
CHAPTER 14

Hilbert System for Predicate Logic

1 Completeness Theorem for First Order Logic

There are many proofs of the Completeness Theorem for First Order Logic. We
follow here a version of Henkin’s proof, as presented in the Handbook of Mathe-
matical Logic. It contains a method for reducing certain problems of first-order
logic back to problems about propositional logic. We give independent proof of
Compactness Theorem for propositional logic. The Compactness Theorem for
first-order logic and Löwenheim-Skolem Theorems and the Gödel Completeness
Theorem fall out of the Henkin method.

1.1 Compactness Theorem for Propositional Logic

Let L = L(P,F,C) be a first order language with equality. We assume that
the sets P, F, C are infinitely enumerable. We define a propositional logic
within it as follows.

Prime formulas We consider a subset P of the set F of all formulas of L.
Intuitively these are formulas of L which are not direct propositional com-
bination of simpler formulas, that is, atomic formulas (AF) and formulas
beginning with quantifiers.

Formally, we have that

P = {A ∈ F : A ∈ AF or A = ∀xB, A = ∃xB for B ∈ F}.

Example 1.1 The following are primitive formulas.

R(t1, t2), ∀x(A(x)⇒ ¬A(x)), (c = c), ∃x(Q(x, y) ∩ ∀yA(y)).

The following are not primitive formulas.

(R(t1, t2)⇒ (c = c)), (R(t1, t2) ∪ ∀x(A(x)⇒ ¬A(x)).

Given a set P of primitive formulas we define in a standard way the set PF of
propositional formulas as follows.

Propositional formulas The smallest set PF ⊂ F such that

1. P ⊂ PF
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2. If A,B ∈ PF , then (A⇒ B), (A ∪B), (A ∩B), and ¬A ∈ PF

is called a set of propositional formulas of the first order language L.

We define propositional semantics for propositional formulas in PF as follows.

Truth assignment Let P be a set of prime formulas and {T, F} be a two
element set, thought as the set of logical values ”true” and ”false”. Any
function

v : P −→ {T, F}
is called truth assignment (or variable assignment).

Let B = ({T, F},⇒,∪,∩,¬) be a two-element Boolean algebra and PF =
(PF ,⇒,∪,∩,¬) a similar algebra of propositional formulas.

We extend v to a homomorphism

v∗ : PF −→ B

in a usual way, i.e. we put v∗(A) = v(A) for A ∈ P , and for any A,B ∈ PF ,

v∗(A⇒ B) = v∗(A)⇒ v∗(B),

v∗(A ∪B) = v∗(A) ∪ v∗(B),

v∗(A ∩B) = v∗(A) ∩ v∗(B),

v∗(¬A) = ¬v∗(A).

Propositional Model A truth assignment v is called a propositional model
for a formula A ∈ PF iff v∗(A) = T .

Propositional Tautology A formula A ∈ PF is a propositional tautology if
v∗(A) = T for all v : P −→ {T, F}.

For the sake of simplicity we will often say model, tautology instead propositional
model, propositional tautology.

Model for the Set Given a set S of propositional formulas. We say that v
is a model for the set S if v is a model for all formulas A ∈ S.

Consistent Set A set S of propositional formulas is consistent (in a sense
of propositional logic) if it has a (propositional) model.

Theorem 1.1 (Compactness Theorem for Propositional Logic) A set S
of propositional formulas is consistent if and only if every finite subset of S is
consistent.
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proof If S is a consistent set, then its model is also a model for all its finite
subsets and all its finite subsets are consistent.

We prove the nontrivial half of the Compactness Theorem in a slightly modified
form. To do so, we introduce the following definition.

Finitely Consistent Set (FC) Any set S such that all its subsets are con-
sistent is called finitely consistent.

We use this definition to re-write the Compactness Theorem as: A set S of
propositional formulas is consistent if and only it is finitely consistent. The
nontrivial half of it is:

Every finitely consistent set of propositional formulas is consistent.

The proof of the nontrivial half of the Compactness Theorem, as stated above,
consistes of the following four steps.

