, clearly a literal and its negation will be two
of the clauses in F

Then resolving those two will generate the empty clause

® A clause withn 4+ 1 literals has “n excess literals”

The proof of refutation-completeness is by induction on the
number of excess literals in F (each one of them has to be

climinated to bring to inconsistency)

@ (c) Paul Fodor (CS Stony Brook) and Elsevier

s ™
Refutation-Completeness of Resolution

® Induction: Assume refutation completeness holds for all clauses with n
excess literals; show that it holds for clauses withn + 1 excess
literals:

From F, pick some clause C with excess literals

Pick some literal, say A from C

Consider C’ = C-{A}

Both F1=(F—{C})U{C’} and F2=(F—{C}) U {A} are inconsistent
and have at most n excess literals

* By induction hypothesis, both have refutations

If there is a refutation of F1 not using C’, then that is a refutation for

F as well

If the refutation of F1 uses C’, then construct a resolution of F by
adding A to the first occurrence of C’ (and its descendants); that will
end with {A}

From here on, follow the refutation of F2. This constructs a refutation
b
Of F (c) Paul Fodor (CS Stony Brook) and Elsevier /

e
A simple theorem prover in Prolog

® Operators for formulas:
op (100, fy, ~). %Negation
op (110, xfy, &). %$Conjunction
op (120, xfy, v). $Disjunction
op(130, xfy, =>). %$Implication
op (800, xfx, --->).

¢ (lausal form:

transform(~ (~X), X) :- %$Double negation
1

transform(X => ¥, ~X v YY) :- %Eliminate implication

1
transform(~(X & YY), ~X v ~Y) :- %De Morgan's law
1
transform(~(X v Y¥), ~X & ~Y) :- %De Morgan's law
1
transform(X &§ Yv Z, (X v Z) & (Y v 2)) :- !'.%Distribution
transform(X v Y & Z, (XvY) & (Xv 32)):- !'.%Distribution
transform(X v ¥, X1 v Y) :- %Transform subexpression
transform (X, X1), .
transform(X v ¥, X v Y1) :- $Transform subexpression
transform(Y, Y1), !.
@transformhx, ~X1) :- %Transform subexpression

transform (X ’ X1) . (c) Paul Fodor (CS Stony Brook) and Elsevier

s

(-

e Resolution:

: - dynamic (done/3).
% Contradicting clauses
[clause (X), clause(~X)] --->
[write ('Contradiction found'), stop].
% Remove a true clause
[clause(C), in(P, C), in(~P, C)] --->
[retract(C)].
% Simplify a clause
[clause (C), delete(P, C, C1l), in(P, Cl)] --->
[replace (clause(C) , clause(Cl))].
% Resolution step, a special case
[clause (P), clause(C), delete(~P, C, Cl), not done(P, C, P)] --->
[assert (clause(Cl)), assert(done(P, C, P))].
% Resolution step, a special case
[clause (~P), clause(C), delete(P, C, Cl), not done(~P, C, P)] --->
[assert (clause(Cl)), assert(done(~P, C, P))].
% Resolution step, general case
[clause (Cl) , delete (P, Cl, CA), clause(C2) ,delete(~P,C2,CB), not
done (Cl1,C2,P)] --->
[assert (clause(CA v CB)), assert(done(Cl, C2, P))].
% Last rule: resolution process stuck
[] ——-> [write('Not contradiction'), stop].

(c) Paul Fodor (CS Stony Brook) and Elsevier

//»% delete (P, E, El) means: delete a disjunctive subexpression P from
% giving El1
delete (X, X v Y, Y).
delete (X, Y v X, Y).
delete(X, Y Vv Z, Y v Z1) : -
delete (X, 2, Z1).
delete (X, Y v Z, Y1 v Z)
delete (X, Y, Y1).
% in(P, E) means: P is a disjunctive subexpression in E
in(X, X).
in(X, Y):-
delete(X, ¥,).
%$Translate conjunctive formula

translate(F & G) :-
|

’

translate (F),

translate (G) .
$Transformation step on Formula
translate (Formula) :-

transform(Formula, NewFormula),
1

M 4
translate (NewFormula) .
% No more transformation possible

translate (Formula) :-

assert (clause (Formula)).
@ (c) Paul Fodor (CS Stony Brook) and Elsevier

e\

7 run -

Condition ---> Action, % A production rule
test (Condition), % Precondition satisfied?
execute (Action) .
run (State) :-
Condition ---> Action,
test (Condition, State),
execute (Action, State).
test([]). % Empty condition
test([First|Rest]) :- % Test conjunctive condition
call (First),
test (Rest) .
% execute ([Actionl, Action2, ...]): execute list of actions
execute ([stop]) :- !'. & Stop execution
execute([]) :- % Empty action (execution cycle completed)
run. 3% Continue with next execution cycle
execute ([First | Rest]) :-
call (First),
execute (Rest) .
replace(A, B) :- % Replace A with B in database
retract(d), !, % Retract once only
assert (B).
?- translate(~((a =>Db) & (b =>c¢) => (a =>c¢))), run.
Contradiction found

@ (c) Paul Fodor (CS Stony Brook) and Elsevier

