
Chapter 11: Automated Proof
Systems

SYSTEM RS OVERVIEW

Hilbert style systems are easy to define and

admit a simple proof of the Completeness

Theorem but they are difficult to use.

Automated systems are less intuitive then

the Hilbert-style systems, but they will al-

low us to give an effective automatic proce-

dure for proof search, what was impossible

in a case of the Hilbert-style systems.

The first idea of this type was presented by

G. Gentzen in 1934.

1

PART 1: RS SYSTEM

RS proof system presented here is due to H.

Rasiowa and R. Sikorski and appeared

for the first time in 1961. It extends eas-

ily to Predicate Logic and admits a CON-

STRUCTIVE proof of Completeness The-

orem (first given by Rasiowa- Sikorski).

PART 2: GENTZEN SYSTEM

We present two Gentzen Systems; a modern

version and the original version. BOTH ex-

tend easily to Predicate Logic and admit a

CONSTRUCTIVE proof of Completeness

Theorem via Rasiowa-Sikorski method. The

Original Gentzen system is easily adopted

to a complete system foir the Intuitionistic

Logic and will be presented in Chapter 12.

2

Language of RS is

L = L{¬,⇒,∪,∩}.

The rules of inference of our system RS

operate on finite sequences of formulas.

Set of expressions E = F∗.

Notation: elements of E are finite sequences

of formulas and we denote them by

Γ,∆,Σ,

with indices if necessary.

Meaning of Sequences: the intuitive mean-

ing of a sequence Γ ∈ F∗ is that the truth

assignment v makes it true if and only if

it makes the formula of the form of the

disjunction of all formulas of Γ true.

3

For any sequence Γ ∈ F∗,

Γ = A1, A2, ..., An

we define

δΓ = A1 ∪A2 ∪ ... ∪An.

Formal Semantics for RS Let v : V AR −→
{T, F} be a truth assignment, v∗ its classi-

cal semantics extension to the set of for-

mulas F.

We formally extend v to the set F∗ of all

finite sequences of F as follows.

v∗(Γ) = v∗(δΓ) = v∗(A1)∪v∗(A2)∪...∪v∗(An).

4

Model The sequence Γ is said to be sat-

isfiable if there is a truth assignment v :

V AR −→ {T, F} such that v∗(Γ) = T .

Such a truth assignment v is called a model

for Γ.

Counter- Model The sequence Γ is said to be

falsifiable if there is a truth assignment v,

such that v∗(Γ) = F .

Such a truth assignment v is also called a

counter-model for Γ.

5

Tautology The sequence Γ is said to be a

tautology if v∗(Γ) = T for all truth assign-

ments v : V AR −→ {T, F}.

Example Let Γ be a sequence

a, (b ∩ a),¬b, (b⇒ a).

The truth assignment v for which v(a) = F

and v(b) = T falsifies Γ, i.e. is a counter-

model for Γ, as shows the following com-

putation.

v∗(Γ) = v∗(δΓ) = v∗(a)∪ v∗(b∩ a)∪ v∗(¬b)∪
v∗(b ⇒ a) = F ∪ (F ∩ T) ∪ F ∪ (T ⇒ F) =

F ∪ F ∪ F ∪ F = F.

6

Rules of inference of RS are of the form:

Γ1

Γ
or

Γ1 ; Γ2

Γ
,

where Γ1,Γ2 and Γ are sequences Γ1,Γ2 are
called premisses and Γ is called the conclu-
sion of the rule of inference.

Each rule of inference introduces a new log-
ical connective, or a negation of a logical
connective.

We name the rule that introduces the logi-
cal connective ◦ in the conclusion sequent
Γ by (◦).

The notation (¬◦) means that the negation
of the logical connective ◦ is introduced in
the conclusion sequence Γ.

7

System RS contains seven inference rules:

(∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), and (¬¬).

Before we define the rules of inference of RS

we need to introduce some definitions.

8

Literals

LT = V AR ∪ {¬a : a ∈ V AR}.

The variables are called positive literals.

Negations of variables are called negative lit-

erals.

We denote by Γ
′
, ∆

′
, Σ

′
finite sequences (empty

included) formed out of literals i.e

Γ
′
,∆

′
,Σ
′
∈ LT ∗.

We will denote by Γ,∆,Σ the elements of F∗.

9

Axioms AL of RS We adopt as an axiom any

sequence which contains any propositional

variable and its negation, i.e any sequence

Γ
′
1, a,Γ

′
2,¬a,Γ

′
3,

Γ
′
1,¬a,Γ

′
2, a,Γ

′
3.

10

Inference rules of RS

Disjunction rules

(∪)
Γ
′
, A,B,∆

Γ′, (A ∪B),∆
, (¬∪)

Γ
′
,¬A,∆ : Γ

′
,¬B,∆

Γ′,¬(A ∪B),∆

Conjunction rules

(∩)
Γ
′
, A,∆ ; Γ

′
, B,∆

Γ′, (A ∩B),∆
, (¬∩)

Γ
′
,¬A,¬B,∆

Γ′,¬(A ∩B),∆

Implication rules

(⇒)
Γ
′
,¬A,B,∆

Γ′, (A⇒ B),∆
, (¬ ⇒)

Γ
′
, A,∆ : Γ

′
,¬B,∆

Γ′,¬(A⇒ B),∆

Negation rule

(¬¬)
Γ
′
, A,∆

Γ′,¬¬A,∆

where Γ
′ ∈ LT ∗,∆ ∈ F∗, A,B ∈ F .