Step 1 We introduce the notion of a maximal finitely consistent set.

Step 2 We show that every maximal finitely consistent set is consistent by
constructing its model.

Step 3 We show that every finitely consistent set S can be extended to a
maximal finitely consistent set S∗. I.e we show that for every finitely consistent
set S there is a set S∗, such that S ⊂ S∗ and S∗ is maximal finitely consistent.

Step 4 We use steps 2 and 3 to justify the following reasoning. Given a
finitely consistent set S. We extend it, via construction defined in the step 2 to
a maximal finitely consistent set S∗. By the step 2, S∗ is consistent and hence
so is the set S, what ends the proof.

Step 1: Maximal Finitely Consistent Set We call S maximal finitely con-
sistent if S is finitely consistenst and for every formula A, either A ∈ S.

We use notation MFC for maximal finitely consistent set, and FC for the finitely
consistent set.

Step 2: Any MFC set is consistent Given a MFC set S∗, we prove its
consistency by constructing a truth assignment v : P −→ {T, F} such
that for all A ∈ S∗, v∗(A) = T .

Observe that the MFC sets have the following property.

MCF Property For any MFC set S∗, for every A ∈ PF , exactly one of the
formulas A¬A belongs to S∗.
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In particular, for any P ∈ PF , we have that exactly one of P,¬P ∈ S∗. This
justify the correctness of the following definition.

Let v : P −→ {T, F} be a mapping such that

v(P ) =

{
T if P ∈ S∗
F if P 6∈ S∗

We extend v to v∗ : PF −→ B in a usual way. In order to prove that v is a
model for S∗ we have to show that for any A ∈ PF ,

v∗(A) =

{
T if A ∈ S∗
F if A 6∈ S∗

We prove it by induction on the degree of the formula A. The base case of
A ∈ P follows immediately from the definition of v.

Case A = ¬C Assume that A ∈ S∗. This means ¬C ∈ S∗ and by MCF
Property we have that C 6∈ S∗. So by the inductive assumption v∗(C) =
F and v∗(A) = v∗(¬C) = ¬v∗(C) = ¬F = T.

Assume now that A 6∈ S∗. By MCF Property we have that C ∈ S∗. By
the inductive assumption v∗(C) = T and v∗(A) = v∗(¬C) = ¬v∗(T ) =
¬T = F.

This proves that for any formula A,

v∗(¬A) =

{
T if ¬A ∈ S∗
F if ¬A 6∈ S∗

Case A = (B ∪ C) Let (B ∪ C) ∈ S∗. It is enough to prove that in this
case B ∈ S∗ and C ∈ S∗, because then from the inductive assumption
v∗(C) = v∗(D) = T and v∗(B ∪ C) = v∗(B) ∪ v∗(C) = T ∪ T = T .

Assume that (B∪C) ∈ S∗, B 6∈ S∗ and C 6∈ S∗. Then by MCF Property
we have that ¬B ∈ S∗, ¬C ∈ S∗ and consequently the set

{(B ∪ C),¬B,¬C}

is a finite inconsistent subset of S∗, what contradicts the fact that S∗ is
finitely consistent.

Assume now that (B ∪ C) 6∈ S∗. By MCF Property, ¬(B ∪ C) ∈ S∗
and by the A = ¬C we have that v∗(¬(B ∪C)) = T . But v∗(¬(B ∪C)) =
¬v∗((B ∪ C)) = T means that v∗((B ∪ C)) = F , what end the proof of
this case.
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The remaining cases of A = (B∩C), A = (B ⇒ C) are similar to the above and
are left to the reader as an exercise.

Step 3: Maximal finitely consistent extention Given a finitely consis-
tent set S, we construct its maximal finitely consistent extension S∗ as
follows.

The set of all formulas of L is countable, so is PF . We assume that all propo-
sitional formulas form a one-to-one sequence

A1, A2, ...., An, ..... (1)

We define a chain
S0 ⊂ S1 ⊂ S2.... ⊂ Sn ⊂ .... (2)

of extentions of the set S by

S0 = S;

Sn+1 =

{
Sn ∪ {An} if Sn ∪ {An} is finitely consistent
Sn ∪ {¬An} otherwise.

