
Chapter 10: Introduction to
Intuitionistic Logic

PART 1: INTRODUCTION

The intuitionistic logic has developed as a

result of certain philosophical views on the

foundation of mathematics, known as in-

tuitionism.

Intuitionism was originated by L. E. J. Brouwer

in 1908.

The first Hilbert proof system (Hilber style

formalization) of the intuitionistic logic is

due to A. Heyting (1930).
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We present here a Hilbert style proof system

developed by Rasiowa in 1959 that is equiv-

alent to the Heyting’s original formaliza-

tion.

We discuss the relationship between intuition-

istic and classical logic.

We also present the original version of Gentzen

work (1935).

Gentzen was the first who formulated a first

syntactically decidable formalization for clas-

sical and intuitionistic logic and proved its

equivalence with the Heyting’s original Hilbert

style formalization (famous Gentzen’s Haupt-

satz).
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We present first, as it has happened histor-

ically, the intutionistic proof systems called

also formalizations of the intuitionistic logic.

The semantics for the intuitionistic logic will

be presented in a seperate chapter.

Intuitionistic semantics was fist defined by

Tarski in 1937, and Tarski and Stone in

1938 in terms of pseudo-boolean algebras,

called also Heyting algebras to memorize

Heying first proof system.
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An intuitionistic tautology is a formula that

is true in all pseudo-boolean algebras.

Pseudo-boolean algebras are called algebraic

models for the intuitionistic logic.

An uniform theory and presentation of alge-

braic models for classical, intuitionistic, modal

and many other logics was given by Ra-

siowa and Sikorski in 1964, and Rasiowa in

1978.
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Alternative semantics is given in terms of Kripke

models.

Kripke models were invented by Kripke in 1964.

They provide semantics for not only the

intuitionistic logic, but also for all known

modal logics, believe logics, and many oth-

ers.

Both semantics algebraic and Kripke models

are equivalent for the intuitionistic logic.
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Motivation for intuitionistic approach.

The basic difference between classical and in-
tuitionists perspective lies in the interpre-
tation of the word exists.

For example, let A(x) be a statement in the
arithmetic of natural numbers. For the
mathematicians the sentence

∃xA(x)

is true if it is a theorem of arithmetic, i.e.
if it can be deduced from the axioms of
arithmetic by means of classical logic.

When a mathematician proves sentence ∃xA(x),
this does not mean that he/she is able to
indicate a method of construction of a nat-
ural number n such that A(n) holds.
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For an intuitionist the sentence

∃xA(x)

is true only he is able to provide a construc-

tive method of finding a number n such

that A(n) is true.

Moreover, mathematicians often obtain a proof

of existential sentence

∃xA(x)

by proving a logically equivalent sentence

¬∀x ¬A(x).

Next they use the classical logical equivalence

¬∀x ¬A(x)) ≡ ∃xA(x)

(and Modus Ponens twice) and say that

they have proved ∃xA(x)).
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For the intuitionist such method is not ac-

ceptable, for it does not give any method

of constructing a number n such that A(n)

holds.

The same argument applies to the following

proof by contradiction.

To prove a statement

∃xA(x)

we assume, ¬∃xA(x), and hence, by de-

Morgan Law, we have assumed

∀x¬A(x).

If a contradiction follows,

∃xA(x))

has been proven.
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For these reasons the intuitionist do not ac-

cept the classical tautologies

(¬∀x ¬A(x)⇒ ∃xA(x)),

(∀x¬A(x)⇒ ¬∃xA(x))

as as intuitionistically provable sentences,

or consequently by intuitionistic Complete-

ness Theorem, as intuitionistic tautologies.
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The intuitionists interpret differently then clas-

sicists not only quantifiers but also the propo-

sitional connectives.

Intuitive ideas are as follows.

Intuitionistic implication (A ⇒ B) is con-

sidered by to be true if there exists a method

by which a proof of B can be deduced from

the proof of A.
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In the case of the classical implication

(¬∀x ¬A(x)⇒ ∃xA(x))

there is no general method which, from a

proof of the sentence

¬∀x¬A(x),

permits is to obtain proof of the sentence

∃xA(x).

Hence, the intuitionists can’t accept it as an

intuitionistically provable formula, or intu-

itionistic tautology.
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Intuitionistic negation of a statement A, ¬A,
is considered intuitionistically true if the ac-
ceptance of the sentence A leads to absur-
dity.