11

The Proof System RS Formally we define:

RS = (L, E,AL, (∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒
), (¬¬))

Proof Tree By a proof tree, or RS-proof of

Γ we understand a tree TΓ of sequences

satisfying the following conditions:

1. The topmost sequence, i.e the root of TΓ

is Γ,

2. all leafs are axioms,

3. the nodes are sequences such that each

sequence on the tree follows from the ones

immediately preceding it by one of the rules.

12

We picture, and write our proof trees with

the node on the top, and leafs on the very

bottom, instead of more common way, where

the leafs are on the top and root is on the

bottom of the tree.

We write our proof trees indicating addition-

ally the name of the inference rule used at

each step of the proof.

For example, if the proof of a theorem from

three axioms was obtained by the subse-

quent use of the rules (∩), (∪), (∪), (∩), (∪),

and (¬¬), (⇒),

We represent it as the following tree:

theorem; provable formula

| (⇒)

conclusion of (¬¬)

| (¬¬)

conclusion of (∪)

| (∪)

conclusion of (∩)∧
(∩)

conclusion of (∩)

| (∪)

axiom

conclusion of (∪)

| (∪)

conclusion of (∩)∧
(∩)

axiom axiom

13

Trees represent a certain visualization for

the proofs and any formal proof in any sys-

tem can be represented in a tree form.

Example The proof tree in RS of the de Mor-

gan law

(¬(a ∩ b)⇒ (¬a ∪ ¬b))

is the following.

14

(¬(a ∩ b)⇒ (¬a ∪ ¬b))

| (⇒)

¬¬(a ∩ b), (¬a ∪ ¬b)

| (¬¬)

(a ∩ b), (¬a ∪ ¬b)∧
(∩)

a, (¬a∪¬b)

| (∪)

a,¬a,¬b

b, (¬a∪¬b)

| (∪)

b,¬a,¬b

15

To obtain a ”linear ” formal proof (written

in a vertical form) of it we just write down

the tree as a sequence, starting from the

leafs and going up (from left to right) to

the root.

a,¬a,¬b

b,¬a,¬b

a, (¬a ∪ ¬b)

b, (¬a ∪ ¬b

(a ∩ b), (¬a ∪ ¬b)

¬¬(a ∩ b), (¬a ∪ ¬b)

(¬(a ∩ b)⇒ (¬a ∪ ¬b)).

16

The search for the proof of (¬(a∪b)⇒ (¬a∩
¬b)) consists of building a certain tree and
proceeds as follows.

(¬(a ∪ b)⇒ (¬a ∩ ¬b))

| (⇒)

¬¬(a ∪ b), (¬a ∩ ¬b)

| (¬¬)

(a ∪ b), (¬a ∩ ¬b)

| (∪)

a, b, (¬a ∩ ¬b)∧
(∩)

a, b,¬a a, b,¬b

17

We construct its formal proof, written in a

vertical manner, by writing the two axioms,

which form the two premisses of the rule

(∩) one above the other. All other se-

quences remain the same.

a, b,¬b

a, b,¬a

a, b, (¬a ∩ ¬b)

(a ∪ b), (¬a ∩ ¬b)

¬¬(a ∪ b), (¬a ∩ ¬b)

(¬(a ∪ b)⇒ (¬a ∩ ¬b))

18

The tree generated by the proof search is called

a decomposition tree.

Example of decomposition tree for

(((a⇒ b) ∩ ¬c) ∪ (a⇒ c))

is the following.

(((a⇒ b) ∩ ¬c) ∪ (a⇒ c))

| (∪)

((a⇒ b) ∩ ¬c), (a⇒ c)∧
(∩)

(a⇒ b), (a⇒ c)

| (⇒)

¬a, b, (a⇒ c)

| (⇒)

¬a, b,¬a, c

¬c, (a⇒ c)

| (⇒)

¬c,¬a, c

19

The decomposition tree generated by this search

contains an non-axiom leaf and hence is

not a proof.

Moreover, it proves, as the decomposition (proof

search) tree is unique that the proof of the

formula

(((a⇒ b) ∩ ¬c) ∪ (a⇒ c))

DOES not EXIST in the system RS.

20

Counter-model generated by the decompo-

sition tree.

Example: Given a formula A:

((a⇒ b) ∩ ¬c) ∪ (a⇒ c))

and its decomposition tree TA.

(((a⇒ b) ∩ ¬c) ∪ (a⇒ c))

| (∪)

((a⇒ b) ∩ ¬c), (a⇒ c)∧
(∩)

(a⇒ b), (a⇒ c)

| (⇒)

¬a, b, (a⇒ c)

| (⇒)

¬a, b,¬a, c

¬c, (a⇒ c)

| (⇒)

¬c,¬a, c

21

Consider a non-axiom leaf:

¬a, b,¬a, c

Let v be any variable assignment

v : V AR −→ {T, F}

such that it makes this non-axiom leaf False,
i.e. we put

v(a) = T, v(b) = F, v(c) = F.

Obviously, we have that

v∗(¬a, b,¬a, c) = F.

Moreover, all our rules of inference are sound
(to be proven formally in the next section).

Rules soundness means that if one of pre-
misses of a rule is FALSE, so is the con-
clusion.

22

Hence, the soundness of the rules proves (by

induction on the degree of sequences Γ ∈
TA) that v, as defined above falsifies all

sequences on the branch of TA that ends

with the non-axiom leaf ¬a, b,¬a, c.

In particular, the formula A is on this branch,

hence

v∗(((a⇒ b) ∩ ¬c) ∪ (a⇒ c)) = F

and v is a counter-model for A.