We take

S∗ =
⋃

n∈N
Sn. (3)

Clearly, S ⊂ S∗ and for every A, either A ∈ S∗ or ¬A ∈ S∗. To finish the proof
that S∗ is MCF we have to show that it is finitely consistent.

First, let observe that if all sets Sn are finitely consistent, so is S∗ =
⋃

n∈N Sn.
Namely, let SF = {B1, ..., Bk} be a finite subset of S∗. This means that there
are sets Si1 , ...Sik in the chain ( 2) such that Bm ∈ Sim , m = 1, ..k. Let
M = max(i1, ...ik). Obviously SF ⊂ SM and SM is finitely consistent as an
element of the chain ( 2). This proves the if all sets Sn are finitely consistent,
so is S∗.

Now we have to prove only that all Sn in the chain ( 2) are finitely consistent.
We carry the proof by induction over the length of the chain. S0 = S , so it is
FC by assumption of the Compactness Theorem. Assume now that Sn is FC,
we prove that so is Sn+1. We have two cases to consider.

Case 1 Sn+1 = Sn ∪ {An}, then Sn+1 is FC by the definition of the chain
( 2).
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Case 2 Sn+1 = Sn∪{¬An}. Observe that this can happen only if Sn∪{An}
is not FC, i.e. there is a finite subset S

′

n ⊂ Sn, such that S
′

n ∪{An} is not
consistent.

Suppose now that Sn+1 is not FC. This means that there is a finite subset
S

′′

n ⊂ Sn, such that S
′′

n ∪ {¬An} is not consistent.

Take S
′

n ∪ S
′′

n . It is a finite subset of Sn so is consistent by the inductive
assumption. Let v be a model of S

′

n ∪ S
′′

n . Then one of v∗(A), v∗(¬A)
must be T. This contradicts the inconsistency of both S

′

n ∪ {An} and
S

′

n ∪ {¬An}.

Thus, in ether case, Sn+1, is after all consistent. This ends the proof of the Step
3 and of the Compactness Theorem via the argument presented in the Step 4.

1.2 Reduction of first-order logic to propositional logic

Propositional tautologies as defined in the previous section barely scratch the
surface of the collection of first -order tautologies, or first order valid formulas,
as they are often called. For example the following first-order formulas are
propositional tautologies,

(∃xA(x) ∪ ¬∃xA(x)),

(∀xA(x) ∪ ¬∀xA(x)),

(¬(∃xA(x) ∪ ∀xA(x))⇒ (¬∃xA(x) ∩ ¬∀xA(x))),

but the following are first order tautologies (valid formulas) that are not propo-
sitional tautologies:

∀x(A(x) ∪ ¬A(x)),

(¬∀xA(x)⇒ ∃x¬A(x)).

The first formula above is just a prime formula, the second is of the form (¬B ⇒
C), for B and C prime.

To stress the difference between the propositional and first order tautologies
some books reserve the word tautology for the propositional tautologies alone,
using the notion of valid formula for the first order tautologies. We use here
both notions, with the preference to first-order tautology or tautology for short
when there is no room for misunderstanding.

To make sure that there is no misunderstandings we remind the following defi-
nitions.
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Given a first order language L with the set of variables V AR and the set of
formulas F . Let M = [M, I] be a structure for the language L, with the
universe M and the interpretation I and let s : V AR −→ M be a valuation of
L in M .

A is true in M Given a structure M = [M, I], we say that a formula A is
true in M if there is a valuation s : V AR −→ M such that

(M, s) |= A.

A is valid in M Given a structure M = [M, I], we say that a formula A is
valid in M if

(M, s) |= A

for all valuations s : V AR −→M .

Model M If A is valid in a structureM = [M, I], thenM is called a model
of A.

A is valid A formula A called is valid if it is valid in all structures M =
[M, I], i.e. if all structures are models of A.