As a result intuitionistic understanding of nega-
tion and implication we have that in the
intuitionistic proof system I, called intu-
itionistic logic I

`I (A⇒ ¬¬A),

but

6 `I (¬¬A⇒ A).

Consequently, any intuitionistic semantics I

must be such that,

|=I (A⇒ ¬¬A)

and

6 |=I (¬¬A⇒ A).
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Intuitionistic disjunction (A ∪ B) is true if

one of the sentences A,B is true and there

is a method by which it is possible to find

out which of them is true.

As a consequence classical law of excluded

middle

(A ∪ ¬A)

is not acceptable by the intuitionists since

there is no general method of finding out,

for any given sentence A, whether A or ¬A
is true.
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Hence, the intuitionistic proof system I, or

logic for short, must be such that

6 `I (A ∪ ¬A).

The intutionistic semantics I must be such

that

|=I (A ∪ ¬A).
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Intuitionists’ view of the concept of infinite

set also differs from that which is generally

accepted in mathematics.

Intuitionists reject the idea of infinite set as

a closed whole.

They look upon an infinite set as something

which is constantly in a state of formation.
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For example, the set of all natural numbers

is infinite in the sense that for any given

finite set of natural numbers it is always

possible to add one more natural number.

The notion of the set of all subsets of the

set of all natural numbers is not regarded

meaningful.

Intuitionists reject the general idea of a set

as defined by a modern set theory.
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An exact, formal exposition of the basic ideas

of intuitionism is outside the range of our

investigations.

Our goal is to give, in this chapter, a presen-

tation of the intuitionistic logic formulated

as a proof system and discuss the rela-

tionship between classical and intuitionistic

logics.
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PART 2: Hilbert Proof System for proposi-

tional intuitionistic logic.

Language is a propositional language

L = L{∪,∩,⇒,¬}

with the set of formulas denoted by F.

Axioms

A1 ((A⇒ B)⇒ ((B ⇒ C)⇒ (A⇒ C))),

A2 (A⇒ (A ∪B)),

A3 (B ⇒ (A ∪B)),
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A4 ((A ⇒ C) ⇒ ((B ⇒ C) ⇒ ((A ∪ B) ⇒
C))),

A5 ((A ∩B)⇒ A),

A6 ((A ∩B)⇒ B),

A7 ((C ⇒ A)⇒ ((C ⇒ B)⇒ (C ⇒ (A∩B))),

A8 ((A⇒ (B ⇒ C))⇒ ((A ∩B)⇒ C)),

A9 (((A ∩B)⇒ C)⇒ (A⇒ (B ⇒ C)),

A10 (A ∩ ¬A)⇒ B),

A11 ((A⇒ (A ∩ ¬A))⇒ ¬A),

where A,B,C are any formulas in L.
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Rules of inference: we adopt a Modus Po-

nens rule

(MP)
A ; (A⇒ B)

B

as the only inference rule.

A proof system I

I = ( L, F ,A1−A11, (MP) ),

for L, A1 - A11 defined above, is called

Hilbert Style Formalization for Intuitionis-

tic Propositional Logic.

This set of axioms is due to Rasiowa (1959).

It differs from Heyting original set of ax-

ioms but they are equivalent.
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We introduce, as usual, the notion of a for-

mal proof in I and denote by

`I A

the fact that A has a formal proof in I, or

that that A is intuitionistically provable.

We write

|=I A

to denote that the formula A is intuition-

istic tautology.

Completeness Theorem for I For any formula

A ∈ F,

`I A ı and only if |=I A.
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The Completeness Theorem gives us the right

to replace the notion of a theorem (prov-

able formula) of a given intuitionistic proof

system by an independent of the proof sys-

tem and more intuitive ( as we all have

some notion of truthfulness) notion of the

intuitionistic tautology.

The intuitionistic logic has been created as

a rival to the classical one. So a question

about the relationship between these two

is a natural one.
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The following classical tautologies are prov-

able in I and hence, by the Completeness

Theorem, are also intuitionistic tautologies.