The truth assignments defined by a non- ax-

iom leaves are called counter-models gen-

erated by the decomposition tree.

The construction of the counter-models gen-

erated by the decomposition trees are cru-

cial to the proof of the Completeness The-

orem for RS.

We prove first the following Completeness The-

orem for formulas A ∈ F,

Completeness Theorem 1 For any formula

A ∈ F,

`RS A if and only if |= A.

and then we deduce from it the following

full Completeness Theorem for sequences

Γ ∈ F∗.

Completeness Theorem 2

For any Γ ∈ F∗,

`RS Γ if and only if |= Γ.

The Completeness Theorem consists of two

parts:

Soundness Part: (Soundness Theorem) for any

A ∈ F,

if `RS A, then |= A.

Completeness Part: For any formula A ∈ F,

if |= A, then `RS A.

Soundness Theorem for RS

For any Γ ∈ F∗,

if `RS Γ, then |= Γ.

In particular, for any A ∈ F,

if `RS A, then |= A.

We prove as an example the soundness of two

of inference rules: (⇒) and (¬∪) of G.

We show even more, that the premisses and

conclusion of both rules are logically equiv-

alent.

23

If P1, (P2) are premiss(es) of a rule, C is its

conclusion, then

v∗(P1) = v∗(C)

in case of one premiss rule and

v∗(P1) ∩ v∗(P2) = v∗(C),

in case of the two premisses rule.

Consider the rule (∪).

(∪)
Γ
′
, A,B,∆

Γ′, (A ∪B),∆
.

We evaluate: v∗(Γ
′
, A,B,∆) = v∗(δ{Γ′,A,B,∆}) =

v∗(Γ
′
) ∪ v∗(A) ∪ v∗(B) ∪ v∗(∆) = v∗(Γ

′
) ∪

v∗(A ∪ B) ∪ v∗(∆) = v∗(δ{Γ′,(A∪B),∆}) =

v∗(Γ
′
, (A ∪B),∆).

24

Consider the rule (¬∪).

(¬∪)
Γ
′
,¬A,∆ : Γ

′
,¬B,∆

Γ′,¬(A ∪B),∆
.

We evaluate: v∗(Γ
′
,¬A,∆) ∩ v∗(Γ

′
,¬B,∆) =

(v∗(Γ
′
)∪v∗(¬A)∪v∗(∆))∩(v∗(Γ

′
)∪v∗(¬B)∪

v∗(∆)) = (v∗(Γ
′
,∆)∪v∗(¬A))∩(v∗(Γ

′
,∆)∪

v∗(¬B)) = by distributivity = (v∗(Γ
′
,∆) ∪

(v∗(¬A)∩v∗(¬B)) = v∗(Γ
′
)∪v∗(∆)∪(v∗(¬A∩

¬B)) = by the logical equivalence of (¬A∩
¬B) and ¬(A ∪ B) = v∗(δ{Γ′,¬(A∪B),∆} =

v∗(Γ
′
,¬(A ∪B),∆)).

25

We prove now the Completeness Part of the

Completeness Theorem:

If 6 `RSA, then 6|= A.

STEPS needed for proof:

Step 1 Define, for each A ∈ F its decompo-

sition tree TA.

Step 2 (Lemma 1) Prove that the decompo-

sition tree TA is unique.

Step 3 (Lemma 2) Prove that TA has the fol-

lowing property:

Proof of A in RS does not exist (6 `RS)A,

iff there is a leaf of TA which is not an

axiom.

26

Step 4 (Lemma 3) Prove that given A with
TA with a non-axiom leaf, we have that
for any truth assignment v, such that
v∗(non-axiom leaf) = F, v also falsifies A,
i.e.

v∗(A) = F.

Proof of Completeness: Assume that A is any
formula is such that

6 `RSA.

By the STEP 3, the decomposition tree
TA contains a non-axiom leaf.

The non-axiom leaf LA defines a truth
assignment v which falsifies A, as follows:

v(a) =

F if a appears in LA
T if ¬a appears in LA
any value if a does not appear in LA

This proves by STEP 4 that 6|= A.

27

RS: DECOMPOSITION TREES

The process of searching for the proof of a

formula A in RS consists of building a cer-

tain tree, called a decomposition tree whose

root is the formula A, nodes correspond to

sequences which are conclusions of certain

rules (and those rules are well defined at

each step by the way the node is built),

and leafs are axioms or are sequences of a

non- axiom literals.

28

We prove that each formula A (sequence Γ)

generates its unique and finite decompo-

sition tree, TA (TΓ).

The tree constitutes the proof of A (Γ) in RS

if all its leafs are axioms.

If there is a leaf of TA (TΓ) that is not an

axiom, the tree is not a proof, moreover,

the proof of A does not exist.

Before we give a proper definition of the proof

search procedure by building a decomposi-

tion tree we list few important observations

about the structure of the rules of the sys-

tem RS.

29

Introduction of Connectives

The rules of RS are defined in such a way

that each of them introduces a new log-

ical connective, or a negation of a con-

nective to a sequence in its domain (rules

(∪), (⇒), (∩)) or a negation of a new logical

connective (rules (¬∪), (¬∩), (¬ ⇒), (¬¬)).

The rule (∪) introduces a new connective ∪
to a sequence Γ

′
, A,B,∆ and it becomes,

after the application of the rule, a sequence

Γ
′
, (A ∪B),∆.

Hence a name for this rule is (∪).