A is a first-order tautology A valid formula A is also called a first-order
tautology, or tautology, for short.

Case: A is a sentence If A is a sentence, then the truth or falsity of
(M, s) |= A is completely independent of s. Thus we write

M |= A

and read M is a model of A, if for some (hence every) valuation s,
(M, s) |= A.

Model of a set of sentences M is a model of a set S of sentences ifM |= A
for all A ∈ S. We write it

M |= S.

2 Completeness Theorem for Classical Predi-
cate Logic

The relationship between the first order models defined in terms of structures
M = [M, I] and valuations s : V AR −→ M and propositional models defined
in terms of truth assignments v : P −→ {T, F} is established by the following
lemma.
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Lemma 2.1 (Predicate and Propositional Models)

Let M = [M, I] be a structure for the language L and let s : V AR −→ M a
valuation in M. There is a truth assignments v : P −→ {T, F} such that for
all formulas A of L,

(M, s) |= A if and only if v∗(A) = T.

In particular, for any set S of sentences of L,

if M |= S then S is consistent in sense of propositional logic.

Proof For any prime formula A ∈ P we define

v(A) =

{
T if (M, s) |= A
F otherwise.

Since every formula in L is either prime or is built up from prime formulas by
means of propositional connectives, the conclusion is obvious.

Observe, that the converse of the lemma is far from true. Consider a set

S = {∀x(A(x)⇒ B(x)),∀xA(x),∃x¬B(x)}.

All formulas of S are different prime formulas, S is hence consistent in the sense
of propositional logic and obviously has no (predicate) model.

The language L is a predicate language with equality. We adopt a following set
of axioms.

Equality Axioms For any free variable or constant of L, i.e for any u,w, ui, wi ∈
(V AR ∪C),

E1 u = u,

E2 (u = w ⇒ w = u),

E3 ((u1 = u2 ∩ u2 = u3)⇒ u1 = u3),

E4 ((u1 = w1 ∩ ... ∩ un = wn)⇒ (R(u1, ..., un)⇒ R(w1, ..., wn))),

E5 ((u1 = w1 ∩ ... ∩ un = wn)⇒ (t(u1, ..., un)⇒ t(w1, ..., wn))),

where R ∈ bfP and t ∈ T , i.e. R is an arbitrary n-ary relation symbol of L and
t is an arbitrary n-ary term of L.
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Obviously, all equality axioms are first-ordertautologies, or are valid formulas
of L, i.e. for all M = [M, I] and all s : V AR −→ M , and for all A ∈
{E1, E2, E3, E4, E5.E6}, (M, s) |= A.

This is why we still call logic with equality axioms added a logic.

Now we are going to define notions that is fundamental to the Henkin’s technique
for reducing first-order logic to propositional logic. The first one is that of
witnessing expansion of the language L.

Witnessing expansion L(C) of L We construct an expansion of our lan-
guage L by adding a set C of new constants to it, i.e. we define a new
language L(C)

L(C) = L(P,F,(C ∪ C))

which is usually denoted shortly as

L(C) = L ∪ C.

Definition of C We define the set C of new constants by constructing an
infinite sequence

C0, C1, ..., Cn, .... (4)

of sets of constants together with an infinite sequence

L0,L1, ...,Ln, .... (5)

of languages, such that

Ln = L ∪ Cn, C =
⋃

n∈N
Cn

and
L(C) = L ∪ C.

We define sequences ( 4), ( 5) as follows. Let

C0 = ∅, L0 = L ∪ C0 = L.

We denote by
A[x]

the fact that the formula A has exactly one free variable and for each such a
formula we introduce a distinct new constant denoted by

cA[x].
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We define
C1 = {cA[x] : A[x] ∈ L0}, L1 = L ∪ C1.

Assume that we have defined Cn and Ln. We introduce a distinct new constant
cA[x] for each formula A[x] of Ln which is not already a formula of Ln−1 (i.e.,
if some constant from Cn appears in A[x]). We write it informally as A[x] ∈
(Ln − Ln−1).