1. (A⇒ A),

2. (A⇒ (B ⇒ A)),

3. (A⇒ (B ⇒ (A ∩B))),

4. ((A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C))),

5. (A⇒ ¬¬A),

6. ¬(A ∩ ¬A),

7. ((¬A ∪B)⇒ (A⇒ B)),
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8. (¬(A ∪B)⇒ (¬A ∩ ¬B)),

9. ((¬A ∩ ¬B)⇒ (¬(A ∪B)),

10. ((¬A ∪ ¬B)⇒ (¬(A ∩B)),

11. ((A⇒ B)⇒ (¬B ⇒ ¬A)),

12. ((A⇒ ¬B)⇒ (B ⇒ ¬A)),

13. (¬¬¬A⇒ ¬A),

14. (¬A⇒ ¬¬¬A),

15. (¬¬(A⇒ B)⇒ (A⇒ ¬¬B)),

16. ((C ⇒ A) ⇒ ((C ⇒ (A ⇒ B)) ⇒ (C ⇒
B)).
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Examples of classical tautologies that are not

intuitionistic tautologies

17. (A ∪ ¬A),

18. (¬¬A⇒ A),

19. ((A⇒ B)⇒ (¬A ∪B)),

20. (¬(A ∩B)⇒ (¬A ∪ ¬B)),

21. ((¬A⇒ B)⇒ (¬B ⇒ A)),

22. ((¬A⇒ ¬B)⇒ (B ⇒ A)),

23. ((A⇒ B)⇒ A)⇒ A).
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Connections between Classical and Intuition-
istic logics.

The first connection is quite obvious. Let
us observe that if we add the axiom

A12 (A ∪ ¬A)

to the set of axioms of the system I we
obtain a complete Hilbert proof system C

for the classical logic.

This proves the following.

Theorem 1 Every formula that is derivable
intuitionistically is classically derivable, i.e.

if `IA, then ` A

where we use symbol ` for classical (com-
plete classical proof system) provability.
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By the Completeness Theorem we get the fol-

lowing.

Theorem 2 For any formula A ∈ F,

if |=I A, then |= A.

The next relationship shows how to obtain

intuitionistic tautologies from the classical

tautologies and vice versa.

The following relationships were proved by

Glivenko in 1929 and independently, in a

semantic form by Tarski in 1938.
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Theorem 3 (Glivenko ) For any formula A ∈
F, A is a classically provable if and only if

¬¬A is an intuitionistically provable, i.e.

`IA iff ` ¬¬A

where we use symbol ` for classical (com-

plete classical proof system) provability.

Theorem 4 (Tarski) For any formula A ∈
F, A is a classical tautology if and only

if ¬¬A is an intuitionistic tautology, i.e.

|= A if and only if |=I ¬¬A.
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The following relationships were proved by

Gödel in 1331.

Theorem 5 (Gödel) For any A,B ∈ F, a

formula (A ⇒ ¬B) is a classically provable

if and only if it is an intuitionistically prov-

able, i.e.

` (A⇒ ¬B) if and only if `I (A⇒ ¬B).

Theorem 6 (Gödel) If a formula A contains

no connectives except ∩ and ¬, then A is

a classically provable if and only if it is an

intuitionistically provable tautology.

By the Completeness Theorems for classical

and intuitionisctic logics we get the follow-

ing equivalent semantic form of theorems

5 and 6.
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Theorem 7 For any A,B ∈ F, a formula (A⇒
¬B) is a classical tautology if and only if it

is an intuitionistic tautology, i.e.

|= (A⇒ ¬B) if and only if |=I (A⇒ ¬B).

Theorem 8 If a formula A contains no con-

nectives except ∩ and ¬, then A is a clas-

sical tautology if and only if it is an intu-

itionistic tautology.



On intuitionistically derivable disjunctions.

In a classical logic it is possible for the dis-

junction (A ∪ B) to be a tautology when

neither A nor B is a tautology. The tautol-

ogy (A∪¬A) is the simplest example. This

does not hold for the intuitionistic logic.

Theorem 9 (stated without the proof by Gödel

in 1910)

For any A,B ∈ F, a formula (A ∪ B) is in-

tuitionistically provable if and only if A is

intuitionistically provable or B is intuition-

istically provable i.e.

`I (A∪B) if and only if `I A, or `I B.
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Theorem 9 was proved by Gentzen in 1935

via his proof system LI which is presented

and discussed in the next chapter.

We obtain, via the Completeness Theorem

the following equivalent semantic version

of the above.

Theorem 10 (Tarski) For any A,B ∈ F, a

disjunction (A ∪ B) is intuitionistic tautol-

ogy if and only if either A or B is intuition-

istic tautology, i.e.

|=I (A∪B) if and only if |=I A or |=I B.
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