30

The rule (¬∪) introduces a negation of a con-

nective, ¬∪ by combining sequences Γ
′
,¬A,∆

and Γ
′
,¬B,∆ into one sequence (conclu-

sion of the rule) Γ
′
,¬(A ∪B),∆.

Hence a name for this rule is (¬∪).

The same applies to all remaining rules of

RS, hence their names say which connec-

tive, or the negation of which connective

has been introduced by the particular rule.

31

Decomposition Rules

Building decomposition tree (a proof search

tree) consists of using the inference rules

in an inverse order; we transform them into

rules that transform a conclusion into its

premisses.

We call such rules the decomposition rules.

Here are all of RS decomposition rules.

32

Disjunction decomposition rules

(∪)
Γ
′
, (A ∪B),∆

Γ′, A,B,∆
, (¬∪)

Γ
′
,¬(A ∪B),∆

Γ′,¬A,∆ : Γ′,¬B,∆

Conjunction decomposition rules

(∩)
Γ
′
, (A ∩B),∆

Γ′, A,∆ ; Γ′, B,∆
, (¬∩)

Γ
′
,¬(A ∩B),∆

Γ′,¬A,¬B,∆

Implication decomposition rules

(⇒)
Γ
′
, (A⇒ B),∆

Γ′,¬A,B,∆
, (¬ ⇒)

Γ
′
,¬(A⇒ B),∆

Γ′, A,∆ : Γ′,¬B,∆

Negation decomposition rule

(¬¬)
Γ
′
,¬¬A,∆
Γ′, A,∆

where Γ
′ ∈ F ′∗,∆ ∈ F∗, A,B ∈ F .

33

We write the decomposition rules in a visual

tree form as follows.

Tree Decomposition Rules

(∪) rule:

Γ
′
, (A ∪B),∆

| (∪)

Γ
′
, A,B,∆

34

(¬∪) rule:

Γ
′
,¬(A ∪B),∆∧

(¬∪)

Γ
′
,¬A,∆ Γ

′
,¬B,∆

(∩) rule:

Γ
′
, (A ∩B),∆∧

(∩)

Γ
′
, A,∆ Γ

′
, B,∆

35

(¬∪) rule:

Γ
′
,¬(A ∩B),∆

| (¬∩)

Γ
′
,¬A,¬B,∆

(⇒) rule:

Γ
′
, (A⇒ B),∆

| (∪)

Γ
′
,¬A,B,∆

36

(¬ ⇒) rule:

Γ
′
,¬(A⇒ B),∆∧

(¬ ⇒)

Γ
′
, A,∆ Γ

′
,¬B,∆

(¬¬) rule:

Γ
′
,¬¬A,∆

| (¬¬)

Γ
′
, A,∆

37

Observe that we use the same names for the

inference and decomposition rules, as once

the we have built the decomposition tree

(with use of the decomposition rules) with

all leaves being axioms, it constitutes a

proof of A in RS with branches labeled by

the proper inference rules.

Now we still need to introduce few useful def-

initions and observations.

Indecomposable Sequence

A sequence Γ
′

built only out of literals, i.e.

Γ ∈ F ′∗ is called an indecomposable se-

quence.

38

Decomposable Formula

A formula that is not a literal is called a

decomposable formula.

Decomposable Sequence

A sequence Γ that contains a decompos-

able formula is called a decomposable se-

quence.

Observation 1

For any decomposable sequence, i.e. for

any Γ 6∈ F ′∗ there is exactly one decom-

position rule that can be applied to it.

This rule is determined by the first decom-

posable formula in Γ, and by the main con-

nective of that formula.

39

Observation 2

If the main connective of the first decom-

posable formula is ∪,∩, or ⇒, then the de-

composition rule determined by it is (∪), (∩),

or (⇒), respectively.

Observation 3

If the main connective of the first decom-

posable formula is ¬, then the decompo-

sition rule determined by it is determined

by the second connective of the formula.

If the second connective is ∪,∩,¬, or ⇒,

then corresponding decomposition rule is

(¬∪), (¬∩), (¬¬) and (¬ ⇒).

40

Because of the importance of the above ob-

servations we write them in a form of the

following

Unique Decomposition Lemma

For any sequence Γ ∈ F∗,

Γ ∈ F ′∗ or Γ is in the domain of only one

of the RS Decomposition Rules.

41

Decomposition Tree TA

For each A ∈ F, a decomposition tree TA
is a tree build as follows.

Step 1. The formula A is the root of TA and

for any node Γ of the tree we follow the

steps below.

Step 2. If Γ is indecomposable, then Γ be-

comes a leaf of the tree.

42

Step 3. If Γ is decomposable, then we tra-

verse Γ from left to right to identify the

first decomposable formula B and iden-

tify the unique (Unique Decomposition

Lemma) decomposition rule determined by

the main connective of B.

We put its left and right premisses as the left

and right leaves, respectively.

Step 4. We repeat steps 2 and 3 until we

obtain only leaves.

43

Decomposition Tree TΓ

For each Γ ∈ F∗, a decomposition tree TΓ

is a tree build as follows.

Step 1. The sequence Γ is the root of TΓ and

for any node ∆ of the tree we follow the

steps bellow.

Step 2. If ∆ in indecomposable, then ∆ be-

comes a leaf of the tree.

Step 3. If ∆ is decomposable, then we tra-

verse ∆ from left to right to identify the

first decomposable formula B and iden-

tify the unique (Unique Decomposition

Lemma) decomposition rule determined by

the main connective of B.

44

We put its left and right premisses as the left

and right leaves, respectively.