We define

Cn+1 = Cn ∪ {cA[x] : A[x] ∈ (Ln − Ln−1)},

Ln+1 = L ∪ Cn+1.

Witnessing constant For any formula A, a constant cA[x] as defined above
is called a witnessing constant.

Henkin Axioms The following sentences

H1 (∃xA(x)⇒ A(cA[x])),

H2 (A(c¬A[x])⇒ ∀xA(x))

are called Henkin axioms.

The informal idea behind the Henkin axioms is the following.

The axiom H1 says:
If ∃xA(x) is true in a structure, choose an element a satisfying A(x) and give
it a new name cA[x].

The axiom H2 says:
If ∀xA(x) is false, choose a counterexample b and call it by a new name c¬A[x].

Quantifier axioms The following sentences

Q1 (∀xA(x)⇒ A(t)), t is a closed term of L(C);

Q2 (A(t)⇒ ∃xA(x)), t is a closed term of L(C)

are called quantifier axioms. They obviously are first-order tautologies.

Henkin set Any set of sentences of L(C) which are either Henkin axioms
H1, H2 or quantifier axioms Q1, Q2 is called Henkin set and denoted by

SHenkin.

The set SHenkin is obviously not true in every L(C)-structure, but we are going
to show that every L -structute can be turned into an L(C)-structure which is
model of SHenkin. Before we do so we need to introduce two new notions.
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Reduct and Expension Given two languages L and l′ such that L ⊂ L′
.

Let M′
= [M, I

′
] be a structure for L′

. The structure

M = [M, I
′
| L]

is called the reduct ofM′
to the language L andM′

is called the expension
of M to the language L′

.

Thus the reduct and the expension M′
and M are the same except that M′

assigns meanings to the symbols in (L − L′
).

Lemma 2.2 Let M = [M, I] be any structure for the language L and let
L(C) be the witnessing expansion of L. There is an extention M′

= [M, I
′
] of

M = [M, I] such that M′
is a model of the set SHenkin.

Proof In order to define the expansion of M to M′
we have to define the

interpretation I
′

for the symbols of the language L(C) = L ∪ C, such that
I

′ | L = I. This means that we have to define cI′ for all c ∈ C. By the
definition, cI′ ∈ M , so this also means that we have to assign the elements of
M to all constants c ∈ C in such a way that the resulting expansion is a model
for all sentences from SHenkin.

The quantifier axioms Q1, Q2 are first order tautologies so they are going to
be true regardless, so we have to worry only about the Henkin axioms H1, H2.
Observe now that if the lemma holds for the Henkin axioms H1, then it must
hold for the axioms H2. Namely, let’s consider the axiom H2:

(A(c¬A[x])⇒ ∀xA(x)).

Assume that A(c¬A[x]) is true in the expansion M′
, ie. that M′ |= A(c¬A[x])

and thatM′ 6|= ∀xA(x). This means thatM′ |= ¬∀xA(x) and by the de Morgan
Laws, M′ |= ∃x¬A(x). But we have assumed that M′

is a model for H1. In
particular M′ |= (∃x¬A(x) ⇒ ¬A(c¬A[x])), and hence M′ |= ¬A(c¬A[x]) and

this contradicts the assumption that M′ |= A(c¬A[x]). Thus if M′
is a model

for all axioms of the type H1, it is also a model for all axioms of the type H2.

We define cI′ for all c ∈ C =
⋃
Cn by induction on n. Let n = 1 and cA[x] ∈ C1.

By definition, C1 = {cA[x] : A[x] ∈ L}. In this case we have that ∃xA(x) ∈ L
and hence the notion M |= ∃xA(x) is well defined, as M = [M, I] is the
structure for the language L. As we consider arbitrary structure M, there are
two posibilities: M |= ∃xA(x) orM 6|= ∃xA(x). We define cI′ , for all c ∈ C1 as
follows.