Step 4. We repeat steps 2 and 3 until we

obtain only leaves.

Now we prove the following theorem.

Decomposition Tree Theorem

For any sequence Γ ∈ F∗ the following con-
ditions hold.

1. TΓ is finite and unique.

2. TΓ is a proof of Γ in RS if and only if all
its leafs are axioms.

3. 6 `RS if and only if TΓ has a non- axiom leaf.

Proof: The tree TΓ is unique by the Unique
Decomposition Lemma. It is finite be-
cause there is a finite number of logical
connectives in Γ and all decomposition rules
diminish the number of connectives. If the
tree has a non- axiom leaf it is not a proof
by definition. By the its uniqueness it also
means that the proof does not exist.

45

Example

Let’s construct, as an example a decom-

position tree TA of the following formula

A.

A = ((a ∪ b)⇒ ¬a) ∪ (¬a⇒ ¬c))

The formula A forms a one element decom-

posable sequence. The first decomposition

rule used is determined by its main connec-

tive.

We put a box around it, to make it more vis-

ible.

((a ∪ b)⇒ ¬a) ∪ (¬a⇒ ¬c))

46

The first and only rule applied is (∪) and we

can write the first segment of our decom-

position tree TA:

((a ∪ b)⇒ ¬a) ∪ (¬a⇒ ¬c))

| (∪)

((a ∪ b)⇒ ¬a), (¬a⇒ ¬c)

Now we decompose the sequence

((a ∪ b)⇒ ¬a), (¬a⇒ ¬c).

47

It is a decomposable sequence with the first,

decomposable formula

((a ∪ b)⇒ ¬a).

The next step of the construction of our de-

composition tree is determined by its main

connective ⇒ (we put the box around it).

item[The only rule] determined by the se-

quence is (⇒) applied (as decomposition

rule) to the sequence

((a ∪ b)⇒ ¬a), (¬a⇒ ¬c).

48

The second stage of the decomposition tree

is now as follows.

((a ∪ b)⇒ ¬a) ∪ (¬a⇒ ¬c))

| (∪)

((a ∪ b)⇒ ¬a), (¬a⇒ ¬c)

| (⇒)

¬(a ∪ b),¬a, (¬a⇒ ¬c)

49

The next sequence to decompose is the se-

quence

¬(a ∪ b),¬a, (¬a⇒ ¬c)

with the first decomposable formula

¬(a ∪ b).

Its main connective is ¬, so to find the appro-

priate rule we have to examine next con-

nective, which is ∪.

The decomposition rule determine by this stage

of decomposition is (¬∪).

50

Next stage of the construction of the decom-
position tree TA is as follows.

((a ∪ b)⇒ ¬a) ∪ (¬a⇒ ¬c))

| (∪)

((a ∪ b) ⇒ ¬a), (¬a⇒ ¬c)

| (⇒)

¬ (a ∪ b),¬a, (¬a⇒ ¬c)∧
(¬∪)

¬a,¬a, (¬a⇒ ¬c) ¬b,¬a, (¬a⇒ ¬c)

51

Now we have two decomposable sequences:

¬a,¬a, (¬a⇒ ¬c) and ¬b,¬a, (¬a⇒ ¬c).

They both happen to have the same first de-
composable formula (¬a ⇒ ¬c). We de-
compose it and obtain the following:

((a ∪ b)⇒ ¬a) ∪ (¬a⇒ ¬c))

| (∪)

((a ∪ b) ⇒ ¬a), (¬a⇒ ¬c)

| (⇒)

¬ (a ∪ b),¬a, (¬a⇒ ¬c)∧
(¬∪)

¬a,¬a, (¬a ⇒ ¬c)

| (⇒)

¬a,¬a,¬¬a,¬c

¬b,¬a, (¬a ⇒ ¬c)

| (⇒)

¬b,¬a,¬¬a,¬c

52

It is easy to see that we need only one more

step to complete the process of construct-

ing the unique decomposition tree of TA,

namely, by decomposing the sequences:

¬a,¬a,¬¬a,¬c

and

¬b,¬a,¬¬a,¬c.

53

The complete decomposition tree TA is:

TA

((a ∪ b)⇒ ¬a) ∪ (¬a⇒ ¬c))

| (∪)

((a ∪ b) ⇒ ¬a), (¬a⇒ ¬c)

| (⇒)

¬ (a ∪ b),¬a, (¬a⇒ ¬c)∧
(¬∪)

¬a,¬a, (¬a ⇒ ¬c)

| (⇒)

¬a,¬a, ¬¬ a,¬c

| (¬¬)

¬a,¬a, a,¬c

¬b,¬a, (¬a ⇒ ¬c)

| (⇒)

¬b,¬a, ¬¬ a,¬c

| (¬¬)

¬b,¬a, a,¬c

All leafs are axioms, the tree represents a

proof of A in RS

54

Example Consider now the formula

A = (((a⇒ b) ∩ ¬c) ∪ (a⇒ c))

and its decomposition tree:

TA

(((a⇒ b) ∩ ¬c) ∪ (a⇒ c))

| (∪)

((a⇒ b) ∩ ¬c), (a⇒ c)∧
(∩)

(a⇒ b), (a⇒ c)

| (⇒)

¬a, b, (a⇒ c)

| (⇒)

¬a, b,¬a, c

¬c, (a⇒ c)

| (⇒)

¬c,¬a, c

55

The above tree TA is unique by the Decision

Tree Theorem and represents the only pos-

sible search for proof of the formula

A = ((a⇒ b) ∩ ¬c) ∪ (a⇒ c))

in RS. It has a non-axiom leaf, hence the

proof of A in RS does not exists; i. e.

6` A.

We use this information to construct a truth

assignment that would falsify the formula

A. Such a variable assignment is called

a counter-model generated by the de-

composition tree.

56

RS: Counter Models Generated by

Decomposition Trees

RS: Proof of COMPLETENESS

THEOREM

Counter-model generated by the decompo-

sition tree.

Example: Given a formula A:

((a⇒ b) ∩ ¬c) ∪ (a⇒ c))

and its decomposition tree TA (see next

slide).

57

(((a⇒ b) ∩ ¬c) ∪ (a⇒ c))

| (∪)

((a⇒ b) ∩ ¬c), (a⇒ c)∧
(∩)

(a⇒ b), (a⇒ c)

| (⇒)

¬a, b, (a⇒ c)

| (⇒)

¬a, b,¬a, c

¬c, (a⇒ c)

| (⇒)

¬c,¬a, c

58

Consider a non-axiom leaf:

¬a, b,¬a, c

Let v be any variable assignment

v : V AR −→ {T, F}
such that it makes this non-axiom leaf FALSE,
i.e. we put

v(a) = T, v(b) = F, v(c) = F.

Obviously, we have that

v∗(¬a, b,¬a, c) = ¬T ∪ F ∪ ¬T ∪ F = F.

Moreover, all our rules of inference are sound
(to be proven formally in the next section).

Rules soundness means that if one of pre-
misses of a rule is FALSE, so is the con-
clusion.

59

Hence, the soundness of the rules proves (by
induction on the degree of sequences Γ ∈
TA) that v, as defined above falsifies all

sequences on the branch of TA that ends
with the non-axiom leaf ¬a, b,¬a, c.

In particular, the formula A is on this branch,
hence

v∗(((a⇒ b) ∩ ¬c) ∪ (a⇒ c)) = F

and v is a counter-model for A.

The truth assignments defined by a non- ax-
iom leaves are called counter-models gen-

erated by the decomposition tree.

The construction of the counter-models gen-
erated by the decomposition trees are cru-
cial to the proof of the Completeness The-
orem for RS.

60

F ”climbs” the Tree TA.

TA

(((a⇒ b) ∩ ¬c) ∪ (a⇒ c)) = F

| (∪)

((a⇒ b) ∩ ¬c), (a⇒ c) = F∧
(∩)

(a⇒ b), (a⇒ c) = F

| (⇒)

¬a, b, (a⇒ c) = F

| (⇒)

¬a, b,¬a, c = F

¬c, (a⇒ c)

| (⇒)

¬c,¬a, c

61

Observe that the same construction applies

to any other non-axiom leaf, if exists, and

gives the other ”F climbs the tree” picture,

and hence other counter- model for A.

By the Uniqueness of the Decomposition Tree

Theorem all possible counter-models (re-

stricted) for A are those generated by the

non- axioms leaves of the TA. In our case

the formula A has only one non-axiom leaf,

and hence only one (restricted) counter

model.

62

RS: COMPLETENESS THEOREM

We prove first the Soundness Theorem for

RS; and then the completeness part of the

Completeness Theorem.

Soundness Theorem 1

For any Γ ∈ F∗,

if `RS Γ, then |= Γ.

Proof: we prove here as an example the sound-

ness of two of inference rules. We leave the

proof for the other rules as an exercise.

We show that rules (⇒) and (¬∪) of G are

sound.

63

We show even more, i.e. that the premisses

and conclusion of both rules are logically

equivalent.

I.e. that for all v, v∗(Premiss(es)) = T , im-

plies that v∗(Conclusion) = T .

We hence show the following.

Equivalency: If P1, (P2) are premiss(es) of any

rule of RS, C is its conclusion, then v∗(P1) =

v∗(C) in case of one premiss rule and v∗(P1)∩
v∗(P2) = v∗(C), in case of the two pre-

misses rule.

64

Consider the rule (∪).

(∪)
Γ
′
, A,B,∆

Γ′, (A ∪B),∆
.

By the definition:

v∗(Γ
′
, A,B,∆) = v∗(δ{Γ′,A,B,∆}) = v∗(Γ

′
) ∪

v∗(A) ∪ v∗(B) ∪ v∗(∆) = v∗(Γ
′
) ∪ v∗(A ∪

B)∪v∗(∆) = v∗(δ{Γ′,(A∪B),∆}) = v∗(Γ
′
, (A∪

B),∆).

65

Consider the rule (¬∪).

(¬∪)
Γ
′
,¬A,∆ : Γ

′
,¬B,∆

Γ′,¬(A ∪B),∆
.

By the definition:

v∗(Γ
′
,¬A,∆)∩v∗(Γ

′
,¬B,∆) = (v∗(Γ

′
)∪v∗(¬A)∪

v∗(∆))∩(v∗(Γ
′
)∪v∗(¬B)∪v∗(∆)) = (v∗(Γ

′
,∆)∪

v∗(¬A))∩(v∗(Γ
′
,∆)∪v∗(¬B)) = by distribu-

tivity = (v∗(Γ
′
,∆) ∪ (v∗(¬A) ∩ v∗(¬B)) =

v∗(Γ
′
)∪v∗(∆)∪(v∗(¬A∩¬B)) = by the logi-

cal equivalence of (¬A∩¬B) and ¬(A∪B) =

v∗(δ{Γ′,¬(A∪B),∆} = v∗(Γ
′
,¬(A ∪B),∆)).