If M |= ∃xA(x), then (M, v′) |= A(x) for certain v′(x) = a ∈ M . We set
(cA[x]))I′ = a. If M 6|= ∃xA(x), we set (cA[x]))I′ arbitrarily. Obviously, M′

=
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(M, I
′
) |= (∃xA(x) ⇒ A(cA[x])). But once c ∈ C1 are all interpreted in M′

=

(M, I
′
), then the notion M′ |= A is defined for all formulas A ∈ L ∪ C1. We

carry the inductive step in the exactly the same way as the one above.

Canonical structure Given a structure M = [M, I] for the language L.
The extention M′

= [M, I
′
] of M = [M, I] is called a canonical structure

for L(C) if all a ∈M are denoted by some c ∈ C, i.e if

M = {cI′ : c ∈ C}.

Now we are ready to state and proof a lemma that provides the essential step
in the proof of the Completeness Theorem.

Lemma 2.3 (The reduction to propositional logic) Let L be a first order
language and let L(C) be a witnessing expansion of L. For any set S of sentences
of L the following conditions are equivalent.

(i) S has a model, i.e. there is a structure M = [M, I] for the language L
such that M |= A for all A ∈ S.

(ii) There is a canonical L(C) structure M′
= [M, I

′
] which is a model for

S, i.e. such that M′ |= A for all A ∈ S.

(iii) The set S ∪ SHenkin ∪ EQ is consistent in sense of propositional logic,
where EQ denotes the equality axioms E1− E5.

Proof The implication (ii) → (i) is immediate. The implication (i) → (iii)
follows from lemma 2.2. We have to prove only the implication (iii)→ (ii).

Assume that the set S ∪ SHenkin ∪ EQ is consistent in sense of propositional
logic and let v be a truth assignment to the prime sentences of L(C), such that
v∗(A) = T for all A ∈ S ∪ SHenkin ∪ EQ. To prove the lemma, we construct a
canonical model M′

= [M, I
′
] such that, for all sentences A of L(C),

M
′
|= A if and only if v∗(A) = T.

v is a propositional model for the set SHenkin, so v∗ satisfies the following
conditions:

v∗(∃xA(x)) = T if and only if v∗(A(cA[x])) = T, (6)

v∗(∀xA(x)) = T if and only if v∗(A(t)) = T, (7)

for all closed terms t of L(C).

The conditions ( 6) and ( 7) allow us to construct the model M′
= [M, I

′
] out

of the constants in C in the following way.
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TO BE DONE!

The Main Lemma provides not only a method of constructing models of theories
out of symbols, but also gives us immediate proofs of the Compactness Theorem
for the first order logic and Lowenheim-Skolem Theorem.

Theorem 2.1 (Compactness theorem for the first order logic)
Let S be any set of first order formulas. The set S has a model if and only if
any finite subset S0 of S has a model.

Proof Let S be a set of first order formulas such that every finite subset S0 of S
has a model. We need to show that S has a model. By the implication (iii)→ (i)
of the Main Lemma 2.3 this is equivalent to proving that S ∪ SHenkin ∪ EQ is
consistent in the sense of propositional logic. By the Compactness Theorem 1.1
for propositional logic, it suffices to prove that for every finite subset S0 ⊂ S,
S0 ∪ SHenkin ∪ EQ is consistent, which follows from the hypothesis and the
implication (i)→ (iii) of the Main Lemma 2.3.

Theorem 2.2 (Löwenheim-Skolem Theorem)
Let κ be an infinite cardinal and let S be a set of at most κ formulas of the first
order language. If the set S has a model, then there is a model M = [M, I] of
S such that cardM ≤ κ.

Proof Let L be a first order language with the alphabet A such that
card(A) ≤ κ. Obviously, card(F) ≤ κ. By the definition of the witnessing
expansion L(C) of L, C =

⋃
nCn and for each n, card(Cn) ≤ κ. So also

cardC ≤ κ. Thus any canonical structure for L(C) has ≤ κ elements. By the
implication (i)→ (ii) of the Main Lemma 2.3 there is a model of S (canonical
structure) with ≤ κ elements.
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