Proofs for all other rules follow the above pat-

tern (and proper logical equivalencies).

66

From the above Soundness Theorem 1 we

get as a corollary, in a case when Γ is a one

formula sequence, the following soundness

lemma for formulas.

Soundness Theorem 2

For any A ∈ F,

if `RS A, then |= A.

Now we are ready to prove the Completeness

Theorem, in two forms: sequence, and for-

mula.

Completeness Theorem 1

For any formula A ∈ F,

`RS A if and only if |= A.

67

Completeness Theorem 2

For any Γ ∈ F∗,

`RS Γ if and only if |= Γ.

Both proofs are carried by proving the contra-

position implication to the Completeness

Part, as the soundness part has been al-

ready proven.

Proof: as an example, we list the main steps in

the proof of a contraposition of the Com-

pleteness Theorem 1.

If 6 `RSA, then 6|= A.

68

To prove the Completenes Theorem we pro-

ceed as follows.

Define, for each A ∈ F its decomposition tree

(Decomposition Tree Definition).

Prove that the decomposition tree is finite unique

(Decomposition Tree Theorem) and has

the following property:

`GA iff all leafs of the decomposition tree

of A are axioms.

What means that if 6 `RSA, then there is a

leaf L of the decomposition tree of A, which

is not an axiom.

69

Observe, that by soundness, if one premiss of

a rule of RS is FALSE, so is the conclusion.

Hence by soundness and the definition of the

decomposition tree any truth assignment v

that falsifies an non axiom leaf, i.e. any

v such that v∗(L) = F falsifies A, namely

v∗(A) = F and hence constitutes a counter

model for A. This ends that proof that

6|= A.

70

Essential part:

Given a formula A such that 6 `RSA and its

decomposition tree of A with a non-axiom

leaf L.

We define a counter-model v determined

by the non- axiom leat L as follows:

v(a) =

F if a appears in L
T if ¬a appears in L
any value if a does not appear in L

This proves that 6|= A and ends the proof of

the Completeness Theorem for RS.

71

Part 2: Gentzen Sequent Calculus GL

The proof system GL for the classical propo-

sitional logic is a version of the original

Gentzen (1934) systems LK.

A constructive proof of the completeness the-

orem for the system GL is very similar to

the proof of the completeness theorem for

the system RS.

Expressions of the system like in the original

Gentzen system LK are Gentzen sequents.

Hence we use also a name Gentzen sequent

calculus.

Language of GL: L = L{∪,∩,⇒,¬,}.

72

We add a new symbol to the alphabet: −→.

It is called a Gentzen arrow.

The sequents are built out of finite sequences

(empty included) of formulas, i.e. elements

of F∗, and the additional sign −→.

We denote, as in the RS system, the finite

sequences of formulas by Greek capital let-

ters Γ,∆,Σ, with indices if necessary.

Sequent definition: a sequent is the expres-

sion

Γ −→∆,

where Γ,∆ ∈ F∗.

Meaning of sequents Intuitively, we interpret

a sequent

A1, ..., An −→ B1, ..., Bm,

where n,m ≥ 1 as a formula

(A1 ∩ ... ∩An)⇒ (B1 ∪ ... ∪Bm).

The sequent: A1, ..., An −→ (where n ≥ 1)

means that A1 ∩ ... ∩ An yields a contra-

diction.

The sequent −→ B1, ..., Bm (where m ≥ 1)

means |= (B1 ∪ ... ∪Bm).

The empty sequent: −→ means a contra-

diction.

73

Given non empty sequences: Γ, ∆, we de-

note by

σΓ

any conjunction of all formulas of Γ, and

by

δ∆

any disjunction of all formulas of ∆.

The intuitive semantics (meaning, interpre-

tation) of a sequent Γ −→ ∆ (where Γ,∆

are nonempty) is

Γ −→∆ ≡ (σΓ ⇒ δ∆).

74

Formal semantics for sequents (expressions
of GL)

Let v : V AR −→ {T, F} be a truth assign-
ment, v∗ its (classical semantics) extension
to the set of formulas F.

We extend v∗ to the set

SEQ = { Γ −→∆ : Γ,∆ ∈ F∗ }
of all sequents as follows: for any sequent
Γ −→∆ ∈ SEQ,

v∗(Γ −→∆) = v∗(σΓ)⇒ v∗(δ∆).

In the case when Γ = ∅ or ∆ = ∅ we define:

v∗(−→∆) = (T ⇒ v∗(δ∆)),

v∗(Γ −→) = (v∗(σΓ)⇒ F).

75

The sequent Γ −→ ∆ is satisfiable if there

is a truth assignment v : V AR −→ {T, F}
such that v∗(Γ −→∆) = T .

Model for Γ −→∆ is any v, such that

v∗(Γ −→∆) = T.

We write it

v |= Γ −→ ∆

Counter- model is any v such that

v∗(Γ −→ ∆) = F.

We write it

v 6|= Γ −→ ∆.

76

Tautology is any sequent Γ −→ ∆, such that

v∗(Γ −→ ∆) = T for all truth assignments

v : V AR −→ {T, F}, i.e.

|= Γ −→ ∆.

Example Let Γ −→ ∆ be a sequent

a, (b ∩ a) −→ ¬b, (b⇒ a).

The truth assignment v for which v(a) = T

and v(b) = T is a model for Γ −→ ∆, as

shows the following computation.

v∗(a, (b∩a) −→ ¬b, (b⇒ a)) = v∗(σ{a,(b∩a)})⇒
v∗(δ{¬b,(b⇒a)}) = v(a) ∩ (v(b) ∩ v(a)) ⇒
¬v(b)∪ (v(b)⇒ v(a)) = T ∩TcapT ⇒ ¬T ∪
(T ⇒ T) = T ⇒ (F ∪ T) = T ⇒ T = T.

77

Observe that the only v for which v∗(Γ) =

v∗(a, (b ∩ a) = T is the above v(a) = T and

v(b) = T that is a model for Γ −→ ∆.

It is impossible to find v which would falsify

it, what proves that

|= a, (b ∩ a) −→ ¬b, (b⇒ a).

78

Definition of GL

Axioms of GL: Any sequent of variables (pos-
itive literals) which contains a propositional
variable that appears on both sides of the
sequent arrow −→, i.e any sequent of the
form

Γ′1, a,Γ
′
2 −→ ∆′1, a,∆

′
2,

for any a ∈ V AR and any sequences
Γ′1,Γ

′
2,∆

′
1,∆

′
2 ∈ V AR

∗.

Inference rules of GL

We denote by Γ
′
, ∆

′
finite sequences formed

out of literals i.e. out of propositional vari-
ables or negations of propositional variables.
Γ, ∆ denote any finite sequences of formu-
las.

79

Conjunction rules

(∩ →)
Γ
′
, A,B,Γ −→ ∆

′

Γ′, (A ∩B),Γ −→ ∆′ ,

(→ ∩)
Γ −→ ∆, A,∆

′
; Γ −→ ∆, B,∆

′

Γ −→ ∆, (A ∩B),∆′ ,

Disjunction rules

(→ ∪)
Γ −→ ∆, A,B,∆

′

Γ −→ ∆, (A ∪B),∆′ ,

(∪ →)
Γ
′
, A,Γ −→ ∆

′
; Γ

′
, B,Γ −→ ∆

′

Γ′, (A ∪B),Γ −→ ∆′ ,

80

Implication rules

(→⇒)
Γ
′
, A,Γ −→ ∆, B,∆

′

Γ′,Γ −→ ∆, (A⇒ B),∆′ ,

(⇒→)
Γ
′
,Γ −→ ∆, A,∆

′
; Γ

′
, B,Γ −→ ∆,∆

′

Γ′, (A⇒ B),Γ −→ ∆,∆′ ,

Negation rules

(¬ →)
Γ
′
,Γ −→ ∆, A,∆

′

Γ′,¬A,Γ −→ ∆,∆′ ,

(→ ¬)
Γ
′
, A,Γ −→ ∆,∆

′

Γ′,Γ −→ ∆,¬A,∆′ .

81

We define:

GL = (SEQ,AL, (∪), (¬∪), (∩), (¬∩), (⇒), (¬ ⇒), (¬¬))

Formal proof of a sequent Γ −→ ∆ in the

proof system GL we understand any se-

quence

Γ1 −→∆1, Γ2 −→∆2,, Γn −→∆n

of sequents of formulas (elements of SEQ),

such that Γ1 −→ ∆1 ∈ AL, Γn −→ ∆n =

Γ −→ ∆, and for all i (1 < i ≤ n) Γi −→
∆i ∈ AL, or Γi −→ ∆i is a conclusion of

one of the inference rules of GL with all

its premisses placed in the sequence

Γ1 −→∆1,Γi−1 −→∆i−1.

82

We write, as usual,

`GL Γ −→∆

to denote that Γ −→∆ has a formal proof

in GL.

A formula A ∈ F, has a proof in if the sequent

−→ A has a proof in GL, i.e. we define:

`GL A iff −→ A.

83

A proof tree, or GL-proof of Γ −→ ∆ is a

tree

TΓ−→∆

of sequents satisfying the following condi-

tions:

1. The topmost sequent, i.e the root of

TΓ−→∆ is Γ −→∆,

2. All leafs are axioms,

3. The nodes are sequents such that each se-

quent on the tree follows from the ones im-

mediately preceding it by one of the rules.

84

We write the proof- trees indicating addition-

ally the name of the inference rule used at

each step of the proof.

Remark Proof search, i.e. decomposition tree

for a given formula A and hence a proof

of A in GL is not always unique!!

85

For example, a tree-proof (in GL) of the de

Morgan law

(¬(a ∩ b)⇒ (¬a ∪ ¬b))

is the following.

−→ (¬(a ∩ b)⇒ (¬a ∪ ¬b))

| (−→⇒)

¬(a ∩ b) −→ (¬a ∪ ¬b)

| (−→ ∪)

¬(a ∩ b) −→ ¬a,¬b

| (−→ ¬)

b,¬(a ∩ b) −→ ¬a

| (−→ ¬)

b, a,¬(a ∩ b) −→

| (¬ −→)

b, a −→ (a ∩ b)∧
(−→ ∩)

b, a −→ a b, a −→ b

86

Exercise 1 : Write all other proofs of ¬(a ∩
b)⇒ (¬a ∪ ¬b)) in GL.

Exercise 2: Verify that the axiom and the rules
of inference of GL are sound, i.e. that the
following theorem holds.

Soundness Theorem for GL: For any sequent
Γ −→∆ ∈ SEQ,

if `GL Γ −→∆ then |= Γ −→∆.

Completeness Theorem For any sequent Γ −→
∆ ∈ SEQ,

`GL Γ −→∆ iff |= Γ −→∆.

The proof of the Completeness Theorem is
similar to the proof for the RS system and
is assigned as an exercise.

87

